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ABSTRACT

Future space-based coronagraphs will rely critically on focal-plane wavefront sensing and control with deformable
mirrors to reach deep contrast by mitigating optical aberrations in the primary beam path. Until now, most
focal-plane wavefront control algorithms have been formulated in terms of Jacobian matrices, which encode
the predicted effect of each deformable mirror actuator on the focal-plane electric field. A disadvantage of
these methods is that Jacobian matrices can be cumbersome to compute and manipulate, particularly when
the number of deformable mirror actuators is large. Recently, we proposed a new class of focal-plane wavefront
control algorithms that utilize gradient-based optimization with algorithmic differentiation to compute wavefront
control solutions while avoiding the explicit computation and manipulation of Jacobian matrices entirely. In
simulations using a coronagraph design for the proposed Large UV/Optical/Infrared Surveyor (LUVOIR), we
showed that our approach reduces overall CPU time and memory consumption compared to a Jacobian-based
algorithm. Here, we expand on these results by implementing the proposed algorithm on the High Contrast
Imager for Complex Aperture Telescopes (HiCAT) testbed at the Space Telescope Science Institute (STScI) and
present initial experimental results, demonstrating contrast suppression capabilities equivalent to Jacobian-based
methods.

1. INTRODUCTION

Future space coronagraphs attempting to image and characterize Earth-like planets around nearby solar-type
stars will rely critically on closed-loop wavefront sensing and control (WFS&C) using deformable mirrors (DMs)
to mitigate optical aberrations in the primary beam path. These aberrations, primarily mid-spatial frequency
wavefront errors and optical misalignments in the telescope and coronagraph optics, give rise to a speckle floor
that is coherent with the star and evolves slowly over time in response to minute drifts in the thermal and
mechanical state of the observatory. If uncorrected, the speckle floor overwhelms the faint image of the orbiting
planet, which is expected to be 1010 times fainter than the host star at 0.1 arcseconds of separation or less.1

Space-based coronagraphy has a unique set of attributes that distinguish it from conventional ground-based
adaptive optics, namely, extreme sensitivity to non-common path aberrations and a comparatively high degree of
temporal stability due to the absence of atmospheric turbulence. The goal is not to maximize the Strehl ratio of
the point-spread function (PSF), but rather to minimize starlight within a specified region of the image plane,
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called the dark zone, in which the signal from the orbiting exoplanet may be isolated and interrogated. These
constraints have given rise to a unique set of focal-plane WFS&C algorithms that close the loop around the
image plane directly rather than relying on an external wavefront sensor, utilizing phase diversity provided by the
DMs2 or inline holography3 to estimate the complex stellar electric field (E-field) from intensity measurements.
The WFS&C loop drives the starlight inside the dark zone toward zero over a series of iterations, each of which
consists of estimation of the E-field from the host star followed by an update to the DM correction. This is
illustrated in Figure 1.

Current state-of-the-art wavefront control algorithms adopt an optimal control approach: in each WFS&C
iteration, a DM command update is found by minimizing a scalar cost function that is parameterized by the most
recent estimate of the E-field as well as a computer model of the coronagraph. The most common algorithms,
stroke minimization (SM)4 and electric field conjugation (EFC),2 leverage a first-order approximation to the
stellar E-field to formulate cost functions that are quadratic functions of both the DM command updates and the
DM-corrected E-field within the dark zone. In both cases, the optimal DM update is written down in closed form
as the solution of a linear system of equations constructed from a Jacobian matrix that describes the impact of a
change in DM actuator commands on the focal-plane E-field.

The complexity of SM and EFC is dominated by the cost of computing and manipulating the Jacobian
matrix, which grows in size proportionally to the product of the DM actuator count and the dark-zone pixel
count; simultaneous increases in both compound multiplicatively, and a separate Jacobian is required for each
controllable wavelength for broadband imaging. The Jacobian is most often model-based, in which case an optical
diffraction model of the coronagraph is evaluated repeatedly to predict the impact of each actuator. This requires
the coronagraph model to be evaluated at least as many times as there are actuators, which is undesirable if
the number of actuators is large, computational resources are limited, or both. Moreover, the Jacobian is a
linearization of the true, nonlinear behavior of the DMs and must be recalculated periodically as the state of the
DMs evolves over time.

Until recently, little attention has been paid to the computational demands of SM and EFC. However, over
time as direct imaging missions demand DMs with ever-higher actuator density to enable wider and wider search
areas, computational aspects will become an inevitable point of concern from a systems engineering standpoint.
In on-orbit WFS&C, all sensing and control computations are processed by the flight computer; conversely,
in ground-in-the-loop (GITL) scenarios, raw data is communicated to a ground-based computing node that
calculates the DM correction and relays it back to the observatory. Though each approach has tradeoffs, a
major advantage of on-orbit WFS&C is the ability to update DM commands more frequently without relying
on the continuous availability of communication links with the ground stations. In turn, this can help to relax
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Figure 1. Closed-loop coronagraphic WFS&C uses images from the science camera, rather than an external wavefront
sensing instrument, to estimate the E-field from the host star within the dark zone and drive it toward zero. Model-based
WFS&C algorithms use a numerical model of the coronagraph to solve an inverse problem for the unknown E-field and
corresponding DM correction, respectively.



observatory-level wavefront stability requirements by enabling the high-contrast dark zone to be maintained
over shorter time intervals. Successful deployment of an on-orbit architecture is predicated on the availability of
sufficient computational resources. However, radiation-hard, space-qualified computing hardware lags behind
conventional hardware by decades and is extremely resource-limited, posing a substantial capability gap if the
current algorithms are expected to be deployed on-orbit on future missions like the Large UV/Optical/Infrared
Surveyor (LUVOIR) and Habitable Exoplanet Observatory (HabEx) flagship mission concepts formulated for the
Astro2020 Decadal Survey.5,6

As a case in point, the current state-of-the-art testbed for coronagraph laboratory demonstrations, the
Decadal Survey Testbed (DST) at NASA’s Jet Propulsion Laboratory, has successfully demonstrated 3.82× 10−10

instrumental contrast over an annular dark zone extending from 3 λ0/D to 8 λ0/D using two DMs each with
48× 48 actuators.7 However, the baseline requirement for the HabEx mission is two 64× 64 DMs, and a search
area with a maximal outer radius of 32 λ0/D - nearly double the total actuator count and a factor of 4 increase in
search radius. Because the number of detector pixels in the dark zone scales with the area of the dark zone rather
than its radius, this corresponds to an increase by nearly a factor of 32 in the worst-case Jacobian dimensionality.
For LUVOIR Architecture “A”, with a pair of 128× 128 DMs and a dark zone with a 64λ0/D maximal outer
radius, the corresponding worst-case increase is nearly a factor of 512.

An alternative to the analytical minimization approach of SM and EFC is to minimize the wavefront control
cost function iteratively using gradient-based optimization. This eliminates the need to construct the Jacobian
altogether, but instead requires a method for accurately and efficiently evaluating the gradient of the cost
function with respect to the DM update. Algorithmic differentiation (AD), and in particular reverse-mode
algorithmic differentiation (RMAD), is one such method.8 Recently, we formulated an algorithm based on this
approach, which we refer to here as algorithmic differentiation penalty stroke minimization (AD-PSM).9 Our
proof-of-concept simulations with AD-PSM using a small-angle design for the LUVOIR coronagraph indicated
superior computational efficiency and comparable starlight suppression peformance in comparison with SM for
DM formats as small as 50× 50 actuators, when taking into account the cost of calculating the Jacobian once
prior to the WFS&C loop. However, while the CPU time and memory consumption of SM grew superlinearly
with actuator count, the increase in both for AD-PSM was negligible. For 128× 128 actuators, the largest format
that we considered, AD-PSM utilized 95% less memory and overall CPU time than SM. This suggests that
iterative methods are a promising alternative to analytical techiques that overcome the technical hurdle posed by
the computational demands of wavefront control with high actuator counts and large dark zones in an on-orbit
WFS&C scenario.

In this paper, we report on the first experimental demonstration of two algorithmic differentation-based
wavefront control algorithms, AD-PSM and algorithmic differentiation electric field conjugation (AD-EFC), using
the High Contrast Imager for Complex Aperture Telescopes (HiCAT) at the Space Telescope Science Institute
(STScI) in Baltimore, MD. We benchmark the contrast performance of AD-PSM and AD-EFC as a function
several key parameters including regularization and the termination tolerance of the nonlinear optimizer, and
compare it to SM and EFC.

This paper is structured as follows. In Section 2, we review concepts from our earlier work, including
algorithmic differentiation and the mathematical formulation of AD-PSM and AD-EFC. In Section 3, we provide
an overview of HiCAT and discuss our experimental setup, including algorithm implementation details that are
pertinent to our demonstration. In Section 4, we present and discuss our experimental results. Finally, in Section
5, we present our conclusions and discuss our future work.

1.1 Notation

In this paper, our principal concern is with algorithms that operate on discrete vector-valued quantities, which
are represented in boldface. Many of these quantities vary as a function of control iteration, and are denoted
with the subscript k. These may be truly discrete, such as the vector ak of DM actuator command updates, or
may represent discretizations of functions of continuous spatial variables, such as E-fields. We denote x as a
column vector, its transpose xT as a row vector, and ‖x‖ as its Euclidean length. For complex-valued quantities,
† denotes the Hermitian transpose. Scalar quantities are denoted in ordinary (i.e., non-boldface) typographic
weight.



By convention, the derivative of a scalar with respect to a column vector is a row vector, i.e.,

∂J

∂x
=

[
∂J

∂x[1]
. . .

∂J

∂x[N ]

]
, (1)

where x[n] is the nth element of x. Consequently, the derivative of a column vector with respect to another
column vector is a matrix of row vectors:

∂y

∂x
=


∂y[1]

∂x
...

∂y[M ]

∂x

 . (2)

2. WAVEFRONT CONTROL USING ALGORITHMIC DIFFERENTIATION

The goal of the WFS&C loop in coronagraphy is to drive starlight within the dark zone toward zero over time
so that a faint orbiting companion becomes detectable against the reduced background. Each iteration of the
WFS&C loop, indexed by the integer k, consists of two steps: an estimation step, in which the aberrated E-field
Êab,k within the dark zone is estimated from focal-plane intensity measurements, and a control step, in which the

DM correction is updated to reduce the energy in Êab,k. In this paper, we focus principally on the control step.

Modern model-based wavefront control algorithms find the DM correction update ak by minimizing some cost
function Jk(ak; Êab,k) with respect to ak. Usually, Jk is constructed to trade off between minimizing starlight
and minimizing the size of the correction, which helps to regularize the problem and stabilize the solution. In
general, the true relationship between the starlight in the dark zone and the DM correction is highly nonlinear
and nonconvex, owing to the fact that the DMs impart phase-only corrections of the form exp{iφDM} at or near
the coronagraph entrance pupil. However, when the optical aberrations are small, we can approximate the true
E-field in the coronagraph entrance pupil with a first-order Taylor series expansion about the desired DM update.
In this case, the corrected E-field in the dark zone has the form

EDZ,k(ak) ≈ Êab,k + EDM,k(ak) , (3)

where Êab,k is the estimate of the aberrated dark-zone E-field produced by the estimation step, and EDM,k is the
E-field resulting from the unknown update to the DM correction. We can also write EDZ,k in the form

EDZ,k(ak) = Êab,k + Gkak , (4)

where Gk , ∂EDZ,k/∂ak is the Jacobian matrix with dimensions Npix ×Nact, Npix is the number of dark-zone
pixels, and Nact is the total number of controllable DM actuators. The intensity from the corrected E-field,
integrated over the dark zone, can be written in terms of the Jacobian as

‖EDZ,k(ak)‖2 = ‖Gkak‖2 + ‖Êab,k‖2 + 2 Re
{

Ê†ab,kGk

}
ak . (5)

This is a purely quadratic function of ak, meaning that under this approximation, there exists a unique, optimal
DM correction that minimizes the dark-zone starlight.

SM and EFC utilize the relationship in Eq. (5) to derive closed-form expressions for this optimal correction in
terms of Gk that can be evaluated by solving a linear system of dimension Nact ×Nact, as illustrated in Figure 2.
The only remaining task is to construct Gk. Typically, a computer model of the coronagraph is used to predict
the individual impact of each DM actuator on EDZ,k, which corresponds to building Gk column-by-column.
Accordingly, this involves evaluating the coronagraph model at least Nact times in total, which is on the order
of thousands (with currently-available DM technology) to tens of thousands (with DM formats baselined for
LUVOIR). As we show in Appendix A, this is equivalent to minimizing the cost function using Newton’s method
with an exact Hessian matrix. We discuss further in Section 2.3.



The Fast Linear Least-Squares Coronagraph Optimization (FALCO) package10 mitigates this problem by
implementing a model specially optimized for Jacobian evaluation that propagates only a small region of the
entrance pupil locally surrounding each DM actuator. The Jacobian can also be estimated empirically using the
self-coherent camera (SCC),3 Zernike phase contrast,11 or the expectation-maximization (EM) algorithm.12

Alternatively, we can find the DM correction by minimizing the cost function Jk with respect to ak iteratively,
rather than analytically, using gradient-based nonlinear optimization as shown in Figure 3. To do so eliminates
the need to evaluate the Jacobian matrix entirely, but requires a way of calculating the gradient vector ∂Jk/∂ak .
RMAD provides a way of doing so that is both computationally efficient and accurate, in the sense that
the derivatives computed by RMAD are accurate to machine precision and do not utilize finite-difference
approximations.8

The basic principle of RMAD is that any function that can be written down as a sequence of differentiable
operations, called the forward model, can be transformed mechanistically to construct a related function, called
the adjoint model, that evaluates the derivative of the forward model with respect to any of the intermediate
variables encountered during its evaluation, including its inputs. The derivative evaluated around any given
value of the inputs is found by evaluating the forward model, passing the values of the intermediate values as
parameters to the adjoint model, and then evaluating the adjoint model. If the output of the forward model is a
scalar, then the derivatives with respect to all intermediate variables and inputs are computed simultaneously
using only a single forward model and single adjoint model evaluation, regardless of the dimensionality of the
derivative variables. Figure 4 illustrates this procedure for the wavefront control cost function Jk.

There are several advantages to adopting an iterative approach. First, it reduces up-front computation by
eliminating the cost of precomputing the Jacobian matrix. Second, it scales much more gently as a function of
problem size because it only involves operations on vectors rather than matrices, and increases in the dimensions
of separate variables scale additively, rather than multiplicatively.9 In our earlier work, we showed that the
number of floating-point operations and storage required by SM and EFC scale as N3

act and N2
act, respectively.

For AD-PSM and AD-EFC, both scale as Nact. Finally, because control solutions are found by differentiating
through the coronagraph model itself rather than a matrix representation, the model is always linearized around
the current DM state, and it becomes trivial to update the model between WFS&C iterations as new information,
such as data from a low-order wavefront sensor (LOWFS), becomes available. Both of these ultimately improve
the convergence rate of the WFS&C loop to deep contrast.

The fundamental tradeoff is that by adopting an iterative method, one sacrifices a closed-form solution in
order to gain better asymptotic computational efficiency. For small problem sizes or when the Jacobian can
be evaluated once and reused for many WFS&C iterations or over a series of many WFS&C experiments, the
analytic solutions from SM and EFC can be faster to evaluate, neglecting the up-front cost of computing the
Jacobian. Because of their superior asymptotic efficiency, however, iterative methods become more attractive for
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Figure 2. In EFC and SM, the Jacobian matrix is precomputed by using a computer model the coronagraph to predict
the effect of an update to each of the Nact DM actuators individually on the dark-zone E-field, here represented by the
Kronecker δ functions δn, where δn[i] = 1 if i = n and zero otherwise. The Jacobian Gk and the estimate of the aberrated

dark-zone E-field Êab,k together are used to construct a linear system of equations whose solution is the desired DM update
a∗
k. We show in Appendix A that this is equivalent to minimizing the wavefront control cost function using Newton’s

method, and discuss further in Section 2.3.
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Figure 3. Our algorithmic differentiation-based wavefront controllers AD-PSM and AD-EFC use RMAD to differentiate
the wavefront control cost function Jk with respect to the DM correction update ak, yielding the gradient vector ∂Jk/∂ak
evaluated at the current iterate ank . A nonlinear optimization algorithm calculates a new iterate an+1

k that reduces the
value of the cost function, i.e., Jk(an+1

k ) ≤ Jk(ank ). This procedure is repeated until the gradient becomes sufficiently small,
indicating that the solution a∗

k is at or near a local minimum of the cost function. A starting guess for the solution a0
k as

well as the aberrated E-field Êab,k are the input parameters.

cases where the DM actuator count, the dark zone pixel count, or both, are very large, as will be the case for
both LUVOIR and HabEx.

We conclude this section with a brief discussion of the merits of the small-aberration approximation. There
has been recent interest in fully nonlinear control algorithms that do not utilize a first-order Taylor series
approximation of the complex field in the coronagraph entrance pupil, and instead minimize starlight using the
true, nonlinear phase effects of the DMs.13,14 While these methods in principle have the potential to enable
convergence to deep contrast over very few WFS&C iterations, in real systems the convergence rate of the
WFS&C loop is limited by noise, estimation error, and model mismatch rather than the accuracy of the first-order
approximation to the pupil-plane E-field. There are also practical drawbacks that make them less attractive than
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Figure 4. The forward model for the wavefront control problem maps DM command updates ak to a scalar cost function
Jk. The DM command vector is split into independent command vectors a1,k and a2,k for the pupil-plane and out-of-pupil
DM, respectively. These are mapped onto DM surfaces s1,k and s2,k using the model in Appendix B, and propagated
through an end-to-end coronagraph model to predict the resulting dark-zone E-field EDM,k. Reverse-mode algorithmic
differentiation transforms the forward model into an adjoint model that backpropagates the partial derivatives of Jk with
respect to each intermediate variable a1,k, a2,k, s1,k, s2,k, and EDM,k in reverse order, starting from the output on the
right. The derivatives with respect to the individual DM command vectors a1,k and a2,k are concatenated to form the full
gradient vector for optimization.



focal-plane algorithms such as SM, EFC, and our proposed controllers AD-PSM and AD-EFC. First, as described
earlier, stellar dark-zone intensity is a nonconvex function of DM actuation, making these methods susceptible to
convergence to suboptimal local minima in any given WFS&C iteration. Second, because the corrected focal-plane
E-field can no longer be linearly decomposed into separate terms resulting from the aberrations and the DM
correction, it is not possible for nonlinear controllers to utilize focal-plane E-field estimates, and instead must
estimate the E-field in the entrance pupil. This involves solving a phase retrieval problem that is relatively more
complicated than focal-plane estimation methods currently in use.

2.1 Stroke minimization: from Lagrange multipliers to penalty method

The SM algorithm finds the smallest DM correction that achieves a desired level of stellar intensity, Itarget,k,
integrated over the dark zone.4 It is solved by finding the stationary point of the Lagrangian function

LSM,k = ‖ak‖2 + µk

(
‖EDZ,k(ak)‖2 − Itarget,k

)
, (6)

i.e., a point such that ∂LSM,k/∂a′k = 0, where ak is the DM actuator command update, EDZ,k is the corrected

E-field in the dark zone, a′k ,
[
aT
k µk

]T
, and µk is the Lagrange multiplier. Because this stationary point is a

saddle point, it cannot be reached by minimizing LSM,k directly with respect to a′k. Instead, one chooses a fixed
starting value for the Lagrange multiplier, µ0

k, and minimizes LSM,k with respect to ak to find a corresponding

DM solution a0
k. If the constraint

∥∥EDZ,k

(
a0
k

)∥∥2 ≤ Itarget,k is not satisfied, a larger value µ1
k > µ0

k is selected and
this procedure is repeated.

The AD-PSM algorithm is based on the same principle, but instead utilizes the cost function

JPSM,k = ‖ak‖2 + ηk

(
‖EDZ,k(ak)‖2 − Itarget,k

)2

, (7)

where ηk is a penalty parameter. The minimum of JPSM,k with respect to ak is coincident with the stationary
point of LSM,k.15

In SM, arg minak
LSM,k has an explicit solution in terms of the Jacobian matrix Gk for any fixed value µn

k of
the Lagrange multiplier:

an
k = −

(
Re
{

G†kGk

}
+

1

µn
k

I
)−1

Re
{

G†kÊab,k

}
, (8)

where I is the identity matrix and Êab,k is the estimate of the aberrated E-field. Finding the SM solution using an
iterative optimization algorithm requires LSM,k to be minimized with respect to ak for each value of µn

k , which is
potentially expensive if many values of µk are evaluated before the stationary point is located. On the other hand,
minimizing JPSM,k finds the solution directly, with the penalty parameter ηk encoding the relative importance of
minimizing actuator stroke and driving the integrated intensity toward the target. The tradeoff is that JPSM,k

becomes increasingly ill-conditioned as ηk tends to infinity, which slows down the convergence of the optimization
algorithm.15

2.2 Electric field conjugation

The EFC algorithm attempts to drive the dark zone E-field toward a target, with Tikhonov regularization to
mitigate ill-conditioning. Its cost function for a single correction wavelength is given by

JEFC,k = ‖EDZ,k(ak)−Etarget,k‖2 + ‖Γkak‖2 , (9)

where Γk is the Tikhonov regularization matrix. In the most common case, one chooses Γk = αkI and Etarget,k = 0,
making EFC identical to SM with a fixed Lagrange multiplier µk = 1/α2

k. For this case, its solution can be
obtained using Eq. (8). In general, the solution for the Jacobian-based formulation of EFC is given by

a∗k = −
(

Re
{

G†kGk

}
+ ΓT

k Γk

)−1

Re
{

G†k

(
Êab,k −Etarget,k

)}
. (10)



Here, unlike SM, the regularization constant is fixed, making the problem amenable to an iterative algorithm.
Our variant, AD-EFC, is identical to EFC except that the solution is obtained by iteratively minimizing JEFC,k

in each WFS&C iteration. The RMAD adjoint model for JEFC,k is provided in Appendix C.

While Etarget,k = 0 is a common choice for generating high-contrast dark zones, other choices can occasionally
be useful. In Section 3.3, we show how one can specify Etarget,k to be a plane wave with varying piston phase in
order to generate phase diversity for E-field estimation.

2.3 Relationship to Newton’s method

Finding solutions for EFC and SM using the Jacobian matrix is equivalent to minimizing their respective cost
functions with respect to ak using Newton’s method, as shown in Appendix A. Newton’s method is a second-order
optimization technique that utilizes second-derivative information about the cost function, given by the local
Hessian matrix Hk(an

k ) at any point an
k in the DM command parameter space. Given an initial guess for the

solution a0
k, the full Newton update is given by15

a1
k = a0

k −H−1
k (a0

k)
∂Jk
∂aT

k

∣∣∣∣
ak=a0

k

. (11)

For cost functions that are exactly quadratic, including EFC and SM, Newton’s method converges in a single
iteration.

For general numerical optimization problems, Newton’s method is rarely used in practice because forming the
Hessian matrix explicitly is expensive. On the other hand, quasi-Newton methods such as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, or the limited-memory BFGS (L-BFGS) variant, can approximate H−1

k

using changes in ∂Jk
/
∂aT

k over successive optimization iterations. As a consequence, they are substantially less
computationally expensive. Although quasi-Newton algorithms do not converge as rapidly as Newton’s method,
and in particular can converge slowly for poorly-conditioned problems, they are nonetheless superior to purely
first-order methods such as steepest descent.15

As we show in Appendix A, the Hessian matrix for EFC and SM has an analytic expression in terms of the

Jacobian Gk given by Hk = 2
(

Re
{

G†kGk

}
+ C

)
, where C is a symmetric, positive-definite matrix given by

ΓT
k Γk for EFC and I/µn

k for SM. Our approach is to replace this full Newton iteration, requiring computation of
the Jacobian, by a series of cheaper quasi-Newton iterations instead, requiring only computation of the gradient
∂Jk

/
∂aT

k , which we achieve using algorithmic differentiation.

3. EXPERIMENTAL SETUP

In this section, we provide an overview of the HiCAT testbed and provide details about the implementation of
AD-PSM and AD-EFC, the reference Jacobian-based implementations of SM and EFC, and the E-field estimation
algorithm used in the estimation step of the WFS&C loop.

3.1 The HiCAT testbed

HiCAT is a testbed dedicated to technology demonstrations for coronagraphy on segmented-aperture space
observatories, with the intent of being directly traceable to a future LUVOIR-like mission. These technologies
include Lyot coronagraphy, high-order WFS&C for generating and stabilizing dark zones, and low-order wavefront
sensing (LOWFS).16 HiCAT operates in a mid-contrast regime (10−7 to 10−8) which approaches the limit
achievable outside of a vacuum environment, and is equipped with two Boston Micromachines Kilo-DMs for
high-order sensing and control with 952 actuators each, making it suitable for our proof-of-concept demonstrations.
One DM is placed in a plane conjugate to the HiCAT entrance pupil, while the second DM is placed approximately
300 mm farther along the optical axis, corresponding to a Fresnel number NF ≈ 98 at a wavelength of 638 nm.
This configuration enables simultaneous control of amplitude and phase aberrations over a dark zone that extends
over both halves of the image plane. We conducted our experiments using a Thorlabs MCLS1 laser diode source,
which emits monochromatic light with a central wavelength λ0 = 638 nm.



HiCAT additionally has an IrisAO segmented deformable mirror with 37 hexagonal segments with controllable
piston/tip/tilt to act as a telescope pupil simulator and to inform experimental efforts devoted to segment-level
tolerancing and stabilization.17,18 Figure 5 shows a simplified system layout of HiCAT including the primary
imaging beam path as well as several additional beam paths used by the LOWFS and metrology subsystems.

The ultimate planned operational mode for HiCAT is an apodized pupil Lyot coronagraph (APLC)19 designed
specifically to optimize contrast with the IrisAO segmented aperture. However, due to substantial technical
challenges associated with properly aligning the APLC pupil-plane masks in the presence of geometrical distortion
between the various planes, our experiments on HiCAT utilized a simpler classical Lyot coronagraph (CLC)
design with a circularized pupil outer edge. Figure 6 shows an overlay of the CLC pupil masks along with a
simulated stellar PSF. Figure 7 shows example experimental PSFs obtained before and after closed-loop WFS&C
using SM along with the corresponding DM commands.

For more details about the optical design of HiCAT and recent milestone achievements, we refer elsewhere.20–27

3.2 Algorithm implementation

We developed a custom numerical model of HiCAT using Python that included a handwritten adjoint model.
To facilitate testing, our model was comprised of several sub-modules each with its own individual forward and
adjoint model:

1. A model to compute the DM surface resulting from a given set of actuator commands using a fast
convolutional representation. This is described in further detail in Appendix B.

2. A model to apply the phase corrections imparted by the in-pupil DM (DM1) and out-of-pupil DM (DM2),
including the free-space propagation between the two DMs.

3. A model to propagate the E-field after DM correction through the HiCAT CLC. We used the semi-analytical
Lyot coronagraph model originally described in Ref. 28.
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Figure 5. Simplified, partially-unfolded layout of the HiCAT testbed. The elements encountered by the primary imaging
beam path are highlighted in bold.
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Figure 6. (a) Overlay of HiCAT pupil masks projected onto in-pupil DM plane, including the reflective area of the DM, the
entrance pupil mask, the IrisAO segmented aperture, and the Lyot stop. (b) Simulated and (c) experimental coronagraphic
PSFs with outline of the geometrical edge of the focal-plane mask.

We refer the reader to our earlier work for detailed descriptions of the operations in the forward and adjoint models
for the latter two sub-modules.9 A reference numerical model of HiCAT based on the POPPY framework29,30

has already been developed and served as a reference for calibrating our custom differentiable model.

3.2.1 Optimization algorithm

We used the limited-memory BFGS (L-BFGS) algorithm,15 as implemented in the SciPy package,31 as the
optimization algorithm for AD-PSM and AD-EFC. As discussed in Section 2.3, L-BFGS is a quasi-Newton
algorithm, meaning that it uses the gradient vectors collected during optimization to approximate the inverse
Hessian matrix H−1

k of second derivatives, thereby converging to the minimum more rapidly than a purely
first-order method such as steepest descent, but with substantially less effort than a full Newton method with an
exact Hessian. The ordinary BFGS algorithm forms a dense approximation of H−1

k using the full collection of
gradient vectors, whereas L-BFGS uses an implicit outer-product representation based on only the most recent
Ngrad gradients, where Ngrad is usually between 10 and 20,15 making it more memory-efficient for problems where
the number of optimization variables is much larger than Ngrad. For our experiments, we used Ngrad = 10, the
default in SciPy.

All numerical optimization algorithms have a termination criterion that determines when the algorithm has
reached a location in the parameter space that is sufficiently close to a local, or preferably global, optimum. For
gradient-based algorithms such as L-BFGS, the termination criterion can be defined in terms of the relative
improvement in the cost function value between successive optimization iterations, the magnitude of the gradient
vector, or both. In the L-BFGS implementation used by SciPy, the termination criterion is set by a tolerance
parameter ε defined as the magnitude of the largest element of the gradient:

ε = max
i

∣∣∣∣ ∂Jk∂ak[i]

∣∣∣∣ . (12)

As ε→ 0, the optimization algorithm will expend more effort, in the form of a greater number of optimization
iterations, to terminate closer to the local minimum. On the other hand, ε can help to regularize the solution by
terminating the optimization algorithm before it converges to an overly aggressive DM correction that would
otherwise make the WFS&C loop unstable.

The termination criterion presents an additional consideration not present in SM and EFC, which we recall
utilize a closed-form expression for the exact minima of their respective cost functions in any given WFS&C
iteration. The value of the tolerance parameter ε should be chosen to optimally trade off between accuracy and
computational effort. We discuss this in further detail below.



3.2.2 Scale-invariant cost functions

As the WFS&C loop drives the focal-plane E-field toward zero, the terms in the AD-EFC and AD-PSM cost
functions also diminish in magnitude. Consequently, for any fixed ε, the termination criterion will become
increasingly loose over time, resulting in solutions that are increasingly suboptimal. The simplest strategy is to
choose ε to ensure that the solution is sufficiently close to optimal for the smallest-expected E-field magnitude,
with the tradeoff of being overly restrictive in early iterations when the E-field is large. A better strategy is to
scale the cost function so that its overall magnitude is invariant to the magnitude of the E-field. For AD-EFC,
one such scaling is by the magnitude of the current E-field estimate:

J ′EFC,k =
1∥∥Êab,k

∥∥2 JEFC,k , (13)

with the scaling factor ‖Êab,k‖−2 chosen to be independent of the unknown correction ak.

For AD-PSM, the situation is slightly more complicated. The intensity penalty
(
‖EDZ,k‖2 − Itarget,k

)2

is a

fourth-order function of ak, whereas the stroke penalty ‖ak‖2 is only a second-order function. Therefore, even if
a scale factor is applied to the entire cost function, the intensity penalty will approach zero more rapidly than the
stroke penalty. We found empirically that scaling only the intensity penalty term produced good overall results;
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Figure 7. Experimental on-axis images from HiCAT. (a) Non-coronagraphic image, (b) coronagraphic image prior to the
WFS&C loop, (c) coronagraphic image after 80 iterations of SM, and corresponding actuator commands for the in-pupil
DM (d) and out-of-pupil DM (e). In (b) and (c), the geometrical edge of the focal-plane mask (FPM) with radius 3.34 λ0

DLS

is shown as well as the inner and outer edges of the dark zone at 5.8 λ0
DLS

to 9.8 λ0
DLS

, respectively, where DLS is the Lyot
stop diameter and λ0 = 638 nm.



therefore, the modified AD-PSM cost function is

J ′PSM,k = ‖ak‖2 +
ηk(

‖Êab,k‖2 − Itarget,k

)2

(
‖EDZ,k(ak)‖2 − Itarget,k

)2

. (14)

As before, the scaling factor depends only on quantities that are fixed in any given WFS&C iteration and
independent of the DM correction.

Using the scaled cost functions JEFC,k and JPSM,k, we can choose the value of ε as, for instance, a fixed
multiple of the value of the cost function with ak = 0. In Section 4, we explore the performance of AD-PSM and
AD-EFC for different combinations of ε and regularization ηk.

3.3 Estimation algorithm

We used the pairwise probe estimator2 for the estimation step in all experiments. The pairwise estimator forms a
least-squares estimate Êab,k of the focal-plane E-field Eab,k by applying a series of P probing DM commands up

to generate probing E-fields EDM,k(up) that interfere with Eab,k. The data vector for the least-squares estimate
is formed by differencing the images resulting from EDM,k(up) and EDM,k(−up). The estimate of the mth pixel
in the dark zone is then found by finding the least-squares solution of the system I+

k,1[m]− I−k,1[m]
...

I+
k,P [m]− I−k,P [m]

 =

Re{EDM,k(u1)}[m] Im{EDM,k(u1)}[m]
...

...
Re{EDM,k(uP )}[m] Im{EDM,k(uP )}[m]

[Re{Eab,k}[m]
Im{Eab,k}[m]

]
, (15)

where I±k,p , |Eab,k + EDM,k(±up)|2.

We generated four DM probe functions up that were optimized to generate probing fields of the form

EDM,k(up) = sgn{ρx} exp

{
iπ
p− 1

4
sgn{ρx}

}
, (16)

where p ∈ {1, 2, 3, 4} and sgn{ρx} is the sign of the focal-plane x coordinate. The inclusion of the sign of ρx is
necessary because in the first-order Taylor series expansion of the E-field used by focal-plane WFS&C algorithms,
the in-pupil DM imparts a purely imaginary E-field in the pupil plane, meaning that if the coronagraph masks are
all purely real, EDM,k(up) must have anti-Hermitian symmetry. The probe commands can be found by solving

an EFC problem with Êab,k = 0 and Etarget,k = EDM,k(up), which will produce nonzero commands only for the
pupil-plane DM in order to satisfy the anti-Hermitian symmetry constraint. For SM and EFC, we generated the
probes using Jacobian-based EFC, while for AD-PSM and AD-EFC, we generated the probes using AD-EFC.
In all cases, we set the Tikhonov regularization parameter to αk = 0.7. The optimizer tolerance for AD-EFC
was set to 10−5. Figure 8 shows the probe commands up along with the corresponding magnitude and phase of
EDM,k(up), while Figure 9 shows the probe commands generated by EFC and AD-EFC side-by-side.

4. EXPERIMENTAL RESULTS AND DISCUSSION

We conducted a series of experiments to compare the contrast performance of AD-PSM and AD-EFC relative
to SM and EFC, respectively. All experiments used an annular control region extending from 5.8 λ0/DLS to
9.8 λ0/DLS , where λ0 = 638 nm is the central wavelength of the Thorlabs MCLS1 laser diode and DLS is the
Lyot stop diameter. Each experiment consisted of 80 WFS&C iterations.

For SM and AD-PSM, we chose Itarget,k = 0.5‖Êab,k‖2 as the contrast target, i.e., a factor-of-two improvement
in spatially-integrated dark zone contrast iteration-over-iteration. For the Lagrange multiplier line search in SM,
we let µn+1

k = 1.3µn
k , which is a moderately small step size in logarithmically-mapped space. For AD-PSM, we

tested combinations of the penalty parameter ηk ∈ {10, 100, 1000} and the nonlinear optimization convergence
tolerance ε ∈

{
10−2, 10−3, 10−4

}
. We determined these values based on extensive WFS&C simulations and prior

experience conducting WFS&C experiments on HiCAT.



For AD-EFC, the Tikhonov regularization matrix was selected as Γk = αkI. We tested combinations of the
Tikhonov parameter αk such that α2

k ∈
{

10−2, 10−3, 10−4
}

with the same set of ε values as AD-PSM. For each
value of αk, we also conducted a reference EFC experiment.

For both algorithms, we compared the value of the cost function for two different starting guesses for the
DM correction: a0

k = a∗k−1, i.e., the solution of the previous WFS&C iteration, and a0
k = 0. The starting guess

with the lower of the two cost function values was then selected. In all cases the flat starting guess a0
k = 0 was

ultimately chosen.

In each experiment, we analyzed the iteration-over-iteration improvement in spatially averaged dark zone
contrast to determine the iteration at which the WFS&C loop converged close to its final best contrast. We then
collected the spatially averaged dark zone contrast from each WFS&C iteration post-convergence and computed
the median and 10-90th percentile contrast values. Figure 10 illustrates this procedure.

Figures 11 and 12 show the spatially averaged dark-zone contrast as a function of WFS&C iteration for example
AD-PSM and AD-EFC experiments alongside reference data from SM and EFC, respectively, as well as the PSF
from the iteration with deepest contrast. In both cases, the convergence properties of AD-PSM and AD-EFC

Probe command 1 Probe command 2 Probe command 3 Probe command 3

Figure 8. The probe commands up for pairwise estimation were optimized so that the resultant dark-zone E-field
EDM,k(up) = sgn{ρx} exp

{
iπ p−1

4
sgn{ρx}

}
, as described in Section 3.3. The inner and outer edges of the dark zone are

also shown for reference. The probe commands are close to the inverse Fourier transform of the dark zone geometry (an
annulus), modulated by a horizontal sinusoid whose phase angle is proportional to the desired piston phase, and projected
onto the DM actuator coordinates. Only the pupil-plane DM is modulated.
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Figure 9. Comparison of probe commands generated by Jacobian-based EFC and AD-EFC as described in Section 3.3.

Spatial 
Average

Figure 10. To quantify the contrast performance of each algorithm, we calculate the spatially averaged dark-zone contrast
in each WFS&C iteration and analyze it as a function of time to determine the point at which the contrast ceases to
continue improving on average. We then collect the spatially averaged dark-zone contrast values from these iterations and
calculate their median, 10th percentile, and 90th percentile.

are nearly identical to their Jacobian-based counterparts, validating our proposed approach. Figures 13 and 14
show the statistics of the post-convergence spatially averaged dark-zone contrast achieved with AD-PSM and
AD-EFC for each combination of regularization (ηk or αk) and optimization tolerance ε, respectively, compared
to reference experiments with SM and EFC. For all parameter combinations, AD-PSM and AD-EFC equaled the
contrast performance of SM and EFC, respectively, within the margin of uncertainty caused by environmental
fluctuations and dynamic testbed instabilities.

4.1 Discussion

Our experiments were aimed at exploring a relevant subset of the space of free parameters for each algorithm,
namely, the nonlinear optimization convergence tolerance ε, the Tikhonov regularization αk for AD-EFC, and the



penalty parameter ηk for AD-PSM. In principle, each parameter affects the attainable contrast of the WFS&C
loop, but in subtly different ways, which we discuss here.

As discussed in Section 3.2.1, ε determines the effort that the nonlinear optimization algorithm will expend to
find a solution close to the true minimum of the cost function. As ε tends toward zero, the solutions obtained
using AD-PSM and AD-EFC will asymptotically approach the Jacobian-based solutions from SM and EFC,
respectively, but at the cost of a greater number of optimization iterations. This translates to a larger CPU time
expenditure, and ultimately a larger time interval between DM updates. On a system such as HiCAT where
environmental disturbances cause the aberrated E-field to evolve over time scales on the order of seconds or faster,
an excessive delay between the estimation step and application of the DM correction can cause a degradation in
achievable contrast. We did not observe a significant degradation in the median spatially averaged contrast for
smaller values of ε, but we did observe that for any fixed value of αk or ηk, smaller values of ε tended to have
greater spreads between the 10th and 90th percentile values. In a real spaceborne system, this is unlikely to be a
significant consideration because of the much greater E-field stability, and because the total duration of each
WFS&C iteration will be dominated by the exposure times needed for the estimation step.

The value ε can also serve as an auxiliary form of regularization, by terminating the optimization algorithm
before it reaches an overly aggressive DM correction caused by a noisy E-field estimate, insufficient regularization
using αk or ηk, or both. For instance, in Figure 14, with α2

k = 10−4, we see that EFC diverged altogether, but
AD-EFC did not, and the median spatially averaged contrast improved as ε was reduced. On the other hand,
choosing ε too large can impose an effective contrast floor by limiting the ability of the optimization algorithm to
converge to appropriately strong corrections. We determined in simulation that this was the case for ε > 10−2.

For EFC and AD-EFC, the Tikhonov regularization αk trades off between minimizing the energy in the
corrected E-field and minimizing the DM actuator stroke in the correction. Smaller values of αk correspond
to more aggressive correction of the E-field. However, because the coronagraph contains actuators that are

partially or completely obscured by pupil features, the Hessian matrix Hk = 2
(

Re
{

G†kGk

}
+ α2

kI
)

of the EFC

cost function (see Section 2.3 and Appendix A) becomes poorly conditioned. This makes the DM correction
increasingly sensitive to small perturbations in the estimated E-field, and ultimately makes the WFS&C loop
less stable. As we discussed above, for the most aggressive value that we tested, α2

k = 10−4, the EFC algorithm
diverged altogether, but AD-EFC was regularized by the nonzero value of ε. Additionally, we see that the variance
of the spatially averaged dark-zone contrast with EFC, as measured by the 10-90th percentile range, was larger for
α2
k = 10−3 than for α2

k = 10−2. For AD-EFC, for any fixed value of ε, decreasing αk was also associated with an
increase in the variance of the spatially averaged dark-zone contrast, indicating degraded WFS&C loop stability.
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Figure 11. Spatially averaged dark-zone contrast vs. WFS&C iteration for AD-PSM with ηk = 10 and ε = 10−4. The
mean, 10th, and 90th percentile of the converged datapoints in orange, along with a comparison to a reference experiment
with SM, are also shown. The on-axis PSF corresponding to the iteration with deepest contrast is displayed to the right.
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Figure 12. Spatially averaged dark-zone contrast vs. WFS&C iteration for AD-EFC with α2
k = 10−2 and ε = 10−4. As

in Figure 11, the mean, 10th, and 90th percentile of the converged datapoints in orange, a comparison to a reference
experiment with EFC, and the on-axis PSF corresponding to the iteration with deepest contrast are also shown.

For AD-PSM and SM, the aggressiveness of the WFS&C control loop is set first and foremost by the targeted
energy in the corrected E-field Itarget,k. Any fixed, feasible value of Itarget,k corresponds to a finite value µ∗k of
the Lagrange multiplier µk, which itself corresponds to a fixed value of α2

k in EFC. As described in Section 2.1,
µ∗k is found via a line search. On the other hand, the penalty parameter ηk for AD-PSM determines the relative
importance of reaching Itarget,k and minimizing actuator stroke. As ηk tends toward infinity, the correction
computed by AD-PSM asymptotically approaches the solution from SM. As such, it has no direct counterpart in
SM; however, it can be viewed as a way to tune the aggressiveness of the control loop up to a fixed level imposed
by the value of Itarget,k. Our experiments indicated that over the range of values considered, the performance of
the WFS&C loop was more or less insensitive to the value of ηk.

In principle, because αk and ε have similar effects on the performance of AD-EFC, there potentially exists
a single combination of the two parameters that is optimal in terms of contrast, or perhaps a continuum of
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Figure 13. Median, 10th percentile and 90th percentile spatially averaged contrast values achieved by AD-PSM (in blue) as
a function of optimizer tolerance, for three different values of the penalty parameter ηk. For comparison, the corresponding
contrast values for a reference SM experiment is shown in orange. In all cases, the contrast performance of AD-PSM was
equivalent to that of SM within statistical uncertainty.
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13, the performance of AD-EFC was comparable to that of EFC for α2

k = 10−2 and α2
k = 10−3.

combinations with similar performance, with a change in αk compensated by a change to ε in the opposite
direction. The same holds true for AD-PSM. Our experiments exhibited no strongly identifiable trend over the
range of values that we considered, which we attribute to the fact that for all parameter contributions, the
WFS&C loop was able to reach the contrast floor imposed by environmental, rather than algorithmic, factors.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we reported the first experimental demonstrations of two algorithmic differentiation-based wavefront
control algorithms using the HiCAT testbed, AD-PSM and AD-EFC. To within statistical uncertainty, AD-PSM
and AD-EFC equaled their Jacobian-based counterparts in dark-zone contrast for all combinations of parameters
that we tested. These demonstrations pave the way for future experimental validation at higher contrast.

The analysis in our earlier work indicated that the largest computational gains are realized for DMs with more
than 64× 64 actuators. The DMs currently in use on HiCAT have 34 actuators across the diameter of the active
region, or 952 actuators per DM in total, which is comparatively low. Therefore, our goal was to validate the
fundamental capability of AD-PSM and AD-EFC to reach deep contrast, rather than to demonstrate improved
computational efficiency. However, we reiterate that at the problem sizes anticipated for future HabEx-like or
LUVOIR-like observatories, our approach will be superior in terms of total computing requirements; with the
128× 128 DMs baselined for LUVOIR architecture “A”, our analysis indicated more than a tenfold improvement
in memory consumption and CPU time compared to Jacobian-based algorithms.

In this work and in our earlier work, we utilized the L-BFGS optimization algorithm to minimize the wavefront
control cost function because of its desirable convergence properties compared to first-order optimization methods
and low storage requirements. Despite this, L-BFGS is known to converge slowly for poorly-conditioned problems
compared to methods that utilize the exact Hessian matrix.15 In Appendix A, we showed that the Jacobian-based
solutions of EFC and SM are equivalent to a single iteration of Newton’s method, with relatively unappealing
computational properties apart from convergence rate. However, there exist alternative methods such as truncated
Newton algorithms, with excellent convergence properties for quadratic or nearly-quadratic cost functions, that
require only the ability to evaluate Hessian-vector products, rather than the Hessian matrix itself.15 Hessian-vector
products can be evaluated using algorithmic differentiation in a similar fashion to gradients. Future work will
explore such methods as a potentially faster approach than L-BFGS.



APPENDIX A. EQUIVALENCE OF JACOBIAN-BASED SOLUTIONS AND
NEWTON’S METHOD

The cost functions for the EFC algorithm described in Section 2 can be written in the form

Jk(ak) = ‖bk‖2 + ‖Γkak‖2 , (17)

where Γk is a regularization matrix. For EFC, bk = EDZ,k(ak)− Etarget,k, while for SM, bk = EDZ,k(ak) and
Γk = I/√µk. For now, we will restrict our attention to the EFC algorithm, but note that the result derived here
applies equally as well to minimizing the Lagrangian function for SM with respect to the DM correction ak.

Expanding Eq. (17) and recalling that EDZ,k = Gkak + Êab,k, the cost function has the form

JEFC,k(ak) = aT
k

(
Re
{

G†kGk

}
+ ΓT

k Γk

)
ak + 2aT

k Re
{

G†kδEk

}
+ δE†kδEk , (18)

where δEk , Êab,k − Etarget,k and where we use the fact that ak is purely real to discard Im
{

G†kGk

}
. The

Jacobian-based solution is found by finding ak such that ∂JEFC,k/∂ak vanishes. We therefore begin by writing
down the gradient:

∂JEFC,k

∂aT
k

= 2
(

Re
{

G†kGk

}
+ ΓT

k Γk

)
ak + 2 Re

{
G†kδEk

}
= 0 . (19)

This is a linear system of equations that we can solve for the optimal correction a∗k:

a∗k = −
(

Re
{

G†kGk

}
+ ΓT

k Γk

)−1

Re
{

G†kδEk

}
. (20)

The Hessian matrix is given by

Hk =
∂2JEFC,k

∂ak∂aT
k

= 2
(

Re
{

G†kGk

}
+ ΓT

k Γk

)
. (21)

Since both terms in Hk are positive definite, Hk is positive definite as well, confirming that the solution is a
minimum of the cost function.

We will now show that the solution a∗k obtained above is the same as the solution obtained by applying a single
iteration of Newton’s method to the EFC cost function. Let a0

k be an initial guess for the solution. Newton’s
method produces an iterate of the form15

a1
k = a0

k −H−1
k

∂JEFC,k

∂aT
k

∣∣∣∣
ak=a0

k

. (22)

Combining Eqs. (19) and (21):

∂JEFC,k

∂aT
k

∣∣∣∣
ak=a0

k

= Hka0
k + 2 Re

{
G†kδEk

}
. (23)

Inserting back into Eq. (22):

a1
k = a0

k −H−1
k

(
Hka0

k + 2 Re
{

G†kδEk

})
(24a)

= a0
k −H−1

k Hka0
k − 2H−1

k Re
{

G†kδEk

}
(24b)

= a0
k − a0

k − 2H−1
k Re

{
G†kδEk

}
(24c)

= −2H−1
k Re

{
G†kδEk

}
. (24d)



Inserting the definition of the Hessian matrix from Eq. (21), we see that the Newton iterate a1
k is identical to the

analytical solution in Eq. (20):

a1
k = −2

[
2
(

Re
{

G†kGk

}
+ ΓT

k Γk

)]−1

Re
{

G†kδEk

}
(25a)

= −
(

Re
{

G†kGk

}
+ ΓT

k Γk

)−1

Re
{

G†kδEk

}
(25b)

= a∗k . (25c)

As we described earlier, the same result holds if minimizing LSM,k in Section 2.1 with respect to ak.

APPENDIX B. FAST CONVOLUTIONAL DEFORMABLE MIRROR MODEL

Consider a deformable mirror with NA actuators along each side (i.e., Nact = N2
A) whose surface s(x, y) can be

modeled as a linear superposition of identical influence functions f(x, y)

s(x, y) =

NA∑
m=1

NA∑
n=1

am,nf(x− xm, y − yn) . (26)

For fixed actuator spacing along the horizontal and vertical directions, we can rewrite the above summation as a
convolution between a weighted Dirac comb function and the influence function:

s(x, y) = f(x, y) ∗
NA∑
m=1

NA∑
n=1

am,nδ(x− xm, y − yn) . (27)

Fourier transforming both sides transforms the convolution operation into a multiplication:

F{s(x, y)} = F{f(x, y)}
NA∑
m=1

NA∑
n=1

am,nF{δ(x− xm, y − yn)} , (28a)

= F{f(x, y)}
NA∑
m=1

NA∑
n=1

am,n exp {−i2π(xmfx + ynfy)} . (28b)

We define s̃(fx, fy) , F{s(x, y)} and f̃(fx, fy) , F{f(x, y)}:

s̃(fx, fy) = f̃(fx, fy)

NA∑
m=1

NA∑
n=1

am,n exp {−i2π(xmfx + ynfy)} . (29)

We next define the discretized surface and influence function arrays s̃ and f̃ such that

s̃[p, q] = s̃(p∆fx, q∆fy) , (30a)

f̃ [p, q] = f̃(p∆fx, q∆fy) , (30b)

so that

s̃ = f̃ ◦
NA∑
m=1

NA∑
n=1

am,n exp {−i2π(xmfx + ynfy)} , (31)

where ◦ denotes element-wise multiplication. Finally, we define the vectors of actuator center coordinates xc and
yc such that xc[m] = xm and yc[n] = yn, as well as the array of actuator commands A for which A[m,n] = am,n:

s̃[p, q] = f̃ [p, q] ◦
NA∑
m=1

NA∑
n=1

A[m,n] exp {−i2π(xc[m]fx[p] + yc[n]fy[q])} (32a)

= f̃ [p, q] ◦
NA∑
m=1

exp {−i2πxc[m]fx[p]}
NA∑
n=1

A[m,n] exp {−i2πyc[n]fy[q]} . (32b)



We can write this more succinctly as the following sequence of element-wise and matrix products:

s̃ = f̃ ◦
(
exp

{
−i2πfxxT

c

}
A exp

{
−i2πycf

T
y

})
(33)

where exponentiation is performed element-wise and abT denotes the outer product of the vectors a and b.

The term in the parentheses is more commonly referred to as the matrix Fourier transform28 or matrix triple
product Fourier transform32 of A, which we denote as follows:

MFT{A; xc,yc, fx, fy} , exp
{
−i2πfxxT

c

}
A exp

{
−i2πycf

T
y

}
, (34)

yielding

s̃ = f̃ ◦MFT{A; xc,yc, fx, fy} . (35)

The final step is to compute an inverse discrete Fourier transform to obtain the desired discrete DM surface s,
which is carried out most efficiently using the inverse fast Fourier transform, yielding the final result:

s = IFFT
{

f̃ ◦MFT{A; xc,yc, fx, fy}
}
. (36)

For DMs whose active actuators are a subset of the NA × NA grid modeled above, only the elements of A
corresponding to active actuators are set to nonzero values.

B.1 Adjoint model

The algorithm described in the previous section computes the DM surface resulting from a two-dimensional array
of actuator commands A, under the assumptions that the influence function is identical across all actuators and
that the surface can be approximated as a linear superposition of the actuator influence functions. In the context
of gradient-based nonlinear optimization using RMAD, we can derive an adjoint model for this algorithm that
computes the derivative A , ∂J/∂AT for some scalar cost function J , given the derivative s with respect to the
surface s.

To begin, we break the forward model into the following sequence:

Ã = MFT{A; xc,yc, fx, fy} , (37a)

s̃ = f̃ ◦ Ã , (37b)

s = IFFT{s̃} . (37c)

This leads to the following adjoint model, following the RMAD adjoint variable rules in Refs. [9, 33]:

s̃ = FFT{s} , (38a)

Ã = f̃∗ ◦ s̃ , (38b)

A = IMFT
{

Ã; fx, fy,xc,yc

}
, (38c)

where ∗ denotes element-wise complex conjugation and IMFT denotes the inverse matrix Fourier transform:

IMFT
{

Ã; fx, fy,xc,yc

}
, exp

{
i2πxcf

T
x

}
Ã exp

{
i2πfyy

T
c

}
. (39)

Combining these expressions, the adjoint model is then

A = IMFT
{

f̃∗ ◦ FFT{s}; fx, fy,xc,yc

}
. (40)



APPENDIX C. ADJOINT MODEL FOR EFC COST FUNCTION

In Section 2.2, we describe the cost function for the EFC algorithm for a single correction wavelength. Here, we
derive its RMAD adjoint model, which computes the derivative ∂JEFC,k/∂EDM,k .

We begin by writing the cost function as a series of operations evaluated sequentially:

EDZ,k = EDM,k + Êab,k , (41a)

∆Ek = EDZ,k −Etarget,k , (41b)

J∆E,k = ‖∆Ek‖2 , (41c)

ck = Γkak , (41d)

Jc,k = ‖ck‖2 , (41e)

JEFC,k = J∆E,k + Jc,k . (41f)

We now apply the RMAD gradient rules9,33 to each step in reverse order to derive the adjoint model, letting
x , ∂Jk/∂x for any variable x:

JEFC,k = 1. , (42a)

J∆E,k = Jc,k = JEFC,k , (42b)

ck = 2ckJc,k , (42c)

ak = ΓT
k ck , (42d)

∆Ek = 2∆EkJ∆E,k , (42e)

EDZ,k = ∆Ek , (42f)

EDM,k = EDZ,k . (42g)

Combining and simplifying, we see that the desired gradient is given by

EDM,k = 2∆Ek . (43)

This gradient is passed to the next block of the adjoint model, which in this case is the adjoint model for
propagation through the coronagraph, which, referring to Figure 4, evaluates the derivatives of JEFC,k with
respect to the surfaces s1,k and s2,k, respectively. We refer to our earlier work for a derivation of the coronagraph
propagation adjoint model.9
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