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Abstract

Over the past few decades, the digitalization of services and infrastructures has led to the emergence of a broad
set of new information sources to characterize human mobility. These sources usually offer valuable significant
population penetration rates but may also suffer from important temporal sparsity. Data generated by user activity,
such as social networks or mobile phone data, especially fit this description. Although this temporal sparsity might
prevent estimating individual travel speeds, we state that such low-frequency positioning data enable estimating the
average urban traffic speed dynamics when considering an adequate network partitioning. In this sense, this article
proposes a new method, based on the division of the urban area of a given city into regions and on the analysis of
a limited set of basic characteristics of individual vehicle trips, such as the regional path. Our solution first involves
estimating robust travel times from travelers sharing similar trip features and then jointly analyzing these travel times
to deduce the underlying regional traffic speeds, using regression analysis. We apply this methodology on a set of trips
derived from a large GPS dataset of vehicle tracks covering the city of Lyon. These data are purposely downsampled to
reduce the sampling rate and reproduce bias and temporal features that are proper to sparser but larger-scale, mobility
data sources dependent on user’s communication activities. Controlling the data downsampling process allows us to
evaluate the impacts of the progressive information loss on the speed estimation, while the raw GPS data provide the
ground truth speed reference against which to compare our results. Provided that the amount of observed individual
trips is sufficient, the analysis returns satisfying speed estimation results, both at low and high downsampling levels.
Thus, we successfully demonstrate that it is possible to estimate zonal traffic speeds from degraded trip data without
evaluating individual travel speeds.

Keywords: traffic speed estimation, travel time estimation, regional paths, regions, bias model, mobile phone data,
CDR data, GPS data, LBNS data

Highlights1

• We propose a framework for estimating traffic speeds from temporally-biased trips.2

• We propose a temporal bias model linked to user-activity-dependent positioning data.3

• We apply the methodology to a set of GPS trips downsampled according to this model.4

• We investigate the effect of successive data degradation on the results.5

• We investigate the effect of statistical representativity on the results.6
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1. Introduction7

Over the last two decades, the digitalization of services and infrastructures has led to the emergence of a broad set8

of new information sources to characterize human mobility. In particular, GPS tracks from navigation systems and9

services have become prevalent (Castro et al., 2013; Lin and Hsu, 2014). The exploitation of other sources, such as10

anonymous geolocalized social media logs (Twitter, Foursquare) and cell phone data, has also become increasingly11

popular (Chen et al., 2016). The collected geolocated tracks may vary significantly in both the spatial and the temporal12

resolution depending on the technology used to generate the data (GPS, mobile telephony, wireless networks), the13

sensing device or service (on-board or mobile navigation systems, geolocation through social networks and location-14

based services, 2G, 3G 4G cellular networks), as well as the level of user activity (Asgari et al., 2013; Toch et al.,15

2018).16

GPS tracks derived from vehicular and mobile navigation systems are usually quite accurate both in space and17

time. The navigation system generally acquires the user’s position at a regular frequency, which usually ranges from18

a very high frequency (e.g., every second) to lower sampling rates (in the order of the minute). Despite these possible19

variations and acquisition noise and errors, GPS navigation systems remain a key source to explore individual and20

aggregated mobility patterns and monitor traffic (Castro et al., 2013; Lin and Hsu, 2014). However, the related data21

sets often suffer from limited penetration rates.22

Another source of information on human mobility can be found in social networks and Location-Based (Network-23

ing) Services (LBS - LBNS). For instance, the Twitter social network allows users to share their geo-location with24

their tweets, while the LBNS Swarm (formally called Foursquare) offers its users to "check-in" in various venues and25

share this information with friends. GPS being the technology on which those networks and services rely, the spatial26

accuracy of the data generated using such services is mostly the same as that of navigation systems. However, the27

main difference with the latter lies in the data generation process. Instead of being automatic and regular, the avail-28

ability of geolocated samples with social networks and location-based services depends on the user’s communication29

and sharing behaviors. In particular, users with little posting and check-in activities will generate fewer location data,30

and their mobility becomes harder to estimate.31

This is a characteristic that social networks and location-based services data share with several types of passive32

mobile phone data, such as Call Detail Records (CDR) and network signaling data (which, in addition to calls and33

texting events, include network control ones such as handovers). These data are passively generated by mobile phone34

users while communicating and are collected and stored by communication data providers for billing or network35

management purposes. CDR data register each communication event (i.e., a call, message, or data browsing event36

emitted or received by a cellular device) at the base station scale (i.e., antenna), while handovers register each base37

station involved in a call. Thus, the less a user communicates, the fewer data will be generated. Barabási (2005),38

and later Candia et al. (2008); Gonzalez et al. (2008); Calabrese et al. (2011) and Chen et al. (2018), explored the39

existence of patterns in mobile communication behaviors and observed that the latter are bursty. While most of40

the users’ communication events happen within short time intervals, some significant time gaps also exist between41

successive dense communication sequences. Interestingly, Gandica et al. (2017) demonstrated that message posting on42

Twitter presents similar temporal characteristics. Those results suggest that these user-activity-dependent positioning43

data (UADP data further on) may be more fitted to identify and analyze the static phases (often called stays) of users’44

routines than to characterize the trips in-between (Ranjan et al., 2012; Hoteit et al., 2017).45

An extensive literature exists on the use of user-activity-dependent positioning data for mobility analysis (see46

Blondel et al. (2015); Naboulsi et al. (2016) on mobile phone data), but it mainly focuses on the characterization of47

mobility patterns rather than the analysis of dynamic traffic features. This literature is often based on methods to detect48

and process communication events that take place during periods of human immobility (e.g., see Jiang et al. (2013);49

Toole et al. (2015)), which allow inferring origin and destination locations of trips, for instance. On the basis of such50

methods, the subjects covered by the literature vary from the exploration of mobility habits and characteristics (Jurdak51

et al. (2015) with Twitter data) and the development of realistic mobility choice models (Gonzalez et al. (2008) based52

on CDR data) to the construction of origin-destination matrices (see Osorio-Arjona and García-Palomares (2019) with53

Twitter data, Iqbal et al. (2014); Çolak et al. (2015); Alexander et al. (2015) with CDR data) and their use as a proxy54

for the traditionally costly transportation surveys. However, when it comes to describing the trips themselves, the55

irregularity of the communication behaviors and the individual data generation may result in little to no positional56

information during trips that is therefore much harder to exploit. Even if some data are collected during a trip and can57

2



help to identify the likely traveled routes, as shown in Jiang et al. (2013), this situation is far from being systematic and58

only concerns few positions. Due to this limitation, the studies related to dynamic mobility pattern characterization59

are less developed. In Toole et al. (2015), a CDR-based origin-destination matrix is estimated in a first step, then60

assigned onto the road network in a second step to estimate the traffic load. Handovers and Location Area Updates61

are used to estimate traffic speeds on highway segments (Bar-Gera, 2007; Ou et al., 2011), travel time (Janecek et al.,62

2015), or Macroscopic Fundamental Diagrams (MFD) (Derrmann et al., 2017). However, handovers guarantee a63

minimum frequency of location updates during calls, which is not the case for other data sources such as traditional64

CDR or social media logs. Whether UADP data can still be used to derive dynamic traffic characteristics, such as65

speed, remains an open question.66

Monitoring urban network traffic speed is crucial for many applications, including traffic control, route guidance,67

or emission calculations (Zhang et al., 2011); and targeting speeds from irregular and low-frequency positioning data68

remains the most challenging application. In fact, the traditional bottom-up speed estimation methods from GPS69

floating vehicle tracks (Zheng et al., 2013; Shang et al., 2014), which rely on averaging individual speeds calculated at70

the road segment level, cannot be transposed to this kind of data. However, user-activity-dependent positioning data71

have significant advantages with respect to more conventional traffic data sources. They are usually accessible and72

massive. Mobile phone data have very high penetration rates among the populations (Blondel et al., 2015; Algizawy73

et al., 2017; Bachir et al., 2017), which results in excellent spatial coverage in urban areas. Social network data are74

massive as well. They still offer lower penetration rates (because they correspond to more specific audiences and75

uses) than cell phone data, but their availability continues growing (Cisco, 2020), offering promising perspectives in76

more extensive use for mobility analysis. Traffic speed estimations based on GPS floating vehicle tracks often rely on77

complementary data sources (like surveys, loop detectors, or cameras) to implement spatial extrapolation processes78

and compensate for the low data coverage (Shang et al., 2014; Zhan et al., 2017), leading to costly overall processes.79

On the contrary, working with temporally sparse but massive data seems promising as it could offer cost-efficient80

and large-scale alternative methods. Given the massive amounts in which UADP data are available, and despite their81

temporal irregularity and sparsity, we aim to prove that they offer in an urban context a viable alternative to GPS82

floating car data to estimate the mean traffic speed dynamics at a zonal scale. By focusing on UADP data, we consider83

all massive mobility data related to the use of new technologies and whose temporal sampling frequency depends on84

users’ communication behaviors and activities, and therefore inherently uncertain.85

A key point of the method we propose is that it is based on the partition of the urban network into regions86

characterized by homogeneous traffic conditions. This partition defines a new spatial scale at which the individual trip87

data are up-scaled and analyzed. This aggregation process allows characterizing interrelated travelers, i.e., travelers88

who simultaneously cross the same network areas, but is also more adapted to the possible raw spatial resolution of the89

data than the road segment scale. Thanks to this new scale, our method only requires a set of elementary trip features90

but no explicit characterization of individual local speeds. Those features are the observed departure and arrival time,91

and the regional path (as defined in Yildirimoglu and Geroliminis (2014); Batista et al. (2019)), i.e., the succession of92

regions traveled by individuals between their origin and their destination regions.93

We propose to fuse from the outset the travel time information of individuals traveling along the same regional94

paths on a periodic regular basis (e.g., every 15 minutes), and conduct, for each of the considered period, a combined95

analysis of the average travel times estimates derived from this data fusion. Provided that a reliable estimation of96

the trip lengths at the city and regional scales is available from external offline sources, this analysis allows deducing97

a broad and consistent estimation of the regional average traffic speeds. One of the main challenges of applying98

this methodology is the correct estimation of average travel times, despite the temporal biases inherent to the use of99

user-activity-dependent positioning data. The method we propose relies on statistical considerations to addresses this100

challenge.101

We apply the method to a set of artificially temporally-biased trips derived from a real GPS dataset of tracked102

vehicles traveling in the Great Lyon area, France. This approach allows using the original GPS dataset as a ground-103

truth reference for traffic speed, against which to assess the methodology and determine whether the simulated data104

are qualified for urban traffic speed estimation. Although the GPS dataset size is limited, literature works have shown105

that GPS floating car data was a particularly reliable source for estimating zonal traffic speed. Contrary to other106

traffic variables, the traffic speed estimation does not require scaling processes. Its estimation from vehicle probe data107

results in very satisfactory results despite low penetration rates (Nagle and Gayah, 2014; Leclercq et al., 2014). In108

this research, by keeping the data downsampling process under control instead of directly using UADP data, we aim109
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at better understanding how the jamming and the consequent progressive information loss could impact the quality of110

the results. By focusing on a synthetic data context that permits clear identification of the temporal bias, this study111

aims to assess the robustness of the proposed methodology towards its application on non-synthetic UADP data.112

This article is organized as follows. Section 2 exposes the principle of our approach and describes the proposed113

methodology. Section 3 presents our case study, as well as the exploited data. Section 4 focuses on the results we114

reached. Finally, Section 5 concludes with the limits and perspectives of this work.115

2. Methodology116

2.1. Problem statement117

We focus on exploiting vehicle trips extracted from a generic UADP dataset (mobile phone data, LBNS data, or118

any similar mobility dataset) leveraging the literature stay detection methods. These methods define stays as locations119

(either a specific position or a cluster of positions close to each other) where users are observed for a minimum amount120

of time. These methods are therefore geared towards identifying static phases of individual mobility. This paper will121

consider that such methods are reliable and that the stays detected do indeed correspond to static phases. Nevertheless,122

this identification is dependent on the communication activity of the users. It implies that static phases may only be123

partially identified if the user is not active at the beginning or the end of their stay. Suppose we define a trip as124

the mobility phase between two consecutive stays. In that case, an important distinction must be made between the125

observed trip departure and arrival times and the exact (but unknown) ones, as the varying communication rates of126

users provide sparse information on their mobility. In this paper, we use the following definitions, i being an individual127

trip:128

• The observed departure time is defined as the time when the last static event of the origin stay is observed. By129

definition, the observed departure time precedes the actual one. In this paper, let ε i
d be the positive bias between130

these two values (all mathematical notations in the article are listed in the notation table in Appendix A).131

• Reciprocally, the observed arrival time is defined as the time when the first static event of the destination stay is132

observed. By definition, the observed arrival time follows the actual one. Let ε i
a the positive bias between these two133

values.134

• The observed travel time T i
obs is defined as the time elapsed between two consecutive stays, i.e., between the ob-135

served departure and the observed arrival times. It is an overestimate of the actual travel time T i.136

Based on these definitions, we have:137

ε
i = T i

obs − T i = ε
i
d + ε

i
a (1)

Intermediate trip positions can give additional information, considering that the departure time occurs between the138

observed departure time and the first mobile event. The reasoning is symmetrical for the arrival time. Therefore, the139

longer the delay between consecutive moving and static events, the more uncertain the departure and arrival times, the140

greater the risk of significant overestimation of the individual travel time. These individual biases are, by nature, very141

difficult to estimate at the trip level, and they affect the observations of the individual travel time themselves.142

In this context, the problem we address in this paper is the following. Can we provide a method to correctly143

estimate traffic speed at least at an aggregated regional scale despite these unknown individual biases?144
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2.2. Overview145

The fundamental principle behind the speed estimation method we propose is that the overall sample size of the146

data can compensate for the low data quality at the individual trip level. The method relies on the fusion of individual147

trip information and statistical considerations to provide a reliable regional traffic speed estimation. It requires the148

implementation of the following steps.149

1. Network partitioning and time resolution definitions;150

2. Average de-biased travel time estimation through the periodic gathering of similar trips;151

3. Speed calculation through the resolution of a linear system model;152

4. Speed trends smoothing.153

These steps constitute the generic skeleton of the methodological framework we propose. However, some of these154

steps will require adaptation to the specific properties of the input data and case study.155

The network partitioning is the starting point of our methodology. It participates in the definition of the spatio-156

temporal resolution of the final speed results and identifying similar trips. Fine-resolution road network data constitute157

the primary input of such a network partitioning process. However, the spatial resolution of the analyzed UADP data158

determines the minimal resolution of the regional segmentation of the city. For instance, the spatial resolution of cell159

phone data generally corresponds to the underlying base station network. In this case, the partitioning of the urban160

network must result in larger regions than the Voronoi tessellation of the base station network.161

The regional partitioning of the network impacts the data structure required for several inputs.162

On the one hand, our method requires that the vehicle trips database (the key input of the method) include a coarse163

representation of the trip trajectory consistent with the previously defined scale, called a regional path. Therefore,164

the network partitioning affects this feature of vehicle trips. The other trip features are the observed arrival time and165

observed travel time. This minimal travel data structure corresponds to a generic intermediate format that is reasonably166

accessible by preprocessing the raw UADP data, regardless of their specific characteristics. The implementation167

details of this preprocessing step depend on these specific characteristics. They are not addressed in this paper to168

preserve the generality of our framework. However, in Section 5, we shed light on the challenges linked to this step169

and provide options to overcome them.170

On the other hand, the regional partitioning also constraints the average trip length estimates matrix, a critical171

input for the speed calculation phase. This matrix records local average trip lengths according to different macroscopic172

itineraries. Section 2.3 provides more details on its structure. This matrix is computed once, offline, and before the173

trip data analysis. This calculation can be based on the analysis of GPS data, if available, as done in this study. Those174

data must have sufficient coverage to calculate statistically reliable distances. However, alternatives exist, such as175

methods that exploit travel surveys or the automatic and systematic analysis of the road network topography (Batista176

et al., 2019).177

Finally, the travel time estimation step requires an accurate evaluation of the average travel time bias caused by178

uneven user activity patterns. This evaluation, which relies on an analysis of the specific UADP data, is considered to179

be an input of the method. It will allow the observed travel times to be de-skewed and the average travel times to be180

estimated correctly.181

Figure 1 illustrates the succession of the methodological steps and their articulation with the different inputs cited182

above. The following sections describe in more detail each of these steps.183

2.3. Network partitioning and time resolution definitions184

One of the essential steps in the methodology is the identification and the fusion of similar trips. However, sparse185

trips distributed over space and time are difficult to compare and relate to one another. In this section, we first propose186

to define a new spatial and temporal scale, thus laying the ground for the definition of comparison criteria between187

different trips. The definition of such a new scale relies on both spatial and temporal aggregation.188

We first define a new spatial scale. The targeted urban road network is partitioned into regions. These regions189

must mainly be characterized by homogeneous city fabric, demography, road network topology, and, most importantly,190
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Figure 1: Methodological framework
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traffic dynamics. Homogeneity of traffic dynamics is an essential requirement for a robust estimation of the regional191

mean speed, as shown by the literature on the Macroscopic Fundamental Diagram (Daganzo, 2007; Geroliminis and192

Daganzo, 2008). Following the network partitioning guidelines provided by the related literature, one can divide a193

city into a set of regions usually ranging from 5 to 20. This new spatial scale will later determine the final spatial194

resolution of traffic speed estimates. Therefore, it must be adapted to the precision requirements of the case study and,195

where appropriate, to the resolution of the data, as mentioned above. This regional scale provides the background for196

defining a fundamental notion of our method, the regional path:197

• The regional path is defined as the sequence of the successive regions traveled from the origin to the trip destination.198

Therefore, it is a coarse representation of the path followed at the road segment scale, consistent with the regional199

partitioning of the network.200

This up-scaling process is illustrated in Figure 2. While Figure 2a displays an individual trip at the road segment201

network, Figure 2b represents its corresponding regional path R1R4R6. Further on, we will consider that trips follow202

the structure defined here:203

• We call trip the ternary structure defined by a regional path, an observed travel time and an observed arrival time.204

The trip length estimation that must be performed beforehand of the method is also constrained by the previously205

defined regional scale and paths. This input shall record the average regional trip length in each region along each206

possible regional path. Thus, it can take the shape of a distance matrix L̂LL where rows are the different possible regional207

paths, and columns are the different regions resulting from the spatial tessellation. The cell value at (i, j) corresponds208

to the average distance traveled in the jth region, when traveling along the ith regional path P. It is equal to zero if the209

path P does not cross the jth region. This matrix is assumed to be constant over time, but time-dependent patterns can210

be considered if they can be characterized independently on another dataset (Batista et al., 2021a).211

Besides the change of spatial scale, we define a new temporal resolution. The evaluation period is discretized into212

equal time intervals. This new temporal reference imposes the temporal granularity of the speed evaluation and must213

be chosen accordingly. In particular, the temporal unit must be small enough to reproduce the rapidly changing speed214

dynamics during peak hours. We choose 15 minutes in this study, as commonly used in the literature.215

These processes of partitioning the temporal dimension and the studied network, and the resulting notion of the216

regional path, provide temporal and spatial criteria for comparing different paths that are otherwise difficult to compare217

and the basis for identifying similar trips. The following relations are defined:218

• R1: Two trips that share the same regional path are called spatially similar.219

• R2: Two trips that share the same (exact) arrival period are called simultaneous.220

• R3: Two trips that satisfy both R1 and R2, i.e., that are spatially similar and simultaneous, are called221

overlapping.222

These rules allow establishing a comparison between individual trips. This comparison is a crucial aspect of our223

methodology, which relies on identifying overlapping trips and fusing their observed travel time before de-skewing it.224

However, as previously anticipated, it is essential to remind the difference between the exact arrival time and225

the observed one (extracted from UADP data). Such travel times might correspond to different periods if the user’s226

communication rates are low. Therefore, identifying overlapping trips theoretically requires correcting the observed227

biased arrival time. Nevertheless, in the two following sections, we neglect this bias and consider that the exact228

arrival time is known when presenting the core methodological framework. We will relax this favorable assumption229

in Section 2.6.230
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(a) (b)

Figure 2: Representation of the different data quality for a same individual trip. (a) GPS track of an individual departing from their origin at time
td and arriving at time ta. (b) The scaling up of the track at a regional scales accounts for those inaccuracies and reduce the route to a core path
feature: the regional path R1R4R6

2.4. Average travel time estimation231

The robust estimation of travel times over the network is a critical milestone in our methodology. The travel time232

observations featured in the trip data can provide, to some extent, a snapshot of the traffic conditions that individuals233

encounter along their regional route at a given period. However, at an individual level, these observations are not234

reliable enough because they are sensitive, on the one hand, to the microscopic origin, destination, and routing of trips235

at the network level and, on the other hand, above all, to the frequency of individual observations.236

As anticipated in the previous section, the observed travel time of a trip can be related to its exact travel time via237

the introduction of an additive temporal bias. Although other (non-additive) forms of bias could be considered, this238

model is the simplest to start with, and a priori the most natural. Let P be a regional path, and let i be an individual239

trip traveling along P. We thus have:240

T i
P,obs = T i

P + ε
i (2)

where T i
P,obs, T i

P,obs and ε i are, respectively, the observed travel time of i along P, the exact travel time of i along P,241

and the travel time bias of trip i.242

Although estimating this individual bias would allow de-skewing the observed travel time, this bias is, by nature,243

difficult to assess. However, the estimation of its average seems less challenging and can allow to de-skew on average244

the observed travel times. This average bias is assumed known and to be an input of our framework. This hypothesis245

is discussed in Section 5. To this end, we propose merging overlapping trips and averaging their observed travel times246

to build a unique aggregated biased travel time information by path and period.247

Let t represent a generic period, and let It
P be the set of overlapping trips along P that reach destination at time t,248

with nt,P = |It
P|. Averaging Equation 2 over It

P gives:249

T̄ t
P = T̄ t

P,obs− ε̄
t
P (3)

where T̄ t
P, T̄ t

P,obs and ε̄ t
P are, respectively, the average actual travel time, the average observed travel time, and the250

average bias of trips from cluster It
P.251

Assuming that the bias is independent of the trip path and time (hypothesis H2, discussed below), we can consider252

that the distribution of individual biases ε i can be modeled via a unique random variable X . The construction of such253

a model, and the estimation of its first moment µX ≡ E(X), can offer an approximation of ε̄ t
P allowing the de-skewing254

of T̄ t
P,obs, provided that the sample of individuals associated with this period and path is large enough:255

T̄ t
P ≈ T̄ t

P,obs−µX (4)

One of the great advantages of merging overlapping trips data together is that it makes the estimation of the average256

travel time more robust, as long as µX can be independently characterized. This trip aggregation greatly reduces the257

complexity of estimating travel times and traffic speed from biased temporal data, since neither the estimation of the258

individual biases, nor the characterization the bias distribution are needed. Only the estimation of its average value259
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(a) (b)

Figure 3: Visualization of the data merging into clusters of similar trips. (a) Two individuals traveling simultaneously along a same regional path
despite following different (unknown) routes. (b) Merging those individuals into a unique average object (in dark grey) allows characterizing the
average travel time needed to travel the regional path R1R4R6. This is repeated for every regional path and helps in characterizing the travel time
over the whole network.

is required. However, the sampling size is a key condition of the process: the larger the sample is, the better the260

theoretical average bias µX is representative of the sample’s average bias.261

The temporal independence of the bias can be discussed in light of the work of Chen et al. (2018), who showed,262

using CDR data, that the inter-event time distribution is sensitive to the hour of the day and. In particular, longer263

inter-event times are observed during nighttime and early morning. However, these results account for all individ-264

uals, including the ones that are static and sleeping, while we are exclusively interested in moving ones. Thus, our265

hypothesis comes down to considering that users’ communication activities are more related to their general activity266

level (mobile or static) than to the hour of the day, which seems reasonable. The spatial independence of the data is267

similarly debatable since mobile phone or social network use is correlated with socio-demographics. Thus, it would268

be interesting to validate or refute our hypothesis with a study of the evolution of the inter-event time of traveling users269

through time and space, but this goes beyond the scope of this paper. The assumption made here allows considering a270

first simple de-skewing approach. Future researches on the travel time bias associated with UADP data could further271

complete this approach by differentiating the average bias according to time or space.272

The systematic estimation, for each P and t, of the observed travel times, and their de-skewing using an average273

bias estimate results in a robust, spatially exhaustive, and dynamic evaluation of the travel times across the network274

at each period. In that sense, Figure 3 illustrates how two overlapping trips are jointly analyzed to build a unique275

representative object of the traffic conditions along R1R4R6. Figure 3b also shows how this can be repeated for every276

regional path of the network. The speed estimation process relies on this systematic mean regional path travel time277

estimation.278

2.5. Speed estimation279

This section develops the mathematical foundations of the speed estimation method.280

Starting at the individual level, we consider an individual trip i of It
P. Its exact traveled time T i

P along P can be281

expressed as the sum of the traveled times T i
P,r over each region r of P (see Equation 5). The regional travel time terms282

can be in turns expressed as the fraction of the distance traveled by i in r (i.e., Li
P,r) over the mean spatial speed of i in283

region r (i.e., V i
r ), as described in Equation 6.284

∀i ∈ It
P, T i

P = ∑
r∈P

T i
P,r (5)

T i
P = ∑

r∈P

Li
P,r

V i
r

(6)

Due to the data temporal sparsity of individual tracks, T i
P,r, Li

P,r, and V i
r are considered unknown.285

Although vehicles may experience different local and instantaneous speeds over an area, their average speeds
depend mostly on overall traffic conditions, and mainly on the accumulation (i.e., number of vehicles in the region).
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These speeds show little scatter among individuals, and can be approximated by the mean spatial speed of all indi-
viduals traveling in the region. This observation has sustained the development of the MFD theory (Daganzo, 2007;
Geroliminis and Daganzo, 2008). The partitioning of the network into sub-regions of consistent traffic dynamics is
especially meant to enforce this assumption. On this basis, we assume that each regional speed is homogeneous and
constant over the duration of each period t, so that:

V i
r =V t

r , ∀i (7)

where V t
r is the regional spatial mean speed at period t.286

In Equation 6, after summing on the It,P trips, this gives:287

nt,P

∑
i=1

T i
P =

nt,P

∑
i=1

∑
r∈P

Li
P,r

V t
r

= ∑
r∈P

nt,P

∑
i=1

Li
P,r

V t
r

(8)

Equation 8 can easily be rewritten as follows:

nt,P

∑
i=1

T i
P = ∑

r∈P

1
V t

r

nt,P

∑
i=1

Li
P,r (9)

nt,PT̄ t
P = ∑

r∈P
nt,P

L̄t
P,r

V t
r

(10)

T̄ t
P = ∑

r∈P

L̄t
P,r

V t
r

(11)

Again, a significant advantage of this averaging process over the sample It
P is that the characterization of individual288

regional trip lengths Li
P,r for any individual i becomes unnecessary. Instead, the sample mean value L̄t

P,r turns out to be289

sufficient. On condition that the sampling size is large enough, this can be replaced by its static estimate L̂P,r, drawn290

from the exogenous trip length matrix L̂LL described above:291

T̄ t
P ≈ ∑

r∈P

L̂P,r

V t
r

(12)

At this stage, the computed distance matrix is used to express, through Equation 12, a relationship between the292

average travel time along path P at period t, and the underlying, unknown traffic speeds of the regions along the P.293

Although the average trip duration T̄ t
P is unknown, in Section 2.4 we discussed how a knowledge of the average294

time bias µX could allow to estimate it. Based on Equation 4, we thus get:295

T̄ t
P,obs−µX ≈ ∑

r∈P

L̂P,r

V t
r

(13)

At each period t and for each path P, the average travel time along P, T̄ t
P,obs, can be derived from the UADP296

analysis. Conversely, the constant distance parameters L̂P,r are drawn from the aforementioned estimated trip length297

matrix L̂LL. µX is assumed known as well. V t
r are the only unknowns of the system. When applying in Equation 13 the298

change of variable xt
r = 1/V t

r , we finally get the unbiased system:299

∀t, St = {T̄ t
P,obs−µX = ∑

r∈P
L̂P,rxt

r, ∀P}. (14)

In Equation 14, we name St the linear system composed of |R| unknowns (xt
r,r ∈ R) and as many equations as300

the number of regional paths observed during the reference period t. The UADP data analysis and the parameters301
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extracted from the trip length matrix allow to fully characterize the system, which can be rewritten in matrix notation302

as:303

∀t, St = {TTT t
obs−µµµX = L̂LL

|t
xxxt} (15)

where TTT ttt
obs is the average observed travel time vector and L̂LL

|||ttt
is the sub-matrix of L̂LL restricted to the regional paths304

observed at period t.305

Given that the number of regional paths will generally exceed the number of regions of the adopted partitioning,306

St is very likely over-determined. Consequently, the system will probably have no exact solution, but an approximated307

one can be calculated using regression analysis. To this purpose, we apply a non-negative least squares regression308

method to the system. For a given over-determined linear system AAAxxx = yyy, in which AAA is a matrix, xxx the unknown309

vector and yyy the response one, the ordinary least square problem consists of finding the optimal x, which minimizes310

the sum of the squared residuals. This can be formulated as solving xxx000 = argminxxx||AAAxxx− yyy||2, with ||.||2 the euclidean311

norm. Additional constraints on the elements of x can be added. This is the case in the non-negative least square312

method, implying that the coefficient of xxx be non-negative. In our case, such constraint allows for taking into account313

the non-negative nature of zonal traffic speed. We apply the non-negative least square method to St , by solving at each314

time step the following:315

xxxttt
000 = argminxxx||L̂LL

|t
xxxt −TTT t

obs +µµµX ||2, xxx≥ 0 (16)

The non-negative least square method nnls, implemented in Python’s package Scipy, was used in this paper. Taking316

the reciprocal values of the solution vector xxxttt
000 gives the optimal speed vector vvvttt

000. This resolution process can be iterated317

throughout the whole studied time span to estimate the complete temporal speed trends. It should be noted that in318

this paper, the intra-region trips were filtered out of the system and discarded from the analysis, as they contribute to319

a diagonal subsystem whose optimization seems to take precedence over the other system equations in the regression320

analysis.321

2.6. Arrival time correction and data selection322

The previous sections have considered the arrival period t to be exact. However, when extracting trips from UADP323

data, not only the travel time is biased, but so are the arrival time and period. Let t i
0 be the actual precise arrival time,324

and t i
0,obs the observed precise arrival time, by opposition to t i and t i

obs that refer to the actual and observed arrival325

periods. We have:326

t i
0,obs = t i

0 + ε
i
a (17)

When reducing the temporal resolution to the period level, this implies that the observed arrival period does not327

necessarily corresponds to the actual arrival period. This results in the following inequality:328

t i
obs ≥ t i (18)

Consequently, identifying simultaneous trips based on the observed arrival period might correspond to considering329

together users that refer in reality to other periods, with potentially different traffic speeds. Therefore, the correct330

gathering of simultaneous trips ideally requires recovering for each individual their exact arrival times from their331

observed arrival times. This recovering cannot be done on average, as for the travel time de-skewing. Deducting the332

expected value of the arrival bias (i.e., half of the expected value of the travel time bias µX ) from the observed arrival333

times of each trip, as in Equation 19, only shifts all trips by the same amount of time, but not re-assign each trip to its334

correct arrival period.335

t i′
0 = t i

0,obs−µX/2 (19)
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While this shift may help correct an average time offset and slightly modify individuals’ grouping, it can in no336

way correct the massive mixing of trips together. Such a correction requires the precise estimation of individual biases337

separately, which seems very hard to achieve considering the nature of the data. In this paper, we abandon the idea of338

applying such an individual bias correction and stick to correcting the average arrival time offset by considering the339

new arrival period t i′
0 as defined by Equation 19. Nevertheless, to fully meet with the challenge raised by this arrival340

bias, we also propose to enhance at each period the robustness of the linear system by implementing filtering solutions341

at different levels.342

Firstly, one can consider filtering individuals according to a criterion based on their communication rates, in order343

to limit to some extent the mixing of individual trips corresponding to different periods. In practice, the individual344

overall average inter-event time can be used as an indicator of these communication rates. However, this filter must345

be considered with caution, as it might impact the sampling size. In our study, trips are not associated with individual346

inter-event times but with individual biases. We will explore the impact of filtering trips based on a criterion addressing347

these biases.348

Second, we suggest implementing a filter on the minimal number of trips to consider that an equation defining a349

regional path at a given period is valid. Setting this minimal threshold aims at ensuring the robustness of the travel350

time estimates despite potential shuffled trips. One could also consider setting a maximum threshold on the travel351

time standard deviation, which could be particularly suitable for large trip samples.352

The criterion above focuses on the reliability of each equation independently of others. A third element we353

consider is the consistency of the equations with each other. As this coherence is quite challenging to evaluate, we354

propose a sensitive filtering approach to stabilize the results obtained from a set of indiscriminate equations. The355

approach we propose is based on bootstrapping, a statistical inference method based on random sampling. For a given356

period, for which the data processing resulted in a system S made of n distinct equations, a set of subsystems Si is357

generated and solved to explore the sensitivity of the results to the structure of the system. Specifically, the generic358

subsystem Si is built by sampling with replacement the same number n of equations from S. Consequently, Si has359

the same number of n equations but possible redundancy for some of them. To take this redundancy into account,360

we resolve the system with a weighted least square optimization method. The weight of each equation is given by its361

number of occurrences in the subsystem. Thus, the more an equation is sampled from the original system, the higher362

its weight in the resolution. This process is iterated over many subsystems (we set the minimal number of iterations363

to 100) to explore the results’ sensitivity to different sampled equations and weighting parameters. Consequently,364

many derived speed solutions are generated at each period, resulting in a speed distribution for each region. We apply365

statistical filters to these distributions to filter out the most aberrant values before averaging the remaining speeds.366

This process enforces the results’ consistency and stabilizes them without explicitly labeling equations as reliable or367

not and arbitrarily filtering them out.368

Although our method does not exclude does not exclude working with a favorable sub-population displaying the369

lowest communication inter-event times, the individual filtering limits the reach of the method by reducing the range370

of users considered. Filtering individuals according to their inter-event travel time corresponds to considering a sub-371

population with a reduced average bias. Therefore, among these three filtering methods, the last two are considered372

preferable in the evaluation of our methodology.373

2.7. Speed trends smoothing374

The speed estimation process described above is applied independently at each time step. The results of this375

recursive application of the method to consecutive periods may present sawtooth instabilities between consecutive376

periods due to variations of the regional paths observed, their number or the amount of travelers they represent.377

To smooth speed trends over time and ensure consistency of results between consecutive periods, we implement a378

dynamic filtering based on a rolling window method. The window size is set to a chosen number of periods n. At each379

period t, the smoothed traffic speed is calculated as :380

V̄ t
r =

1
n

n−1

∑
i=0

V
t− n−1

2 +i
r (20)
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Because the speed trends can vary faster at peak hours than during the remaining periods of the day, we increase381

the sensibility of the filter at this time. Then, n is set to 3 (periods) during assumed peak hours, while it is set to 5 the382

rest of the day.383

2.8. Discussion384

In this section, we discuss a few insights we can retrieve from the structure of the system.385

First, the structure of the system St directly explains the impact of the chosen tesselation. The more fine-grained386

the spatial resolution, the larger the system size. Not only does the number of unknown variables (regional speeds)387

increase, but so does the number of possible regional paths, and hence of equations. Consequently, an increase in the388

number of regions also leads to a relative decrease in regional paths’ attendance level, as they are more numerous and389

therefore less crossed. This attendance decrease might be problematic as the methodology relies on the hypothesis390

of sufficient sample representativeness. Thus, determining the appropriate spatial partitioning raises the question391

of finding the suitable trade-off between a fine-grained traffic speed estimation and a system composed of reliable392

equations.393

Additionally, the shape of the system provides an insight into the importance of the average travel time de-skewing.394

The speed vector resulting from the approximated resolution of the system St of Equation 15 is reliable under the395

condition that the system is properly conditioned, i.e., that the average travel time vector TTT ttt
obs − µµµX is correctly396

estimated (the trip length matrix distance factors L̂LL being considered as reliable). Without accounting for the average397

bias generated by the users’ uneven activity rhythms, characterizing the regional network travel times based on the398

observed travel times would result in an overstated left side of the system compared to the latent actual average travel399

time T̄ t
P. This system would be unrepresentative of the actual traffic speeds and likely to underestimate them.400

3. Experimental approach401

To evaluate the performance of the proposed methodology, we apply it to a UADP dataset derived from high-402

frequency GPS data through data simplification and downsampling. This evaluation approach, based on high-403

frequency raw data instead of low-frequency data, presents several advantages. First, it provides control over the404

average data bias, which is an essential part of the methodology that has not been enough characterized by the litera-405

ture. Second, it allows exploring the impact of the data simplification, the temporal downsampling, and the de-skewing406

process on the speed estimation quality. This exploration is a necessary step to identify the strengths and weaknesses407

of the method and adjust it accordingly. It helps to understand how to increase the robustness of the method before408

applying it to real inaccurate and biased UADP data, for which the corresponding accurate ground truth GPS tracks409

will most likely be lacking. Last but not least, this experimental approach provides an easily accessible and reliable410

baseline estimation of the traffic speed dynamics, against which to compare our results. The original GPS dataset411

also provides valuable data for estimating the trip lengths, which are assumed in our framework to be derived from412

exogenous sources and produced offline before UADP-like data processing.413

3.1. Bias model414

In the previous section, we discussed how the temporal biases of the data could substantially impact the speed415

estimation results and why it was necessary to take into account this bias in order for the speed estimation system to416

be adequately conditioned. This led to Equation 15. To the best of our knowledge, no model is characterizing this417

bias. Thus, we propose a simplistic and generic bias distribution modeling to downsample GPS trips and simulate418

the temporal characteristics of data with low-sampling rates. The modeled bias is positive and independent both of419

time and space, in agreement with the considerations and assumptions developed in Section 2. The model relies on420

the characterization of the sample inter-event time distribution, which is a standard indicator to measure the sampling421

rates of user-activity-dependent positioning data. The generated bias distribution will be applied to the individual trips422

in order to simulate temporal biases and explore the performance of the method on these downsampled trips.423

The travel time bias is modeled by a random variable X, which we aim to characterize. To start, we express the424

individual travel time bias ε i as the sum of a departure and arrival offsets ε i
d and ε i

a (see Equation 1):425

ε
i = ε

i
d + ε

i
a (21)
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ε i
d being the time difference between the actual and observed departure times from the origin stay, and ε i

a the time426

difference between the observed and actual arrival times at the destination stay. They are considered to be positive.427

Hence, if the departure and arrival temporal offsets ε i
d and ε i

a are themselves modeled by the same random variable Y,428

Equation 21 gives X = 2Y . Now, we consider that an individual’s departure time from a stay position can occur with429

a uniform probability between the pre-departure communication event and the post-departure communication event.430

The delay between these two events follows the distribution of the user’s inter-event times, which we assimilate with431

the population’s inter-event times distribution for the sake of simplicity.432

Mathematically, this means that departure bias follows a uniform distribution law bounded by the population’s433

inter-event time distribution. Symmetrically, the same reasoning applies to the arrival bias.434

Here, we model the population’s inter-event time by a simple exponential law Z of parameter λ . While the435

literature often reports inter-event time distribution closer to truncated power law distribution, we select an exponential436

distribution here out of simplicity. It requires a single parameter λ directly linked to the distribution average.437

The considerations above lead to:438

Z ∼ Exp(λ ) (22)
Y |Z ∼U(0,z) (23)

Hence, the probability density function of Z, and the conditional probability density function of Y given the439

occurrence of the value z of Z can be written as:440

fZ(z) = λe−λ z (24)

and fY |Z(y | z) =

{
1
z 0≤ y≤ z,
0 otherwise,

(25)

From this, we show (see the detailed calculation in Appendix B) that the probability density function of Y is:441

fY (y) = λ

∫ +∞

0

e−λ (y+z)

y+ z
dz (26)

and that the first two moments of Y are:442

E(Y ) =
1

2λ
and V (Y ) =

5
12

1
λ 2 (27)

Those results characterize the random variable Y which models the departure and the arrival offsets. This gives443

for X = 2Y :444

µX ≡ E(X) = 2E(Y ) =
1
λ

and V (X) = 4V (Y ) =
5
3

1
λ 2 (28)

We already stressed the importance of the size of It
P to ensure that µX is representative of the cluster average445

bias. This is all the more important as with our bias model, as the variance of X increases with mean inter-event time446

E(Z) = 1
λ

:447

V (X) =
5
3

E(Z)2 (29)

Equation 29 shows that the larger the mean inter-event time is, the more scattered the trip bias distribution will be,448

and the more data per period and per regional path will be needed to ensure a reliable de-biasing process.449

With this model, fairly simple and realistic, we propose a way to simulate the travel time biases related to the users’450

variable mobile phone activity rates. The construction of the model makes it possible to approximate the average bias451
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(a) (b)

Figure 4: Maps of the regions partitioning the city of Lyon, France. (a) Map of the urban regions; (b) Map of the ring road regions. The ring road
is divided into three zones, which are themselves separated into two according to the direction of traffic.

of the measured travel times from the analysis of the population inter-event time distribution and deduce it from them.452

While an exponential inter-event time distribution was chosen here, the method is transposable to any other observed453

distribution. Although this model was developed for the data simulation purposes and not validated against real UADP454

data, we look forward to evaluating its relevance in a real context. We also believe that the relationship between bias455

and inter-event time will remain a key part of a more complex bias modeling process.456

3.2. Spatial partitioning457

The city of Lyon, France, is chosen as our case study. The study area includes Lyon and the neighboring munici-458

pality of Villeurbanne, located inside Lyon’s ring road. We have parted this territory into sixteen distinct regions. Ten459

of them divide the urban areas, while the ring road is extracted and parted into six regions, three per each direction.460

Those regions are displayed in Figure 4. Urban regions were manually defined based on the natural geographical461

barriers (two rivers) and the major road networks. The major adopted criteria consisted of separating the main arterial462

roads in different regions. The traffic variables were verified to be relatively uniform in each region (Mariotte et al.,463

2020). We split the ring road into three main blocks based on our knowledge of daily congestion patterns: the north-464

east, south-east, and south-west blocks. The remaining north-west section of the ring road is mainly a tunnel. As465

the GPS data are lacking in this section, it was ignored in the analysis. We checked whether the two opposite travel466

directions could be jointly considered a homogeneous traffic area by analyzing the ring road speed profiles. As the467

speed profiles appeared to be significantly different, we decided to split the ring road further, regions per direction.468

It is important to mention here that despite the efforts to ensure the homogeneity of the traffic conditions inside each469

zone, some aspects of the network structure can be a limitation. In particular, many motorways serve Lyon and relate470

it to the neighboring cities. Those motorways cross the urban regions and cause within regions traffic heterogeneity471

(region 0, 2, 3, 4, and 6). One solution to limit this heterogeneity would be to isolate those motorways sections into472

new specific regions. However, this would unnecessarily increase the number of traffic speed variables. Instead, we473

propose a light and easy-to-implement adaptation of the overall methodology to take this aspect into account. Al-474

though this filter is specific to our case study and the chosen partitioning, it can be applied again in other contexts, as475

cities are often served by expressways passing through peripheral residential areas.476

Based on our knowledge of the traffic in Lyon, we assume that the trips traveling along those motorways are very477

likely to travel along the ring road as well, as a transition to another motorway or their final destination in an urban478

region of the city. Consequently, the ring road is assumed to be more strongly connected to these motorways than to479

the rest of the urban regions. Hence, we propose to decouple our estimation equation system as follows.480

On one side, a first subsystem St
RR is built from the regional paths that travel along the ring road at one point.481

The system is solved and returns a first speed vector V t
0 . The corresponding equations are assumed to carry reliable482
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Day 1 Day 2 Day 3 Day 4 Day 5

Number of trips 19597 20750 20951 21963 22302

Table 1: Number of trips considered per day

information about the traffic speed on the ring road. However, the information they carry about the dynamics in the483

other urban regions (traveled before or after the ring road) is assumed to characterize better the traffic condition in484

their motorways than in their urban grid. Consequently, while the solution V t
0 is considered reliable for characterizing485

the ring road speed, it is considered as unreliable to characterize the urban regions’ speeds.486

On the other side, we build a second subsystem St
URB with regional paths that do not travel along the ring road.487

The resolution of this new subsystem results in a second speed vector V t
1 . This solution only characterizes the urban488

regions and is assumed to be reliable on them.489

Both solutions are merged to build a unique speed vector V t built from the concatenation of V t
1|URB the speed490

vector V t
1 restricted to the urban components and V t

0|RR the speed vector V t
0 restricted to the ring road components.491

3.3. Data description492

The GPS dataset exploited in this study consists of cleaned and map-matched GPS traces over the Greater Lyon493

area, i.e., an area larger than the perimeter selected for our study. A European navigation system provider collected the494

data between October 2017 and September 2018. The traces are collected from multiple navigation system technolo-495

gies equipping a multitude of observed floating vehicles (29,000 vehicles per day on average on the Greater Lyon).496

Moreover, as each trace corresponds to a vehicle, there is no need to filter out pedestrian or cyclist travelers as usually497

required when working with mobile phone or social networks data. This aspect slightly facilitates the problem of498

estimating traffic speeds, since the question of detecting the mode of transport does not arise here.499

The trips used in this study were extracted from five typical weekdays, i.e., from Monday, February 12, to Friday,500

February 16, 2018. As few trips are observed at night-time in our dataset, the time span selected for our evaluation501

is restrained to day-time hours, i.e., in-between 5 AM and 8 PM. The data from the full month of February 2018 was502

used for the offline calculation of trip lengths.503

3.4. Trip data preparation504

The first phase of data processing involves filtering and further cleaning the data. As the area covered by the505

GPS data is larger than the studied perimeter, we applied a first filter to remove from the data the segments of GPS506

tracks outside the relevant perimeter. Moreover, the GPS tracks are additionally parsed into different trips when stays507

are detected. Additional steps included filtering out redundant individuals, static vehicles, and GPS tracks that are508

fragmented or do not have a spatial consistency, to obtain a clean and reliable data set. At the end of this preprocessing509

step, the number of trips per considered day is as described in Table 1. Although these numbers are significant, we510

insist on the importance of a minimal sample size at the period and regional path level. At each time step, and for each511

path, the number of trips must be large enough so that the expected value of the bias is representative of the sampled512

biases. As GPS data are limited in sample size, we artificially extend the size of the dataset by duplicating each trip513

100 times. This trick allows obtaining an extended sampled population, that is then downsampled and biased for each514

individuals.515

This GPS trip dataset is then strictly reduced to the trip features needed by the methodology. The actual travel and516

actual arrival times of each trip are directly extracted from the GPS data observation. Additionally, every GPS track517

is down-scaled to the spatial resolution previously defined, to obtain the regional path information. Those three trip518

features (regional path, actual arrival time, and actual travel time) are stored, along with the trip id, in a new dataset519

that will be called DS0 in the following. At this stage, a first downsampling level has been introduced in the spatial520

dimension to replace the precise track information with the regional path feature. Although travel times do not yet521

include any temporal bias at this stage, the trip representation is then already considerably simplified. This dataset522

will be the subject of our first experiments.523

The last processing step consists of applying to DS0 a temporal downsampling process that aims to simulate the524

temporal imprecisions of UADP data compared to GPS data. The idea is to simulate the travel time increase caused525
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Figure 5: Bias distributions depending on the selected average inter-event time

by the temporal biases that the uneven inter-event communication times introduce in the departure and arrival time526

detection, using the bias model described in Section 3.1. The average inter-event time (IET) is a crucial parameter of527

this model. The value of this parameter may depend on the population observed or on the type of data chosen: for528

example, using handovers and signalization datasets will display weaker inter-event times than CDR or LBNS data.529

To take this inter-event time variability into account and evaluate its impact on our results, we generated, for each530

day of data, five different downsampled dataset, one per inter-event time value. The selected average inter-event time531

values are 4, 8, 12, 16, and 20 minutes, to cover a large range of average communication rates. The corresponding532

bias distributions are displayed together in Figure 5. We observe that the larger the average bias is, the more spread is533

the distribution, with a greater probability for high temporal biases, which was expected with Equation 29. This plot534

allows understanding that even if the speed estimation method is statistically unbiased, the increasing dispersion of the535

individual biases makes it necessary to have larger samples when working with important average inter-event times536

compared to small ones. This especially justifies the data expansion led above. Downsampling the expanded trips537

sample then allows obtaining an extended bias distribution, for which the average bias will be more representative.538

For each trip, we sample the departure and arrival biases according to the probability density function obtained in539

Equation 26. We generate a second dataset, referred to as DS1, which includes the same trips as in DS0 but whose540

actual travel time information is biased by the sum of the sampled departure and arrival biases to obtain the observed541

travel time. This dataset records partially biased trips. It will be the subject of our second analyses to assess our ability542

to correct for travel time bias. In a final downsampling step, we generate a dataset DS2 in which the actual arrival543

time is additionally biased with the sampled arrival bias. DS2 records synthetic UADP-extracted trips: individual trips544

characterized by fully biased temporal features and low-quality path information.545

One last step before applying the methodology to any of those two datasets consists of grouping the data by546

regional paths and 15-minutes periods, and averaging the travel time on the resulting groups.547

3.5. Speed baseline548

We divide the experiment duration into equal periods of 15 minutes. At each time step t, the method, applied to549

one of the datasets describe before, returns a vector VVV t whose dimension is equal to the number of regions, in this550

instance 16. A speed reference is needed to validate our method and estimate the impact of the data downscaling551

and downsampling processes on the reliability of the results. The spatial mean speed V t
r in region r over a period t is552

defined as the ratio of the total traveled distance in region T T Dr,t and the total travel time T T Tr,t in region r during t:553

Vr,t =
T T Dr,t

T T Tr,t
=

∑i di
r,t

∑i t i
r,t

(30)

T T Dr,t corresponds to the sum of the individual travel distances in region r during t, i.e., di
r,t . T T Tr,t corresponds to554

the sum of the individual travel times in region r during t, i.e., t i
r,t . As the GPS data are map matched (see Section 3.3),555

they include not only temporal and positional data, but also the inferred sequence of road segments traveled, the556
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inferred entrance time on each road link, and the distance traveled on each of them. These characteristics give access557

to precise individual travel times and distances, and therefore allow obtaining a reliable speed baseline to compare558

speed estimation results from temporally-biased trip data.559

To conclude, using simulated data obtained through downscaling and the downsampling of high-frequency GPS560

data presents the strategic advantage of offering substantial control over the experimental environment while providing561

easy access to the necessary distance parameters and the ground truth speed data. The next section exposes the results562

of the approach on datasets DS0, DS1 and DS2.563

3.6. Trip length estimation564

Finally, the GPS data is used to estimate the trip length estimation matrix. The entire month of February is used to565

generate this matrix and ensure robust estimation of trip lengths. As the mobility behaviors are characterized by high566

redundancy, the trip lengths are mostly unvarying from one month to the other. This means that the trip length matrix567

can be calibrated using data from a period of time that does not necessarily overlap the time span of the study. This568

assumption was confirmed by comparing trip length matrices computed in February with a similar matrix computed569

with March’s data. Appendix C exposes the result of this comparison. We will explore the results of the method570

when estimating travel distance with automatic network analysis in later work. In the meantime, one can refer to the571

comparison of such trip lengths estimation with GPS data in the work of Batista et al. (2021b).572

4. Results573

The speed estimation method that we propose presents the advantages of relying on few mobility features and574

hence of being easily applicable to UADP data. However, it is essential to evaluate the extent to which the low data575

quality impacts the accuracy of the speed estimation. To this purpose, we proceed in three steps.576

First, we intend to evaluate the impact of working with mobility data of coarser space and time resolution on the577

results by assessing the errors when working on the DS0 dataset. The significant degrading of the GPS data might578

impact the results. Evaluating this impact is essential to understand the overall potential of the method on temporally-579

biased trip data.580

In a second step, the method is applied to the partially biased dataset DS1. First, we estimate the speed dynamics581

without de-biasing the temporal system, hence with erroneous travel time information, to evaluate to what extent it582

is necessary to estimate and remove the travel time bias. Second, we solve the de-biased system, and measure the583

effectiveness of the de-biasing process to obtain satisfactory speed results.584

In a third step, we will apply the method to the fully biased dataset DS2. We compare the results obtained when585

correcting only the travel time bias with the results obtained when correcting both the arrival and travel time biases.586

While the data expansion of our trip sample has no impact on the evaluation when using dataset DS0, because it does587

not change the average travel times, we will see that this step is of importance when dealing with both biased datasets.588

589

4.1. Method application to trip data with exact travel time590

We start by applying the proposed methodology to dataset DS0, to evaluate in a first step the impact of the spatial591

aggregation and of the speed estimation method.592

By using our methodology, we obtain a speed profile in kilometers per hour, per region, and per 15-minutes slots593

for each day of the evaluation. These speed profiles are compared to the corresponding speed baseline to compute594

errors. We begin by measuring daily error indicators that characterize the global results of the methodology for595

the overall regions and periods of the day. We evaluate the mean absolute error (MAE), the root mean absolute596

error (RMSAE), the mean absolute percentage error (MAPE), and the root mean square absolute percentage error597

(RMSAPE). Those daily indicators are displayed in Table 2.598

It is interesting to observe that the daily errors are substantially similar from one day to another.599

To better assess the performance of the methodology, we now focus on one specific day from our day-set, e.g.,600

Day 1 (Monday, February 12, 2018). Comparable results were obtained for the other days. Figure 6 illustrates the601

speed estimations dynamics obtained for this day. Each of the subplots corresponds to a region of our partitioning of602
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MAE (km/h) RMSAE (km/h) MAPE (%) RMSAPE (%)

Day 1 4.727834 6.548142 13.111325 16.875215
Day 2 4.820239 6.725782 13.169344 16.739542
Day 3 4.906018 7.048133 13.486273 17.370823
Day 4 4.781254 6.909102 14.909294 23.519969
Day 5 4.876119 6.538737 14.013252 17.780414

Table 2: Daily speed errors when applying method to DS0

Lyon. Time throughout the day is represented on the x-axis in hours while the y-axis is for average traffic speed, in603

kilometer per hour. The ground truth traffic speed, calculated based on the raw GPS dataset, is represented in blue.604

The orange line corresponds to the raw speed estimation results after bootstrapping. The green line is the result of the605

moving average filtering that smooths the speed trends. The first ten plots (from Region 0 to Region 9) correspond to606

the urban regions, while the last six ones characterize the speed dynamics on ring road.607

For most of the inner regions, we observe that both the raw and smoothed speed trends well match our ground608

truth profiles, both during peak hours and off-peak periods. Regions 0, 1, 2, 5 and 6 display the most accurate speed609

estimations. Regions 3, 4 and 7 are those among urban regions where the raw results are the least stable, and for which610

the smoothing process is the least efficient. The traffic speed in these regions are slightly overestimated.611

When it comes to the ring road regions (Region 10 to Region 15), we observe a more significant variability of the612

raw results, with saw-tooth raw speed estimations. For those regions, we observe that the speed estimates reproduce613

well the speed trends, generally following the ground-truth speed surges and drops during peak hours and matching614

the faster speeds in-between. Regions 12, 14 and 15 display the most accurate speed estimations. During peak hours,615

the raw results display important speed drops, and the increased sensitivity of the filter during assumed peak hours616

(6 AM to 9 AM and 3 PM to 7 PM) proves efficient to reproduce these dynamics while smoothing the results. In617

Regions 12, 14 and 15 the speed estimates reproduce well the speed drops. The speed estimates in Region 10 during618

the morning drop are also satisfactory. Region 11 is the most concerning at the peak time, as both its morning and619

afternoon speed trends are overestimated. After investigating this issue, we suppose that the divergence of the southern620

end of this section of the ring road, on the one hand, towards Region 12, and on the other hand, towards a freeway, with621

distinct road behaviors, could be the cause of this anomaly. In the future, we aim at looking more thoroughly at the622

characteristics of this region and explore how its network features might impact our results in this way. Although some623

smoothed speed trends in other regions miss reproducing the speed drops to their full magnitude (see in particular:624

Region 13, morning peak or Region 15, afternoon peak), the deviation from the baseline is much lower than the one625

related to Region 11, and the results remain satisfactory. As the raw speed estimates reach the lower speeds (Region626

11, Region 15), modifying the filter during this time window to make it even more sensitive to lower speeds can be a627

way to reduce this gap and further improve results.628

In-between the peak periods, the raw results follow the speed baseline and reproduce its speed dynamics. Regions629

10 and 13 display the largest deviations from baseline with a general under-estimation of the speed during this time630

window. It is interesting to notice that those regions correspond to the opposite directions of the same section of the631

ring road: section North-East. Region 10 corresponds to the clockwise direction, while Region 13 corresponds to the632

counterclockwise direction. The reason for this under-evaluation of the speed is that both those regions are strongly633

connected to the north-western part of the ring road, which was not considered in this study as it mostly corresponds634

to tunnels. Hence, the process of filtering the scattered tracks related to this north-western section impacted the635

number of available trips in regions 10 and 13 more than the other ring road regions. In fact, we observe that the636

frequentation in those regions is, on average, 10% lower than in the other ring road regions This low frequentation637

leads to poor representativeness of the average travel time and generates a distance bias between actual and estimated638

travel distance per region and path. The other ring road regions display satisfactory results during this time window,639

for which the moving average succeeds in smoothing the raw results and their saw-tooth shape (Regions 11, 12, 14,640

and 15). However, this filter may be unsuitable if sudden and unexpected speed drops occur outside of peak periods.641

Despite this limitation, this filter was fast and easy to implement choice. In future work, we will explore other filtering642

techniques that both allow filtering the small saw-tooth instabilities of the results without neglecting the unexpected643
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Figure 6: Speed estimation method applied to dataset DS0 (trips with exact travel times))
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MAE (km/h) MAPE (%)
All regions Inner regions Ring road All regions Inner regions Ring road

Full day 4.727834 3.157841 7.344489 13.111325 14.274299 11.173036

Off peak 4.641103 3.090886 7.224797 12.040770 13.794607 9.117708
Peak hours 4.803374 3.216156 7.448737 14.043745 14.692095 12.963161

Morning peak 5.354016 3.665842 8.167639 16.491855 16.713291 16.122797
Afternoon peak 4.287147 2.794576 6.774766 11.748641 12.797223 10.001003

Table 3: Speed MAE and MAPE detailed by region and time window for Day 1

MAE (km/h) RMSAE (km/h) MAPE (%) RMSAPE (%)

Day 1 3.780724 5.308405 10.711582 14.277904
Day 2 3.698802 5.013979 10.599366 13.624562
Day 3 3.706125 5.343630 10.516593 13.799747
Day 4 4.061264 5.876281 12.163860 18.042898
Day 5 4.078924 5.792345 11.312538 14.590598

Table 4: Daily speed errors when applying method to DS0, using the actual trip lengths instead of static trip length estimates

speed drop that may occur at any time of the day.644

In Table 3, we detail the MAE and MAPE errors by period and region type for Day 1. Those errors are computed645

from the smoothed results. We observe that while the daily error is bigger in absolute value in the ring road regions646

than in urban regions, the absolute percentage error is smaller for the ring road. Generally speaking, the percentage647

errors are higher in peak hours than during the off-peak period. However, we also notice that its value is smaller for648

ring road regions than in inner ones, showing that the method is quite efficient in reproducing the fast-changing speeds649

of this particular kind of region.650

Those results are interesting as they give a first insight into the potential of the method. Despite significantly651

lowering the information carried by individual trips (from GPS tracks to regional paths, and from exact arrival time to652

arrival period), the method reproduces the speed trends with limited errors. From the perspective of estimating traffic653

speed from temporally sparse data, this is a promising step.654

However, we can identify several potential improvements. We already mentioned the improvements concerning655

the smoothing filter. The specific characteristics of Region 11 are also under investigation to understand how they656

impact the results. More generally, we can only stress the importance of the sample size. In fact, the number of657

individuals traveling along a regional path at each step must be large enough for the exogenously computed mean658

travel distance to represent the sample and for the sample’s average travel time to represent the instantaneous dynamics659

along the path. When working with massive data, the amount of data available will ensure this representativeness and660

compensate for the low data information level. However, working with GPS data present the drawback of having to661

deal with a limited amount of tracks, and therefore, even more, a limited amount of tracks by regional path and period.662

This likely results in distance biases between the estimates and the actual average traveled distance, destabilizing the663

results. Hence, this case study can be considered a worst-case scenario in which the method requires us to work with664

limited access to trip information.665

We explored the same speed estimation process from dataset DS0 when replacing the static trip length estimates666

by the actual travel distances to validate those considerations. The speed trends for Day 1 are displayed in Figure 7,667

while the corresponding daily errors can be found in Table 4. The important improvement we observe, especially for668

Regions 10 and 13, confirms that a finer representativity of the trip length estimates should allow for more accurate669

results, thus limiting the gaps to the baseline. For this reason, and despite the limitations we mentioned, the method670

is very promising for an application to a way larger dataset.671
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Figure 7: Speed estimation method applied to dataset DS0 (trips with exact travel times), using the dynamic trip lengths
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Avg IET MAE (km/h) RMSAE (km/h) MAPE (%) RMSAPE (%)

4 7.894771 18.576767 10.773218 21.648403
8 12.970168 31.347989 16.233049 33.484246
12 16.918677 41.133133 20.600466 42.693440
16 19.920772 48.522253 24.008746 49.748655
20 22.204453 54.189049 26.608480 55.214964

Table 5: Speed errors on average over the week for each mean inter-event time selected as downsampling parameter

Figure 8: Evolution of daily errors with increase of average bias

4.2. Method application to trip data with biased travel time672

In this section, we evaluate our method on the trip dataset DS1 made of trips with biased travel times. First, we673

compute the zonal traffic speeds without applying the temporal bias removal. This allows evaluating the impact of674

the temporal imprecisions on the results. The variations of average errors over the week with average inter-event time675

are gathered in Table 5. We observe a significant increase in the errors, compared with Table 2. This shows how a676

bad estimation of travel times deteriorates the results’ quality, even with a short average inter-event time and a limited677

travel time increase. It justifies the need for de-biasing in average the travel times. The following results are computed678

applying this de-biasing process.679

We display in Figure 8 the evolution for each day of the different daily error indicators as a function of the average680

inter-event time. We observe that the error indicators are quite stable and rise slowly with the average inter-event time.681

On the contrary, when not expanding the data, the error increases quickly due to the increased dispersion of the bias682

distribution with the average inter-event time. This shows how important the sample size is and proves the capacity683

of a large dataset to compensate for the individual biases and imprecision and keep the bias removal process useful684

despite a large bias dispersion.685

Figure 9 displays the smoothed results of the speed estimation for the five different average inter-event time values.686

The results for each value of average inter-event time almost fall into the same line, which confirms the aforementioned687

results. We observe that we are able, once again, to reproduce the traffic trends and dynamics.688

In urban regions, the results are satisfactory in Regions 2, 5, 6, 8 and 9. In Regions 0, 1, 3, 4 and 7, the results are689

less consistent with the speed baseline. While the Region 3, 4 and 7 were already identified in the previous section as690
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Figure 9: Speed estimation method applied to dataset DS1 (downsampled trips) after average bias removal.
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MAE (km/h) RMSAE (km/h) MAPE (%) RMSAPE (%)

Day 1 4.911907 7.174379 12.124498 15.264945
Day 2 5.057217 7.564531 12.024699 15.306312
Day 3 5.067316 7.505059 12.617445 15.839542
Day 4 4.848885 7.216612 13.006559 18.000039
Day 5 4.678821 6.591109 12.331655 15.714796

Table 6: Daily speed errors when applying our method to DS1 in the worst bias scenario (IET = 20 mins)

MAE (km/h) MAPE (%)
All regions Inner regions Ring road All regions Inner regions Ring road

Full day 4.911907 2.794057 8.441657 12.124498 12.113224 12.143288

Off peak 5.181909 2.790098 9.168261 11.769294 11.884125 11.577910
Peak hours 4.676744 2.797506 7.808808 12.433869 12.312762 12.635715

Morning peak 4.961260 3.236535 7.835803 14.194493 14.174446 14.227904
Afternoon peak 4.410010 2.385915 7.783501 10.783285 10.567434 11.143037

Table 7: Speed MAE and MAPE detailed by region and time window for Day 1 in the worst bias scenario (IET = 20mins)

displaying less satisfactory results, the increases of the errors for the Regions 0 and 1 can be related to the introduction691

of the bias.692

In the ring road regions, most estimated speed trends follow the speed baseline. The speed trends are particularly693

similar to the baseline in Regions 12, 14 and 15, although some speed drops are not reproduced with their full magni-694

tude (Region 15, especially), but it was mostly already the case when working with unbiased data. Unsurprisingly, the695

results in Regions 10 and 13 remain underestimated in-between the peak periods, similarly to the case with unbiased696

data, but the speed drops are clearly observed. The estimation errors that we had already observed for Region 11697

during peak hours in the case of unbiased data are increased when using biased data.698

Finally, we further analyze the worst-case scenario results with an average inter-event time of 20 minutes. Table 6699

displays the average errors observed for each day in this case, while Table 7 details the precise errors by region type700

and time window. Compared to the previous section results, we notice a general increase in the errors, although701

limited. The errors remain under a 20% limit when considering the daily RMSAPE, which is acceptable even though702

there is room for improvement here.703

Overall, taking into account the errors previously introduced by upscaling of the GPS tracks to the regional path,704

working with biased trips seems to have a limited negative impact on the result. Despite the low quality of the trip705

information at this stage, the results are very encouraging. Therefore, the room for improvement includes the reduction706

of errors at each stage of the process. This ranges from the representativeness of trip length and time estimates, to the707

filtering process, to a more refined understanding of the impact of internal speed dynamics in the results.708

4.3. Method application to trip data with both biased arrival and travel time709

In the preceding section, we have analyzed our results when using trips with a biased travel time information.710

However, UADP data not only display biases in the travel time, but on the arrival time as well. In this section, we711

therefore consider this additional bias on the trips by exploiting the DS2 dataset, and explore the impact of the methods712

we propose on such results.713

First, we compute the results of our method on dataset DS2 when handling the travel time bias only. The results714

are displayed in Table 8. Compared to Table 6 for instance, which represents the average errors we obtained for each715

day in the worst case scenario, those results display a new significant increase of the errors. Since the arrival times716

are de-skewed, this increasing of the errors is related to the arrival time bias only, which results in mixing together717

users traveling at different periods and in erroneous travel time estimations. Without surprise, we can observe that the718
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Avg IET MAE (km/h) RMSAE (km/h) MAPE (%) RMSAPE (%)

4 6.402842 14.587325 9.344040 17.957539
8 10.950956 24.768931 14.947251 28.044663
12 14.044534 32.729041 18.393624 35.744618
16 16.329243 38.268281 21.118529 41.143766
20 17.901683 42.022657 23.004366 44.958863

Table 8: Speed errors on average over the week for each mean inter-event time selected as downsampling parameter

Figure 10: Evolution of daily errors with increase of average bias

larger the average inter-event time is, the larger the errors are, because trips are shifted further away from their actual719

travel time period.720

Therefore, handling this arrival time uncertainty seems necessary, as it was previously done with the travel time.721

This is what we address in the second part of this section. Figure 10 displays the results obtained once we shift back722

each trip’s arrival time by µX/2, remove users with bias larger than twice the average bias and filter regional paths723

that represent less than 30 individuals.724

Although we still observe a sensibility to the average inter-event time (and average bias), the results are contained725

within much lower bounds than the ones observed in Table 8, showing the filters’ efficiency in limiting the arrival726

time bias impact on the results. However, compared to Figure 5, we observe a larger increasing of the error with the727

average bias, which can be explained by the fact that the larger the average bias is, the larger the variance, resulting in728

an increased data shuffling.729

In Figure 11, we display the speed estimation results obtained for each inter-event time value on Day 1. These730

plot display results that can reasonably be compared to the ones exposed in 9. Table 9 precise the daily results in731

the worst case scenario, while Table 10 precise the errors by region and time period. Overall, the increasing of the732

errors compared to Tables 6 and 7 is limited, which confirms the viability of our method for estimating regional traffic733

speeds despite low-quality path information and fully biased temporal features. In particular, these latest analyses734

demonstrate the utility of implementing filters at the individual and equation levels to compensate for the temporal735

biases of the data. This suggests that these filters will have great potential when it comes to handling large amounts736

26



Figure 11: Speed estimation method applied to dataset DS2 (fully biased trips) after average bias removal and arrival time correction.
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MAE (km/h) RMSAE (km/h) MAPE (%) RMSAPE (%)

Day 1 5.843820 8.214792 15.377055 19.398781
Day 2 5.659251 7.883027 14.660121 18.385150
Day 3 5.676346 8.042682 15.119238 18.995601
Day 4 5.549316 7.994296 15.714570 21.116936
Day 5 5.436428 7.243572 15.116918 18.807797

Table 9: Daily speed errors when applying method to DS2, when in the worst bias scenario (IET = 20 mins)

MAE (km/h) MAPE (%)
All regions Inner regions Ring road All regions Inner regions Ring road

Full day 5.843820 3.720738 9.382290 15.377055 16.573524 13.382939

Off peak 5.999818 3.771147 9.714271 14.918967 16.531425 12.231538
Peak hours 5.707951 3.676834 9.093144 15.776034 16.610191 14.385773

Morning peak 5.621608 4.077899 8.194454 17.050427 18.541036 14.566079
Afternoon peak 5.788897 3.300836 9.935666 14.581290 14.800023 14.216735

Table 10: Speed MAE and MAPE detailed by region and time window for Day 1, when in the worst bias scenario (IET = 20mins)

of data, which we are eager to verify.737

5. Conclusion and discussion738

This paper has proposed a new methodology for estimating the dynamics of regional traffic speeds from user-739

activity-dependent positioning data. The trips extracted from these data present the challenging issue of being tempo-740

rally biased, making the individual traffic speed difficult to estimate. To address this issue, the method we propose first741

relies on the definition of a proper data resolution scale, both on the temporal and spatial dimension, which is used to742

group and aggregate the user-activity-dependent positioning data. It especially requires the partitioning of the studied743

area in sub-regions characterized by homogeneous traffic. Such partitioning allows defining basic trip features, such744

as regional paths, which allow the identification and aggregation of similar trips. This aggregation allows a systematic,745

exhaustive, and robust estimation of average travel times throughout the network and at each time step through the746

fusion and de-skewing of individual travel times. Finally, provided that estimates of the regional trip lengths have747

been performed beforehand, the travel time estimations are jointly analyzed to deduce the underlying regional traffic748

speeds. This structure of the method is particularly fitted to any massive but temporally sparse data input, as it re-749

quires very little temporal or itinerary information at the individual level and considers the inherent temporal bias that750

characterizes trips extracted from those data.751

Applying this approach to downsampled GPS data offers a controlled environment to evaluate the different degrad-752

ing steps of our approach. First, despite reducing the available GPS trips to minimal temporal and path information,753

the method could reproduce the speed trends throughout the day, especially the fast-changing dynamics observed in754

the ring road regions. The moving average smoothing filter that we implemented in this article was proved to be effi-755

cient to smooth the period-to-period instabilities of the results. More elaborated filters can replace this one in future756

work. Despite these satisfactory results, two regions, in particular, displayed underestimated speeds, which we related757

both to their representation level and inner dynamics. After the introduction of individual temporal biases on the travel758

time, we repeated the experiment. Different bias models were explored by making the average inter-event bias vary759

between 4 (best case) to 20 (worst case) minutes. We showed that, provided that the amount of data was sufficient760

for the mean bias to be representative of the individual sample, the system could be de-biased and return satisfactory761

results, although we noted that the error slightly increased. In the last step, the method was applied on trips for which762

both the observed travel and arrival times were biased. At each step, we have identified methodological options that763

could help to reduce these errors. Working with a large amount of data was identified as an essential requirement764
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of the method. Indeed, it ensures both good reliability of the systems’ equations and a correct de-biasing process,765

especially when working with datasets characterized by long average inter-event time. The sample size was an issue766

in our case study, in which we had to deal with both low data availability (related to the GPS data source) and the poor767

quality we imposed on the data to replicate the characteristics of the data UADP. This problem was circumvented by768

artificially increasing the size of the trip data set by duplicating each displacement 100 times. When working with769

massive UADP datasets, this problem should no longer arise because the amount of data per regional path will be770

much more significant, allowing for greater representativeness of displacement lengths and adequate management771

of bias dispersion. To further investigate the first aspect, we also showed how more accurate dynamic trip length772

estimates could reduce errors. It is a promising research direction as several studies in the literature have shown that773

regional trip lengths are relatively stable from day to day but can experience variations within days related to the774

congestion spreading (Batista et al., 2021a; Paipuri et al., 2021).775

In future works, we first would like to explore the sensibility of our method to the different parameters such as776

the size of the regions or the period duration. We also look forward to testing the robustness and the portability of777

our method in other geographical contexts. Most importantly, we plan to apply the methodology to user-activity-778

dependent positioning data, tackling the challenges that GPS data have allowed us to leave aside so far. Despite the779

promising results of our method, the gaps to fill for reaching this objective are still significant. A significant effort780

will have to be put into the data preprocessing. This step has not been considered in this work because of the high781

adaptation to the input data it requires. Although the requirements concerning the trip database are limited, this782

preprocessing step must not be undermined. Besides data cleaning and smoothing, it will have to especially handle783

mode detection and reconstruction of regional paths from sparse positioning data. The former question is an essential784

aspect of the preprocessing phase because it distinguishes vehicle movements from other users who do not contribute785

to road traffic. However, it also corresponds to a significant scientific challenge considering the sparse temporal786

resolution of UADP data. The review produced by Huang et al. (2019) provides insight on this issue. Methods such787

as trip reconstruction, individuals’ habits completion from (Chen et al., 2019), or matching with prevalent itineraries788

at the population scale may be helpful (Batista et al., 2021b) to address the latter question on regional path detection.789

Above all, we would like to address the critical assumptions concerning the travel time bias we made in this study.790

The average value was assumed to be known and considered static in time and invariant to space. While the temporal791

characterization of inter-event times in UADP data has been explored in several works, the specific question of the792

bias existing between observed and actual travel times when working with trips derived from these data has, to the793

best of our knowledge, never been explored by the literature. Therefore, the assumed characteristics of the temporal794

bias are difficult to confirm or invalidate. The leads for the estimation of such a bias are also limited. Although our795

method only requires an estimate of the average bias and not a full characterization of its distribution, the lack of796

literature on the subject limits the immediate application of this paper. In this paper, we have proposed a simplistic797

model relating this bias with the inter-event time distribution. Although the objective of this model was mainly to798

provide a methodological context for the sub-sampling of data, we believe that the characterization of this bias does799

indeed require relating it to the inter-event time distribution. We would like to investigate this question further.800
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Appendices811

A. Table of notations812

Table A.1 summarizes the notation used in this paper.813

Table A.1: Nomenclature used in this paper.

General notations:
P Generic regional path
r Generic region
t Generic time period

Individual trip characteristics:
i Generic individual trip
t i
0 Actual arrival time of trip i

t i
0,obs Observed arrival time of trip i

t i Actual arrival period of trip i
t i
obs Observed arrival period of trip i

T i
(P) Actual travel time of trip i (along P)

T i
(P),obs Observed travel time of trip i (along P)

ε i
d Temporal bias of trip i existing between observed departure time and actual one

ε i
a Temporal bias of trip i existing between actual arrival time and observed one

ε i Travel time bias on trip i
V i

r Average speed of i in region r
Li

P,r Distance traveled in region r of P by i

Travel time estimation:
It
P Overlapping trips along P reaching destination at t

nt,P Number of trips in It
P

T̄ t
P Average actual travel time of trips in It

P
T̄ t

P,obs Average observed travel time of trips in It
P

T̄ t
P,obs Average travel time bias of trips in It

P
T i

P,r Actual travel time of trip i in region r
ε̄ t

P Average bias of trips in It
P

Speed estimation:
V t

r Mean spatial speed in region r
L̄t

P,r Average distance traveled in r along P during period t
L̂P,r Regional trip length estimate in region r along P
xt

r Reciprocal of V t
r

St Equation system at period t
L̂LL Trip length matrix estimate

L̂LL
|t

Sub-matrix of L̂LL made of the regional paths observed at period P
TTT t

obs average observed travel time vector
xxxttt

000 Solution vector of St doing a least square regression

Continued on next page
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Table A.1 – Continued from previous page
Bias modeling:
Z random variable modeling the inter-event time distribution
Y random variable modeling the arrival and departure biases distributions
X random variable modeling the travel time bias distribution
µX Average travel time bias estimate

814

B. Bias characterization815

We detail here the calculation leading to the results in Section 3.1. In that section, we defined :816

Z ∼ Exp(λ ) (B.1)
Y |Z ∼U(0,z) (B.2)

Marginalizing over Z, the probability density function of Y can be expressed as:817

fY (y) =
∫ +∞

0
fY |Z(y | z) · fZ(z)dz (B.3)

=
∫ +∞

y

1
z
·λe−λ zdz (B.4)

= λ

∫ +∞

0

e−λ (y+z)

y+ z
dz (B.5)

The expected value of Y is then calculated as follows:818

E(Y ) =
∫ +∞

0
E(Y |Z = z) · fZ(z)dz (B.6)

=
∫ +∞

0

z
2
· fZ(z)dz (B.7)

=
1
2

∫ +∞

0
z · fZ(z)dz (B.8)

=
1
2

E(Z) (B.9)

=
1

2λ
(B.10)

While the variance of Y is given by:819

V (Y ) = E(Y 2)−E(Y )2 (B.11)

Yet:820
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E(Y 2) =
∫ +∞

0
E(Y 2|Z = z) · fZ(z)dz (B.12)

=
∫ +∞

0

z2

3
· fZ(z)dz (B.13)

=
1
3

E(Z2) =
1
3
(V (Z)+E(Z)2) (B.14)

=
1
3
(

1
λ 2 +

1
λ 2 ) (B.15)

=
2

3λ 2 (B.16)

Thus:821

V (Y ) = E(Y 2)−E(Y )2 (B.17)

=
2

3λ 2 −
1

4λ 2 (B.18)

=
5

12
1

λ 2 (B.19)

C. Trip Length Matrix Variation with time822

Figure C.1: Box plot of the relative errors of the regional trip lengths by region.

In Figure C.1, we display the boxplot describing for each region the distribution of the relative errors between823

regional trip lengths computed on February’s data and March’s data. We observe larger errors in urban regions824

(Regions 0 to 9), while the ring road regions display lower ones. This observation is related to the fact that the825

trip lengths distances on the ring road are very constrained by the ring road linear structure. On the contrary, a826

given regional path has a more extensive range of regional trip lengths in the city center, explaining the larger errors.827

However, the errors are still bounded in the urban regions, which confirms a regularity of regional average trip lengths828

overtime. This observation supports our framework, as it guarantees that average trip lengths estimated from another829

period of time, possibly from an independent dataset, will still provide a reliable database for the speed estimation830

process.831

32



References832

Alexander, L., Jiang, S., Murga, M., González, M.C., 2015. Origin–destination trips by purpose and time of day inferred from mobile phone data.833

Transportation Research Part C: Emerging Technologies 58, 240 – 250. URL: http://www.sciencedirect.com/science/article/pii/834

S0968090X1500073X, doi:https://doi.org/10.1016/j.trc.2015.02.018. big Data in Transportation and Traffic Engineering.835

Algizawy, E., Ogawa, T., El-Mahdy, A., 2017. Real-time large-scale map matching using mobile phone data. ACM Trans. Knowl. Discov. Data836

11. URL: https://doi.org/10.1145/3046945, doi:10.1145/3046945.837

Asgari, F., Gauthier, V., Becker, M., 2013. A survey on human mobility and its applications. arXiv:1307.0814.838

Bachir, D., Gauthier, V., El Yacoubi, M., Khodabandelou, G., 2017. Using mobile phone data analysis for the estimation of daily urban dynamics,839

in: ITSC 2017 : 20th International Conference on Intelligent Transportation Systems, IEEE Computer Society, Yokohama, Japan. pp. 626 –840

632. URL: https://hal.archives-ouvertes.fr/hal-01745767, doi:10.1109/ITSC.2017.8317956.841

Bar-Gera, H., 2007. Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: A case study from israel.842

Transportation Research Part C: Emerging Technologies 15, 380–391. URL: http://dx.doi.org/10.1016/j.trc.2007.06.003, doi:10.843

1016/j.trc.2007.06.003.844

Barabási, A.L., 2005. The origin of bursts and heavy tails in human dynamics. Nature 435, 207–11. doi:10.1038/nature03459.845

Batista, S., Leclercq, L., Geroliminis, N., 2019. Estimation of regional trip length distributions for the calibration of the aggregated network traffic846

models. Transportation Research Part B: Methodological 122, 192 – 217. URL: http://www.sciencedirect.com/science/article/847

pii/S0191261518311603, doi:https://doi.org/10.1016/j.trb.2019.02.009.848

Batista, S.F.A., Leclercq, L., Menendez, M., 2021a. Dynamic traffic assignment for regional networks with traffic-dependent trip lengths and849

regional paths. Transportation Research Part C: Emerging Technologies .850

Batista, S.F.A., Seppecher, M., Leclercq, L., 2021b. Identification and characterizing of the prevailing paths on a urban network for mfd-based851

applications. Transportation Research Part C: Emerging Technologies .852

Blondel, V., Decuyper, A., Krings, G., 2015. A survey of results on mobile phone datasets analysis. EPJ Data Science 4. doi:10.1140/epjds/853

s13688-015-0046-0.854

Calabrese, F., Di Lorenzo, G., Liu, L., Ratti, C., 2011. Estimating origin-destination flows using opportunistically collected mobile phone location855

data from one million users in boston metropolitan area. IEEE Pervasive Computing 10, 36–44.856

Candia, J., González, M.C., Wang, P., Schoenharl, T., Madey, G., Barabási, A.L., 2008. Uncovering individual and collective human dynamics857

from mobile phone records. Journal of Physics A: Mathematical and Theoretical 41, 224015. URL: http://stacks.iop.org/1751-8121/858

41/i=22/a=224015?key=crossref.97d23b44de724a7398482cd45c7fe01a, doi:10.1088/1751-8113/41/22/224015.859

Castro, P.S., Zhang, D., Chen, C., Li, S., Pan, G., 2013. From taxi gps traces to social and community dynamics: A survey. ACM Comput. Surv.860

46. URL: https://doi.org/10.1145/2543581.2543584, doi:10.1145/2543581.2543584.861

Chen, C., Ma, J., Susilo, Y., Liu, Y., Wang, M., 2016. The promises of big data and small data for travel behavior (aka human mobility) analysis.862

Transportation Research Part C: Emerging Technologies .863

Chen, G., Hoteit, S., Carneiro Viana, A., Fiore, M., Sarraute, C., 2018. Enriching sparse mobility information in call detail records. Computer864

Communications .865

Chen, G., Viana, A.C., Fiore, M., Sarraute, C., 2019. Complete trajectory reconstruction from sparse mobile phone data. EPJ Data Science 8, 30.866

URL: https://doi.org/10.1140/epjds/s13688-019-0206-8, doi:10.1140/epjds/s13688-019-0206-8.867

Cisco, 2020. Cisco Annual Internet Report (2018-2023). Technical Report. Cisco.868

Çolak, S., Alexander, L.P., Alvim, B.G., Mehndiratta, S.R., González, M.C., 2015. Analyzing cell phone location data for urban travel: current869

methods, limitations, and opportunities. Transportation research record: Journal of the transportation research board 2526, 126–135.870

Daganzo, C.F., 2007. Urban gridlock: Macroscopic modeling and mitigation approaches. Transportation Research Part B: Methodological 41, 49 –871

62. URL: http://www.sciencedirect.com/science/article/pii/S0191261506000282, doi:https://doi.org/10.1016/j.trb.872

2006.03.001.873

Derrmann, T., Frank, R., Viti, F., Engel, T., 2017. Estimating urban road traffic states using mobile network signaling data, in: 2017 IEEE 20th874

International Conference on Intelligent Transportation Systems (ITSC), pp. 1–7. doi:10.1109/ITSC.2017.8317718.875

Gandica, Y., Carvalho, J., Sampaio dos Aidos, F., Lambiotte, R., Carletti, T., 2017. Stationarity of the inter-event power-law distributions. PLOS876

ONE 12, 1–10. URL: https://doi.org/10.1371/journal.pone.0174509, doi:10.1371/journal.pone.0174509.877

Geroliminis, N., Daganzo, C.F., 2008. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation878

Research Part B: Methodological 42, 759 – 770. URL: http://www.sciencedirect.com/science/article/pii/S0191261508000180,879

doi:https://doi.org/10.1016/j.trb.2008.02.002.880

Gonzalez, M.C., Hidalgo, C.A., Barabási, A.L., 2008. Understanding individual human mobility patterns. Nature 453, 779 EP –. URL: https:881

//doi.org/10.1038/nature06958.882

Hoteit, S., Chen, G., Viana, A.C., Fiore, M.C., 2017. Spatio-Temporal Completion of Call Detail Records for Human Mobility Analysis, in:883

Rencontres Francophones sur la Conception de Protocoles, l’Évaluation de Performance et l’Expérimentation des Réseaux de Communication,884

Quiberon, France. URL: https://hal.archives-ouvertes.fr/hal-01516717.885

Huang, H., Cheng, Y., Weibel, R., 2019. Transport mode detection based on mobile phone network data: A systematic review. Trans-886

portation Research Part C: Emerging Technologies 101, 297 – 312. URL: http://www.sciencedirect.com/science/article/pii/887

S0968090X1831369X, doi:https://doi.org/10.1016/j.trc.2019.02.008.888

Iqbal, M.S., Choudhury, C.F., Wang, P., González, M.C., 2014. Development of origin–destination matrices using mobile phone call data.889

Transportation Research Part C: Emerging Technologies 40, 63 – 74. URL: http://www.sciencedirect.com/science/article/pii/890

S0968090X14000059, doi:https://doi.org/10.1016/j.trc.2014.01.002.891

Janecek, A., Valerio, D., Hummel, K.A., Ricciato, F., Hlavacs, H., 2015. The cellular network as a sensor: From mobile phone data to real-time892

road traffic monitoring. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS .893

Jiang, S., Fiore, G.A., Yang, Y., Ferreira, J., Frazzoli, E., González, M.C., 2013. A review of urban computing for mobile phone traces: current894

methods, challenges and opportunities, in: UrbComp@KDD.895

33

http://www.sciencedirect.com/science/article/pii/S0968090X1500073X
http://www.sciencedirect.com/science/article/pii/S0968090X1500073X
http://www.sciencedirect.com/science/article/pii/S0968090X1500073X
http://dx.doi.org/https://doi.org/10.1016/j.trc.2015.02.018
https://doi.org/10.1145/3046945
http://dx.doi.org/10.1145/3046945
http://arxiv.org/abs/1307.0814
https://hal.archives-ouvertes.fr/hal-01745767
http://dx.doi.org/10.1109/ITSC.2017.8317956
http://dx.doi.org/10.1016/j.trc.2007.06.003
http://dx.doi.org/10.1016/j.trc.2007.06.003
http://dx.doi.org/10.1016/j.trc.2007.06.003
http://dx.doi.org/10.1016/j.trc.2007.06.003
http://dx.doi.org/10.1038/nature03459
http://www.sciencedirect.com/science/article/pii/S0191261518311603
http://www.sciencedirect.com/science/article/pii/S0191261518311603
http://www.sciencedirect.com/science/article/pii/S0191261518311603
http://dx.doi.org/https://doi.org/10.1016/j.trb.2019.02.009
http://dx.doi.org/10.1140/epjds/s13688-015-0046-0
http://dx.doi.org/10.1140/epjds/s13688-015-0046-0
http://dx.doi.org/10.1140/epjds/s13688-015-0046-0
http://stacks.iop.org/1751-8121/41/i=22/a=224015?key=crossref.97d23b44de724a7398482cd45c7fe01a
http://stacks.iop.org/1751-8121/41/i=22/a=224015?key=crossref.97d23b44de724a7398482cd45c7fe01a
http://stacks.iop.org/1751-8121/41/i=22/a=224015?key=crossref.97d23b44de724a7398482cd45c7fe01a
http://dx.doi.org/10.1088/1751-8113/41/22/224015
https://doi.org/10.1145/2543581.2543584
http://dx.doi.org/10.1145/2543581.2543584
https://doi.org/10.1140/epjds/s13688-019-0206-8
http://dx.doi.org/10.1140/epjds/s13688-019-0206-8
http://www.sciencedirect.com/science/article/pii/S0191261506000282
http://dx.doi.org/https://doi.org/10.1016/j.trb.2006.03.001
http://dx.doi.org/https://doi.org/10.1016/j.trb.2006.03.001
http://dx.doi.org/https://doi.org/10.1016/j.trb.2006.03.001
http://dx.doi.org/10.1109/ITSC.2017.8317718
https://doi.org/10.1371/journal.pone.0174509
http://dx.doi.org/10.1371/journal.pone.0174509
http://www.sciencedirect.com/science/article/pii/S0191261508000180
http://dx.doi.org/https://doi.org/10.1016/j.trb.2008.02.002
https://doi.org/10.1038/nature06958
https://doi.org/10.1038/nature06958
https://doi.org/10.1038/nature06958
https://hal.archives-ouvertes.fr/hal-01516717
http://www.sciencedirect.com/science/article/pii/S0968090X1831369X
http://www.sciencedirect.com/science/article/pii/S0968090X1831369X
http://www.sciencedirect.com/science/article/pii/S0968090X1831369X
http://dx.doi.org/https://doi.org/10.1016/j.trc.2019.02.008
http://www.sciencedirect.com/science/article/pii/S0968090X14000059
http://www.sciencedirect.com/science/article/pii/S0968090X14000059
http://www.sciencedirect.com/science/article/pii/S0968090X14000059
http://dx.doi.org/https://doi.org/10.1016/j.trc.2014.01.002


Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., Newth, D., 2015. Understanding human mobility from twitter. PLOS ONE 10, 1–16.896

URL: https://doi.org/10.1371/journal.pone.0131469, doi:10.1371/journal.pone.0131469.897

Leclercq, L., Chiabaut, N., Trinquier, B., 2014. Macroscopic fundamental diagrams: A cross-comparison of estimation methods. Transportation898

Research Part B: Methodological .899

Lin, M., Hsu, W.J., 2014. Mining gps data for mobility patterns: A survey. Pervasive and Mobile Computing 12, 1–16. URL: https://www.900

sciencedirect.com/science/article/pii/S1574119213000825, doi:https://doi.org/10.1016/j.pmcj.2013.06.005.901

Mariotte, G., Leclercq, L., Batista, S., Krug, J., Paipuri, M., 2020. Calibration and validation of multi-reservoir mfd models: A case study in902

lyon. Transportation Research Part B: Methodological 136, 62 – 86. URL: http://www.sciencedirect.com/science/article/pii/903

S0191261519306769, doi:https://doi.org/10.1016/j.trb.2020.03.006.904

Naboulsi, D., Fiore, M., Ribot, S., Stanica, R., 2016. Large-scale mobile traffic analy- sis: a survey. IEEE Communications Surveys Tutorials 18,905

124–161.906

Nagle, A.S., Gayah, V.V., 2014. Accuracy of networkwide traffic states estimated from mobile probe data. Transportation Research Record 2421,907

1–11. URL: https://doi.org/10.3141/2421-01, doi:10.3141/2421-01, arXiv:https://doi.org/10.3141/2421-01.908

Osorio-Arjona, J., García-Palomares, J.C., 2019. Social media and urban mobility: Using twitter to calculate home-work travel matrices. Cities 89,909

268 – 280. URL: http://www.sciencedirect.com/science/article/pii/S0264275118312976, doi:https://doi.org/10.1016/910

j.cities.2019.03.006.911

Ou, Q., Bertini, R.L., van Lint, J.W.C., Hoogendoorn, S.P., 2011. A theoretical framework for traffic speed estimation by fusing low-resolution912

probe vehicle data. IEEE Transactions on Intelligent Transportation Systems 12, 747–756. doi:10.1109/TITS.2011.2157688.913

Paipuri, M., Barmpounakis, E., Geroliminis, N., Leclercq, L., 2021. Linear regression analysis of regional mean speed of athens city network using914

drone data: A multi-modal approach, in: 100th TRB Annual Meeting.915

Ranjan, G., Zang, H., Zhang, Z.L., Bolot, J., 2012. Are call detail records biased for sampling human mobility? ACM SIGMOBILE Mobile916

Computing and Communications Review 16, 33–44. doi:10.1145/2412096.2412101.917

Shang, J., Zheng, Y., Tong, W., Chang, E., Yu, Y., 2014. Inferring gas consumption and pollution emissions of vehicles throughout a city.918

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining .919

Toch, E., Lerner, B., Ben-Zion, E., Ben-Gal, I., 2018. Analyzing large-scale human mobility data: a survey of machine learning meth-920

ods and applications. Knowledge and Information Systems URL: https://doi.org/10.1007/s10115-018-1186-x, doi:10.1007/921

s10115-018-1186-x.922

Toole, J.L., Çolak, S., Sturt, B., Alexander, L.P., Evsukoff, A., González, M.C., 2015. The path most traveled: Travel demand estimation using big923

data resources. Transportation Research Part C: Emerging Technologies 58, 162 – 177. URL: http://www.sciencedirect.com/science/924

article/pii/S0968090X15001631, doi:https://doi.org/10.1016/j.trc.2015.04.022. big Data in Transportation and Traffic Engi-925

neering.926

Yildirimoglu, M., Geroliminis, N., 2014. Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams. Transportation927

Research Part B: Methodological 70, 186 – 200. URL: http://www.sciencedirect.com/science/article/pii/S0191261514001568,928

doi:https://doi.org/10.1016/j.trb.2014.09.002.929

Zhan, X., Zheng, Y., Yi, X., Ukkusuri, S.V., 2017. Citywide traffic volume estimation using trajectory data. IEEE Transactions on Knowledge and930

Data Engineering 29, 272–285. doi:10.1109/TKDE.2016.2621104.931

Zhang, J., Wang, K., Lin, W.H., Xu, X., Chen, C., 2011. Data-driven intelligent transportation systems: A survey. IEEE Transactions on Intelligent932

Transportation Systems 12, 1624–1639. doi:10.1109/TITS.2011.2158001.933

Zheng, Y., Liu, F., Hsieh, H.P., 2013. U-air: When urban air quality inference meets big data. URL: https://www.microsoft.com/en-us/934

research/publication/u-air-when-urban-air-quality-inference-meets-big-data/.935

34

https://doi.org/10.1371/journal.pone.0131469
http://dx.doi.org/10.1371/journal.pone.0131469
https://www.sciencedirect.com/science/article/pii/S1574119213000825
https://www.sciencedirect.com/science/article/pii/S1574119213000825
https://www.sciencedirect.com/science/article/pii/S1574119213000825
http://dx.doi.org/https://doi.org/10.1016/j.pmcj.2013.06.005
http://www.sciencedirect.com/science/article/pii/S0191261519306769
http://www.sciencedirect.com/science/article/pii/S0191261519306769
http://www.sciencedirect.com/science/article/pii/S0191261519306769
http://dx.doi.org/https://doi.org/10.1016/j.trb.2020.03.006
https://doi.org/10.3141/2421-01
http://dx.doi.org/10.3141/2421-01
http://arxiv.org/abs/https://doi.org/10.3141/2421-01
http://www.sciencedirect.com/science/article/pii/S0264275118312976
http://dx.doi.org/https://doi.org/10.1016/j.cities.2019.03.006
http://dx.doi.org/https://doi.org/10.1016/j.cities.2019.03.006
http://dx.doi.org/https://doi.org/10.1016/j.cities.2019.03.006
http://dx.doi.org/10.1109/TITS.2011.2157688
http://dx.doi.org/10.1145/2412096.2412101
https://doi.org/10.1007/s10115-018-1186-x
http://dx.doi.org/10.1007/s10115-018-1186-x
http://dx.doi.org/10.1007/s10115-018-1186-x
http://dx.doi.org/10.1007/s10115-018-1186-x
http://www.sciencedirect.com/science/article/pii/S0968090X15001631
http://www.sciencedirect.com/science/article/pii/S0968090X15001631
http://www.sciencedirect.com/science/article/pii/S0968090X15001631
http://dx.doi.org/https://doi.org/10.1016/j.trc.2015.04.022
http://www.sciencedirect.com/science/article/pii/S0191261514001568
http://dx.doi.org/https://doi.org/10.1016/j.trb.2014.09.002
http://dx.doi.org/10.1109/TKDE.2016.2621104
http://dx.doi.org/10.1109/TITS.2011.2158001
https://www.microsoft.com/en-us/research/publication/u-air-when-urban-air-quality-inference-meets-big-data/
https://www.microsoft.com/en-us/research/publication/u-air-when-urban-air-quality-inference-meets-big-data/
https://www.microsoft.com/en-us/research/publication/u-air-when-urban-air-quality-inference-meets-big-data/

	Introduction
	Methodology
	Problem statement
	Overview
	Network partitioning and time resolution definitions
	Average travel time estimation
	Speed estimation
	Arrival time correction and data selection
	Speed trends smoothing
	Discussion

	Experimental approach
	Bias model
	Spatial partitioning
	Data description
	Trip data preparation
	Speed baseline
	Trip length estimation

	Results
	Method application to trip data with exact travel time
	Method application to trip data with biased travel time
	Method application to trip data with both biased arrival and travel time

	Conclusion and discussion
	Appendices
	Table of notations
	Bias characterization
	Trip Length Matrix Variation with time

