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a b s t r a c t 

Multiple factors can influence the public transport level of service. All take root in the 

network structure and the operating regime, i.e. how the bus lines are arranged atop the 

street network and how the service frequency is adjusted to meet urban mobility patterns. 

This is known as the bus network design problem and has been the subject of several 

studies. The problem is so challenging that most studies until now resort to strong as- 

sumptions such as a static description of the peak hour demand, homogeneous user be- 

havior, and equal trip lengths. Potential effects of different types of user behavior and trip 

lengths patterns on the user and/or operator cost have not been investigated whatsoever. 

Moreover, none of the existing studies have considered the effects of bus network struc- 

ture on private car users, the level of interactions between the modes, and the passenger 

mode choice that depends on traffic conditions. 

This paper aims to close this gap and provide a general framework considering multiple 

trip length patterns, two types of user behavior, and the effects that the bus network struc- 

ture might have on the traffic performance and passenger mode choice. For modeling dif- 

ferent trip length patterns, we use the trip length distribution as an intermediate level 

of abstraction. To capture complex modal interactions and quantify the operating speeds, 

we apply the recently proposed three-dimensional macroscopic fundamental diagram. We 

use the operating speed for each mode to determine the mode choice at the trip length 

level. This way, we are able to solve the optimal bus network design problem under the 

free-flow/saturated traffic conditions in an analytical way, while considering more realis- 

tic settings including a dynamic description of the peak hour demand, mixed traffic, and 

different mode choice decisions depending on trip lengths and walking preferences. 

Numerical analysis reveals that all the tested factors, including demand intensity, user be- 

havior, and trip length patterns, have significant effects on the operator and user cost func- 

tion. Results show that the probability of choosing any given mode follows certain distri- 

bution that varies across the trip length patterns, indicating the importance of modeling 

the mode choice at the trip length level. Furthermore, the results indicate that users can 

benefit if they are willing to adjust the number of transfers to minimize the walking dis- 
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tance at the origin and the destination. Moreover, we show that the optimal bus network 

design determined for the uniform trip pattern underestimates the number of required 

buses, which leads to passenger congestion at stops during the peak period. This, how- 

ever, does not happen when we take into account the actual trip length distribution for 

the bus network design. A comparison with a simplified approach that considers the bus 

system only, reveals the value of accounting for the complex bi-modal interactions, espe- 

cially for higher demand levels. Finally, we show that by allowing the design parameters to 

vary across cardinal directions we provide more flexibility for the bus system to serve the 

passenger demand while reducing the operator cost compared to the existing approaches. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction and background 

Multi-modality plays a critical role in mobility management. If not managed well, traffic congestion will be increasingly 

pervasive in urban areas. Constructing new infrastructure is an expensive solution, as the cost needed to keep pace with an

increase in demand, including the induced demand, is very high ( Small, 2004 ). Therefore, special attention should be given

to the design, management, and operation of the existing road facilities for different modes. This is, however, challenging 

due to the complexity of the system dynamics and the lack of tools for understanding and optimizing multi-modal traffic 

performance under different network structures and traffic flow operations. 

Motivated by the need to address the everlasting increase in travel demand, support sustainability, and preserve existing 

transport land use, transportation solutions are often sought in the domain of public transport systems ( Roca-Riu et al.,

2020 ). Public transport is often seen as a key component of a sustainable urban development. It is regarded as a public

service that should provide mobility access to all citizens in an urban area. 

One of the commonly explored problems in the public transport sector, more specifically in the domain of bus operations, 

is the bus network design. In this problem, the arrangement of bus lines atop a street network needs to be determined in

a way that it provides a good level of accessibility and service between every pair of points in the city throughout the day.

The output of this problem is used as the input to the subsequent phase of the transit network planning process ( Ibarra-

Rojas et al., 2015 ), i.e. the frequency setting problem ( Dakic et al., 2021; Zhang et al., 2018; Zhang and Liu, 2019 ). 

Several studies have looked at the optimal bus network configuration, investigating different city network structures: grid 

systems ( Holroyd, 1967 ), radial systems ( Byrne, 1975 ), systems of corridors ( Wirasinghe et al., 1977 ), and hub-and-spoke sys-

tems ( Newell, 1979 ). All these studies have a common objective - to determine the topological (e.g. line and stop spacings)

and operational (e.g. service frequency) characteristics of the bus system that minimize the user and the operator cost. To 

achieve a service and accessibility level competitive with that of the automobile at a reasonable cost, Daganzo (2010) pro-

posed a hybrid concept, obtained by combining hub-and-spoke and grid systems. This concept has further been generalized 

and extended to account for more realistic network configurations ( Estrada et al., 2011; Badia et al., 2014; Chen et al., 2015 ).

The model developed by Estrada et al. (2011) also served as an inspiration to construct a real transfer-based bus network,

the Nova Xarxa in Barcelona, Spain. 

A recent study by Badia et al. (2017) empirically proved that such a well-designed transfer-based network could at- 

tract new users, who would not be opposed to transferring. However, most scientific literature on the bus network design 

problem (see e.g. Daganzo, 2010; Estrada et al., 2011; Nourbakhsh and Ouyang, 2012; Badia et al., 2014; Chen et al., 2015;

Amirgholy et al., 2017 ) assume, up to now, that bus users choose the closest origin and destination stops such that they

minimize the number of transfers, adjusting their walking distance to meet this criteria. This, in turn, may result in longer

access (including the egress) time, thus longer total user time traveled, depending on the selected design parameters (e.g. 

stop and line spacings). Potential effects of other types of user behavior (e.g. assuming that users are willing to adjust the

number of transfers in order to minimize the walking distance) on the user and/or operator cost function have not been

investigated. 

Furthermore, these studies have also assumed trip origins and destinations to be uniformly and independently distributed 

across the network, reducing thereby the complexity in the mathematical modeling. Consequently, the optimal bus network 

design is determined for one particular trip length pattern, imposed by the homogeneously placed origins and destinations. 

To the best of the authors’ knowledge, the only attempt made to address this limitation can be found in Ouyang et al. (2014) ,

who studied the optimal bus network configuration under spatially heterogeneous demand patterns. 

Although the last reference investigated an irregular design of the bus network across a city, it still used a single trip

length for all users in the network, similarly to all the previous studies. If, however, we look at the urban mobility patterns,

we can see that such assumption is not realistic, since the trip lengths are not uniform. In addition, the authors considered

only one mode (i.e. buses), without accounting for the collective effect of the analyzed topology in the global traffic perfor-

mance. This has been relaxed in Yildirimoglu et al. (2016) , who studied the impact of the design of transit system on the
394 
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available street capacities, modal split, and route choice, in Nikias et al. (2016) , who studied the effects of bus network de-

sign on traffic, and in Loder et al. (2019a) , who empirically evaluated the effects of bus operations on network’s capacity and

critical density. Nevertheless, none of these studies took into account the mode choice resulting from the complex bi-modal 

interactions and their significant effects on the traffic performance. A recent empirical study by Levinson (2012) found that 

the travel time is highly correlated with the topology of a road network. Hence, to maximize mobility in bi-modal urban

systems, the impact of the bus network structure on the traffic performance should be carefully investigated. 

To capture such interaction effects, we can use the recently proposed three-dimensional Macroscopic Fundamental Di- 

agram (3D-MFD) (see e.g. Geroliminis et al., 2014; Loder et al., 2017; 2019b; Dakic et al., 2020a ). The 3D-MFD allows to

determine and model network-wide capacities and congestion levels, and describe city traffic macroscopically, while paying 

attention to multiple modes. As such, it offers new ways to analyze complex interactions between buses and cars ( Dakic and

Menendez, 2018 ), and has been mainly used to develop efficient perimeter control schemes ( Ampountolas et al., 2017; He

et al., 2019; Dakic et al., 2019 ) or bus dispatching policies ( Dakic et al., 2021 ) for bi-modal urban networks. The potential to

apply the 3D-MFD for the purpose of capturing traffic conditions for the bus network design problem has not been explored

whatsoever. 

2. Aims and contributions 

In this paper, we aim to close the research gap and provide a general framework, capable of accounting for any trip length

pattern, two types of user behavior, and the effects that the bus network structure might have on car traffic (and hence the

passenger mode choice). For modeling different trip length patterns, we propose to use the trip length distribution as an 

intermediate level of abstraction. To quantify the operating speed for each mode, we apply the 3D-MFD. We then use these

operating speeds to determine the mode choice at the trip length level. This way, we are able to determine the optimal bus

network design in an analytical way, while accounting for possibly different types of user behavior and trip length patterns 

for the same level of passenger demand. 

To achieve this goal, we extend the original problem defined by Daganzo (2010) , relaxing several strong assumptions 

in the current state of the art: (i) absence of the complex modal interactions; (ii) absence of mode choice that depends

on the design parameters; (iii) uniform trip length pattern; (iv) single type of user behavior; and (v) homogeneous design 

parameters including the headway and lane allocation layout across the network. By relaxing these important assumptions, 

we are able to provide insights on: (i) how to determine the optimal bus network configuration under mixed traffic; (ii)

how the trip length patterns and user behavior affect the optimal bus network design; (iii) how the passenger demand 

and network topology affect the mode choice, hence the performance of the whole network, while taking into account 

multiple transport modes; (iv) how heterogeneous are the optimal design parameters across cardinal directions for a given 

level of passenger demand, trip length pattern, and user behavior; and (v) how important is to consider the complex modal

interactions when determining the optimal bus network configuration. These insights would not have been possible without 

the proposed model. 

Overall, the contributions of this research are sixfold. First, we account for spatially non-uniform network topology and 

distribution of the passenger demand across cardinal directions. Second, we use the distribution of the user trip lengths as 

an intermediate level of abstraction to determine the optimal design parameters. Such a level of abstraction allows not only 

to account for different trip length patterns (per and across cardinal directions) for the same level of passenger demand, but

also to capture more accurately the network loading for all modes. Third, we consider the complex modal interactions and 

passenger mode choice, thus include the travel costs for both, the bus and the car mode, into the objective function. This

way, we optimize the performance of the whole network while taking into account multiple transport modes. Fourth, we 

consider the influence of the passenger demand and network topology on the traffic performance, which, in turn, affects the 

passenger mode choice (i.e. demand). In other words, we use a full feedback loop to model all aforementioned dependencies. 

Fifth, we consider heterogeneous design parameters across cardinal directions, incorporating different lane allocations into 

the bus network design problem and accounting for their different influences on car traffic. Sixth, we investigate the effects 

of demand intensity, user behavior, and trip length patterns on the optimal bus network design and passenger mode choice. 

In addition to these contributions, we quantify the value of the proposed modeling framework. 

For the readers convenience, Table 1 provides the list of the notation used in this paper. 

The rest of the paper is organized as follows. Section 3 describes in detail the proposed methodological framework used 

to determine the optimal design parameters. In Section 4 , we discuss the effects of demand intensity, user behavior, and

trip length patterns on the optimal network configuration and passenger mode choice. Additionally, we quantify the value 

of considering complex modal interactions and heterogeneous bus network design across cardinal directions. Concluding 

remarks are given in Section 5 . 

3. Methodological framework 

3.1. General network settings 

We consider here a bi-modal, bi-directional urban network with an average trip generation rate � during the loading 

time of the peak period, and an average trip generation rate λ < � during the off-peak periods and unloading time of the
395 
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Table 1 

Nomenclature. 

D set of decision variables 

M set of modes, indexed by m ∈ M 

A set of possible lane allocations, indexed by a ∈ A 

P set of cardinal directions of travel, indexed by p ∈ P
� trip generation rate during the loading time of the peak hour 

λ trip generation rate during the unloading time of the peak hour and the off-peak periods 

w average walking speed 

ϕ expected number of transfers 

α average value of time 

θ parameter of the Logit model 

δ fixed penalty for transfers expressed in terms of an equivalent walking distance 

ω time lost per stop due to required door operations and deceleration/acceleration maneuver 

ω 

′ time added per boarding/alighting passenger 

	 average dwell time in the network 

C bus capacity 

L a infrastructure length of lane allocation a 

B size of the bus fleet 

V total vehicular distance traveled by buses per hour of operation 

πL,a /πB /πV unit infrastructure cost for lane allocation a /unit vehicle cost/unit distance cost 

Z U /Z O /Z user/operator/total system cost function 

β variable used to enumerate all cordons along E-W/N-S directions; β ∈ [0 , 1] 

J β (� x ) /J β (� y ) event that bus users travel across vertical/horizontal cordon βφx / βφy for a given � x / � y 
φx /φy network length along E-W/N-S directions 

ψ x /ψ y street spacing along E-W/N-S directions 

s x /s y stop spacing along E-W/N-S directions 

l x /l y line spacing along E-W/N-S directions 

H x /H y bus headway along E-W/N-S directions 

N x /N y number of corridors along E-W/N-S directions 

N x,b /N y,b number of bus lines along E-W/N-S directions 

z s,x /z s,x integer number of street spacings included in the stop spacing along E-W/N-S directions 

z l,x /z l,x integer number of stop spacings included in the line spacing along E-W/N-S directions 

ζx,m,a /ζy,m,a fraction of corridors with lane allocation a on which mode m operates along E-W/N-S directions 

� x /� y trip length realization along E-W/N-S directions 

f (� x , � y ) joint probability density function of the user trip lengths 

A m access (including the egress) time for mode m 

W m waiting time for mode m 

u m free flow speed of mode m 

Pr (m ) probability of choosing mode m 

Pr (m | � x , � y ) probability of choosing mode m for a given combination of � x and � y 
T T T m | � x ,� y total time traveled for mode m , for a given combination of � x and � y 
IV T T m | � x ,� y in-vehicle time traveled for mode m , for a given combination of � x and � y 
O p maximum bus occupancy in direction p

Q p maximum number of on-board passengers in direction p

ηp number of lanes along a corridor in direction p

v p,m expected speed of mode m in direction p

v p,m,a operating speed of mode m for lane allocation a in direction p

τp,c,a experienced car delay along a corridor with lane allocation a in direction p

�p,c,a total generated car demand along a corridor with allocation a in direction p during the loading time of the peak period 

μp,c,a maximum car outflow for lane allocation a in direction p given by the bi-modal MFD 

v ∗p,c,a operating car speed for lane allocation a in direction p corresponding to the maximum outflow 

P ∗p,c,a total car travel production for lane allocation a in direction p corresponding to the maximum outflow 

n ∗p,c,a total car accumulation for lane allocation a in direction p corresponding to the maximum outflow 

 

 

 

 

 

 

 

peak period. Notice that, unlike the previous studies on the bus network design problem, we do not consider a mean value

for the passenger demand over the full peak period, but distinguish between the loading and unloading phases. This is 

because we are interested in analyzing how congestion emerges across the network, allowing more realistic modeling of 

traffic conditions. That being said, the cost-terms (defined in the following subsection) are time-independent, i.e. they are 

estimated on an hourly base during the peak period and are given as an average of the loading and unloading phase. Also

note that in this study we look at the bus network design problem under the steady state, when the traffic conditions are

undesaturated or saturated, with no disruptions causing the system to enter a very congested state, i.e. there are no spillover

effects. This is common in design applications, where one assumes that the network performs in an (under)saturated state 

(see e.g. Daganzo, 2010; Estrada et al., 2011; Nourbakhsh and Ouyang, 2012; Ouyang et al., 2014; Badia et al., 2014; Chen

et al., 2015; Badia et al., 2016 ). 

Let M = { b, c} be the set of modes, indexed by m ∈ M , such that b denotes the bus and c denotes the car mode. Index

cardinal directions of travel by p ∈ P = { eb, wb, nb, sb} , where eb, wb, nb, and sb stand for the eastbound, westbound, north-

bound, and southbound directions, respectively. Similarly to previous studies, we assume that the network has a grid-like 
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Fig. 1. City structure and the corresponding bus network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

structure. The reason for focusing on a grid-like configuration is because it is the most common network structure used 

in the literature, not only for the bus network design problem (see e.g. Daganzo, 2010; Estrada et al., 2011; Nourbakhsh

and Ouyang, 2012; Ouyang et al., 2014; Chen et al., 2015; Badia et al., 2016; Amirgholy et al., 2017; Fan et al., 2018; Saade

et al., 2018a ), but also for many traffic-related problems (see e.g. Daganzo et al., 2011; Gayah and Daganzo, 2011; Zheng

and Geroliminis, 2013; Gayah et al., 2014; Leclercq et al., 2014; Mühlich et al., 2015; Ortigosa et al., 2015; Girault et al.,

2016; Ortigosa et al., 2017; 2019; Ambühl et al., 2019; Paipuri and Leclercq, 2020; Roca-Riu et al., 2020 ). To make a grid

representation as realistic as possible, we assume a rectangular shape with sides φx and φy , as depicted in Fig. 1 . Such a

rectangular form is inspired by many cities (e.g. Barcelona, Manhattan, Buenos Aires, Oslo, Helsinki, Miami, and Washington 

D.C) that are elongated in shape ( Estrada et al., 2011 ). The spacings between the streets along E-W (including eb and wb)

and N-S (including nb and sb) directions are ψ x and ψ y , respectively. Atop this street structure is the bus network. The bus

network consists of two types of bus lines that cross each other but do not overlap: (i) horizontal lines, with stop spacing

s x and line spacing l y ; and (ii) vertical lines, with stop spacing s y and line spacing l x (see Fig. 1 ). 

Note that, although we focus on a grid bus network layout (as in e.g. Ouyang et al., 2014; Amirgholy et al., 2017; Saade

et al., 2018b; Fan et al., 2018 ), we could still apply the proposed framework for combined network structures such as the hy-

brid one. This could be done by determining the grid bus network design in the city center using the proposed approach, and

then distributing the bus lines across the peripheral part in a radial fashion (see Daganzo (2010) and Estrada et al. (2011) for

more details). For radial or ring street layouts, however, we would need to extend our formulations. The formulations pre- 

sented here can be considered as the first building block towards the design of public transport networks that consider for

the first time the interactions with the traffic system, mode choice behavior, and heterogeneous demand patterns and types 

of user behavior, as elaborated further in this paper. 

Following the approach by Estrada et al. (2011) and Fan et al. (2018) , and for simplification purposes, we assume that

the stop spacing includes an integer number of street segments, such that: 

s x = z s,x ψ x , z s,x ∈ N , (1a) 

s y = z s,y ψ y , z s,y ∈ N . (1b) 

Likewise, the line spacing includes an integer number of stop spacings to facilitate transfers between the E-W and the 

N-S directions, i.e.: 

l x = z l,x s x = z l,x z s,x ψ x , z l,x , z s,x ∈ N , (2a) 

l y = z l,y s y = z l,y z s,y ψ y , z l,y , z s,y ∈ N . (2b) 

Let � x and � y be the user trip lengths along the E-W and N-S directions, respectively. Denote by { f (� x , � y ) : � x ∈
[ −φx , φx ] , � y ∈ [ −φy , φy ] } the probability density function of the user trip lengths, such that: � x ≥ 0 for eb; � x < 0 for wb;

� y ≥ 0 for nb; and � y < 0 for sb. This distribution can be estimated by enumerating and grouping all OD pairs with the same

� x and � y , using taxi GPS data ( Yang et al., 2018 ), using mobile phone traces ( Gonzalez et al., 2008; Paipuri et al., 2020 ), or
397 
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sampling other types of vehicle records ( Batista et al., 2020 ). We consider the estimation of f (� x , � y ) to be out of the scope

for this study, thus assume that f (� x , � y ) is exogenously given. 

It should be noted here that by using f (� x , � y ) as an intermediate level of abstraction we lose the information about

the locations of the trip initialization, which can affect the estimation of the maximum bus occupancy. That being said, the

proposed framework is valid for all distributions of the user origins that are slowly-varying in space. This level of abstrac-

tion, however, allows to achieve not only a more realistic modeling of urban mobility patterns compared to the uniform 

distribution of user origins and destinations that comes with a unique trip distance, but also the analytical tractability of 

the problem. Nevertheless, it is worth noting that the proposed framework could also be applied for spatially-heterogeneous 

demand distributions. This could be done by clustering the passenger demand into different levels (e.g. level 1 and level 2 ).

Then, using the proposed approach, we would determine the optimal design parameters for level 1 passenger demand. After- 

wards, following the approach by Ouyang et al. (2014) , we would increase the bus frequency in regions with higher demand

densities (i.e. with level 2 demand) by adding local bus routes parallel to the main ones (designed for level 1 demand) in

those regions (see Ouyang et al. (2014) for more details). 

Also note that f (� x , � y ) has no time dependency. This is reasonable, as we design our network according to the demand

in the peak period, during which we consider the average traffic conditions for the loading and unloading phase, hence the

trip length distribution does not vary in time. This implies that for different peak periods (i.e. morning and afternoon) we

can use different trip length distributions and determine the corresponding optimal bus network configurations. The final 

bus network design can then be found as the best out of the two. 

In this study, we consider two types of user behavior: users adjust the walking distance at the origin and the destination

to minimize the number of transfers while respecting a maximum threshold for the walking distance (Type 1); and users 

adjust the number of transfers to minimize the walking distance at the origin and the destination (Type 2). In each direction

of travel, the bus demand is served by buses operating with a constant headway ( H x along E-W; H y along N-S) and identical

passenger capacity C, such that C x = C y = C (i.e. all N-S lines have the same headway which is not necessarily the same as

that of the E-W lines; and all buses are the same size). Furthermore, there are three types of corridors considered in this

study: (i) corridors with car-only lanes; (ii) corridors with a dedicated bus lane; and (iii) corridors with a mixed lane. The

share of the number of corridors of each type within the total number of corridors in the network directly affects the level

of service provided by each individual mode, thus the passenger mode choice. 

Let A m 

be the set of types of corridors, indexed by a ∈ A m 

, along which mode m can operate. Assuming that cars can

drive along all types of corridors in the network (i.e. the number of lanes along a corridor in any given direction p is ηp ≥ 2 ),

we set A b = { db, mb} and A c = { co, db, mb} , where co, db, and mb stand for corridors with car-only lanes, corridors with a

dedicated bus lane, and corridors with a mixed lane, respectively. Denote by N x,b the number of E-W corridors with a bus

line and by N y,b the number of N-S corridors with a bus line, such that: 

N x,b = 

∑ 

a ∈A b 
N x,b,a = � φy /l y � + 1 , (3a) 

N y,b = 

∑ 

a ∈A b 
N y,b,a = � φx /l x � + 1 , (3b) 

where � ·� indicates the floor function; N x,b,a and N y,b,a represent the total number of corridors with a bus line operating

with lane allocation a ∈ A b along E-W and N-S directions, respectively. Note that the fraction of dedicated/mixed bus lines

actually represents the fraction of bus lines with a dedicated/mixed bus lane. Since there is at most a single bus line per

corridor, this fraction can also be interpreted as the fraction of bus lines running on dedicated/mixed bus lanes in a given

cardinal direction. Then, assuming that the lane allocation remains the same along the whole corridor and for both travel 

directions ( eb and wb along E-W; nb and sb along N-S), the fraction of bus lines with each lane allocation type along E-W

and N-S directions can simply be obtained as: 

ζx,b,a = N x,b,a /N x,b , a ∈ A b (4a) 

ζx,b,a = N y,b,a /N y,b , a ∈ A b . (4b) 

Similarly, the fraction of corridors available for car traffic operating with lane allocation a ∈ A c along E-W ( ζx,c,a ) and N-S

( ζy,c,a ), can be computed using Eq. 5 , where N x is the number of E-W corridors and N y is the number of N-S corridors in

the network ( Eq. 6 ). 

ζx,c,a = 

{
1 − N x,b /N x , if a = co, 

ζx,b,a N x,b /N x , if a ∈ { db, mb} , (5a) 

ζy,c,a = 

{
1 − N y,b /N y , if a = co, 

ζy,b,a N y,b /N y , if a ∈ { db, mb} , (5b) 
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with 

N x = φy /ψ y + 1 , (6a) 

N y = φx /ψ x + 1 . (6b) 

Notice from Eqs. 4 –5 that we do not specify which corridors have a dedicated bus lane. Instead, we stick to the fraction

of dedicated bus lines along E-W and N-S directions as the global parameters for our design problem. 

3.2. Mathematical formulation of the objective function 

Here we formulate the objective function used to determine the optimal design parameters. The decision variables in- 

clude stop spacings ( z s,x and z s,y ), line spacings ( z l,x and z l,y ), headways ( H x and H y ), and fractions of dedicated bus lines

( ζx,b,db and ζy,b,db ) along E-W and N-S directions. They are denoted as D = [ z s,x , z s,y , z l,x , z l,y , H x , H y , ζx,b,db , ζy,b,db ] . The objec-

tive function is given by Eq. 7 and, similarly to the previous studies, it consists of two components: agency cost Z O (D ) ; and

user cost Z U (D ) . 

min 

D 
Z(D ) = Z O (D ) + Z U (D ) , (7) 

s . t . H x , H y ≥ H min , (8) 

z s,x , z s,y , z l,x , z l,y ∈ N , (9) 

0 ≤ ζx,b,db ≤ 1 , 0 ≤ ζy,b,db ≤ 1 , (10) 

O p ≤ C, ∀ p ∈ P . (11) 

where O p is the maximum bus occupancy in direction p. 

Note that all decision variables need to be strictly positive for physical reasons. In addition, the headway in each cardinal

direction should not be below the predefined threshold H min ( Eq. 8 ). The stop spacings should include an integer number

of street segments, whereas the line spacings should consist of an integer number of stop spacings ( Eq. 9 ). Moreover, the

number of dedicated bus lines cannot exceed the number of bus corridors ( Eq. 10 ). Finally, the last constraint ( Eq. 11 )

indicates that the maximum bus occupancy in each cardinal direction p needs to be lower than the bus passenger capacity 

. 

It is also worth noting that there is no need to incorporate constraints related to the connectivity or continuity of bus

lanes, given that the bus lines operate along the entire corridor’s length in all cardinal directions. In other words, both

the connectivity and continuity of bus lanes are ensured by the general problem setup. They are connected to the level of

service by explicitly considering and incorporating all parameters of the bus system in the operator and user cost function, 

as elaborated further below. Before we define the cost components, let us first introduce the assumptions used for the 

methodological framework, in terms of the lane allocation along a corridor, the waiting time of bus passengers, the vehicle 

dynamics, and the delay time experienced during the peak hour. 

Assumption 1 (Lane allocation along a corridor) . We assume that the lane allocation remains the same along the whole

corridor and for both travel directions. 

Remark 1. Assumption 1 is made to prevent possible disruptions to the bus system induced by varying lane allocation, 

guaranteeing thereby the same operating conditions in both travel directions ( He et al., 2018 ). Recall that this is a design

problem, thus it would not be reasonable from a design point of view to disrupt operations by changing the lane allocation

along a given arterial. 

Assumption 2 (Waiting time of bus passengers) . We assume that bus users arrive at the stop independently of the schedule,

thus they wait on average half of the bus headway. 

Remark 2. Assumption 2 is reasonable for relatively short headways that are considered in this study (as in Daganzo, 2010;

Estrada et al., 2011; Ouyang et al., 2014; Badia et al., 2016 ). 

Assumption 3 (Vehicle dynamics) . We assume that, along corridors with mixed lane, buses drive at the speed of cars while

cruising, i.e. both modes have the same speed either in the free-flow or congested traffic conditions. 

Remark 3. Assumption 3 has been used in previous studies (see e.g. Daganzo, 2010; Estrada et al., 2011; Zheng and Geroli-

minis, 2013; Badia et al., 2016; Zhang and Liu, 2019 ) and was empirically confirmed ( Dakic and Menendez, 2018 ). Neverthe-

less, it is only made for simplification purposes, given that the method used to compute the operating speed for each mode

( Dakic et al., 2020a ) allows to treat buses as moving bottlenecks while cruising. More details are given in Section 3.4 . 

Assumption 4 (Delays experienced during the peak hour) . We assume that the delays experienced during the peak hour in

case the demand exceeds the maximum outflow can be approximated using a single bottleneck model. 
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Remark 4. Assumption 4 also used in Amirgholy et al. (2017) is made because we look at the bus network design problem

under the steady state, when the traffic conditions are undersaturated or saturated, and there are no disruptions causing the 

network capacity to be dynamically reduced due to some internal or external factors. In other words, since the oversaturated 

conditions should not be solved by the design, but a proper control mechanism, we do not consider complex congestion 

spreading during very congested states. More details are given in Section 3.4 . 

The agency cost metrics include the infrastructure length of each lane allocation type { L a (D ) : a ∈ A b } , the size of the bus

fleet B (D ) , and the total vehicular distance traveled by buses per hour of operation V (D ) ( Eq. 12 ). The associated parameters

{ πL,a : a ∈ A b } , πB , and πV are the corresponding unit costs. To put all the cost components in the objective function ( Eq. 7 )

under the same unit (i.e. hours per passenger), we convert agency money into an equivalent user riding time with parameter

α denoting an average value of time, and divide it by the total number of bus passengers, Pr (b) λ. Note that we use lower

trip generation rate value ( λ) in Eq. 12 as is gives us the maximum bound for the operator cost, which corresponds to the

worst-case scenario (see Daganzo (2010) for more details). 

Z O (D ) = (πL,db L db (D ) + πL,mb L mb (D ) + πB B (D ) + πV V (D )) / (α Pr (b) λ) , (12)

with 

Pr (m ) = 

∫ φx 

−φx 

∫ φy 

−φy 

Pr (m | � x , � y ) f (� x , � y )d � y d � x , m ∈ M , (13)

where Pr (m | � x , � y ) stands for the probability of choosing mode m for a given combination of � x and � y . This probability can

be computed by applying the Logit model ( Bhat and Guo, 2004 ), as given by Eq. 14 , where θ is the parameter of the Logit

model, and T T T (D ) m | � x ,� y denotes the total time traveled for a given mode m and combination of � x and � y . 

Pr (m | � x , � y ) = 

exp (−θ · T T T (D ) m | � x ,� y ) ∑ 

m 

′ ∈M 

exp ( −θ · T T T (D ) m 

′ | � x ,� y ) 
, m ∈ M . (14) 

On the other hand, the user cost metric of interest is the expected total time traveled, computed across both modes and

the entire set of the user trip lengths ( Eq. 15 ). 

Z U (D ) = 

∫ φx 

−φx 

∫ φy 

−φy 

T T T (D ) m | � x ,� y Pr (m | � x , � y ) f (� x , � y )d � y d � x . (15)

In the following, we derive the components of the operator cost function. We start by formulating the infrastructure 

length ( Eq. 16 ). This variable can simply be obtained by multiplying the length associated with one bus line by the total

number of bus lines with a given lane allocation along E-W and N-S directions. 

L a (D ) = 

{
ζx,b,db N x,b φx + ζy,b,db N y,b φy , if a = db, 

(1 − ζx,b,db ) N x,b φx + (1 − ζy,b,db ) N y,b φy , if a = mb. 
(16) 

The bus fleet consists of buses operating in all cardinal directions ( Eq. 17 ). In each direction of travel, the number of

required buses can be approximated by multiplying the number of buses required for one bus line by the total number of

bus lines. 

B (D ) = 

∑ 

p∈{ eb,wb} 
N x,b φx / (H x v p,b ) + 

∑ 

p∈{ nb,sb} 
N y,b φy / (H y v p,b ) , (17) 

where v p,b stands for the expected bus speed (including the dwell and acceleration/deceleration time) in direction p. This 

expected bus speed can be determined using Eq. 18 , where v p,m,a denotes the operating speed of mode m for lane allocation

a in direction p. 

v p,m 

= 

{∑ 

a ∈A m v p,m,a ζx,m,a , if p ∈ { eb, wb} , ∑ 

a ∈A m v p,m,a ζy,m,a , if p ∈ { nb, sb} , m ∈ M (18) 

Note that the operating speeds v p,m,a are not predefined, but depend on the network loading and the topology in a given

cardinal direction. This will be further elaborated in Section 3.4 . Following the approach by Daganzo (2010) , we formulate

the bus operating speed as follows: 

v p,b,a = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

(1 /u b + ω/s x + 	) −1 , if p ∈ { eb, wb} , a = db 

(1 /u b + ω/s y + 	) −1 , if p ∈ { nb, sb} , a = db, 

(1 / v p,c,mb + ω/s x + 	) −1 , if p ∈ { eb, wb} , a = mb, 

(1 / v p,c,mb + ω/s y + 	) −1 , if p ∈ { nb, sb} , a = mb, 

(19) 

where u b is the bus free-flow speed; v p,c,mb denotes the operating car speed along a mixed lane in direction p; ω represents

the time lost per stop due to required door operations and deceleration/acceleration maneuvers; 	 stands for the average 

dwell time in the network. To estimate 	, we first need to define the last agency cost metric, the total vehicular distance
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traveled by buses per hour of operation V (D ) . Following the approach by Daganzo (2010) , we define this distance as the

ratio of the length of the network covered by bus lines and the corresponding bus headway across all cardinal directions. It

can also be defined as the product of the total number of buses operating in all cardinal directions and the corresponding

expected bus speeds ( Eq. 20 ). Note that, since the headway for E-W/N-S bus lines is the same in both travel directions

(east to west and west to east / north to south and south to north), we multiply the total vehicular distance traveled along

E-W/N-S direction by 2. 

V (D ) = 2(N x,b φx /H x + N y,b φy /H y ) . (20) 

Then, the average dwell time in the network can be obtained by multiplying the time added per boarding/alighting passen- 

ger ( ω 

′ ) by the average number of passengers a vehicle collects per unit distance traveled: 

	 = ω 

′ Pr (b)�(1 + ϕ(D )) /V (D ) . (21) 

where ϕ(D ) is the expected number of transfers. According to Daganzo (2010) , the average number of passengers a vehicle

collects per unit distance traveled can be approximated as the ratio of the number of boarding passengers generated per 

hour during the peak period ( Pr (b) · � · (1 + ϕ) ) and the total vehicular distance traveled by buses per hour of operation.

To get the maximum bound for the user cost function, we use higher trip generation rate value ( �) in Eq. 21 , similarly to

Daganzo (2010) and Estrada et al. (2011) . 

Finally, the last term in the objective function is the total time traveled for a given mode m and combination of the user

trip lengths. It consists of the expected access (including the egress) time A m 

(D ) , the expected waiting time W m 

(D ) , the

in-vehicle time traveled IV T T (D ) m | � x ,� y for a given � x and � y , and some additional time components ( Eq. 22 ). For the bus

mode, these additional components include the transferring time, whereas for the car mode, the additional time traveled is 

related to the equivalent mileage costs of an auto trip (as in Daganzo, 2010 ). 1 

T T T (D ) m | � x ,� y = A m 

(D ) + W m 

(D ) + IV T T (D ) m | � x ,� y + � { m = b} ϕ(D ) δ/w + � { m = c} (| � x | + | � y | ) πD /α, m ∈ M , (22)

with 

IV T T (D ) m | � x ,� y = | � x | / v ξ (� x ) ,m 

+ | � y | / v ξ (� y ) ,m 

, m ∈ M , (23)

where δ is a fixed penalty for transfers expressed in terms of an equivalent walking distance; w denotes the average walking

speed (accounting for the delays that users encounter when crossing streets); πD represents the auto cost per unit distance; 

� { condition } is an indicator function that return the value of 1 if condition is satisfied; ξ (·) stands for a function that maps each

trip length component ( � x and � y ) to a cardinal direction in which it is traversed, such that: ξ (� x ≥ 0) = eb; ξ (� x < 0) = wb;

ξ (� y ≥ 0) = nb; and ξ (� y < 0) = sb. 

The following equations approximate the network-level components of the user cost function for the bus mode ( Eq. 22 ),

including the access, the waiting, and the transferring time, for each type of user behavior. For Type 1, Eqs. 24–26 represent

an extension of those in Estrada et al. (2011) for more general bus network configurations. We say an extension, because the

formulations proposed by Estrada et al. (2011) are only applicable for networks with the same stop spacing and bus headway

along E-W and N-S directions (i.e. s x = s y and H x = H y ), which may not be the case in this study (i.e. design parameters may

vary across cardinal directions). 

ype 1. (adjusting the walking distance to minimize the number of transfer) 

A 1 ,b (D ) = (l x + s y + l y + s x ) / (4 w ) . (24) 

ϕ 1 (D ) = Pr (ϕ > 0) = 1 − Pr (ϕ = 0) = 1 − (l y φx + l x φy − l x l y ) / (φx φy ) . (25)

W 1 ,b (D ) = (1 + ϕ 1 (D )) ̄H / 2 . (26) 

where Pr (ϕ = 0) and Pr (ϕ > 0) are the probabilities for making zero and non-zero transfers, respectively; H̄ =
(N b,x H x + N b,y H y ) / (N b,x + N b,y ) denotes the weighted (by the number of bus lines in the corresponding cardinal di- 

rections) bus headway in the network. 

ype 2. (adjusting the number of transfer to minimize the walking distance) 

A 2 ,b (D ) = 

{
(6 l x l y + 6 l x s x − 2 l 2 y − 3 l y s x + 3 l y s y ) / (12 l x w ) , if l x ≥ l y , 

( 6 l x l y + 6 l y s y − 2 l 2 x − 3 l x s y + 3 l x s x ) / (12 l y w ) , if l x < l y . 
(27) 

ϕ 2 (D ) = 

{
Pr (ϕ > 0)(4 l 2 x l 

2 
y − 2 l x l 

3 
y + l 4 y ) / (2 l 2 x l 

2 
y ) , if l x ≥ l y , 

Pr ( ϕ > 0)( 4 l 2 x l 
2 
y − 2 l 3 x l y + l 4 x ) / (2 l 2 x l 

2 
y ) , if l x < l y . 

(28) 

W 2 ,b (D ) = 

{ 

Pr (ϕ = 0) ̄H / 2 + Pr (ϕ > 0)(H x (8 l 2 x l 
2 
y − 4 l x l 

3 
y + l 4 y ) + H y (4 l 2 x l 

2 
y + l 4 y )) / (8 l 2 x l 

2 
y ) , if l x ≥ l y , 

¯ 2 2 4 2 2 3 4 2 2 
(29) 
Pr ( ϕ = 0) H / 2 + Pr ( ϕ > 0)( H x ( 4 l x l y + l x ) + H y (8 l x l y − 4 l x l y + l x )) / (8 l x l y ) , if l x < l y . 

1 Alternatively, one can also incorporate the fare for using the bus mode and/or congestion tolls, parking, and garaging costs associated with the car 

mode. 
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Fig. 2. A city and its vertical and horizontal cordons. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Derivation of the maximum bus occupancy 

Now that we have derived all components of the objective function, we can compute the maximum bus occupancy O p 

in each cardinal direction p. This variable is important to ensure that the bus service provided is enough to accommodate

the passenger demand generated in the most restrictive links during the peak hour. 

To compute O p , we have to evaluate the maximum number of on-board passengers Q p across all points in the corre-

sponding cardinal direction. For this purpose, we use vertical and horizontal cordons denoted as β · φx and β · φy , respec- 

tively, such that β ∈ [0 , 1] (see Fig. 2 ). Intuitively, vertical cordons are used for Q eb and Q wb , whereas the horizontal ones

are used for Q nb and Q sb . Recall that due to the use of the trip length distribution as an intermediate level of abstraction,

we do not know the locations of the trip initialization. Hence, for each cordon, we have to determine the probability that

the bus users cross the cordon for a given � x (in case of a vertical cordon) or � y (in case of a horizontal cordon), in which

case they are considered as part of the total number of on-board passengers in the corresponding cardinal direction. These 

probabilities are denoted as Pr (J β (� x )) and Pr (J β (� y )) , where J β (� x ) is the event that the bus users travel across vertical

cordon βφx for a given � x , and J β (� y ) is the event that the bus users travel across horizontal cordon βφy for a given � y .

Given the assumption regarding the slowly-varying spatial distribution of the user origins, the aforementioned probabilities 

can be computed as: 

Pr (J β (� x )) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

| � x,b | / (φx − | � x,b | ) , if | � x,b | ≤ min { βφx , (1 − β) φx } , 
min { βφx , (1 − β) φx } / (φx − | � x,b | ) , if min { βφx , (1 − β) φx } < | � x,b | ≤ max { βφx , (1 − β) φx } , 
1 , if | � x,b | > max { βφx , (1 − β) φx } , 

(30a) 

Pr (J β (� y )) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

| � y,b | / (φy − | � y,b | ) , if | � y,b | ≤ min { βφy , (1 − β) φy } , 
min { βφy , (1 − β) φy } / (φy − | � y,b | ) , if min { βφy , (1 − β) φy } < | � y,b | ≤ max { βφy , (1 − β) φy } , 
1 , if | � y,b | > max { βφy , (1 − β) φy } , 

(30b) 

where φx − | � x | and φy − | � y | represent the domains of valid user origins for the corresponding � x and � y (see Fig. 2 ). 

Then, the maximum bus occupancy can simply be obtained by dividing the maximum number of on-board passengers 

across all bus lines and all cordons in a given cardinal direction by the total number of bus lines and the respective bus

frequency ( Eq. 31 ). In other words, by moving the cordons in a given cardinal direction, we enumerate all possible occupancy

rates, based on which we find the maximum one for the corresponding direction of travel. Note that we use the higher trip

generation rate in Eq. 32 , i.e. the value of � observed during the loading time of the peak period, to get the maximum

number of on-board passengers. 

O p = 

{
Q p H x /N x,b , if p ∈ { eb, wb} , 
Q p H y /N y,b , if p ∈ { nb, sb} , (31) 
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with 

Q eb = max 
β∈ [0 , 1] 

{ 

∫ φx 

0 

∫ φy 

−φy 

Pr (J β (� x ))� Pr (b| � x , � y ) f (� x , � y )d � y d � x 

} 

, (32a) 

Q wb = max 
β∈ [0 , 1] 

{ 

∫ 0 

−φx 

∫ φy 

−φy 

Pr (J β (� x ))� Pr (b| � x , � y ) f (� x , � y )d � y d � x 

} 

, (32b) 

Q nb = max 
β∈ [0 , 1] 

{ 

∫ φy 

0 

∫ φx 

−φx 

Pr (J β (� y ))� Pr (b| � x , � y ) f (� x , � y )d � x d � y 

} 

, (32c) 

Q sb = max 
β∈ [0 , 1] 

{ 

∫ 0 

−φy 

∫ φx 

−φx 

Pr (J β (� y ))� Pr (b| � x , � y ) f (� x , � y )d � x d � y 

} 

. (32d) 

Notice from Eq. 31 the importance of providing different bus headways along E-W and N-S directions. In other words, 

a unique bus headway for the entire network might lead to an efficient bus service (measured by the ability to serve the

total generated demand with the available bus capacity) in some directions. However, other directions might experience a 

lower level of service, i.e. significantly higher bus occupancy, due to its less favorable design parameters (e.g. less number 

of bus lines, lower fraction of dedicated bus lines, or longer stop spacing), constrained by the geometrical characteristics 

of the network. In other words, a unique bus headway, as it has been previously proposed in most of the literature (see

e.g. Daganzo, 2010; Estrada et al., 2011; Ouyang et al., 2014; Amirgholy et al., 2017 ), might not lead to the optimal design

parameters in all cardinal directions of travel. Therefore, by considering different bus headways, we balance the bus level of 

service provided in each direction, preventing such scenario. 

To verify Eqs. 30 –32 , we show that the solution for the maximum bus occupancy in case of uniformly and independently

distributed origins and destinations is the same to that of Daganzo (2010) (see the Appendix for more details). 

3.4. Derivation of the operating car speed for each lane allocation type 

As mentioned before, in the problem investigated in this study, there are three types of corridor in each cardinal direction

of travel p for which the operating speed v p,m,a needs to be estimated: (i) corridors with car-only lanes; (ii) corridors with

a dedicated bus lane; and (iii) corridors with a mixed lane. For corridors with a dedicated bus lane, the operating bus

speed v p,b,db is not affected by the traffic conditions, i.e. interactions with the car mode (assuming that a dedicated bus lane 

operates with a transit signal priority, as in Wu and Guler, 2018 ). Hence, it can simply be modeled as the free-flow bus

speed u b (including the dwell and acceleration/deceleration time) ( Eq. 19 ). Likewise, given Assumption 3 that buses drive at 

the speed of cars while cruising, the operating bus speed for corridors with a mixed lane, v p,b,mb , can be modeled as the

operating car speed along a corridor with a mixed lane in the corresponding direction of travel, v p,c,mb (including the dwell

time and acceleration/deceleration time) ( Eq. 19 ). As a result, for each cardinal direction and type of corridors, we only need

to estimate the operating car speed. This operating car speed depends on the accumulation of both buses and cars. 

One of the commonly used approaches to determine the operating speed for each mode at the network level, while 

capturing the modal interactions and the network topology, is the three dimensional macroscopic fundamental diagram 

(3D-MFD) ( Geroliminis et al., 2014; Loder et al., 2017; 2019b; Dakic et al., 2020a; Paipuri and Leclercq, 2020 ). Note that by

the modal interactions we refer to how cars and buses influence each other in terms of traffic dynamics. In particular, such

interactions include the impact of bus operations (e.g. accumulation, headway, dwell times at bus stops along mixed lanes) 

on the speed of cars, as well as the impact of car accumulation on the operation of buses (e.g. reduced speed along mixed

lanes). 

In the classical framework, the 3D-MFD is assumed to be a function of the total production in the network with respect

to the accumulation of both buses and cars. Such 3D-MFD is resourceful for practitioners to understand the impact of each

mode in the network. Nevertheless, for modeling purposes, it is more appealing to segregate the 3D-MFD into two partial 

3D-MFDs, one for each mode of transport ( Paipuri and Leclercq, 2020 ). This segregation yields a more accurate estimation

of the operating speed for each mode. Therefore, in this paper, we apply the partial car 3D-MFD to determine the operating

car speed and ultimately the optimal design parameters. It is worth noting that we could also apply the partial bus 3D-MFD

to determine the operating bus speed along corridors with a mixed lane. However, this would not yield a very accurate bus

speed estimation for a given level of bus passenger demand, given that the partial bus 3D-MFD does not explicitly account

for the dwell time that depends on the bus passenger demand level. For that reason, we compute the bus speed along

corridors with a mixed lane using the operating car speed (determined from the partial car 3D-MFD) and the analytical 

expression for the dwell time as a function of the bus passenger demand ( Eq. 21 ). 

To estimate the partial car 3D-MFD, we combine bi-modal MFDs for the car mode using the framework proposed by 

Dakic et al. (2020a) . Each bi-modal MFD represents a slice of the partial car 3D-MFD, covering a range of traffic conditions

for a particular bus headway. Different traffic conditions are associated with different cruising bus speeds. Those cruising 

bus speeds define the temporal distribution of bus stop shortcuts in the variational theory graph. When modeling the tem- 

poral distribution of bus stop shortcuts, we keep either the bus accumulation or headway constant, depending on whether 
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Fig. 3. Computing the average car delay experienced along a corridor with allocation a in direction p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the operator operates with a constant headway or a constant number of buses (for a detailed overview, please refer to

Dakic et al., 2020a ). Thus, to change the operating regime of buses with the decision variables (i.e. bus headways H x and

H y ), we use different slices of the obtained partial car 3D-MFD, as long as the network topology (defined by the decision

variables ζx,b,db and ζy,b,db ) remains the same. Once the network topology changes, we derive the corresponding partial car 

3D-MFD by repeating the process mentioned above. This way, we are able to determine the effects that the design variables

have on the interactions between the modes. We do so by quantifying the operating car speed (and hence the operating

bus speed) for any given bus network configuration scenario (as defined by the decision variables). 

Note, however, that most analytical studies for approximating an MFD (or the bi-modal MFD) using variational theory 

treat the entire network as a single, one dimensional corridor ( Daganzo and Geroliminis, 2008 ). This may not lead to a very

accurate bi-modal MFD approximation for networks whose topological (intersection and stop spacing) and operational char- 

acteristics (signal settings, lane allocation, and bus headway) vary significantly across cardinal directions, as it may be the 

case in the considered problem. Therefore, to more accurately quantify the performance of each mode, we estimate the 3D- 

MFD for each cardinal direction and corridor type, i.e. lane allocation layout (corridors with car only lanes, a dedicated bus

lane, or a mixed lane), and then combine the results similar to Girault et al. (2016) . It is important to note that combining

directional (3D-)MFDs is reasonable for the considered bus network design problem, given that we examine the best case 

scenario when there are no disruptions causing the network capacity to be dynamically reduced due to some internal or 

external factors. In other words, the traffic control operates well-enough to remove local capacity drops. Consequently, the 

outflow in one direction can smoothly go in the other. This is a regular process when discussing the design problem. Once

the 3D-MFD is estimated for each travel direction and type of corridor, we feed the derived 3D-MFD with the correspond-

ing travel demand, as elaborated further below. This way, we implicitly take into account the interactions between cardinal 

directions. Interactions across the two cardinal directions include signal timing allocation (which we do take into account), 

demand distribution (which we also take into account), and spillovers (which are not relevant for a design problem, as 

discussed in Section 3.1 ). 

To compute v p,c,a , we first need to determine whether the total generated car demand �p,c,a ( Eq. 33 ) along a corridor

with allocation a in direction p during the loading time T of the peak period ( Fig. 3 ) is smaller than the corresponding

corridor capacity μp,c,a = P ∗p,c,a / ̄� p . We define the corridor capacity as the maximum outflow, i.e. ratio of the maximum

travel production, P ∗p,c,a , and the average trip length for a given cardinal direction, �̄ p ( Eq. 34 ). Notice from Eq. 33 that

we assume that the car capacity for a corridor with a dedicated bus line is reduced by one lane compared to other lane

allocation types. 

�eb,c,a = 

∫ φx 

0 

∫ φy 

−φy 

(�/N x (ηp − � { a = db} )) Pr (c| � x , � y ) f (� x , � y )d � y d � x , (33a) 

�wb,c,a = 

∫ 0 

−φx 

∫ φy 

−φy 

(�/N x (ηp − � { a = db} )) Pr (c| � x , � y ) f (� x , � y )d � y d � x , (33b) 

�nb,c,a = 

∫ φy 

0 

∫ φx 

−φx 

(�/N y (ηp − � { a = db} )) Pr (c| � x , � y ) f (� x , � y )d � x d � y , (33c) 

�sb,c,a = 

∫ 0 

−φy 

∫ φx 

−φx 

(�/N y (ηp − � { a = db} )) Pr (c| � x , � y ) f (� x , � y )d � x d � y . (33d) 

�̄ eb = 

∫ φx 

0 

∫ φy 

−φy 
| � x | f (� x , � y )d � y d � x ∫ φx 

0 

∫ φy 

−φy 
f (� x , � y )d � y d � x 

, (34a) 
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�̄ wb = 

∫ 0 
−φx 

∫ φy 

−φy 
| � x | f (� x , � y )d � y d � x ∫ 0 

−φx 

∫ φy 

−φy 
f (� x , � y )d � y d � x 

, (34b) 

�̄ nb = 

∫ φy 

0 

∫ φx 

−φx 
| � y | f (� x , � y )d � x d � y ∫ φy 

0 

∫ φx 

−φx 
f (� x , � y )d � x d � y 

, (34c) 

�̄ sb = 

∫ 0 
−φy 

∫ φx 

−φx 
| � y | f (� x , � y )d � x d � y ∫ 0 

−φy 

∫ φx 

−φx 
f (� x , � y )d � x d � y 

. (34d) 

Depending on the ratio between �p,c,a and μp,c,a , we can distinguish the following two cases: �p,c,a ≤ μp,c,a ; and 

�p,c,a > μp,c,a . The first case implies uncongested traffic conditions, in which the corridor capacity is sufficient to serve 

the total generated demand, hence no delays due to congestion are experienced in the system. Consequently, there is a 

direct match between the total generated demand and the outflow along a corridor. In the second case, however, such 

a direct match between the demand and the outflow can no longer be established, as the outflow might be limited to

the corridor capacity during the time when congestion is active. Therefore, to tackle this problem and given Assumption 

4 , we use a simple bottleneck model that considers the entire corridor as a single bottleneck with a mean capacity (see

Amirgholy et al. (2017) for more details). Note that this model is applied to account for possible delays during the peak

hour in case the demand exceeds the maximum outflow. It is used because we look at the bus network design problem

under the steady state, when the traffic conditions are (under)saturated and there are no disruptions causing the network 

capacity to be dynamically reduced due to some internal or external factors, as we stated before. Oversaturated conditions 

should not be solved by the design, but a proper control mechanism (e.g. He et al., 2018 ). Hence, we do not consider com-

plex congestion spreading during very congested states. In the following, we summarize how the operating car speed is 

computed for each case separately. 

Case 1. ( �p,c,a ≤ μp,c,a ): the network operates in the uncongested regime. The operating car speed can be determined by 

finding the point on the bi-modal MFD in which the total travel production is equivalent to that obtained by apply-

ing the queuing formula of Little (1961) : 

P p,c,a = �p,c,a ̄� p , p ∈ A c , p ∈ P . (35) 

ase 2. ( �p,c,a > μp,c,a ): the network operates at capacity. Due to congestion, cars experience certain delay τp,c,a , which 

needs to be taken into account when computing v p,c,a . Following the approach by Amirgholy et al. (2017) , we can

compute this delay as half of the maximum car delay τmax 
p,c,a experienced during the peak hour, i.e. τp,c,a = τmax 

p,c,a / 2 =
(T (�p,c,a − μp,c,a ) /μp,c,a ) / 2 (see Fig. 3 ). The operating car speed is then given by Eq. 36 , where v ∗p,c,a denotes the 

operating car speed corresponding to the maximum outflow along a corridor with allocation a in direction p. 

v p,c,a = (1 / v ∗p,c,a + τp,c,a ) 
−1 , p ∈ P, a ∈ A c (36) 

4. Numerical results 

4.1. Solution algorithm 

For the purpose of computing the optimal design parameters, we follow the approach of previous studies and use a 

brute-force search technique (see e.g. Daganzo, 2010; Estrada et al., 2011; Badia et al., 2014; 2016 ). Alternatively, other

optimization techniques for solving the problem could also be explored, which may give the solution faster. However, this 

is out of the scope for this paper. To speed up the searching process over the feasible region, we perform a Monte Carlo

sampling for a given trip length pattern. Notice that more elaborated sampling techniques could potentially be used to 

further increase the computational speed ( Ge and Menendez, 2017 ). The result is the set of trip length values along E-W

( L x ) and N-S ( L y ) directions. Then, we find the network-level parameters of the bus user cost function according to the

selected type of user behavior (i.e. minimizing the number of transfers or the walking distance). To compute the total travel

cost for each mode, we need to find the operating speeds. These operating speeds depend on the mode choice that is, on

the other hand, a function of the utility cost (i.e. travel time) for each mode. The utility costs are determined based on the

bi-modal MFD derived for a given bus network configuration scenario (defined by the decision variables). In other words, 

the total travel costs are computed by solving a fixed point problem, as shown by the flow chart in Fig. 4 . This flow chart

summarizes the methodological steps. 

Note that, rather than using a conventional convergence algorithm to solve the fixed point problem, we discretize (by 1%) 

potential mode choice values, and for each value we compute its absolute difference to the mode choice value given by the

Logit model Eqs. 13 –(14) . Then, using a brute-force approach, we find the value of the mode choice that has the minimum

absolute difference com pared to one obtained from the Logit model. This minimum absolute difference found is always less 

than 1%, given that we discretize our mode choice values by 1%. Once the fixed point problem is solved, we compute the

operator and user costs, hence the total system cost. 
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Fig. 4. Schematic representation of the solution algorithm. 

Table 2 

Experimental settings. 

Input parameter Variable Units Value 

Network length φx /φy km 10/4.95 

Street spacings ψ x /ψ y km 0.25/0.15 

Equivalent penalty distance per transfer δ km 0.03 

Trip generation rate during the peak hour � pax/hr 75,000 

Trip generation rate during the off-peak hour λ pax/hr 30,000 

Loading time of the peak period T hr 1 

Bus free-flow speed u b km/hr 40 

Average walking speed w km/hr 2 

Time lost per stop ω sec 30 

Boarding and alighting time per passenger ω 

′ sec/pax 1 

Unit dedicated-infrastructure cost πL,db $/km-hr 90 

Unit mixed-infrastructure cost πL,mb $/km-hr 9 

Unit vehicle cost πB $/veh-hr 40 

Unit distance cost πV $/veh-km 2 

Unit mileage cost πD $/km 0.3 

Value of time α $/pax-hr 20 

Minimum headway H min min 3 

Bus passenger capacity C pax/veh 150 

Average car waiting time W c min 7 

Parameter of the Logit model θ ∅ 1.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Case study and analyzed scenarios 

Here we investigate the effects of demand intensity, user behavior, and trip length patterns on the optimal bus network 

configuration and passenger mode choice (i.e. traffic performance). We do this by applying the previously described frame- 

work to the Barcelona network. Table 2 summarizes the input parameters for this case study. The values are similar to those

in the literature (see e.g. Daganzo, 2010; Estrada et al., 2011; Badia et al., 2014; 2016 ). 

4.3. General results and the effects of demand intensity 

To quantify the effects of demand intensity, we analyze two scenarios: SC-I, indicating the base case, with the trip gen-

eration rates given in Table 2 ; and SC-II, representing an increase in the trip generation rate (both during the peak and

off-peak period) by 33%. Similarly to Ouyang et al. (2014) , we explore four distinct trip length patterns, reflecting different

spatial demand distributions: (i) a uniform city ( Fig. 5 a), where origins and destinations are uniformly distributed across 

the entire network; (ii) a mono-centric city ( Fig. 5 c), where most of the origins and destinations are located within the city

center, resulting in shorter trip lengths compared to (i) (see Fig. 5 d); (iii) a commuter city ( Fig. 5 e), where most of the ori-

gins and destinations are located in two regions positioned in the opposite corners of the network, resulting in longer trip

lengths compared to (i) (see Fig. 5 f); and (iv) a twin city ( Fig. 5 g), where most of the origins and destinations are located

in two nearly-adjacent regions near the city center. Notice that, due to the rectangular structure of the street network, the

E-W traffic has a longer trip length than the N-S one in all considered patterns, as shown by the tails of the trip length

distributions ( Figs. 5 b, 5 d, 5 f, and 5 h). Also note that the trip length distribution spreads the most for the uniform trip

length pattern, given that the origins and destinations are distributed uniformly all across the whole network. As the origins 

and destinations become concentrated in a certain region of the network, the range of trip lengths gets reduced. 

Table 3 shows the optimal design parameters, operator and user costs, as well as the corresponding mode choice, for 

each demand scenario, type of user behavior, and trip length pattern. The headways are given in minutes, whereas the 

costs are expressed in hours. The results suggest that for longer trip length patterns and higher demand levels more users

tend to choose the bus system. The reason for this is twofold. First, the mileage cost component (besides the in-vehicle

time traveled) in the car user cost function (defined as in Daganzo, 2010; Estrada et al., 2011; Badia et al., 2016 ) linearly

increases with an increase in the trip length (see Eq. 22 ). This, however, is not the case for the bus mode, as all the cost
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Fig. 5. Concentration of user origins and destinations, and the corresponding trip length pattern in case of: (a-b) uniform city; (c-d) a mono-centric city; 

(e-f) a commuter city; and (g-h) a twin city. 

 

 

 

 

 

 

components (except for the in-vehicle time traveled) remain the same, i.e. they are independent of the user trip length. 

Second, by accounting for the interactions between the modes and their effects on the traffic performance, we observe that 

the system can benefit if more users select the bus mode, as otherwise the car delay would increase due to a higher car

accumulation in the network. This, in turn, would also affect the bus system along mixed lanes, ultimately leading to overall

lower network performance. To cope with increasing number of users in the system in scenario SC-II and ensure sufficient 

passenger capacity, the optimal bus network configuration requires a more frequent service compared to SC-I, as shown in 

Table 3 . This holds true for both types of user behavior. Nevertheless, it is worth mentioning that the same pattern might

not be observed in real-life scenarios in case the utility functions are significantly different from those used in the numerical

experiments. 

Notice from Table 3 that (i) both the user behavior and the trip length pattern do affect the optimal bus network config-

uration and passenger mode choice, and that (ii) the optimal design parameters are not constant across cardinal directions. 

This is an important insight, given that most scientific literature on the bus network design problem assumes, up to now,

unique design parameters across the network and one particular type of user behavior and trip length pattern. Therefore, 
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Table 3 

Optimal design parameters, operator cost, user cost, and the corresponding mode choice. 

Scenario User behavior Trip pattern z s,x z s,y z l,x z l,y H x H y ζx,b,db ζy,b,db Z O Z U Z Pr (b) 

SC-I Type 1 (i) 2 3 2 2 6 5 0 0.5 0.065 0.538 0.603 0.36 

(ii) 1 2 3 3 8 6 0 0 0.061 0.357 0.418 0.36 

(iii) 3 3 1 2 3 3 1 1 0.112 0.826 0.938 0.46 

(iv) 1 3 3 2 7 4 0 0.9 0.081 0.479 0.560 0.40 

Type 2 (i) 2 4 4 1 5 3 0 1 0.068 0.491 0.559 0.42 

(ii) 1 4 7 1 6 4 0 0.7 0.061 0.311 0.372 0.42 

(iii) 3 3 1 2 3 4 1 1 0.099 0.792 0.891 0.48 

(iv) 1 4 7 1 6 3 0 1 0.064 0.437 0.501 0.44 

SC-II Type 1 (i) 2 3 2 2 5 3 0 0.9 0.065 0.525 0.590 0.38 

(ii) 1 2 3 3 5 5 0 0 0.058 0.347 0.405 0.38 

(iii) 3 4 1 1 3 3 1 1 0.099 0.838 0.937 0.48 

(iv) 1 4 3 1 6 3 0 1 0.078 0.462 0.540 0.42 

Type 2 (i) 2 3 4 1 5 3 0 1 0.062 0.484 0.546 0.42 

(ii) 1 3 8 1 5 4 0 1 0.061 0.295 0.356 0.44 

(iii) 3 4 1 1 3 3 1 1 0.095 0.803 0.898 0.50 

(iv) 1 4 6 1 5 3 0 1 0.057 0.432 0.489 0.44 

Fig. 6. Mode choice distribution for the optimal bus network design in scenario SC-I in case of: (a) uniform city; (b) a mono-centric city; (c) a commuter 

city; and (d) a twin city. 

 

 

 

 

 

 

in the following, we demonstrate how important is to relax these assumptions. In particular, we quantify the value of each

of the proposed methodological extensions including: (i) modeling of mode choice at the trip length level; (ii) considering 

heterogeneous types of user behavior; (iii) considering heterogeneous trip length patterns; (iv) accounting for the complex 

modal interactions; and (v) considering heterogeneous design parameters across cardinal directions. 

4.4. Value of the proposed methodological extensions 

4.4.1. Value of modeling the mode choice at the trip length level 

In the previous subsection, we showed that the probability of choosing any given mode depends not only on the demand

intensity, but also the type of user behavior. A closer look into the mode choice distribution reveals that this probability is

not constant across the user trip lengths, but follows certain distribution ( Fig. 6 ). This distribution is not unique, but varies

across the trip length patterns, indicating the importance of modeling the mode choice at the trip length level. Interest- 

ingly, the distribution for Type 2 behavior shows higher deviation and is shifted towards the right (i.e. higher number of

users choose to use the bus system) compared to Type 1. The reason for this is that the bus system designed according to

Type 2 behavior provides higher level of service, as elaborated further below. Note that, since the resulting mode choice 

distributions for both demand scenarios exhibit a similar shape, for brevity, we only show that of SC-I. 
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Table 4 

Effects of user behavior on the cost functions. 

Scenario Trip pattern �Z O �Z U �Z

SC-I (i) + 4.46% -8.70% -7.28% 

(ii) -1.02% -12.74% -11.02% 

(iii) -11.62% -4.27% -5.15% 

(iv) -21.24% -8.90% -10.69% 

SC-II (i) -5.15% -7.62% -7.34% 

(ii) + 6.89% -14.81% -11.72% 

(iii) -3.30% -4.22% -4.12% 

(iv) -26.85% -6.49% -9.43% 

Table 5 

Effects of trip length patterns on the cost functions. 

Scenario User behavior Trip pattern �Z O �Z U �Z

SC-I Type 1 (ii) -5.48% -0.55% -1.31% 

(iii) + 109.93% -9.89% -3.30% 

(iv) + 38.46% -4.67% -0.15% 

Type 2 (ii) -10.44% -1.22% -2.86% 

(iii) + 57.35% -8.04% -3.58% 

(iv) -1.36% -1.97% -1.89% 

SC-II Type 1 (ii) -11.68% + 0.39% -1.52% 

(iii) + 79.41% -10.59% -5.64% 

(iv) + 31.48% -4.33% -0.42% 

Type 2 (ii) + 3.88% -3.66% -2.44% 

(iii) + 66.09% -10.50% -5.93% 

(iv) -3.87% -1.60% -1.87% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2. Value of considering heterogeneous types of user behavior 

For quantifying the importance of considering heterogeneous types of user behavior, we compare the optimal values 

of the cost functions for Type 1 and Type 2 behavior, such that �Z O = (Z 2 ,O − Z 1 ,O ) /Z 1 ,O , �Z U = (Z 2 ,U − Z 1 ,U ) /Z 1 ,U , and

�Z = (Z 2 − Z 1 ) /Z 1 . The results of this comparison are given in Table 4 . We observe that for all trip length patterns users

can benefit (according to the cost functions used here) if they are willing to adjust the number of transfers to minimize

the walking distance at the origin and the destination. This is consistent with empirical results from the city of Barcelona

( Badia et al., 2017 ). Potential improvements can range from 4.2% to 14.8%, depending on the demand level and prevailing

trip length pattern (see Table 4 ). 

To motivate the users to use the transfers, i.e. provide a well-designed transfer-based network, the user waiting time 

needs to be minimized. This is indicated by the optimal decision variables in Table 3 , where we can see that the optimal

bus network configuration for Type 2 behavior provides higher bus frequency (i.e. lower headways in the two directions 

for almost all types of cities in both tested scenarios) compared to Type 1. Consequently, the operator cost might increase

for some trip length patterns (e.g. uniform city in SC-I or mono-centric city in SC-II), as shown in Table 4 . However, since

the share of the operator cost within the total system cost is substantially lower than that of the user cost, the total cost

function still gets reduced if the network is designed according to Type 2 user behavior. The improvements can range from

5.1% to 11.7% (see Table 4 ). 

4.4.3. Value of considering heterogeneous trip length patterns 

Here we quantify the importance of considering heterogeneous trip length patterns by comparing the costs obtained 

when the bus network parameters are optimally determined for a given trip length pattern, with those obtained if we were

to assume uniformly distributed origins and destinations ( Table 5 ). A negative value means that accounting for the actual

trip length distribution does lead to lower costs. As expected, such lower total costs are achieved for both types of user

behavior, with a similar magnitude of improvements. The improvements tend to increase with an increase in the demand 

level, especially for a commuter city (i.e. longest trip length pattern) that exhibits the highest improvement (5.9% for Type 

2; 5.6% for Type 2) in the total cost function. In contrast, the lowest improvements (0.1% for Type 1; 1.9% for Type 2) are

acquired for a twin city. 

It is worth noting that in some cases the operator cost increases when we use the actual trip length distribution, espe-

cially for a commuter city. The reason for this is twofold. First, the optimal bus network design for a uniform city does not

satisfy the constraint for the maximum bus occupancy ( Eq. 11 ) when applied to a commuter city, thus cannot be considered

to be feasible. From that perspective, an increase in the operator cost (imposed by considering the actual trip length distri-

bution) for a commuter city is justified by ensuring that the bus capacity is sufficient to serve the maximum bus occupancy

during the peak hour. Second, a commuter city requires a bus network with a higher spatial coverage and more frequent bus

service compared to the uniform one. Such a requirement, however, ensures that the level of service provided by the bus

system is competitive with that of the automobile at a reasonable cost. This is confirmed with the user cost function, which
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Table 6 

Effects of modal interactions on the cost functions. 

Scenario User behavior Trip pattern �Z O �Z U �Z

SC-I Type 1 (i) + 123.13% -7.15% -0.92% 

(ii) + 110.91% -11.17% -2.90% 

(iii) + 86.47% -10.87% -4.95% 

(iv) + 106.08% -11.71% -3.71% 

Type 2 (i) + 111.59% -9.76% -3.01% 

(ii) + 89.49% -13.98% -5.54% 

(iii) + 68.76% -12.04% -7.09% 

(iv) + 61.59% -16.46% -10.95% 

SC-II Type 1 (i) + 96.99% -7.49% -1.72% 

(ii) + 74.14% -10.64% -3.98% 

(iii) + 46.70% -11.35% -7.52% 

(iv) + 94.44% -12.30% -4.76% 

Type 2 (i) + 101.26% -11.47% -5.47% 

(ii) + 102.59% -18.07% -8.7% 

(iii) + 46.66% -12.87% -8.98% 

(iv) + 46.11% -14.24% -9.91% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

indeed gets reduced when we design the bus network for the actual trip length pattern. Consequently, the total system cost 

also gets reduced, given that the share of the user costs within the total system cost is substantially higher than that of the

operator cost, as we stated before. In other words, increases in the operator cost are compensated by a much more efficient

level of service from the user perspective, leading to overall lower costs. 

4.4.4. Value of accounting for the complex modal interactions 

So far, we have discussed how the demand intensity, user behavior, and trip length patterns affect the optimal bus 

network configuration and quantified the value of considering these factors. To realistically model both, the car and the 

bus system, we employed the 3D-MFD to take into account the interactions between the modes and their impact on the

traffic performance. These interactions, however, are ignored in most scientific literature on the bus network design problem, 

which typically assumes that the travel times (or equivalently, the bus speeds) are independent of the design parameters. 

It is therefore the purpose of this subsection to quantify the value of considering the complex modal interactions in the

proposed modeling framework. 

We do this by comparing the results of the proposed approach to those obtained when the optimal design parameters 

for the simplified problem (i.e. considering the bus system only and using the average car speed during the peak period as

the bus cruising speed along mixed lanes, as in Daganzo (2010) and Estrada et al. (2011) ) are incorporated into the proposed

framework. To make a fair comparison between the two approaches, we use the same demand level for the bus mode (de-

termined from the mode choice in the original problem). The results of this comparison are shown in Table 6 . A negative

value means that a proper modeling of the complex bi-modal interactions does lead to lower costs. As expected, such lower

total costs are achieved for both types of user behavior and all trip length patterns. Notice that the improvements in the

total system cost increase with an increase in the demand level, especially for Type 1 behavior. These improvements come 

from the significant improvements (up to 18%) in the user cost function. That being said, we also observe an increase in the

operator cost. This is because the optimal solution of the simplified problem produces a bus network design that operates 

in a fully mixed (with car traffic) environment across all cardinal directions, with a lower service frequency compared to 

that of the original problem. Consequently, once the solution of the simplified approach is incorporated into the proposed 

framework, the user waiting time increase and the occupancy rates become close or equal to the bus capacity (indicating 

lower level of service) for all demand levels, types of user behavior, and trip length patterns. In contrast, by accounting for

the effects of the bus system on private car users, and vice versa, especially for higher demand levels, the proposed frame-

work leads to a bus network design with higher percentage of dedicated bus lines. Due to reduced interactions between 

the modes, such design allows to increase the bus frequency along dedicated bus segments, improving thereby the level 

of service (reducing the passenger waiting time and bus occupancy) compared to the simplified approach. This indicates 

the value of the proposed modeling framework in capturing the necessary factors for determining the optimal bus network 

configuration, while taking into account multiple transport modes. 

4.4.5. Value of considering heterogeneous design parameters 

The results in Table 3 indicate that the optimal bus network configuration for different trip length patterns does not 

always provide a fully dedicated or mixed (with car traffic) bus system across the entire network (i.e. all cardinal directions),

as it was the case in previous studies (see e.g. Daganzo, 2010; Estrada et al., 2011; Badia et al., 2016; Amirgholy et al., 2017 ).

In fact, most of the decision variables vary along E-W and N-S. This holds true for both types of user behavior. Hence, it is

worth quantifying the importance of considering a heterogeneous bus network design across cardinal directions. 

We perform this analysis by comparing the results of the proposed approach to those obtained when the optimal design 

parameters for the simplified problem (i.e. considering the same stop spacing, bus headway, and lane allocation across all 
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Table 7 

Effects of heterogeneous design parameters across cardinal directions on the 

cost functions. 

Scenario User behavior Trip pattern �Z O �Z U �Z

SC-I Type 1 (i) -12.60% -0.01% -0.63% 

(ii) -12.60% + 0.04% -0.87% 

(iii) -10.38% + 0.06% -0.54% 

(iv) -8.05% + 0.09% -0.45% 

Type 2 (i) -11.05% + 0.04% -0.45% 

(ii) -11.05% -0.00% -0.68% 

(iii) -9.34% + 0.05% -0.42% 

(iv) -5.52% + 0.04% -0.26% 

SC-II Type 1 (i) -6.94% -0.07% -0.41% 

(ii) -6.94% + 0.09% -0.42% 

(iii) -9.02% -0.01% -0.53% 

(iv) -7.13% -0.08% -0.53% 

Type 2 (i) -8.86% + 0.15% -0.21% 

(ii) -5.96% -0.05% -0.36% 

(iii) -8.94% + 0.01% -0.44% 

(iv) -6.25% + 0.07% -0.25% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cardinal directions, as in Estrada et al., 2011 ) are incorporated into the proposed framework. The results of this comparison

are shown in Table 7 . Similarly to the previous analysis, a negative value means that a heterogeneous bus network design

does lead to lower costs. We observe that the operator costs can indeed be reduced in both tested scenarios, for both types

of user behavior and all trip length patterns, if we allow the decision variables to vary across cardinal directions. Potential

improvements can range from 5.5% to 12.6%. Notice that there are almost no effects on the user cost function, resulting

in marginal improvements in the total system cost (see Table 7 ). This shows that the proposed framework provides more

flexibility for the bus system to serve the passenger demand while reducing the operator cost compared to the existing 

approaches. 

5. Conclusions 

In this study we investigate the effects of demand intensity, user behavior, and trip length patterns on the optimal bus

network design, as well as the effects that the bus network structure might have on the traffic performance and passenger

mode choice. For this purpose, we introduce several major extensions to the classical problem formulation. First, we con- 

sider two types of user behavior when selecting bus routes: (i) minimization of the number of transfers (Type 1); and (ii)

minimization of the walking distance (Type 2). Second, we propose a new concept for considering trip length heterogeneity 

related to different origin-destination trips in the network. Third, we explicitly account for mixed traffic (i.e. mutual influ- 

ence of cars and buses in the network) and mode choice at the trip length level. Forth, we use a dynamic description of the

peak hour demand by distinguishing between the loading and unloading phase. This way, we are able to achieve a more

realistic modeling of network congestion, hence determine a mean speed that depends on the bus network configuration, 

demand profile, and passenger mode choice. 

Overall, the contributions of this research are sixfold: (i) we account for spatially non-uniform network topology and 

distribution of the passenger demand across cardinal directions; (ii) we use the distribution of the user trip lengths as an

intermediate level of abstraction to determine the optimal design parameters. Such a level of abstraction allows not only 

to account for different trip length patterns (per and across cardinal directions) for the same level of passenger demand, 

but also to capture more accurately the network loading for all modes; (iii) we consider the complex modal interactions 

and passenger mode choice, thus include the travel costs for both, the bus and the car mode, into the objective function.

This way, we optimize the performance of the whole network while taking into account multiple transport modes; (iv) we 

consider the influence of the passenger demand and network topology on the traffic performance, which, in turn, affects the 

passenger mode choice (i.e. demand). In other words, we use a full feedback loop to model all aforementioned dependencies;

(v) we consider heterogeneous design parameters across cardinal directions, incorporating different lane allocations into the 

bus network design problem and accounting for their different influences on car traffic; and (vi) we investigate the effects 

of demand intensity, user behavior, and trip length patterns on the optimal bus network design; all in an analytical manner.

Numerical experiments performed for different trip length patterns, reflecting different spatial demand distributions, 

show that all the tested factors do affect the optimal bus network configuration and passenger mode choice. Results reveal 

that the probability of choosing any given mode is not constant across the user trip lengths, i.e. it follows certain distribu-

tion. This distribution is not unique, but varies across the trip length patterns, indicating the importance of modeling the 

mode choice at the trip length level. Moreover, the results indicate that a well-designed transfer-based bus network, i.e. 

a bus network designed according to Type 2 behavior, leads to lower costs and attracts more users for the same level of

passenger demand compared to that of Type 1. This finding is consistent with empirical results from the city of Barcelona

( Badia et al., 2017 ). Finally, we demonstrate the significance of addressing simplifications made in previous studies. From 
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that perspective, we show that the bus network parameters optimally determined for a given trip length pattern lead to 

lower costs compared to those obtained if we were to assume uniformly distributed origins and destinations. More im- 

portantly, the optimal bus network design determined for the uniform trip pattern does not satisfy the constraint for the 

maximum bus occupancy when applied to other trip length patterns, thus cannot be considered to be feasible. In other 

words, accounting for the actual trip length distribution allows the operator to design the bus network in accordance to the

prevailing demand pattern. A comparison with a simplified approach that considers the bus system only and uses the aver- 

age car speed during the peak period as the bus cruising speed along mixed lanes (as in Daganzo, 2010; Estrada et al., 2011 )

reveals the value of accounting for the complex modal interactions, especially for higher demand levels. Last, we show that 

by considering heterogeneous design parameters across cardinal directions we provide more flexibility for the bus system 

to serve the passenger demand while reducing the operator cost compared to the existing approaches. 

It is also worth mentioning that, although the real networks are more complicated, the formulated design problem for 

simplified networks gives a fast global assessment of the key design variables (range of bus headways, overall fraction of 

dedicated bus lanes, range of stop and line spacings per cardinal direction) that should be further analyzed at the oper-

ational level when applied to real networks. That being said, we acknowledge that the proposed model might not be as

parsimonious as those in the previous studies. Nevertheless, it still maintains the analytical structure of the problem while 

addressing important assumptions in the current state of the art, shown to have a significant impact, as we stated before. 
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Appendix A. Proofs 

Result 1. The expected walking time at the origin and the destination for Type 2 user behavior is given by Eq. 27 : 

A 2 ,b (D ) = 

{
(6 l x l y + 6 l x s x − 2 l 2 y − 3 l y s x + 3 l y s y ) / (12 l x w ) , if l x ≥ l y , 

( 6 l x l y + 6 l y s y − 2 l 2 x − 3 l x s y + 3 l x s x ) / (12 l y w ) , if l x < l y . 

Proof. Recall that for this type of behavior we assume users to choose the closest origin and destination stops such that

they minimize the walking distance. Consequently, how the users access/exit the bus system (using a vertical or a horizontal 

bus line) depends on where their origin/destination is located within a rectangle defined by the horizontal and vertical line 

spacings (see Fig. 7 ). This, in turn, defines the walking distance (thus the access time), as well as the number of transfers

(thus the waiting time). From that perspective, we can distinguish four regions within the rectangle, as shown in Fig. 7 . Note

that if the origin/destination falls within region (1) or (3), the users access/exit the bus system at the stop closest to their

origin/destination along the nearest horizontal bus line. Otherwise, they access/exit the bus system at the closest stop along 

the nearest vertical bus line. As the shape of the rectangle and the corresponding regions depends on the ratio between l x 
and l y , we consider the following two cases: 

Case 1. ( l x ≥ l y ): regions (1) and (3) consist of two subregions: a rectangle with sides l x − l y and l y / 2 ; and two right tri-

angles with legs l y / 2 and l y / 2 . The first subregion has the area of P (1) 
� = (l x − l y ) l y / 2 and the associated average

walking distance of (1 / 2)(l y / 2) = l y / 4 along N-S and (1 / 2)(s x / 2) = s x / 4 along E-W directions, i.e. the average walk-

ing distance is A 

(1) 
� = (l y / 4 + s x / 4) /w . The area of the second subregion (combining the two triangles) is P (1) 

� 

= l 2 y / 4 ,

with the associated average walking distance of (1 / 3)(l y / 2) = l y / 6 along N-S and (1 / 2)(s x / 2) = s x / 4 along E-W di-

rections, i.e. A 

(1) 
� 

= (l y / 6 + s x / 4) /w . Similarly, regions (2) and (4) have each the area of P (2) 
� 

= l 2 y / 4 , with the asso-

ciated average walking distance of (1 / 3)(l y / 2) = l y / 6 along E-W and (1 / 2)(s y / 2) = s y / 4 along N-S directions, i.e.

A 

(2) 
� 

= (l y / 6 + s y / 4) /w . Then, assuming that the expected access and egress distances traveled are the same (simi-

larly to Daganzo, 2010; Estrada et al., 2011 ), the expected walking time can be computed by considering all possible
412 
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Fig. 7. Regions defining potential locations of an origin/destination within a rectangle defined by sides l x and l y in case: (a) l x ≥ l y ; and (b) l x < l y . 
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combinations of the subregions in which the origin/destination might be located: 

A 2 ,b ( D ) = 2 

( 

A 

( 1 ) 
� · P ( 

1 ) 
�

P ( 
1 ) 

� + P ( 
1 ) 

�
+ P ( 

2 ) 
�

+ A 

( 1 ) 
�

· P ( 
1 ) 

�

P ( 
1 ) 

� + P ( 
1 ) 

�
+ P ( 

2 ) 
�

+ A 

( 2 ) 
�

· P ( 
2 ) 

�

P ( 
1 ) 

� + P ( 
1 ) 

�
+ P ( 

2 ) 
�

) 

= 

(
6 l x l y + 6 l x s x − 2 l 2 y − 3 l y s x + 3 l y s y 

)
/ ( 12 l x w ) . 

ase 2. ( l x < l y ): regions (1) and (3) have the area of P (1) 
� 

= l 2 x / 4 and the associated average walking distance of (1 / 3)(l x / 2) =
l x / 6 along N-S and (1 / 2)(s x / 2) = s x / 4 along E-W directions, i.e. A 

(1) 
� 

= (l x / 6 + s x / 4) /w . On the other hand, regions

(1) and (3) consist of two subregions (similarly to regions (1) and (3) in Case 1): a rectangle with sides l y − l x and

l x / 2 ; and two right triangles with legs l x / 2 and l x / 2 . The first subregion has the area of P (2) 
� = (l y − l x ) l x / 2 and the

associated average walking distance of (1 / 2)(l x / 2) = l y / 4 along E-W and (1 / 2)(s y / 2) = s y / 4 along N-S directions,

i.e. A 

(2) 
� = (l x / 4 + s y / 4) /w . The area of the second subregion (combining the two triangles) is P (2) 

� 

= l 2 x / 4 , with the

associated average walking distance of (1 / 3)(l x / 2) = l x / 6 along E-W and (1 / 2)(s y / 2) = s y / 4 along N-S directions, i.e.

A 

(2) 
� 

= (l x / 6 + s y / 4) /w . Similarly to the previous case, the expected walking time is given as: 

A 2 ,b ( D ) = 2 

( 

A 

( 1 ) 
�

· P ( 
1 ) 

�

P ( 
1 ) 

�
+ P ( 

2 ) 
� + P ( 

2 ) 
�

+ A 

( 2 ) 
� · P ( 

2 ) 
�

P ( 
1 ) 

�
+ P ( 

2 ) 
� + P ( 

2 ) 
�

+ A 

( 2 ) 
�

· P ( 
2 ) 

�

P ( 
1 ) 

�
+ P ( 

2 ) 
� + P ( 

2 ) 
�

) 

= 

(
6 l x l y + 6 l y s y − 2 l 2 x − 3 l x s y + 3 l x s x 

)
/ ( 12 l y w ) . 

�

Result 2. The expected number of transfers per trip for Type 2 user behavior is given by Eq. 28 : 

ϕ 2 (D ) = 

{
Pr (ϕ > 0)(4 l 2 x l 

2 
y − 2 l x l 

3 
y + l 4 y ) / (2 l 2 x l 

2 
y ) , if l x ≥ l y , 

Pr ( ϕ > 0)( 4 l 2 x l 
2 
y − 2 l 3 x l y + l 4 x ) / (2 l 2 x l 

2 
y ) , if l x < l y . 

Proof. As mentioned before, the expected number of transfers depends on the location of the user origin and the destination

within a rectangle defined by sides l x and l y . From that perspective, if the origin is in region (1) or (3) and the destination

is in region (1) or (3), but not along the same corridor as the origin, users need to make two transfers (from a horizontal

bus line along which they access the system to a vertical one; and from a vertical to another horizontal bus line from

which they reach the destination). Likewise, if the origin is in region (2) or (4) and the destination is in region (2) or

(4), but not along the same corridor as the origin, users also need to make two transfers (from a vertical bus line along

which they access the system to a horizontal one; and from a horizontal to another vertical bus line from which they reach

the destination). If the origin is in region (1) or (3) and the destination is in region (2) or (4), or vice versa, users make

one transfer. If both, the origin and the destination, are along the same corridor (a horizontal corridor for regions regions

(1) and (3), and a vertical corridor for regions (2) and (4)), users do not make any transfer. This leads to the following

formulations for the expected number of transfers for each rectangular shape shown in Fig. 7 . Recall that the probability

that both, the origin and the destination, are along the same corridor is equivalent to the probability of making zero transfer,

Pr (ϕ = 0) = (l y φx + l x φy − l x l y ) / (φx φy ) . 
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Case 1. ( l x ≥ l y ): 

ϕ 2 ( D ) = 0 · Pr ( ϕ = 0 ) + Pr ( ϕ > 0 ) ( 1 · Pr ( ϕ = 1 ) + 2 · Pr ( ϕ = 2 ) ) 

= Pr ( ϕ > 0 ) 

( 

1 ·
2 

(
P ( 

1 ) 
� + P ( 

1 ) 
�

)
P ( 

2 ) 
�(

P ( 
1 ) 

� + P ( 
1 ) 

�
+ P ( 

2 ) 
�

)2 
+ 2 ·

(
P ( 

1 ) 
� + P ( 

1 ) 
�

)2 + 

(
P ( 

2 ) 
�

)2 

(
P ( 

1 ) 
� + P ( 

1 ) 
�

+ P ( 
2 ) 

�

)2 

) 

= Pr ( ϕ > 0 ) 
(
4 l 2 x l 

2 
y − 2 l x l 

3 
y + l 4 y 

)
/ 
(
2 l 2 x l 

2 
y 

)
ase 2. ( l x < l y ): 

ϕ 2 ( D ) = 0 · Pr ( ϕ = 0 ) + Pr ( ϕ > 0 ) ( 1 · Pr ( ϕ = 1 ) + 2 · Pr ( ϕ = 2 ) ) 

= Pr ( ϕ > 0 ) 

( 

1 ·
2 P ( 

1 ) 
�

(
P ( 

2 ) 
� + P ( 

2 ) 
�

)
(
P ( 

1 ) 
� + P ( 

1 ) 
�

+ P ( 
2 ) 

�

)2 
+ 2 ·

(
P ( 

1 ) 
�

)2 + 

(
P ( 

2 ) 
� + P ( 

2 ) 
�

)2 

(
P ( 

1 ) 
� + P ( 

1 ) 
�

+ P ( 
2 ) 

�

)2 

) 

= Pr ( ϕ > 0 ) 
(
4 l 2 x l 

2 
y − 2 l 3 x l y + l 4 x 

)
/ 
(
2 l 2 x l 

2 
y 

)
�

Result 3. The expected waiting time per user including that at the origin and all transfer stops for Type 2 user behavior is

given by Eq. 29 : 

W 2 ,b (D ) = 

{ 

Pr (ϕ = 0) ̄H / 2 + Pr (ϕ > 0)(H x (8 l 2 x l 
2 
y − 4 l x l 

3 
y + l 4 y ) + H y (4 l 2 x l 

2 
y + l 4 y )) / (8 l 2 x l 

2 
y ) , if l x ≥ l y , 

Pr ( ϕ = 0) ̄H / 2 + Pr ( ϕ > 0)( H x ( 4 l 2 x l 
2 
y + l 4 x ) + H y (8 l 2 x l 

2 
y − 4 l 3 x l y + l 4 x )) / (8 l 2 x l 

2 
y ) , if l x < l y . 

Proof. Following the rationale for the expected number of transfers, we compute the expected waiting time as follows: 

(i) users with zero transfer wait on average half of the weighted bus headway in the network, i.e. H(i ) = H̄ / 2 = (N b,x H x +
N b,y H y ) / (2(N b,x + N b,y )) ; (ii) users with two transfers, the origin in region (1) or (3), and the destination in region (1) or

(3) use two horizontal and one vertical bus line, thus wait on average H(ii ) = H x + H y / 2 ; (iii) users with two transfers, the

origin in region (2) or (4), and the destination in region (2) or (4) use two vertical and one horizontal bus line, thus wait

on average H(iii ) = H y + H x / 2 ; and (iv) users with one transfer, the origin in region (1) or (3), and the destination in region

(2) or (4), or vice versa, use one horizontal and one vertical bus line, thus wait on average H(i v ) = H x / 2 + H y / 2 . As for the

previous parameters of the user cost function for the bus mode, the expected waiting time is computed by multiplying these

four groups of users by the corresponding probabilities (and in case of users with non-zero transfer by the probability of

making a transfer Pr (ϕ > 0) = 1 − Pr (ϕ = 0) ) for each rectangular shape shown in Fig. 7 . 

Case 1. ( l x ≥ l y ): 

W 2 ,b ( D ) = H ( i ) · Pr ( ϕ = 0 ) + Pr ( ϕ > 0 ) ) H ( ii ) · Pr ( ii ) + H ( iii ) · Pr ( iii ) + H ( iv ) · Pr ( iv ) ) 

= H ( i ) · Pr ( ϕ = 0 ) + Pr ( ϕ > 0 ) 

( 

H ( ii ) ·
(

P ( 
1 ) 

� + P ( 1 ) 
? 

)2 

(
P ( 

1 ) 
� + P ( 1 ) 

? 
+ P ( 2 ) 

? 

)2 

+ H ( iii ) ·
(

P ( 
2 ) 

? 

)2 

(
P ( 

1 ) 
� + P ( 1 ) 

? 
+ P ( 2 ) 

? 

)2 + H ( iv ) ·
2 

(
P ( 

1 ) 
� + P ( 1 ) 

? 

)
P ( 

2 ) 
? (

P ( 
1 ) 

� + P ( 1 ) 
? 

+ P ( 2 ) 
? 

)2 

) 

= Pr ( ϕ = 0 ) H / 2 + Pr ( ϕ > 0 ) 
(
H x 

(
8 l 2 x l 

2 
y − 4 l x l 

3 
y + l 4 y 

)
+ H y 

(
4 l 2 x l 

2 
y + l 4 y 

))
/ 
(
8 l 2 x l 

2 
y 

)
ase 2. ( l x < l y ): 

W 2 ,b ( D ) = H ( i ) · Pr ( ϕ = 0 ) + Pr ( ϕ > 0 ) ( H ( ii ) · Pr ( ii ) + H ( iii ) · Pr ( iii ) + H ( iv ) · Pr ( iv ) ) 

= H ( i ) · Pr ( ϕ = 0 ) + Pr ( ϕ > 0 ) 

( 

H ( ii ) ·
(

P ( 
1 ) 

�

)2 

(
P ( 

1 ) 
� + P ( 1 ) 

�
+ P ( 2 ) 

�

)2 

+ H ( iii ) ·
(

P ( 
2 ) 

� + P ( 2 ) 
�

)2 

(
P ( 

1 ) 
� + P ( 1 ) 

�
+ P ( 2 ) 

�

)2 + H ( iv ) ·
2 P ( 

1 ) 
�

(
P ( 

2 ) 
� + P ( 2 ) 

�

)
(

P ( 
1 ) 

� + P ( 1 ) 
�

+ P ( 2 ) 
�

)2 

) 

= Pr ( ϕ = 0 ) H / 2 + Pr ( ϕ > 0 ) 
(
H x 

(
4 l 2 x l 

2 
y + l 4 x 

)
+ H y 

(
8 l 2 x l 

2 
y − 4 l 3 x l y + l 4 x 

))
/ 
(
8 l 2 x l 

2 
y 

)
�

Result 4. When the trip origins and destinations are uniformly and independently distributed across the network, Eq. 31 be-

comes equivalent to that of Daganzo (2010) for grid-like structures: 

O p = 

{
(�/ 4) H x /N x,b , if p ∈ { eb, wb} , 
(�/ 4) H y /N y,b , if p ∈ { nb, sb} . 
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Proof. It suffices to show that the maximum number of on-board passengers along E-W/N-S directions is across the verti- 

cal/horizontal cordon that bisects the city, i.e. β = 1 / 2 (see Fig. 2 ). For brevity, we only show this for the eb direction. Given

the symetry of the network, derivations for other cardinal directions are done in an entirely analogous manner using the 

corresponding subscripts. 

To be able to obtain the same result as Daganzo (2010) , we need to use the same assumption that the abscissa and

the ordinate of both, the trip origins (x 1 , y 1 ) and the destinations (x 2 , y 2 ) , are distributed uniformly and independently on

[0 , φx ] and [ −φy , φy ] , respectively. As abscissae x 1 and x 2 are independent uniforms, their difference x 1 − x 2 has a trian-

gular distribution, hence the user trip length in the eb direction { � x = x 1 − x 2 : � x ≥ 0 } has the following probability den-

sity function: { f (� x ) = (φx − � x ) /φ2 
x : � x ∈ [0 , φx ] } . Furthermore, due to the independence, the joint probability density func-

tion becomes f (� x , � y ) = f (� x ) f (� y ) . Finally, since Daganzo (2010) does not consider the mode choice, we also assume that

Pr (b| � x , � y ) = 1 , ∀ � x , � y . It follows that the maximum number of on-board passengers in the eb direction is: 

Q eb = max 
β∈ [0 , 1] 

{ 

∫ φx 

0 

∫ φy 

−φy 

Pr (J β (� x ))� Pr (b| � x , � y ) f (� x , � y )d � y d � x 

} 

= max 
β∈ [0 , 1] 

{ 

�

φ2 
x 

∫ φx 

0 

Pr (J β (� x ))(φx − � x )d � x 

} 

= max 
β∈ [0 , 1] 

{ 

�

φ2 
x 

(∫ min { βφx , (1 −β) φx } 

0 

� x 

φx − � x 
(φx − � x )d � x 

+ 

∫ max { βφx , (1 −β) φx } 

min { βφx , (1 −β) φx } 
min { βφx , (1 − β) φx } 

φx − � x 
(φx − � x )d � x 

+ 

∫ φx 

max { βφx , (1 −β) φx } 
(φx − � x )d � x 

)} 

= max 
β∈ [0 , 1] 

{ 

�

φ2 
x 

(
1 

2 

( max { βφx , (1 − β) φx } ) 2 

+ min { βφx , (1 − β) φx } ( max { βφx , (1 − β) φx } − min { βφx , (1 − β) φx } ) 

+ φx (φx − max { βφx , (1 − β) φx } ) − 1 

2 

(φ2 
x − ( max { βφx , (1 − β) φx } ) 2 ) 

)} 

= max 
β∈ [0 , 1] 

{ 

�

φ2 
x 

(
min { βφx , (1 − β) φx } max { βφx , (1 − β) φx } 

− 1 

2 

( min { βφx , (1 − β) φx } ) 2 + 

1 

2 

φ2 
x − φx max { βφx , (1 − β) φx } 

+ 

1 

2 

( max { βφx , (1 − β) φx } ) 2 
)} 

To complete the proof, let us consider the following two cases: 

Case 1. βφx ≤ (1 − β) φx : 

Q eb (β) = 

�

φ2 
x 

(
βφx (1 − β) φx − 1 

2 

β2 φ2 
x + 

1 

2 

φ2 
x − φx (1 − β) φx + 

1 

2 

(1 − β) 2 φ2 
x 

)
= �(β − β2 ) 

ase 2. βφx > (1 − β) φx : 

Q eb (β) = 

�

φ2 
x 

(
(1 − β) φx βφx − 1 

2 

(1 − β) 2 φ2 
x + 

1 

2 

φ2 
x − φx βφx + 

1 

2 

β2 φ2 
x 

)
= �(β − β2 ) 

Notice that both cases yield the same result. Therefore, we can compute the value of β for which the maximum value of

Q eb (β) is reached by solving the following equation: 

d Q eb (β) 

d β
= 0 ⇔ �(1 − 2 β) = 0 ⇔ β = 

1 

2 

It then follows that the maximum number of on-board passengers in the eb direction is Q eb = Q eb (β = 1 / 2) = �/ 4 , which
is the same result as that of Daganzo (2010) . �
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