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Learning sparse structures for physics-inspired compressed sensing

Clément Dorffer, Thomas Paviet-Salomon, Gilles Le Chenadec and Angélique Drémeau
ENSTA Bretagne and Lab-STICC, UMR CNRS 6285

Abstract— In underwater acoustics, shallow water environ-
ments act as modal dispersive waveguides when considering low-
frequency sources. In this context, propagating signals can be de-
scribed as a sum of few modal components, each of them propagat-
ing according to its own wavenumber. Estimating these wavenum-
bers is of key interest to understand the propagating environment
as well as the emitting source. To solve this problem, we proposed
recently a Bayesian approach exploiting a sparsity-inforcing prior.
When dealing with broadband sources, this model can be fur-
ther improved by integrating the particular dependence linking
the wavenumbers from one frequency to the other. In this con-
tribution, we propose to resort to a new approach relying on a
restricted Boltzmann machine, exploited as a generic structured
sparsity-inforcing model. This model, derived from deep Bayesian
networks, can indeed be efficiently learned on physically realistic
simulated data using well-known and proven algorithms.

1 Introduction
In underwater acoustics, “shallow” environments (about 100
m deep) behave like dispersive waveguides when considering
low-frequency sources (below 250 Hz). An acoustic field re-
ceived on an antenna is then classically described by a small
set of modes propagating longitudinally according to their hori-
zonal wavenumbers. The knowledge of these modes is of great
importance for the characterization of the observation environ-
ment and, consequently, for the source localization. Among
the different methods used to discriminate these modal com-
ponents, the “frequency-wavenumber” (f − k) representations
(see Fig. 1) allow a direct observation of the dispersion (i.e.,
the frequency dependence) of the wavenumbers. Inherently
conceivable for a horizontal array of sensors aligned with the
source, they are particularly used in geophysics [1]. Recent
contributions have focused on the construction of f − k dia-
grams by exploiting less constrained acquisition schemes, al-
lowing their use in underwater acoustics.

Since propagation is described by a small number of modes,
the use of sparsity-inforcing models seems appropriate. In fact,
some contributions (see e.g., [2, 3]) have proposed the use of
the “compressed sensing” paradigm to estimate modal disper-
sion. However, if these methods prove to be relevant, we ar-
gue that they can be further improved by precisely integrating
the dispersion relation linking the wavenumbers from one fre-
quency to another into the estimation process of the f − k di-
agram. To model this structured sparsity, we proposed in this
paper to resort to a restricted Boltzmann machine (RBM), for
which efficient learning algorithms exist.

The paper is organized as follows: the two next sections for-
malize the problem of wavenumber estimation and outline the
prior models, including RBM, that are considered to take into
account the physics of the problem. Section 4 describes the
algorithm derived to solve the problem on the basis of these
models, while Section 5 discusses the learning of the RBM pa-

Figure 1: Illustration of a f − k diagram obtained in a Pekeris waveguide.

rameters. We conclude this abstract with a statement of intent
regarding the experiments that will be conducted to validate the
proposed approach and presented at the conference.

2 Observation model
In shallow water, acoustic propagation is described by modal
theory. According to the latter, when considering an emitting
source S(f), the signal received on an antenna at distance r and
at frequency f can be described by

y(f, r) ' QS(f)

M(f)∑
m=1

Am(f)eirkrm(f) (1)

where Q is a constant factor, M(f) is the number of propagat-
ing modes at frequency f , krm(f) (resp. Am(f)) is the hori-
zontal wavenumber (resp. modal amplitude) of the m-th mode.

Adopting a discretized matrix formulation, Eq. (1) can be
re-formulated as

y = Dz + w (2)

where y ∈ CLF is the signal measured over the L-sensor an-
tenna at all of the F frequencies, D is a (LF ×NF )-dictionary
of block-diagonal Fourier discrete atoms with N the number
of discretized points in the horizontal wavenumber domain,
z = [z1, . . . , zNF ]T is the vectorized f − k diagram to esti-
mate, and w stands for an additive noise.

3 Prior assumptions
According to the modal theory, in shallow water environments
and at low frequencies, the vector z has few non-zero elements,
corresponding to the propagating modal wavenumbers. This
sparsity constitutes important information on the f − k dia-
gram, that should be taken into account in the reconstruction



procedure. Several formulations of the corresponding sparse
recovery problem can then be considered. In this paper, we
focus on a Bayesian solution of the problem of wavenumber
estimation. We thus consider the following prior models : the
noise w is assumed to be circular Gaussian (denoted CN ) with
zero mean and variance σ2

w, and z is seen as the element-wise
multiplication of two random vectors

z = s� x (3)

where x is a multivariate Gaussian variable such that

p(x) =

NF∏
n=1

p(xn) with p(xn) = CN (0, σ2
x). (4)

Classically, the variable s stands for the support of the sparse
representation and is assumed to obey a Bernoulli law. Here,
we propose to change this prior into a so-called restricted Boltz-
mann machine (RBM), namely:

p(s) =
∑
h

p(s,h) ∝
∑
h

exp(aTh + bT s + sTWh) (5)

where h is a P -dimensional binary hidden variable, a and b
stand for bias parameters and W can be seen as representative
of the links between the coefficients in h and s. The RBM is
the building block of “deep belief networks” [4] and has re-
cently sparked a surge of interest partly because of their huge
representational power [6] and the existence of efficient algo-
rithms developed to train it (as the Contrastive Divergence (CD)
[5]). All this makes them particularly well-suited for learning
physically-based sparse structures.

4 Deep structured SoBaP

Exploiting the model exposed in previous sections, we consider
the following marginalized Maximum A Posteriori (MAP) es-
timation problem

(x̂, ŝ) = argmax
x,s∈{0,1}NF

log p(x, s|y), (6)

where p(x, s|y) =
∑

h p(x, s,h|y)dx. To solve this problem,
different sub-optimal techniques can be used. In the continu-
ation of previous works [7, 8, 9], we are interested here in the
solutions brought by variational approaches, which aim to ap-
proximate the posterior distribution p(x, s,h|y) by a distribu-
tion q(x, s,h) leading to the minimum of the Kullback-Leibler
divergence under specific sets of constraints. In particular, con-
sidering the factorization constraint

q(x, s,h) =

NF∏
n=1

q(xn, sn)

P∏
l=1

q(hl) (7)

=

NF∏
n=1

q(xn|sn) q(sn)

P∏
l=1

q(hl), (8)

we focus on a mean-field (MF) approximation, which can be
in practice efficiently solved by an iterative algorithm, called
“variational Bayes EM algorithm” [10]. Particularized to our

model, the method gives rise to the following iterative updates:

q(xn|sn) = N (m(sn),Σ(sn)), (9)

q(sn) ∝ exp

(
sn

(
bn +

∑
l

wnlq(hl = 1)

))
√

Σ(sn) exp

(
1

2

|m(sn)|2

Σ(sn)

)
(10)

q(hl) ∝ exp

(
hl

(
al +

∑
n

wnlq(sn = 1)

))
(11)

where

Σ(sn) =
σ2
xσ

2
w

σ2
w + snσ2

xd
T
ndn

, (12)

m(sn) = sn
σ2
x

σ2
w + snσ2

xd
T
ndn
〈rn〉Tdn,

〈rn〉 = y −
∑

j 6=n
q(sj = 1) m(sj = 1)dj .

The use of RBMs being a natural bridge towards deep net-
works, we refer to the above procedure as the “Deep Structured
Soft Bayesian Pursuit” (DSSoBaP). We propose here to apply
it to the particular problem of f − k diagram estimation.

5 Learning RBM

In [6], the authors show that RBMs constitute universal ap-
proximators of discrete distributions. This characteristic makes
them particularly interesting for generic but customizable struc-
tured sparse decomposition algorithms. To particularise it to
our problem, its parameters a, b and W have then to be trained
to reflect at best the physical dispersion relation (see Fig. 1).
This task can be efficiently performed by using the well-known
“Contrastive divergence” algorithm [5]. This algorithm per-
forms a (approximation of) maximum log-likelihood estima-
tion of the RBM parameters with a very acceptable computa-
tion cost. It relies on a Markov Chain Monte Carlo approach
in which the Markov chains are initialised at each step with
samples from a training data set. The key point is then to pro-
duce a data set large enough to be representative of the dif-
ferent propagation environments. To this end, we will adopt a
stepwise approach: RBM will first be trained on simulated data
reproducing simple waveguides, such as Pekeris [11], before
considering more complex environmental models (multi-layer
models).

6 On-going works

To assess the performance of the proposed approach, two sets
of experiments will be considered: i) DSSoBaP will first be
confronted to synthetic experiments, in accordance with the
physics and of the same type as those used during the train-
ing step, ii) it will then be applied to real data, acquired dur-
ing a seismic campaign led by the Compagnie Générale de
Géophysique [12, 13]. For both experiment sets, we will com-
pare the results obtained by DSSoBaP with other state-of-the-
art algorithms dealing with a simple sparse prior.

This work is on-going and will be presented at the confer-
ence, if accepted.
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