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Abstract

Reliability assessment in presence of epistemic uncertainty leads to consider the failure probability

as a quantity depending on the state of knowledge about uncertain input parameters. The input

joint distribution is often learnt from a small-sized dataset provided by operating experience. The

computed failure probability depends on the estimated marginal distributions and the estimated

copula distribution. This paper develops a reliability-oriented sensitivity analysis procedure in order

to measure the influence exerted by the data-driven modeling of both the margins and the copula. The

proposed methodology is validated for both deterministic and stochastic reliability methods through

an extensive simulation study including several analytical performance functions as well as a real-life

simulation code dealing with the buckling of a composite laminate plate.

Keywords: Sensitivity analysis, rare-event simulation, dependence modeling, data-driven modeling.

1. Introduction

Reliability assessment often requires computing a failure probability by coupling a highly expensive

simulation code and some rare-event probability estimation techniques [1, 2]. The characterization of

the input joint distribution is essential in reliability assessment and must incorporate appropriate

descriptions of the tails and the dependence structure [3, 4]. In presence of dependent inputs, the

copula-marginal decomposition offers a convenient framework where the dependence structure is isolated

from marginal trends. When the input joint distribution is known in advance, the failure probability

estimation is subject to variability because of the noise introduced by the reliability method.

In many cases, there is also a lack of knowledge about the input joint distribution and this gives

birth to epistemic uncertainties [5]. Because of the simultaneous impact of aleatory and epistemic

uncertainties, the failure probability is said to be affected by mixed uncertainties. In the literature,

the second level of uncertainty is often modeled with probability theory. Nevertheless, beyond the
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well-established probability theory, a more general framework consists in characterizing uncertain

model parameters with imprecise probabilities. This encompasses notably Dempster-Shafer’s theory of

evidence [6, 7], possibility theory [8, 9], probability-boxes [10, 11], Bayesian hierarchical models [12, 13],

random sets [14, 15] as well as fuzzy sets [16, 17] and measures [18]. Only a few articles propose to

extend rare-event simulation techniques [19] to the formalism of imprecise probabilities. The main

difficulty is the required simulation budget. All research works on this topic endeavor to reduce the

computational cost induced by a Monte Carlo-based propagation of imprecise probabilities [20]. Subset

simulation and random sets are coupled in [21] while the FORM/SORM methodology is combined with

evidence theory in [22]. Line sampling is adapted to imprecise probabilities in [23]. The joint use of

p-boxes and surrogate models is described in [24]. In sensitivity analysis (SA), dealing with imprecise

probabilities is not much developed in the literature because it implies a significant computational load.

For instance, variance-based SA has been performed with evidence theory [25], Bayesian hierarchical

models [26] and random sets [27]. SA can also be achieved in presence of p-boxes provided that a

surrogate model is set up to replace the simulation code [28]. The confluence of reliability assessment

and SA is called reliability-oriented sensitivity analysis (ROSA). It ambitions to identify the parameter

that conveys most uncertainty during reliability assessment [29, 30].

The main interest of this work consists in performing global ROSA with respect to the margins

and the copula when the joint distribution is unknown and needs to be learnt from a small amount of

data. As this situation is very common is practice, uncertainty management in presence of insufficient

data is gaining increasing interest in the literature [31, 32, 33]. The question here is to identify which

component of the estimated joint distribution (either the estimated margins or the estimated copula)

is responsible for the largest share of uncertainty. If a marginal distribution is emerging, collecting

additional data for the related input variable would be of great help in order to mitigate the uncertainty

due to the estimation of this component. The ROSA procedure which is devised in this work is entirely

data-driven and the starting material only consists of one single dataset. The resulting workflow will be

shown to work properly provided that the sample size does not become excessively small. Furthermore,

computing a failure probability from one given input distribution is cumbersome from a computational

viewpoint and cannot be repeated too many times. As a result, the ROSA algorithm will be adapted

to the simulation budget.

The remainder of this paper is organized as follows. In Section 2, the ROSA background is described

in details. In Section 3, under the assumption of negligible computational costs and exact reliability

assessment, a first version of the ROSA algorithm is come up with. In Section 4, it is explained

how to upgrade the initial ROSA algorithm so that its enhanced version can meet situations where

the preceding assumptions are relaxed. In order to achieve this, it is shown that ROSA can take

advantage of various existing computational strategies that allow for better feasibility [34] and stronger
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robustness [35]. The complete methodology is then applied to the reliability assessment of a composite

laminate plate where the joint distribution of bending stiffness coefficients is learnt with kernel density

estimation (KDE) and regular vine copulas (R-vines).

2. Reliability assessment in presence of epistemic uncertainties

2.1. Probabilistic reliability assessment

In many industrial field, reliability analysis often boils down to examining how a variable of interest

behaves with respect to a predefined failure criterion. This quantity is computed from an expensive

simulation code φ(·) which is called the performance function. A black-box approach is often adopted

to represent the input-output relationship:

φ : R
d −→ R

x = (x1, . . . , xd) 7−→ y = φ (x)
. (1)

Input quantities are often stochastic, namely subject to a natural form of variability which is inherent to

the physical system or to the environment under consideration [36]. In the literature, such uncertainties

are often referred to as aleatory [37] and are non-reducible by adding knowledge. As a result of

uncertainty propagation, the output variable is random as well. Various mathematical structures

were developed to represent input and output uncertainties but the present work is only based on

the standard probabilistic framework [38]. The joint probability density function (PDF) and joint

cumulative distribution function (CDF) of the input random vector X =
[
X1, . . . , Xd

]
are respectively

denoted by fX and FX . Likewise, let fXj
and FXj

be the marginal PDF and CDF characterizing the

distribution of each random variable Xj . The output random variable Y = φ(X) is entirely then

characterized by the pushforward density fY spawned by fX after propagation through φ. In this

work, the unwanted event is {Y > T} and the associated failure domain is denoted by Df . The failure

probability Pf is thus defined by:

Pf = P{Y > T} =

∫ +∞

T

fY (y) dy (2)

= E

[
1Df

(X)
]
= P{X ∈ Df} =

∫

Rd

1Df
(x)fX(x) dx (3)

:= R
(
fX

)
. (4)

R stands for mathematical integration over the failure domain Df for any given PDF fX ∈ L
2(Rd).

In most practical situations, R is unachievable and the exact value of Pf cannot be evaluated. Monte

Carlo simulations are often the only workable way of estimating Pf . If so, reliability assessment is no

longer deterministic. As this method depends on the drawn samples, each estimate P̂f of the failure
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probability is one realization of the crude Monte Carlo (CMC) algorithm defined by:

P̂f =
1

Ns

Ns∑

i=1

1{
Y (i)>T

} with





X(i) i.i.d
∼ fX

Y (i) = φ
(
X(i)

) (5)

When Pf becomes a rare-event probability, too many samples are needed by CMC to reach a sufficient

level of accuracy. Rare event simulation [2, 19] includes a wide range of sampling techniques in order

to find a trade-off between variance reduction and computational viability. Whatever is the non-

deterministic method used to estimate Pf , the resulting estimator may be expressed as:

P̂f := Rw
(
fX

)
, (6)

where w is the randomness introduced by the sampling process. For instance, w stands for the random

generation of input samples X(i) in Eq. (5). Rw may be considered as a stochastic approximation of

R relying on Monte Carlo-like experiments. From now on, the uncertainty surrounding how w behaves

is called forecast uncertainty.

2.2. Reliability assessment with dependent inputs

In many application fields including hydrology [39, 40], geostatistics [41, 42], finance [43, 44] and

insurance [45, 46], it is now generally agreed that the joint PDF fX has to take into account the

statistical dependence structure existing among the variables under study. Without such a precaution,

Pf may be seriously underestimated or overestimated. The copula-marginal separation (enunciated by

Sklar’s theorem [47]) is a convenient way to deal with dependence modeling. The joint CDF FX may

be expressed as follows:

FX(x) = FX(x1, . . . , xd) = CU

(
FX1

(x1), . . . , FXd
(xd)

)
, (7)

where CU is called the copula CDF because it is nothing but the CDF of the random vector gathering

all probability-transformed variables:

U =
[
U1, . . . , Ud

]
=

[
FX1

(X1), . . . , FXd
(Xd)

]
. (8)

Since all variables Uj are uniformly distributed, the actual support of U is the hypercube Hd =
[
0, 1

]d
.

Differentiation applied on Eq. (7) provides the following expression of the joint PDF:

fX(x) = fX(x1, . . . , xd) = cU
(
FX1

(x1), . . . , FXd
(xd)

)
︸ ︷︷ ︸

cU (u)

×

[ d∏

j=1

fXj
(xj)

]
, (9)

where the copula PDF cU is the cross partial derivative of CU . In the right-hand side of Eq. (9),

the copula term cU (u) that goes with the well-known product of marginal PDFs must be seen as

an additional factor which accounts for the dependence structure. For further details, the interested

reader may consult [48, 49].
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2.3. Reliability assessment under imperfect state of knowledge

One of the cornerstones of reliability analysis is the input PDF fX characterizing how operational

variables are inter-related. In many situations, engineering expertise is neither available nor sufficiently

trustworthy to decide upon a specification which is likely to receive unanimous expert agreement.

The lack of knowledge about fX is an ubiquitous and challenging problem for practitioners because

reliability analysis can no longer rest on the computation of one single failure probability. This second

level of uncertainty, which encompasses all the factors leading to envision fX as a random entity, is

termed epistemic. Distinguishing between aleatory and epistemic uncertainties has always been of

great interest in uncertainty analysis since it allows the analyst to identify the uncertainty sources that

might potentially be reduced with updated knowledge or enhanced models [50, 51].

2.3.1. The Bayesian approach

One possible framework to incorporate epistemic uncertainties consists in adopting the Bayesian

point of view [13]. The input PDF parameters are assumed unknown and represented by a random

vector Θ =
[
Θ1, . . . ,Θp

]
. The distribution of Θ can be chosen based on prior knowledge (a prior

PDF fΘ(· | ξ) with support Dθ and hyperparameters ξ) or it can be inferred from available field data

through Bayesian analysis [52]. Then, one can easily adapt Eq. (4) and (6) as follows:

Pf (Θ) = R
(
fX|Θ

)
=

∫

Rd

1Df
(x) fX|Θ(x) dx , (10)

P̂f (Θ) = Rw
(
fX|Θ

)
. (11)

One can see that the resulting failure probabilities directly depend on Θ. In Eq. (11), the additional

uncertainty due to Θ is supposed to outweigh the uncertainty introduced by the use of the CMC

algorithm. Specific case studies in engineering applications are proposed in [53, 54]. In presence of

this bi-level input uncertainty, an averaged reliability measure is defined in [55] by:

P̃f (ξ) = E [Pf (Θ)] =

∫

Rd×Dθ

1Df
(x) fX|Θ(x | θ) fΘ(θ | ξ) dθ dx . (12)

This expression suggests to estimate P̃f (ξ) with a double-loop Monte Carlo algorithm involving a

failure probability computation (inner loop) for each value taken by Θ (outer loop). As highlighted

in [56], such a nested procedure is intuitive but it is outperformed by the augmented reliability approach

described in [57, 58]. It must be said that the vast majority of papers on this topic assume that input

variables Xj are mutually independent. As it is often vain to look for trusted information about the

copula model, copula-based multivariate distributions do not easily fit into Bayesian reliability analysis.

The epistemic uncertainty conveyed by copula estimation is discussed in the next subsection.
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2.3.2. The lack of knowledge about the copula

In many works investigating how the lack of knowledge about the copula PDF may bear on

reliability analysis, the marginal distributions are assumed to be prescribed. The functional space

of all possible distributions is thus restricted to a Fréchet class [59]. Popular methods to fit a

copula distribution include the maximization of an information criterion [60], graphical selection

procedures [61, 62], goodness-of-fit tests [63, 64] or Bayesian selection [65, 66]. Moreover, the need for

appropriate models to tackle high-dimension dependence structures has motivated the development of

more flexible copula classes such as regular vine copulas [67], hierarchical Archimedean copulas [68],

copula Bayesian networks [69], factor copula models [70] and products of bivariate copulas [71]. They

are all based on graph representations that ambition to sketch the backbone of the dependence

structure. This approach has allowed for major advances in order to (a) create efficient associations of

variables, (b) establish a hierarchy among dependence substructures and (c) introduce parsimonious

specifications in high dimension.

Sometimes, the correlation coefficients are also known in advance. If so, the state of knowledge

about the input distribution is a predefined set of margins and covariances. Some multivariate

distributions [72, 73] are tailored to be consistent with this kind of prior knowledge. This problem

is also adressed in [74] where an iterative algorithm is used to calibrate a vine copula distribution

under the constraint of a prescribed correlation matrix. The common denominator of these works

is the lack of knowledge about the copula type. When correlations are provided, uncertainty on the

copula distribution is limited to model selection. It is however an issue of utmost importance since

it is ascertained in [3] that the failure probabilities computed from identically correlated copulas may

differ considerably. In response, an algorithm to find the worst-case vine copula in terms of reliability

assessment was proposed in [75].

2.3.3. Copula-based descriptions of epistemic uncertainties

In the general case where the marginal distributions and the copula distribution have to be learnt,

there are very few works that propagate epistemic uncertainties with a copula-focused approach. The

notion of “imprecise copula” [76] is an extension of Sklar’s theorem in order to consider a set of

copulas instead of a single one. This mathematical concept is a notable breakthrough because it

allows to combine several univariate p-boxes into a multivariate p-box [77] that incorporates the

epistemic uncertainty coming from copula description. The uncertainty conveyed by empirical margins

is investigated in [78] within a framework where the copula PDF is parametric and not subject to

imprecise probabilities. On the contrary, the incomplete state of knowledge stemming from an empirical

characterization of the dependence structure is studied in [79]. The most advanced contribution has

been recently provided in [80] where a hierarchical Bayesian multimodel approach allows to quantify
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uncertainty in model selection and parameter estimation for both the margins and the copula.

2.4. Reliability-oriented sensitivity analysis

Identifying which uncertain parameter Θi has the strongest impact on the distribution of the failure

probability Pf (Θ) is one of the main purpose of ROSA. It is different from sensitivity analysis of model

output (SAMO) [81] which only focuses on how to fairly share the aleatory uncertainties propagated

by the input variables Xi on the output Y . In that respect, SAMO and ROSA do not provide the

same kind of information to analysts. Insights into ROSA techniques are available in [29, 30]. The way

of taking into account the variation range of Θ gives birth to a split between local and global ROSA

methods. Local ROSA methods consider local variations on Pf (Θ) due to small deviations from the

nominal value θ⋆ = E[Θ]. A well-known approach consists in computing the gradient of the failure

probability with respect to input PDF parameters:

∇θPf (θ
⋆) :=

[
∂Pf
∂θj

(θ⋆)

]

1≤ j≤ p

. (13)

The way one should proceed differs according to the reliability algorithm used to estimate Pf (θ
⋆).

When CMC is used to estimate Pf (θ
⋆), the simulated samples can be post-processed in order to derive

all partial derivatives. Indeed, inserting Eq. (10) into Eq. (13) yields:

∇θPf (θ
⋆) = E

[
1Df

(
X

)
∇θ log fX|Θ

(
X | θ⋆

)]
, (14)

and Monte Carlo estimators come naturally [82, 83] provided that one is able to access the score

function ∇θ log fX|Θ. Those local ROSA indices can be extended to the case of dependent inputs

where a copula PDF cU is part of fX [84, 85]. In the case of adaptive importance sampling [86]

and subset simulation [87], similar techniques allow to compute local ROSA indices as byproducts of

P̂f (θ
⋆). Looking for the largest term

∣∣∣∂Pf

∂θj
(θ⋆)

∣∣∣ gives some idea of the input PDF parameter θj that

must be investigated with the greatest of care before postulating the design value θ⋆.

Local ROSA only provides a partial understanding of how Pf (Θ) behaves in response to uncertain

parameters Θ. Local ROSA indices are only relevant in the vicinity of θ⋆ and have to be updated

as soon as another design point is considered. An intuitive extension of the local ROSA indices is

proposed in [88] where each partial derivative is integrated over its univariate variation range Dθj :

SPj(θ
⋆) :=

∫

Dθj

∣∣∣∣
∂Pf
∂θj

(
θ⋆1 , . . . , θ

⋆
j−1 , θj , θ

⋆
j+1 , . . . , θ

⋆
p

)∣∣∣∣ dθj . (15)

In this method, ROSA is performed in the spirit of the derivative-based global sensitivity measures

(DGSM) developed in [89, 90] but it must be noted that the indices SPj(θ
⋆) obey a slighlty different

definition. Remembering that global ROSA is supposed to emancipate from the design point θ⋆,

this approach does not completely satisfy the expectations because each index SPj still depends on
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θ⋆−j :=
[
θ⋆k

]
k 6=j

. A more convincing methodology to perform global ROSA may be to consider the

high-dimensional model representation (HDMR) of Pf (Θ) according to what is stated in [91]:

Pf (Θ) = Ψ0 +

p∑

i=1

Ψi
(
Θi

)
+

∑

i < j

Ψij
(
Θi,Θj

)
+ . . .+Ψ1...p

(
Θ1, . . . ,Θp

)
. (16)

Pf (Θ) is thus split down into a sum of 2r − 1 terms. When one seeks to decompose Pf (Θ), there

are infinitely many solutions to identify the functions Ψu. To ensure unicity within the HDRM

decomposition, an orthogonality constraint has to be enforced and this gives birth to the ANOVA

decomposition (also called RS-HDMR decomposition) [92] where:

Ψ0 = E
[
Pf (Θ)

]
and Ψu

(
Θu

)
= E

[
Pf (Θ)

∣∣Θu

]
+

∑
v⊂u

(−1)|u|−|v| E
[
Pf (Θ)

∣∣Θv

]
. (17)

Since the variables Ψu(Xu) are uncorrelated, passing to variance in Eq. (16) yields:

V
(
Pf (Θ)

)
=

∑

v⊆u

V
(
Ψu(Θu)

)
, (18)

and the “closed” Sobol index associated to the subvector of parameters Θu is defined by:

Su =
V

(
E
[
Pf (Θ) | Θu

])

V
(
Pf (Θ)

) =

∑
v⊆u

V
(
Ψv(Xv)

)

V
(
Pf (Θ)

) (19)

An obvious drawback lies in the fact that a triple-loop algorithm has to be implemented in order

to compute the variance (outer loop), the conditional expectations (in-between loop) and the failure

probabilities (inner loop). The “Pick-and-Freeze” estimation scheme [93, 94] allows to relieve all possible

methods from the outer loop. The less expensive strategy to estimate Sobol indices is to adopt the non-

intrusive stochastic simulation (NISS) framework [95] which has been recently applied in the specific

context of ROSA [96, 97]. Indeed, a single simulation loop in the augmented space allows to derive

Sobol indices at all orders.

The survey of both local and global ROSA methods reveals two notable weaknesses. On the one

hand, the uncertainty due to copula modeling is rarely quantified and has never been compared to

the influence of uncertain marginal distributions. Even at the local scale, there is very little work

dedicated to measuring the sensitivity of Pf to copula parameters. Considering a copula-based input

distribution has become a common practice but differentiation with respect to dependence parameters

is not deeply investigated, except in [98, 99]. On the other hand, most existing papers only resort

to Bayesian priors in order to incorporate epistemic uncertainties. As many modeling choices rather

stem from the analysis of field data, the parametric approach is not always fully satisfying. One could

prefer resorting to nonparameteric tools but they do not suit the Bayesian framework.

2.5. Purpose and intent of the paper

The working assumptions surrounding this article are slightly different from those found in most

contributions on the topic. No prior information is available on the input distribution fX . A density
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estimation is learnt from a small-sized dataset Xobs ∈ R
N×d. Epistemic uncertainty does not derive

from some Bayesian knowledge but from the sampling uncertainty induced by data collection. In that

respect, reliability analysis has to be modified in order to integrate the provided data, which leads to

transform both Eq. (10) and (11) into:

Pf (Xobs) = R
(
f̂X

(
· |Xobs

))
=

∫

Rd

1Df
(x) f̂X

(
x |Xobs

)
dx , (20)

P̂f (Xobs) = Rw
(
f̂X

(
· |Xobs

))
. (21)

As a consequence, the estimated failure probability must be understood as the final result of a

computational process that performs consecutively statistical learning and rare-event simulation. What

is called statistical learning comprises any procedure that relies on the estimation of both the copula

function and the margins. As the quantity of interest can be expressed in terms of the estimated

marginal distributions f̂Xj

(
· | Xobs

)
and the estimated copula ĉU

(
· | Xobs

)
, the question that arises

here is to identify which estimated function has the strongest influence on data-driven reliability

assessment. Therefore, the main motivation of this work is to fairly quantify the share of epistemic

uncertainties conveyed by the various components of the input probabilistic model. The authors define

appropriate ROSA indices and they develop a data-driven algorithm to estimate them accurately.

Having access to this kind of sensitivity indicators allows to identify which entity within the estimated

joint distribution deserves a finer statistical treatment. This takes its own full meaning in practice

when the analyst is only given one single dataset xobs and hopes to reduce as much as possible the

uncertainty in reliability assessment. If one marginal distribution f̂Xj0
is targeted as the most sensitive

to small changes affecting data, soliciting expert judgement about fXj0
or requiring additional data

for Xj0 may appear as a softer solution than collecting other joint observations. Such a practical

context goes hand in hand with problems that make global ROSA indices hard to compute. Since

the starting material is limited to the given state of knowledge
{
Xobs = xobs

}
, only one realization

of the margins f̂Xj
(· | Xobs), the copula ĉU (· | Xobs) and the failure probability Pf (Xobs) can be

derived. Moreover, the joint distribution of functional inputs is unknown and cannot be assessed

with traditional uncertainty quantification tools such as Karhunen-Loève expansions. The choice of

appropriate sensitivity indices and the simulation of functional inputs are left open and are then

examined thoroughly in this work. In addition, these problems are compounded by the computational

burden entailed by the large number of failure probabilities that must be estimated to perform global

ROSA. In Section 3, the main foundations of the proposed methodology are laid in the case of exact

reliability assessment R. Then, in Section 4, the method is adapted to the case where rare-event

simulation Rw is used to estimate the failure probability.
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3. Step-by-step construction of the ROSA procedure

In this section, everything is done as if R could be performed exactly and without incurring

any computational cost. Of course, those assumptions are unrealistic because exactness in reliability

assessment can only occur in very specific situations where φ(·) and fX are excessively simple. However,

the aim of this section is above all to answer the two following thorny questions. Firstly, there is a need

to better describe the probabilistic nature of data-driven epistemic uncertainties. It means being able

to understand the uncertainty transfer from Xobs to Pf (Xobs) as well as being able to simulate Xobs

by means of the given dataset xobs ∈ R
N×d. Secondly, a major hurdle is to know how the uncertainty

induced on Pf
(
Xobs

)
may be divided into one share due to uncertainty on the copula and others due

to uncertainty on the margins. The proposed method is then applied to a simple use case where both

fX and φ(·) satisfy the hypotheses of this section. The difficulties inherent to reliability analysis will

be studied in Section 4 and solutions to address them will be put forth at this point.

3.1. About data-driven epistemic uncertainty

3.1.1. Sample-based state of knowledge

The provided dataset xobs is a N -sample of the input vector X ∼ µX and may be seen as a

realization of the following random matrix Xobs :

Xobs =
[
X

(i)
j

]
1≤ i≤N

1≤ j≤ d

=




X
(1)
1 X

(1)
2 . . . X

(1)
j . . . X

(1)
d

X
(2)
1 X

(2)
2 . . . X

(2)
j . . . X

(2)
d

...
...

...
...

X
(i)
1 X

(i)
2 . . . X

(i)
j . . . X

(i)
d

...
...

...
...

X
(N)
1 X

(N)
2 . . . X

(N)
j . . . X

(N)
d




∼ (µX)
⊗N

. (22)

If extracted from Xobs , the i-th row is denoted by X
[i•]
obs and is one observation of X:

X
[i•]
obs =

[
X

(i)
j

]

1≤ j≤ d
=

(
X

(i)
1 , . . . , X

(i)
d

)
∼ µX . (23)

Furthermore, the j-th column is denoted by X
[•j]
obs and consists of a N -sample of the variable Xj which

obeys the marginal distribution µXj
:

X
[•j]
obs =

[
X

(i)
j

]

1≤ i≤N
=




X
(1)
j

...

X
(N)
j


 ∼

(
µXj

)⊗N
. (24)

To conform with the “small data” context, N ≤ 500 is assumed throughout this paper. Being able

to estimate the multivariate input PDF from a small amount of data is a daunting challenge that
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may deeply impact the robustness of reliability assessment. As it is encountered in many application

fields [100, 101, 102], this issue has paved the way to several methodological research works [31, 32, 33].

By virtue of Sklar’s theorem, a multivariate joint PDF can be constructed by capturing separately

univariate behaviours and dependence properties. In regard to this, let M1, . . . ,Md and Mcop be the

distribution models retained to learn the margins and the copula from data. On top of that,M stands

for the resulting overall distribution model obtained after bringing all d + 1 components together.

Thus, statistical learning L may be summed up as follows:

L : R
N×d −→ L

2(Rd)

xobs 7−→ f̂X
(
· | M ,xobs

) (25)

with:

f̂X
(
x | M ,xobs

)
=

[
d∏

j=1

f̂Xj

(
xj | Mj ,xobs

)
]
× ĉU

(
u1, . . . , ud

∣∣∣Mcop ,xobs

)
(26)

and:

uj = F̂Xj

(
xj | Mj ,xobs

)
=

∫ xj

−∞

f̂Xj

(
t | Mj ,xobs

)
dt . (27)

Statistical learning L is a two-step process including model selection and data calibration. Once

M is chosen, calibration CM can be done with maximum likelihood estimation (MLE), the method

of moments, the maximum entropy principle or any other adequate inference procedure. Among

epistemic uncertainties, the part that can be attributed to the lack of knowledge about the distribution

type is called model uncertainty. In the absence of model uncertainty, fX cannot however be entirely

reconstructed because of data scarcity. The uncertainty conveyed by the fit is known as data uncertainty.

The more operational data are gathered to build xobs, the greater data uncertainty can be shrunk.

Analyzing how epistemic uncertainties are impacted by both the choice of the distribution type and

the estimation of parameters is studied in [103].

In practice, asMth is often unknown, model selection is influenced, if not completely monitored, by

a prior data analysis (in other words by xobs itself). Data-driven model selection S includes countless

strategies ranging from performing an elementary hypothesis testing to maximizing an information

criterion [104] in order to find the best-fitted model M⋆ within a set of r candidates:

S : R
N×d −→

{
M(1), . . . ,M(r)

}

xobs 7−→ M⋆

. (28)

As a consequence, model uncertainty and data uncertainty are not so easy to separate. As shown in

Figure 1, they are intimately linked at the core of the inferential process and, in all what follows, they

will be addressed as a single entity (referred to as epistemic uncertainty) carrying all the uncertainty

due to the imperfect state of knowledge about the input distribution fX . Even if the ROSA procedure

11



xobs MODEL SELECTION

S

M⋆

CALIBRATION

CM⋆

f̂X
(
· | M⋆ , xobs

)

Figure 1: Decomposition of epistemic uncertainty during statistical learning

developed in this paper can be applied to any multivariate model M with an explicit copula-marginal

separation, it is strongly recommended to pay close attention to model choices. As far as the margins

are concerned, distribution models that offer some robustness to multimodality and significant accuracy

in the tails are particularly suitable. Besides, copula learning is often deemed satisfactory if it manages

to reconcile asymmetry, polymorphism and computational tractability.

3.1.2. From sampling uncertainty to uncertainty in reliability assessment

Reliability assessment in presence of incomplete probabilistic information follows a data-driven

two-phased process which is made possible by a combined use of statistical learning L and rare-event

simulation R. Data-driven reliability assessment is denoted by D and can be formalized in terms of

the given dataset xobs as follows:

Pf (xobs) = P

{
X ∈ Df

∣∣Xobs = xobs

}
, (29)

=

∫

Rd

1Df
(x)f̂X

(
x
∣∣xobs

)
dx =

∫

Rd

1Df
(x)

[(
L(xobs)

)
(x)

]
dx , (30)

=

[
R ◦ L

]
(xobs) := D (xobs) . (31)

The question is then to understand how different the learnt PDF L(xobs) and the reliability estimation

Pf (xobs) would have been if another small-sized dataset simulated from µX had been supplied. AsXobs

is made up of time-invariant independent observations, it is characterized by the N -tensored product

measure (µX)
⊗N

. Since R and L are deterministic operators, the uncertainty transfer gives birth to

pushforward measures [105] for all ensuing random entities. The consecutive steps are described in

Figure 2. As each functional component of Sklar’s theorem can be learnt separately from all others, an

image measure is defined for each one. The measures associated to any f̂Xj
and to ĉU are respectively

denoted µ
f̂j

and µĉ. When the margins and the copula are reassembled into a multivariate distribution

in R
d as stated in Eq. (26), the resulting PDF follows a probability measure denoted by µ

f̂
. Finally, at

the endpoint of uncertainty propagation, the measure µPf
governs how the failure probability Pf

(
Xobs

)

behaves in response to µ
f̂
.

12



Xobs

∼ (µX)
⊗N

L

f̂X1(· |Xobs) ∼ µ
f̂1

f̂X2(· |Xobs) ∼ µ
f̂2

...

f̂Xd
(· |Xobs) ∼ µ

f̂d

ĉU (· |Xobs) ∼ µĉ

f̂X(· |Xobs)

∼ µ
f̂

R Pf (Xobs)

∼ µPf

Figure 2: Impact of sampling uncertainty from a probabilistic point of view.

To achieve the objective declared in Section 2.5, one needs to perform SA on Pf
(
Xobs

)
with respect

to the collection F which bundles the estimated marginal distributions f̂Xj

(
· |Xobs

)
and the estimated

copula distribution ĉU
(
· |Xobs

)
. The associated input-output matching Ψ may be set out as follows:

Ψ : L
2(R)× · · · × L

2(R)× L
2(Hd) −−→

[
0, 1

]

F :=
d⋃
j=1

{
f̂Xj

(
· |Xobs

)}
∪

{
ĉU

(
· |Xobs

)}
7−−→ Pf

(
Xobs

) . (32)

Ψ estimates the failure probability with a starting material consisting of a disassembled joint distribution.

The major difficulty encountered when attempting to conduct ROSA on Ψ is the lack of knowledge

about the probabilistic distribution of the input functional objects. The only available thing is one

dataset xobs , the associated input PDF f̂X
(
· | xobs

)
and the resulting failure probability Pf (xobs).

Issues arising from such a situation are twofold. On the one hand, a discussion is needed about the

choice of relevant sensitivity indicators. On the other hand, for any retained SA technique, it will

be necessary to produce new observations of the input functional objects, which seems impossible at

this stage. These two questions are respectively addressed in Sections 3.2 and 3.3 while Section 3.4 is

devoted to computational aspects.

3.2. Computation of global sensitivity indices

3.2.1. Sobol indices applied to functional inputs

At first sight, Ψ takes d + 1 functional inputs that may be dependent. As one ambitions to take

into account the whole variation range induced by statistical learning L on the components of the

joint distribution, a global sensitivity analysis (GSA) is necessary. For an exhaustive review of GSA

methods, the reader is referred to [106]. Sobol indices [91] are variance-based sensitivity measures and

they owe their long time popularity to their easy interpretability as well as their large permissiveness.

13



Mathematically speaking, they can be applied for any mapping Ψ of the following type:

Ψ : E := E1 × · · · × Er −→ R

(
g1 , . . . , gr

)
7−→ p

, (33)

provided that the product space E is measurable and that the output variable is square integrable [107].

Sobol indices can thus be extended to the case where E is a functional space [108]. Under the

assumption that all input variables G1, . . . , Gr are mutually independent, the first-order Sobol indices

are defined by:

Sj :=
V
(
E
[
P

∣∣Gj
])

V
(
P
) . (34)

One can notice that Sj does not take into account the effect of possible interactions between Gj and

the complementary set of functional inputs. To do so, one has to compute total-effect Sobol indices

but it is beyond the scope of this paper. Moreover, basic calculations in probability enable to express

the variance of the conditional expectation as a covariance:

V
(
E
[
P

∣∣Gj
])

= Cov
(
P , P j

)
with





P = Ψ
(
G1 , . . . , Gd

)

P j = Ψ
(
G

′

1 , . . . , G
′

j−1 , Gj , G
′

j+1 , . . . , G
′

d

)
, (35)

where G
′

k is an independent copy of Gk picked up from µXk
while Gj is frozen [93]. This formula paved

the way to the “Pick-and-Freeze” estimation technique which allows to transform the initial problem

into a simple linear regression one.

Knowing that those indices are likely to be applied to the mapping Ψ described in Eq. (32), a

damper has to be put on their use. First, this sampling-based SA procedure is only possible if one

manages to generate realizations of the desired input probabilistic measure. In addition, in the case of

dependent inputs, computations can still be conducted but conclusions drawn from the resulting indices

must not be trusted. In Section 3.2.2, it is explained why conventional estimation techniques introduce

dependence between functional components. To remedy this problem, a new conceptual framework is

laid in Section 3.2.3 and allows to envision functional components as independent entities.

3.2.2. Further insights into copula estimation

Let us first consider the case where all the variablesX1, . . . , Xd are independent. The columns X
[•j]
obs

which are extracted from the dataset Xobs are then mutually independent. Then, after learning each

marginal distribution with the selected modelMj , the resulting functional objects are also independent

and may be denoted by f̂Xj

(
· | Mj , X

[•j]
obs

)
since their inference asks for nothing more than the j-th

column. The copula distribution has not to be learnt. Otherwise, one can say that ĉU
(
· | Xobs

)
is

constantly equal to the independence copula c⊥(u) = 1.
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Now, let us examine how incorporating a copula distribution upsets the independence between

functional objects. It is clear that the copula cU creates dependence between the dataset columns

X
[•j]
obs and therefore between the estimated marginal distributions f̂Xj

(
· | Mj ,X

[•j]
obs

)
. On the contrary,

the intricacies of the statistical link that exists between the estimated copula function and the estimated

margins is unclear and has to be gone through. The reader can find comprehensive information on

copula-based density estimation in [109, 110]. A classical case occurs when both the margins and the

copula are parametrized and then constitute a fully parametric distribution model in R
d whose PDF

is given by:

fX

(
x
∣∣∣θ1 , . . . , θd , α

)
=

[
d∏

j=1

fXj
(xj | θj)

]
× cU

(
FX1(x1 | θ1) , . . . , FXd

(xd | θd)

∣∣∣∣α
)
. (36)

The augmented parameter vector β =
[
θ1 , . . . , θd , α

]
is estimated by maximizing the following

log-likelihood function expressed for the provided N -sample found in Xobs:

ℓ
(
θ1 , . . . , θd , α

∣∣Xobs

)
= . . .

d∑

j=1

N∑

i=1

log fXj

(
X

(i)
j | θj

)

︸ ︷︷ ︸
ℓj(θj)

+

N∑

i=1

log cU

(
FX1

(
X

(i)
1 | θ1

)
, . . . , FXd

(
X

(i)
d | θd

) ∣∣∣∣α
)

︸ ︷︷ ︸
ℓC(θ1 , ... , θd ,α)

. (37)

In order to find more computationally attractive alternatives, a method called Inference Functions

for Margins (IFM) consists in running a three-phased optimization algorithm [111] that (a) solves

the ML optimization problem for each marginal distribution fXj
with X

[•j]
obs , (b) derives the copula

pseudo-observations from the estimated parametric marginal CDFs:

Ûobs =
[
Û

(i)
j

]
1≤ i≤N

1≤ j≤ d

with Û
(i)
j = F̂Xj

(
X

(i)
j | θ̂j

)
, (38)

and (c) solves the ML optimization problem for the copula cU with Ûobs. The pseudo-observations

stored in Ûobs are actually observations of the random vector Û defined by Ûj = F̂Xj

(
Xj | θ̂j

)
. The

main problem related to the IFM method arises when the marginal distribution types are postulated.

For instance, if one margin is misspecified, there is a risk of overestimating the degree of dependence

actually existing among the data [112]. Note that for a given distribution, the copula is invariant

under strictly increasing transformations of the margins [48]. In that sense, X, U and Û have the

same copula but U has uniform margins whereas Û has not. The pseudo-observations are not exactly

distributed according to a copula distribution, unless F̂Xj

(
· | θ̂j

)
= FXj

(
·
)
and this depends on the

learning accuracy. To avoid such a pitfall, Ûobs may be computed with a nonparametric approach:

Û
(i)
j = F̂Xj

(
X

(i)
j

∣∣X [•j]
obs

)
=

1

N + 1

N∑

k=1

1{
X

(k)
j ≤X

(i)
j

} , (39)
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where F̂Xj

(
·
∣∣X [•j]

obs

)
is the empirical CDF built from the j-th column of Xobs. If both the margins

and the copula are estimated with parametric distribution models and if Ûobs is derived from Eq. (39),

the inference algorithm is said to be semi-parametric (SP). This method was developed in [113, 114]

and then largely popularized. The values taken by any empirically rescaled variable Ûj are the i
N+1

for all i ∈ {1, . . . , N}. An extensive simulation study led in [115] shows that the SP method generally

performs better than both MLE and IFM. In this paper, all joint densities will be estimated according

to the SP procedure because it appears to be a safer practice in presence of model uncertainty.

3.2.3. Towards an independent characterization of the margins and the copula

If one were ever seeking to generate new realizations of the studied functional objects, having access

to a random generator GX of the input probabilistic measure µX would be a necessary condition,

though unrealistic. The generation process that must be repeated is described in Algorithm 1.

Algorithm 1: Joint density estimation that leads to dependent functional components

Inputs:

GX ⇒ generator to simulate X

Mj ⇒ distribution models for the margins fXj

Mcop ⇒ distribution model for the copula cU

◮ Draw a N -sample xobs with GX .

forall j ∈ {1, . . . , d} do

◮ Learn f̂Xj

(
· | Mj ,x

[•j]
obs

)
.

◮ Compute the rescaled dataset ûobs from xobs with Eq. (39).

◮ Learn ĉU
(
· | Mcop, ûobs

)
.

◮ Use Sklar’s theorem to reassemble the learnt distribution f̂X
(
· | M,xobs

)
.

Outputs:

f̂Xj

(
· | Mj ,x

[•j]
obs

)
⇒ estimated marginal distributions

ĉU
(
· | Mcop, ûobs

)
⇒ estimated copula distribution

f̂X
(
· | M,xobs

)
⇒ estimated joint distribution after reassembling

If using the SP technique to perform statistical inference, copula estimation is better isolated

because it no longer depends on the estimated margins. However, functional dependence between

the copula and the margins still exists since X
[•1]
obs , . . . ,X

[•d]
obs and Ûobs stem from the same dataset

Xobs. From the SA point of view, the problem would become much simpler if functional components
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evinced mutual independence. This situation is indeed not completely unrealistic. Let us imagine

that Xobs is divided into d+ 1 smaller datasets. In order to ensure this, one has to choose d integers

1 < n1 < . . . < nd < N and has to allocate a certain amount of observations to each learning task:

XM1
=

{
X

[i•]
obs : 1 ≤ i ≤ n1

}
, . . . , XMd

=
{
X

[i•]
obs : nd−1 + 1 ≤ i ≤ nd

}
,

XMcop =
{
X

[i•]
obs : nd + 1 ≤ i ≤ N

}
.

Dividing Xobs into several batches is can not be considered in the “small data” context because each

component is then estimated from too little data. Another situation yielding mutual independence

among functional components consists in producing independent copies of X
[•1]
obs , . . . ,X

[•d]
obs and Ûobs.

For this, let us consider the following random variables:

Z =
[
Z1, . . . , Zd

]
∈ R

d with fZ(z) =
d∏
j=1

fXj
(zj) ,

V =
[
V1, . . . , Vd

]
∈ Hd with fV (v) = cU (v) and V ⊥ Z .

(40)

GZ and GV are the random generators respectively associated to Z and V . If statistical learning L is

based on datasets simulated with GZ and GV , the estimated functional components are independent.

Indeed, GZ produces a random matrix Zobs ∼ (µZ)
⊗N

with independent columns Z
[•j]
obs that exactly

work as mutually independent marginal datasets. Moreover, since V is assumed independent of Z,

Vobs ∼ (µV )
⊗N

is a dataset consisting of copula samples V
[i•]
obs which are independent from Zobs. The

generation process described in Algorithm 2 leads to an independent collection of functional inputs:

F2 =
{
f̂X1

(· | Z
[•1]
obs ) , . . . , f̂Xd

(· | Z
[•d]
obs ) , ĉU (· | Vobs)

}
. (41)

Hence, the joint behavior of F2 is different from the joint behavior of the initial collection of random

objects produced by Algorithm 1:

F1 =
{
f̂X1

(· |X
[•1]
obs ) , . . . , f̂Xd

(· |X
[•d]
obs ) , ĉU (· | Ûobs)

}
. (42)

The initial uncertainty transfer represented in Figure 2 is modified because of F2 replacing F1 and the

new version is shown on Figure 3. The probability measure associated to the reassembled joint density

f̂X(· | Zobs,Vobs) is now denoted by µĝ. The probability measure assigned to the failure probability

Pf (Zobs,Vobs) is also impacted and becomes µQf
. Having established this, the ROSA problem seems

easier to solve since the adopted point of view allows to envision functional components as mutually

independent inputs. Sobol indices may be expressed as follows:

∀ 1 ≤ j ≤ d, Sj :=
V

(
E

[
Pf (Zobs,Vobs)

∣∣∣ f̂Xj

(
· | Z

[•j]
obs

)])

V
(
Pf (Zobs,Vobs)

) ,

Scop :=
V

(
E

[
Pf (Zobs,Vobs)

∣∣∣ ĉU
(
· | Vobs

)])

V
(
Pf (Zobs,Vobs)

) ,

(43)
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Zobs

∼ (µZ)
⊗N

Vobs

∼ (µV )
⊗N

Z
[•1]
obs

Z
[•2]
obs

...

Z
[•d]
obs

f̂X1(· | Z
[•1]
obs )

f̂X2
(· | Z

[•2]
obs )

...

f̂Xd
(· | Z

[•d]
obs )

L

L

L

ĉU (· | V obs)L

⊥

⊥

⊥

f̂X(· | Zobs,Vobs)

∼ µĝ

Pf (Zobs,Vobs)

∼ µQf

R

Figure 3: Sampling strategy to achieve functional independence.

with (Zobs,Vobs) ∼ (µZ)
⊗N⊗(µV )

⊗N
. If the choice of Sobol indices as relevant GSA indicators is now

justified, the generators GX , GZ and GV remain unavailable. As a result, there is a need to understand

how each of them produces samples.

3.3. How to reproduce unobservable sampling uncertainty?

When one is only given a small number of observations and then needs to resample according the

unknown underlying distribution, a method called the “bootstrap” was developed by Efron [116, 117]

and has now become pervasive in statistical applications. Despite its finite size, the set of all observed

values
{
x
[i•]
obs : 1 ≤ i ≤ N

}
is regarded as the sample space where X lies. Each observation x

[i•]
obs

becomes an atom of the following discrete probability distribution:

µ̂[xobs] =
1

N

N∑

i=1

δ
x

[i•]
obs

, (44)

where δx is the Dirac measure assigned to any x ∈ R
d. Indeed, bootstrapping consists in resampling

according to the empirical distribution µ̂[xobs] instead of the true unknown distribution µX . Simulation

with µ̂[xobs] is just uniform sampling (with replacements) from the already observed data. The same

initial observation x
[k•]
obs may be selected several times and then inserted as many times in the replicated

dataset x̃obs. For comprehensive information about the bootstrap, the reader is advised to consult

one of the many reference books on this topic [118, 119]. In SA, bootstrap is often used to derive

confidence intervals for Sobol indices by simply swapping the rows of the initial Monte-Carlo design,

and therefore without any additional call to φ(·) [120]. Bootstrap-based SA is often used (for want of

anything better) to assess the sensitivity of an output with respect to some input parameters (that
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Algorithm 2: Joint density estimation that leads to independent functional components

Inputs:

GZ ⇒ generator to simulate Z

GV ⇒ generator to simulate V

Mj ⇒ distribution models for the margins fXj

Mcop ⇒ distribution model for the copula cU

◮ Draw a N -sample zobs with GZ .

forall j ∈ {1, . . . , d} do

◮ Learn f̂Xj

(
· | Mj , z

[•j]
obs

)
.

◮ Draw a N -sample vobs with GV .

◮ Learn ĉU
(
· | vobs

)
.

◮ Use Sklar’s theorem to reassemble the learnt distribution f̂X
(
· | M, zobs,vobs

)
.

Outputs:

f̂Xj

(
· | Mj , z

[•j]
obs

)
⇒ estimated marginal distributions

ĉU
(
· | Mcop,vobs

)
⇒ estimated copula distribution

f̂X
(
· | M, zobs,vobs

)
⇒ estimated joint distribution after reassembling
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can only be computed once from the initial data). For instance, it is shown in [121, 122] that the joint

distribution of regression parameters can be assessed from bootstrap replications of the initial dataset.

In this work, the context is very similar and the bootstrap is the key element to simulate how the

functional inputs are distributed.

Thus, using µ̂[xobs] allows to imitate GX in Algorithm 1 but it has already been said that it is

not exactly what is wanted here since Sobol indices need to be computed from independent functional

inputs. To achieve this goal, bootstrap resampling has to be carried out with a slightly different

approach, in order to stick as much as possible to what is presented in Algorithm 2. Actually, it is all

about understanding how to construct empirical approximations for GZ and GV . For the given dataset

xobs, let us imagine that the matrix coefficients are separated in d batches through a column-by-column

split. A univariate empirical distribution µ̂
[
x
[•j]
obs

]
is then attached to each constituted batch. By doing

so, the information related to the intrinsic dependence structure are lost and the marginal distributions

can then be resampled independently from one another. Mathematically speaking, GZ is replaced by

the d-tensored product measure of all marginal empirical distributions:

µ̂Z [xobs] := µ̂
[
x
[•1]
obs

]
⊗ µ̂

[
x
[•2]
obs

]
⊗ . . .⊗ µ̂

[
x
[•d]
obs

]
. (45)

In practice it is nothing but a column-by-column bootstrap resampling procedure based on xobs. The

objective is then to reproduce the way the unknown generator GV works. Copula pseudo-observations

ûobs are computed from xobs with Eq. (39) and the empirical measure µ̂V [xobs] := µ̂ [ûobs] is used

to simulate new copula samples. Thus, any bootstrap replication ṽ drawn from ûobs may be seen as

another training set for copula estimation. The overall resampling mechanism is denoted by B and

allows to simulate a collection {z̃1, . . . , z̃d, ṽ} with the help of the following distribution:

µ̂ZV [xobs] := µ̂
[
x
[•1]
obs

]
⊗ µ̂

[
x
[•2]
obs

]
⊗ . . .⊗ µ̂

[
x
[•d]
obs

]
⊗ µ̂ [ûobs] . (46)

All matrix manipulations are summarized in Figure 4 where it can be seen that the resampling strategy

rests on d+ 1 bootstrap replication steps. In what follows, z̃ denotes the horizontal concatenation of

all vectors z̃j ∈ R
N . Running B from xobs provides the ability to simulate independent training sets

for the margins and the copula and ultimately provides the ability to simulate independent functional

components. Indeed, statistical learning L transforms any mutually independent collection of replicated

samples {z̃1, . . . , z̃d, ṽ} into a mutually independent collection of estimated PDFs {f̂X1
, . . . , f̂Xd

, ĉU}.

Algorithm 3 recaps how the bootstrap allows to overcome the major issue of only being given one

single dataset xobs. In view of performing GSA on Ψ, this resampling algorithm allows to simulate as

many input objects as desired. However, since GZ and GV are replaced by B, the Sobol indices stated
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in (43) become:

∀ 1 ≤ j ≤ d, SBj :=
V

(
E

[
Pf (Z̃, Ṽ )

∣∣∣ f̂Xj

(
· | Z̃j

)])

V
(
Pf (Z̃, Ṽ )

) ,

SBcop :=
V

(
E

[
Pf (Z̃, Ṽ )

∣∣∣ ĉU
(
· | Ṽ

)])

V
(
Pf (Z̃, Ṽ )

) ,

(47)

with (Z̃, Ṽ ) ∼ (µ̂ZV [xobs])
⊗N

. Writing B as a superscript of Sobol indices means they are computed

with respect to the empirical probability measure (µ̂ZV [xobs])
⊗N

. This notation is omitted when

there is no ambiguity on how Sobol indices are computed. The next section explains how to couple all

computational bricks in order to estimate the first-order Sobol indices.

Algorithm 3: Joint density estimation based on bootstrap resampling

Inputs:

xobs ⇒ initial dataset

Mj ⇒ distribution models for the margins fXj

Mcop ⇒ distribution model for the copula cU

forall j ∈ {1, . . . , d} do

◮ Extract the j-th column cj := x
[•j]
obs .

◮ Draw a N -sample z̃j with µ̂[cj ].

◮ Learn f̂Xj

(
· | Mj , z̃j

)
.

◮ Compute the rescaled dataset ûobs from xobs with Eq. (39).

◮ Draw a N -sample ṽ with µ̂[ûobs].

◮ Learn ĉU
(
· | Mcop, ṽ

)
.

◮ Use Sklar’s theorem to reassemble the learnt distribution f̂X
(
· | M, z̃, ṽ

)
.

Outputs:

f̂Xj

(
· | Mj , z̃j

)
⇒ estimated marginal distributions

ĉU
(
· | Mcop, ṽ

)
⇒ estimated copula distribution

f̂X
(
· | M, z̃, ṽ

)
⇒ estimated joint distribution after reassembling

3.4. Complete workflow

To perform GSA onΨ, Sobol indices are going to be computed with the “Pick-and-Freeze” estimation

scheme denoted by A and based on Eq. (35). It was proved that the resulting estimators have all desired
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(1)
d

ṽ
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Figure 4: Resampling mechanism B used to simulate how GZ and GV behave.
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statistical properties [107, 123]. From the provided dataset xobs, simulating one input-output sample

of the studied mapping Ψ may be achieved as follows:

xobs
B
7−→ {z̃, ṽ}

L
7−→

{
f̂X1 , . . . , f̂Xd

, ĉU

}
Sklar
7−−−−→ f̂X(· | z̃, ṽ)

R
7−−→ P̂f (z̃, ṽ)

{
f̂X1 , . . . , f̂Xd

, ĉU

}
Ψ

7−−−−−−−−−−−−−−−−−→ P̂f (z̃, ṽ)
, (48)

that is by running a three-phased algorithm including:

1. Bootstrap resampling B : R
N×d −−→ R

N × . . .× R
N ×

[
0, 1

]N×d
,

2. Statistical learning L : R
N × . . .× R

N ×
[
0, 1

]N×d
−−→ L

2(R)× . . .× L
2(R)× L

2(Hd) ,

3. Reliability assessment R : L
2(R)× . . .× L

2(R)× L
2(Hd) −−→

[
0, 1

]
.

The complete workflow with all three computational bricks is shown in Figure 5. Data collection

Cobs is a preliminary step that supplies xobs. It is carried out once and for all. On the contrary, the

sequential execution of B, L and R must be done as many times as the chosen sampling-based GSA

method demands.
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Figure 5: Illustration of all computational bricks when ROSA is performed with R

Let us now examine how the “Pick-and-Freeze” estimation scheme works in practice. The main

interest is to assess the computational budget that is required to derive all first-order Sobol indices. A

few additional random objects need to be defined in order to adopt the “Pick-and-Freeze” viewpoint:
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(PF1)
(
Z̃A, Ṽ A

)
⊥

(
Z̃B , Ṽ B

)
are distributed according to (µ̂ZV [xobs])

⊗N
.

(PF2) Applying L on both collections yields
{
f̂AX1

, . . . , f̂AXd
, ĉA

U

}
⊥

{
f̂BX1

, . . . , f̂BXd
, ĉB

U

}
.

(PF3) These collections are disassembled and inverted in order to construct a “Pick-and-Freeze” table

TAB as illustrated in Figure 6. It is composed of (d + 2) recombined collections of functional

components. With the exception of the first one, each row in TAB is obtained after freezing

one component within
{
f̂AX1

, . . . , f̂AXd
, ĉA

U

}
and picking all others among

{
f̂BX1

, . . . , f̂BXd
, ĉB

U

}
. The

permutation operator leading to TAB is denoted by P in all what follows.

(PF4) In virtue of Sklar’s theorem, each row in TAB may be reassembled into a joint input PDF.

Reassembling is thus completed for all (d+ 2) rows involved in TAB .

(PF5) All corresponding failure probabilities are computed with R.

⊥

f̂A
X1

. . . f̂A
Xd

ĉA
U

f̂B
X1

. . . f̂B
Xd

ĉB
U

⊥

(
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)

L

(
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)

L
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f
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f

R

Figure 6: Application of the “Pick-and-Freeze” estimation scheme in the ROSA context

It must be clearly understood that the failure probabilities obtained at the end of the process (and

represented on the right part of Figure 6) are random variables since they are expressed in terms

of
(
Z̃A, Ṽ A

)
and

(
Z̃B , Ṽ B

)
. In accordance with what was already said in Eq. (35), those failure

probabilities allow to provide another expression of Sobol indices:

SB1 =
Cov

(
PA...Af , PAB...Bf

)

V

(
PA...Af

) . . . SBd =
Cov

(
PA...Af , PB...BABf

)

V

(
PA...Af

)

SBcop =
Cov

(
PA...Af , PB...BAf

)

V

(
PA...Af

) .

(49)

The instructions listed from (PF1) to (PF5) stand for one iteration of the “Pick-and-Freeze” estimation

scheme. If M iterations are carried out, R is run Mt = (d + 2) ×M times. Then, all Sobol indices

can be estimated by replacing the theoretical variances and covariances involved in Eq. (49) by their

empirical counterparts.
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3.5. Application to a Gaussian linear model

3.5.1. Description

A first use case is examined with a linear performance function φ(·) and a Gaussian input random

vector X ∈ R
3. The main merit of this example is to suit the initial assumption of this section, that

is exact reliability assessment at negligible computational cost. The random output Y is defined by:

Y = φ(X) = a1X1 + a2X2 + a3X3 = a⊤X with a =
[
a1 , a2 , a3

]⊤
. (50)

For its part, X is distributed as follows:

X ∼ N
(
m , Σ

)
with m =




m1

m2

m3


 and Σ = ΓΓ

⊤ =




σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3


 . (51)

In this very simple case, the theoretical value of the failure probability Pf can be derived through easy

probabilistic calculations:

Pf = P

{
Y > T

}
= P

{
a⊤X > T

}
= 1− Φ

(

T −ma

σa

)

with











ma = a⊤m

σ2
a = a⊤Σa

, (52)

and Φ(·) is the univariate standard normal CDF. Since Pf is expected to be a rare-event probability,

T is understandably much larger than ma. In addition, as φ(·) is linear and X is Gaussian, the

first-order reliability method (FORM) is applicable and provides the exact failure probability Pf after

using the Nataf transform T to decorrelate X into a d-variate standard normal vector W . Within

this formalism [124, 125], the problem is entirely envisioned in the standard normal space. The limit

state curve becomes H(w) = T where H = φ ◦ T −1. Moreover, Pf can be expressed in terms of both

the Hasofer-Lindt reliability index β and the most probable failure point (MPFP) which is denoted by

w⋆ (in the standard normal space) or x⋆ (in the physical space):

Pf = 1− Φ(β) with β := ‖w⋆‖2 and w⋆ := argmin
H(w)=T

‖w‖2 = T (x⋆) . (53)

The numerical values assigned to the parameters of both φ(·) and fX are listed below:

• Black-box φ(·) : a1 = a2 = 2 ; a3 = 1

• Mean vector m : m1 = m2 = m3 = 0

• Covariance matrix Σ : σ2
1 = σ2

2 = σ2
3 = 1 ; σ12 = 0.5 ; σ13 = σ23 = 0.3

With T = 11, the theoretical value of failure probability is Pf = 2.53× 10−3.
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3.5.2. Data-driven reliability assessment

A dataset xobs is simulated according to fX and numbers N = 300 joint observations. The learning

model M consists of a fully parametric Gaussian distribution. For a given collection of training sets

{z̃1, . . . , z̃d, ṽ} produced by the bootstrap resampling technique B described earlier, a Gaussian margin

is estimated from each z̃j and a Gaussian copula is estimated from ṽ:

f̂Xj

(
· | Mj , z̃j

)
= f̂N

(
· | m̂j , σ̂

2
j

)
and ĉU

(
· | Mcop, ṽ

)
= ĉN

(
· | ρ̂

)
. (54)

MLE is regarded as the best approach to fit all components. The joint reassembled PDF may be seen

as a d-variate Gaussian PDF f̂N
(
· | m̂, Σ̂

)
such that:

m̂ =




m̂1

m̂2

m̂3


 and Σ̂ = Γ̂ Γ̂

⊤ = ∆̂ ρ̂ ∆̂ with ∆̂ =




σ̂1 0 0

0 σ̂2 0

0 0 σ̂3


 . (55)

At the end of data-driven reliability assessment, one has:

Pf (xobs) = 1− Φ

(

T − m̂a

σ̂a

)

with











m̂a = a⊤µ̂

σ̂2
a = a⊤ Σ̂a

, (56)

and the associated failure domain is specified in terms of the estimated Gaussian parameters:

D̂Nf =
{

w ∈ R
d : a⊤

(

Γ̂w + µ̂
)

> T
}

. (57)

The uncertainty in reliability prediction only depends on whether or not N amounts for a sufficient

number of observations to expect an accurate reconstruction of PDF parameters.

3.5.3. More about the theoretical values of Sobol indices

The theoretical values of Sobol indices are those defined by Eq. (43). In this test case, whereM is

fully parametric, they may be rewritten in terms of estimated parameters:

∀ 1 ≤ j ≤ d, Sj =
V

(

E

[

Pf
(

m̂, Σ̂
)

∣

∣

∣
f̂N
(

· | m̂j , σ̂j
)

])

V

(

Pf
(

m̂, Σ̂
)

) =
V

(

E

[

Pf
(

m̂, Σ̂
)

∣

∣

∣
m̂j , σ̂j

])

V

(

Pf
(

m̂, Σ̂
)

) ,

Scop =
V

(

E

[

Pf
(

m̂, Σ̂
)

∣

∣

∣
ĉN
(

· | ρ̂
)

])

V

(

Pf
(

m̂, Σ̂
)

) =
V

(

E

[

Pf
(

m̂, Σ̂
)

∣

∣

∣
ρ̂
])

V

(

Pf
(

m̂, Σ̂
)

) ,

(58)

where m̂ and Σ̂ are estimated from (Zobs,Vobs) ∼ (µZV )
⊗N

according to what is established in

Eq. (54) and Eq. (55). Moreover, in light of Eq. (51), GZ and GV are the random generators associated

with Z ∼ fN
(

· |m, I3
)

and V ∼ cN
(

· | ρ
)

. Because of the numerical values assigned to fX and φ(·)

at the end of Section 3.5.1, similarities between X1 and X2 include:
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(Sym1) Sampling:











Z
[•1]
obs ∼ (µX1)

⊗N

Z
[•2]
obs ∼ (µX2

)
⊗N

with µX1 = µX2 ,

(Sym2) Learning: M1 =M2 ,

(Sym3) Dependence with X3:











(

V
[•1]
obs ,V

[•3]
obs

)

∼ cN (· | ρ13)

(

V
[•2]
obs ,V

[•3]
obs

)

∼ cN (· | ρ23)

with ρ13 = ρ23 ,

(Sym4) Black box: a1 = a2 = 2 ,

and it is straightforward to prove that all four similarities yield S1 = S2. On the contrary, since (Sym3)

and (Sym4) do not hold for (X1, X3) and (X2, X3), one has S1 6= S3 and S2 6= S3. Of course, the

theoretical values {S1, S2, S3, Scop} cannot be derived in practice because the underlying distribution

µX is truly unknown. However, these indices may be helpful here in order to evaluate the accuracy of

the collection
{

ŜB1 , Ŝ
B
2 , Ŝ

B
3 , Ŝ

B
cop

}

estimated by means of the resampling mechanism B.

To this end, the theoretical indices are estimated through the “Pick-and-Freeze” method based on

input training sets
{(

z
(i)
obs,v

(i)
obs

)}M

i=1
which are all simulated with GZ and GV . The only hyperparameter

that needs to be tuned is the number M of iterations that is required to get low-variance estimators

of Sobol indices. A trade-off must be found because the greater M , the more accurate Sobol indices,

but the more there are failure probabilities to estimate. In the case where N = 300, the results are

presented in Figure 7 and it can be seen that all curves become stable for a pretty small number of

replications, namely when M ≥ 103. At this step, it can be seen that Ŝ1 ≈ Ŝ2 as it was expected

in view of the above developments. Beyond this value, rankings are unchanged and further iterations

strain the simulation budget without bringing any significant improvement. From now on, M⋆ = 103

is regarded as a recommendation for a proper tuning of the “Pick-and-Freeze” estimation scheme A.

Sobol indices are estimated Nrep = 100 times for N ∈ {50, 100, 300} and the ensuing results are

gathered in Table 1. A first point to make is the very low dependency shown by Sobol indices with

respect to the sample size. The uncertainty carried by Pf (Zobs,Vobs) is always apportioned in the

same way whatever is the number of observations used to fit the Gaussian margins and the Gaussian

copula. For any given value of N , it is verified that Ŝ1 and Ŝ2 have very close values. As a consequence,

and because of what was previously said about their equality, they receive the same ranking in Table 1.

Moreover, f̂X1 and f̂X2 emerge as the most influential functional components as they both convey the

largest share of uncertainty on Pf (Zobs,Vobs). Also noteworthy is that Ŝcop is somewhat smaller than

Ŝ1 and Ŝ2 but much bigger then Ŝ3. It emphasizes the fact that copula estimation truly deserves

attention when one attempts to monitor uncertainty on Pf (Zobs,Vobs). In this specific test case, it

conveys almost as much uncertainty as f̂X1 and f̂X2 and much more than f̂X3 .
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Figure 7: Convergence of estimates depending on the number M of iterations used over the “Pick-and-Freeze”.

ROSA with GZ

/

GV : Ŝ1 Ŝ2 Ŝ3 Ŝcop

N = 300

mean : 32.33 % 32.77 % 4.89 % 28.13 %

std : 3.18 % 2.97 % 2.71 % 3.25 %

rank : (1) (1) (4) (3)

N = 100

mean : 32.05 % 32.14 % 4.93 % 26.75 %

std : 3.13 % 3.15 % 2.64 % 3.15 %

rank : (1) (1) (4) (3)

N = 50

mean : 31.27 % 30.51 % 5.34 % 25.36 %

std : 3.70 % 3.93 % 3.24 % 3.54 %

rank : (1) (1) (4) (3)

Table 1: Estimation of Sobol indices by means of the unknown generators GZ and GV
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3.5.4. Estimation of Sobol indices from a small-sized dataset

Let us now return to the data-driven ROSA problem. The theoretical generators GZ and GV are

unknown and the available material consists of a single dataset xobs. Input training sets
{(

z̃(i), ṽ(i)
)}M

i=1

are simulated with the resampling mechanism B developed in Section 3.3 and relying on the empirical

measure µ̂ZV [xobs] defined in (46). In this context, it is feared that using the bootstrap induces a

significant bias on the ROSA results. If so, the proposed algorithm becomes useless since no information

about the theoretical indices might be extrapolated.

In order to address this issue, the ROSA algorithm is applied Nrep = 10 times for three different

datasets denoted by x
(i)
obs ∈ R

N×d for i ∈ {1, 2, 3} and N = 300. The associated results may be found

in the first level of Table 2. For all three datasets, the leading triplet consisting of (Ŝ1, Ŝ2, Ŝcop) is

correctly identified and stands for more or less 90% of the uncertainty affecting Pf (Z̃, Ṽ ). However,

objections could be raised because the hierarchy among f̂X1
, f̂X2

and ĉU evolves from one dataset to

another :

x
(1)
obs ⇒ Ŝcop ≫ Ŝ1 > Ŝ2

x
(2)
obs ⇒ Ŝ2 > Ŝcop > Ŝ1

x
(3)
obs ⇒ Ŝ1 ≫ Ŝcop > Ŝ2

This is naturally explained by the use of three different empirical measures. However, this lack of

robustness in the rankings of the leading triplet of indices must be weighed against the fact that they

have very close theoretical values. Actually, in view of Table 1, the most valuable information that

needs to be gleaned from this test case is that the uncertainty on Pf (Z̃, Ṽ ) stems from three equally

influential sources. It must be noted that the data-driven ROSA procedure allows to draw a similar

conclusion. From that point of view, the proposed algorithm fulfills the initial objective.

The same study is conducted for smaller datasets. In the second (resp. third) level of Table 2,

x
(i)
obs is made up with the first N = 100 (resp. N = 50) rows of the former version of x

(i)
obs. It

can observed that the bias introduced over the data-driven ROSA procedure has increased. There is

nothing surprising since the empirical probability measure µ̂ZV [xobs] becomes a poor representation of

the true underlying probability measure µZV as N decreases. For N = 100, the ROSA based on x
(2)
obs

yields ŜBcop ≈ 40% instead of Scop = 27%. Likewise, when N = 50, all three datasets lead to a heavy

overestimation of the influence exerted by the copula fit. For this test case, as long as N ≥ Nlim = 100,

the proposed algorithm based on the resampling mechanism B works fine because it helps the user

understanding what is the subset of functional components that most contribute to uncertainty in

data-driven reliability assessment. However, when N < Nlim, it becomes harder to regard the ROSA

results as trustworthy piece of information for decision-making. The limit sample size Nlim is not

universal. All depends on the convergence of the empirical measure µ̂ZV

[

Xobs

]

with Xobs ∼ (µX)
⊗N
.
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Any sample size N becomes increasingly insufficient in higher dimensions. In particular, the empirical

copula measure µ̂V

[

Ûobs

]

is gradually being affected by the curse of dimensionality. In such situations,

the limit sample size is expected to be much larger than Nlim = 100.

Remark. In Table 2, all mean values and standard deviations are obtained after running Nrep times

the ROSA algorithm on the dataset under study. In this test case, as the reliability algorithm R is

exact and does not introduce any extra noise on the distribution of Pf
(

Z̃, Ṽ
)

, it should be clearly

understood that uncertainty is only due to bootstrap resampling, that is to the fact that the sequence

of all training sets
{(

z̃(i), ṽ(i)
)}M

i=1
changes from one repetition to another. Let {ik}

M
k=1 be a bootstrap

replication of {1, . . . ,M}. Another estimate of Sobol indices can be easily derived from the sequence of

training sets
{(

z̃(ik), ṽ(ik)
)}M

k=1
because all the failure probabilities involved in the “Pick-and-Freeze”

estimation scheme have already been computed. If repeating the process several times, one can obtain

the mean values and the standard deviations without any additional call to R.

3.5.5. Validation through data assimilation

Now, it is important to check whether the computed Sobol indices provide the expected answer in

line with the objective of properly quantifying the epistemic uncertainties conveyed by the fit of both

the margins and the copula. For a given dataset xobs, the ROSA algorithm provides a set of Sobol

indices denoted by
{

ŜB1 , Ŝ
B
2 , Ŝ

B
3 , Ŝ

B
cop

}

. A validation procedure could consist in performing a second

ROSA after increasing the learning uncertainty of one poorly influential component or, conversely,

after reducing the learning uncertainty of one highly influential component. The data-driven sensitivity

indices are supposed to evolve accordingly, with a progress in the rankings for stimulated components

and a collapse in the rankings for mitigated components. Let us imagine the fictitious situation where

an additional database xextra made up with N2 observations from µX is now available. For the sake

of clarity, the sample size N of xobs is denoted by N1 in this subsection. The intent is to focus

on a functional component f̂Xj0
that has been identified as significantly influential after performing

the first ROSA. The column x
[•j0]
extra is imported and acts as supplemental material for estimation.

The state of knowledge about µXj0
is thus enriched since N1 + N2 observations are now supplied.

Almost the same computational workflow is then applied to compute the second set of Sobol indices.

A boostrap replication z̃j0 ∈ R
N1+N2 is simulated from the enriched vector x

[•j0]
obs ∪ x

[•j0]
extra. Other

marginal training sets z̃j (with j 6= j0) are directly replicated from x
[•j]
obs . Besides, the copula training

set ṽ is still obtained after bootstrapping ûobs but the rescaling step giving birth to ûobs is slightly

different (especially in the j0-th column) in order to take into account the extra information brought

by data assimilation. The reader is referred to Appendix A for a more comprehensive presentation of

how the initial bootstrap mechanism is adapted. Appendix A.1 contains a pseudo-code framed box

inspired from what has already been presented in Algorithm 3 while Appendix A.2 is dedicated to
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ROSA with B : Ŝ1 Ŝ2 Ŝ3 Ŝcop

N = 300

x
(1)
obs

mean : 28.26 % 26.56 % 5.03 % 37.49 %

std : 4.18 % 4.35 % 3.85 % 4.19 %

rank : (2) (3) (4) (1)

x
(2)
obs

mean : 28.23 % 32.52 % 3.78 % 30.75 %

std : 3.82 % 3.77 % 3.62 % 2.84 %

rank : (3) (1) (4) (2)

x
(3)
obs

mean : 38.18 % 27.13 % 7.52 % 28.92 %

std : 2.34 % 3.88 % 3.41 % 3.91 %

rank : (1) (3) (4) (2)

N = 100

x
(1)
obs

mean : 22.97 % 26.63 % 5.65 % 37.07 %

std : 4.04 % 4.30 % 2.26 % 3.98 %

rank : (3) (2) (4) (1)

x
(2)
obs

mean : 17.03 % 33.65 % 5.14 % 39.95 %

std : 3.17 % 4.97 % 2.01 % 2.97 %

rank : (3) (2) (4) (1)

x
(3)
obs

mean : 28.75 % 30.29 % 4.54 % 29.18 %

std : 3.23 % 4.33 % 3.12 % 3.20 %

rank : (3) (1) (4) (2)

N = 50

x
(1)
obs

mean : 25.48 % 19.28 % 5.81 % 37.34 %

std : 3.30 % 4.88 % 3.51 % 3.06 %

rank : (2) (3) (4) (1)

x
(2)
obs

mean : 16.66 % 36.42 % 2.88 % 34.59 %

std : 2.22 % 2.01 % 2.22 % 3.79 %

rank : (3) (1) (4) (2)

x
(3)
obs

mean : 23.56 % 20.85 % 6.95 % 38.35 %

std : 1.92 % 3.77 % 2.29 % 4.73 %

rank : (2) (3) (4) (1)

Table 2: Estimation of Sobol indices from three Gaussian datasets with the ROSA procedure
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visualizing the necessary matrix manipulations. The whole Appendix A is presented in the specific

case where additional data are collected for X1 but everything is similar for other input variables.

Table 3 presents the results obtained after performing a second ROSA for three different data

assimilation scenarios. The top level recalls the results previously obtained with x
(1)
obs in Table 2. The

three levels below show the results delivered by the second ROSA after providing additional data to

X1, X2 or X3. In the two first cases, data assimilation makes the targeted component become the

less influential source of learning uncertainty. This phenomenon is consistent with what the ROSA

algorithm was designed for. Furthermore, when new observations are provided to X3, no change is

observed in the rankings. It is rather natural since f̂X3
has already emerged as the less influential

component in the first ROSA. Incorporating even more data in the estimation of fX3 reduces even

more the impact of f̂X3 on the uncertainty of reliability assessment. Once again, this sticks to what

Sobol indices are supposed to quantify.

4. Extension to stochastic reliability algorithms

In the previous section, in order to measure the amount of epistemic uncertainty conveyed on the

failure probability by the margins and the copula, an algorithm was implemented to compute GSA

indicators. However, the proposed method is only valid if reliability assessment R can be implemented

exactly and without any computational effort. Now, let us go back to a more realistic situation where

rare-event probability estimation is performed with simulation algorithms. Contrary to what is shown

in Section 3.5 where having access to the analytical expression of φ(·) enables to set up an adhoc

exact formula for Pf , the internal workings of φ(·) are unknown in most cases. As a result, the output

PDF fY has to be assessed in one way or another, especially in the upper tail where the failure event

occurs. The simulation budget often consists of a limited number of evaluations of φ(·), which is largely

insufficient to retrieve fY on its whole definition range. Rare-event probability estimation algorithms

based on adaptive resampling techniques have to deployed not to overrun the allotted simulation

budget. As a consequence, for a given learnt distribution f̂X , reliability estimation is now predicated

on a stochastic algorithm Rw representing one of the many working methods in this field [2].

These algorithms are described as stochastic because, even for a specified input PDF f̂X , the

estimated failure probability P̂f = Rw
(

f̂X
)

is a random variable depending on the simulated particles.

For the sake of consistency, data-driven reliability assessment is now denoted by Dw instead of D:

P̂f (xobs) = Dw(xobs) =

[

Rw ◦ L

]

(xobs) . (59)

Likewise, the input-output mapping Ψ between the components of the estimated PDF f̂X
(

· | Xobs

)
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ROSA with B : ŜB
1 ŜB

2 ŜB
3 ŜB

cop

xobs = x
(1)
obs N1 = 300

mean : 28.26 % 26.56 % 5.03 % 37.49 %

std : 4.18 % 4.35 % 3.85 % 4.19 %

rank : (2) (3) (4) (1)

ROSA with B1 : Ŝ
B1
1 Ŝ

B1
2 Ŝ

B1
3 ŜB1

cop

N
ew

d
a
ta

fo
r
X

1

xobs ∪ x
[•1]
extra

N2 = 500

mean : 14.65 % 30.94 % 4.91 % 44.99 %

std : 2.82 % 3.82 % 3.58 % 3.69 %

rank : (3) (2) (4) (1)

N2 = 103

mean : 12.68 % 32.72 % 7.08 % 49.37 %

std : 2.69 % 3.58 % 3.39 % 2.95 %

rank : (3) (2) (4) (1)

ROSA with B2 : Ŝ
B2
1 Ŝ

B2
2 Ŝ

B2
3 ŜB2

cop

N
ew

d
a
ta

fo
r
X

2

xobs ∪ x
[•2]
extra

N2 = 500

mean : 31.51 % 14.26 % 5.31 % 44.68 %

std : 3.07 % 3.23 % 1.80 % 2.06 %

rank : (2) (3) (4) (1)

N2 = 103

mean : 33.61 % 10.37 % 6.42 % 49.58 %

std : 3.52 % 2.09 % 2.43 % 3.40 %

rank : (2) (3) (4) (1)

ROSA with B3 : Ŝ
B3
1 Ŝ

B3
2 Ŝ

B3
3 ŜB3

cop

N
ew

d
a
ta

fo
r
X

3

xobs ∪ x
[•3]
extra

N2 = 500

mean : 28.79 % 29.50 % 4.01 % 40.94 %

std : 3.51 % 2.36 % 2.41 % 2.11 %

rank : (3) (2) (4) (1)

N2 = 103

mean : 29.27 % 29.79 % 3.79 % 39.48 %

std : 3.33 % 3.29 % 2.74 % 2.32 %

rank : (3) (2) (4) (1)

Table 3: Qualitative validation of the ROSA results obtained from xobs thanks to data assimilation
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and the estimated failure probability P̂f
(

Xobs

)

become Ψw to comply with the notation changes:

Ψw : L
2(R)× . . .× L

2(R)× L
2(Hd) −−→

[

0, 1
]

F :=
d
⋃

j=1

{

f̂Xj

(

· |Xobs

)

}

∪

{

ĉU
(

· |Xobs

)

}

7−−→ P̂f
(

Xobs

)

. (60)

Two major difficulties arise from this situation. Firstly, the use of stochastic algorithms induces

an additional uncertainty in reliability assessment. Despite the appearance of this unwanted extra

uncertainty, the same computational workflow can still be applied to estimate Sobol indices. However,

the noise introduced by Rw may cause instability in the ROSA results. For a fixed dataset xobs, it

should be avoided that several runs of the same algorithm do not end up with substantially equivalent

results. For this reason, it must be checked that Sobol indices retain the same statistical properties,

especially in terms of dispersion. Secondly, if Rw is embedded within the “Pick-and-Freeze” estimation

scheme, the overall computational burden can no longer be afforded. To circumvent this pitfall, it will

be shown that the mathematical structure of importance sampling opens up possibilities in order to

perform ROSA at a reasonable computational cost.

4.1. Variance reduction with importance sampling

In reliability applications, the CMC estimator defined in Eq. (5) is most often inappropriate because

its coefficient of variation requires too many black-box evaluations before being lowered to an acceptable

level. Variance reduction can be achieved after replacing fX by an auxiliary PDF denoted by h [126].

Since its early introduction in the reliability community [127, 128], importance sampling (IS) is a

widely used reference technique for reliability analysis. One may write that:

Pf = EfX

[

1Df
(X)

]

= Eh

[

1Df
(X)

fX(X)

h(X)

]

, (61)

and the resulting IS estimator is then given by:

P̂ IS
f =

1

Ns

Ns
∑

i=1

1{Y (i)>T}
fX
(

X(i)
)

h
(

X(i)
) with











X(i) i.i.d
∼ h

Y (i) = φ
(

X(i)
)

. (62)

It is unbiased as long as h meets the following condition:

(

Df ∩ {x ∈ R
d : fX(x) > 0}

)

⊆ {x ∈ R
d : h(x) > 0} , (63)

but this does not necessarily enable variance reduction. For any auxiliary PDF h, one has:

V(P̂ IS
f ) =

1

N
Vh

(

1{φ(X)>T}
fX(X)

h(X)

)

, (64)
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and it can be easily proved [1] that the variance is minimized and becomes equal to zero when the

inner quantity is almost surely a constant scalar. As a consequence, the optimal sampling PDF is

obtained if h is the conditional PDF of X with respect to the failure domain:

hopt(x) =
1Df

(x)fX(x)

Pf
. (65)

Since the normalization constant coincides with the quantity of interest Pf , the optimal PDF cannot be

used unaltered. A problem for practitioners is to find a “suboptimal” candidate ĥopt that might be able

to replace hopt. In the literature, a considerable amount of highly relevant research works ambition to

provide a generic methdology to construct ĥopt. A first solution is to look for the best approximation

within a specific class of distributions [129, 130, 131]. For a given parametric model, a suboptimal

auxiliary PDF x 7−→ h(x | η⋆) can be identified with the cross-entropy algorithm [132]. However,

there are situations where making a parametric assumption may be seriously misleading. To break

the deadlock, learning hopt with a nonparametric method can be contemplated with a large range of

kernel-based techniques [133, 134, 135]. It is shown in [136] that the nonparametric approach allows

for a faster convergence to the target failure probability. A variant of the initial algorithm based

on weighted Gaussian kernel is proposed in [137] and will be used on several occasions thereafter.

However, it must be underlined that all what is stated from now on holds for any IS recipe because

the key element of the computational strategy only rests on having access to an efficient auxiliary

distribution ĥopt.

4.2. Computational gains with the “inverse-reverse” trick

As it was explained in Section 3.4, the proposed ROSA method relies on the estimation ofMt failure

probabilities by means of Rw. Let
{

ĝ(i)
}Mt

i=1
be the sequence collecting all input PDFs generated by

the “Pick-and-Freeze” estimation scheme. For each reassembled joint distribution ĝ(i), the optimal

auxiliary distribution h
(i)
opt is:

h
(i)
opt(x) =

1Df
(x) ĝ(i)(x)

P
(i)
f

with P
(i)
f = Eĝ(i)

[

1Df
(X)

]

. (66)

After constructing an auxiliary distribution ĥ
(i)
opt, an IS estimator for P

(i)
f comes naturally:

P̂
(i)
f =

1

Ns

Ns
∑

k=1

1{Y (k)>T}
ĝ(i)
(

X(k)
)

ĥ
(i)
opt

(

X(k)
)

with











X(k) i.i.d
∼ ĥ

(i)
opt

Y (k) = φ
(

X(k)
)

. (67)

IS is a much better practice than CMC but it is still insufficient from a computational standpoint

especially if one plans to repeat sequentially the reliability algorithm Rw in order to perform ROSA.

The algorithm resulting from parallel CMC runs is illustrated on Figure 8a. The analogous situation
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in the event of parallel IS runs is reprensented on Figure 8b. In this situation, the total number Ntot

of calls to φ(·) is given by:

Ntot =Mt ×NIS , (68)

where NIS is the number of calls to φ(·) at each IS run. If ĥopt is provided, NIS = Ns since φ(·) is

only used to compute the outputs Y (k) associated to the input particles X(k). On the contrary, when

ĥopt is unknown, an adaptive method has to be used. It implies several resampling steps in order to

displace an initial set of input particles towards the failure region Df . At the end of this sequential

exploration, the user is delivered both ĥopt and the input-output samples
(

X(k), Y (k)
)

produced by

the last resampling step. In this situation, NIS = Niter ×Ns with Niter being the number of iterations

before the stopping criterion is enabled. A more detailed expression of Eq. (68) follows:

Ntot = (d+ 2)×M ×Niter ×Ns . (69)

In order to secure a small coefficient of variation, it is often decided to take Ns ≥ 103. Remembering

that M ≥ 103, the total number of calls to φ(·) is such that Ntot ≥ K × 106 where K is a multiplying

factor that inflates when either d increases or Pf decreases. So many calls to φ(·) cannot be afforded.

As a consequence, running an IS algorithm for every input PDF ĝ(i) is not a computationally viable

solution. A remedy is provided by the so-called “inverse-reverse” trick.

Let us imagine that an IS algorithm is run once for a given input distribution ĝ(1). This produces

an auxiliary PDF ĥ
(1)
opt along with N independent input samples X(k) i.i.d

∼ ĥ
(1)
opt and their associated

outputs Y (k). It could be very convenient to recycle this material in order to estimated the failure

probabilities associated to other input PDFs. In this regard, one can notice that :

P
(i)
f = Eĝ(i)

[
1Df

(X)
]
= E

ĥ
(1)
opt

[
1Df

(X)
ĝ(i)(X)

ĥ
(1)
opt(X)

]
, (70)

and another IS estimator of P
(i)
f follows:

P̂
(i)
f =

1

Ns

Ns∑

k=1

1{Y (k)>T}
ĝ(i)

(
X(k)

)

ĥ
(1)
opt

(
X(k)

) with





X(k) i.i.d
∼ ĥ

(1)
opt

Y (k) = φ
(
X(k)

) . (71)

This one is not suboptimal but it offers the advantage of being computable with all the material

delivered by the first IS run. The expected value of P̂
(i)
f stays equal to P

(i)
f but the variance is not at

the lowest achievable level, which may arouse skepticism on whether this method is really accurate.

This trick has already been used in previous works [138, 139] to update a quantity of interest or to

construct a confidence interval. The numerical efficiency of the modified IS estimator greatly depends

on how close ĥ
(1)
opt and ĥ

(i)
opt are. Figure 8c makes it clear how the “inverse-reverse” trick allows to carry
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out ROSA within reasonable CPU time. Seeing that only one IS run is accepted, the total number of

calls to φ(·) is now simply limited to:

Ntot = Niter ×Ns . (72)

4.3. Enhanced robustness with multiple importance sampling

Whether the “inverse-reverse trick” enables worthwhile computational gains, the main drawback is

that it also contributes to deteriorate the robustness of the ROSA procedure. In fact, the systematic

use of ĥ
(1)
opt for all IS estimates increases the risk of encountering cases where the estimator P̂

(i)
f defined

in Eq. (71) has a large variance. To overcome this pitfall, a natural idea is to involve a small number

of auxiliary PDFs instead of only one. For instance, if the IS algorithm is run for the n first PDFs ĝ(i),

one may write:

∀ 1 ≤ i ≤ n , P̂
(i)
f =

1

Ns

Ns∑

k=1

1{

Y
(k)
i >T

}

ĝ(i)
(
X

(k)
i

)

ĥ
(i)
opt

(
X

(k)
i

) with





X
(k)
i

i.i.d
∼ ĥ

(i)
opt

Y
(k)
i = φ

(
X

(k)
i

) . (73)

The input samples simulated with ĥ
(i)
opt are now denoted by X

(k)
i so as to prevent any confusion. The

associated output samples become Y
(k)
i accordingly. The issue is then to understand how to combine

all auxiliary PDFs within a low-variance estimator that could be applied for any other distribution

ĝ involved in the ROSA procedure. Multiple importance sampling (MIS) consists in introducing a

weighting scheme to improve robustness [35, 140] and leads to consider the following estimator:

P̂wf =
1

Ns

Ns∑

k=1

n∑

i=1

wi
(
X

(k)
i

)
1{

Y
(k)
i >T

}

ĝ
(
X

(k)
i

)

ĥ
(i)
opt

(
X

(k)
i

) with





X
(k)
i

i.i.d
∼ ĥ

(i)
opt

Y
(k)
i = φ

(
X

(k)
i

) . (74)

The weighting function wi(·) accounts for the influence that must be given to samples coming from the

auxiliary distribution ĥ
(i)
opt. P̂

w
f remains unbiased only if the weighting functions wi(·) are a partition

of unity, that is:

∀x ∈ R
d,

n∑

i=1

wi(x) = 1 , (75)

Among the proposal for weighting functions, the balance heuristic (BH) is one of the most studied but

many others have also been used [141]. For BH, the idea is to compute the ratio between ĥ
(i)
opt and the

sum of all auxiliary PDFs:

wBH
i (x) =

ĥ
(i)
opt(x)

n∑
l=1

ĥ
(l)
opt(x)

. (76)

The MIS estimator defined in Eq. (74) then becomes:

P̂BH
f =

1

Ns

Ns∑

k=1

n∑

i=1

1{

Y
(k)
i >T

}

ĝ
(
X

(k)
i

)

n∑
l=1

ĥ
(l)
opt

(
X

(k)
i

) with





X
(k)
i

i.i.d
∼ ĥ

(i)
opt

Y
(k)
i = φ

(
X

(k)
i

) . (77)
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Figure 8: Illustration of four computational strategies to perform ROSA
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In the particular case of the BH, MIS is equivalent to IS performed with the uniform mixture ĥn of

the auxiliary PDFs coming from the n initial IS runs:

P̂BH
f =

1

N ′

s

N
′

s∑

k=1

1{Y (k)>T}
ĝ
(
X(k)

)

ĥn
(
X(k)

) with





N
′

s = n×Ns

X(k) i.i.d
∼ ĥn =

1

n

n∑

i=1

ĥ
(i)
obs

Y (k) = φ
(
X(k)

)

. (78)

To integrate MIS within the ROSA computational procedure already put in place, the following steps

must be contemplated:

1. Repeat B ◦ L in order to get n additional reassembled distributions ĝ
(i)
0 .

2. Run IS for each ĝ
(i)
0 and retrieve both ĥ

(i)
opt and optimal samples





X
(k)
i

i.i.d
∼ ĥ

(i)
opt

Y
(k)
i = φ

(
X(k)

) .

3. Construct the mixture distribution ĥn from the previous material.

4. Apply the MIS estimator P̂BH
f to all distributions ĝ(i) involved in the ROSA procedure.

To discern differences between the MIS method and the previous ones, the reader is invited to glance at

Figure 8d where a schematic illustration is proposed. Because n IS explorations of Df are undertaken,

the total number of calls to φ(·) evolves accordingly and Eq. (72) turns into:

Ntot = n×Niter ×Ns . (79)

The complete algorithm used throughout the extensive simulation study that follows is synthesized in

Figure 9. Of course, it contains the essential elements already presented in Figure 5 but more emphasis

is given here to the computational strategy that must be implemented to be able to estimate thousands

of failure probabilities.
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Figure 9: Illustration of all computational bricks when ROSA is performed with Rw
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4.4. Application to a Gaussian nonlinear test case

In this second test case, the theoretical failure probability Pf is no longer computable with FORM.

Using a stochastic reliability algorithms Rw such as IS is the only alternative to compute unbiased

estimates. The main purpose here is to show that the computational strategy based on MIS provides

the same results than the unaffordable sequential ROSA procedure which has the reliability algorithm

Rw restarted for each new input PDF.

4.4.1. Description

The performance function φ(·) includes now a nonlinear term:

Y = φ(X) = a1X1 + a2X2 + a3X3 + a4X1X2 , (80)

and the input vector X is again Gaussian with:

• Black box φ(·) : a1 = a2 = 2 ; a3 = a4 = 1

• Mean vector m : m1 = m2 = m3 = 3

• Covariance matrix Σ : σ2
1 = σ2

2 = σ2
3 = 1 ; σ12 = 0.5 ; σ13 = σ23 = 0.3

When T = 50, a brute-force CMC estimation of Pf (with 107 samples) leads to P̂CMC
f = 7.8 × 10−3.

Since X is still Gaussian, switching into the standard normal space remains straightforward and the

failure domain DNf may be written as follows:

DNf =
{
w ∈ R

d : H(w) = φ
(
T −1(w)

)
> T

}
with T −1(w) = Γw +m and Σ = ΓΓ

⊤ . (81)

4.4.2. Data-driven reliability assessment

A Gaussian dataset xobs is simulated with GX but the underlying distribution µX is pretended

unknown thereafter. Because of this assumption, the learning modelM is selected differently, just as a

shrewd analyst would have done. Each marginal distribution fXj
is learnt with KDE and the associated

bandwidth ĥj is computed through Silverman’s rule of thumb [142]. As far as copula estimation is

concerned, it is decided to keep learning a Gaussian copula for reason of simplicity and also because it

is expected to be sufficiently flexible when d = 3. Thus, the estimated joint PDF is reassembled from

the following components:

f̂Xj

(
· | Mj , z̃j

)
= f̂KDE

(
· | ĥj , z̃j

)
and ĉU

(
· | Mcop, ṽ

)
= ĉN

(
· | ρ̂

)
with ρ̂ = L̂L̂⊤ . (82)

Simplified notations are adopted with kj(·) and Kj(·) replacing respectively f̂KDE

(
· | ĥj , z̃j

)
and

F̂KDE

(
· | ĥj , z̃j

)
. Note that for such a learning modelM, data uncertainty is no longer the only source

of epistemic uncertainty. Indeed, estimating fX1 by KDE amounts to looking for the best representative

of fX1
within a functional space that intersects the class of all Gaussian distributions without being
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embedded into it. Therefore, the Sobol index Sj is supposed to measure both the uncertainty due to

data scarcity and the uncertainty due to deciding to learn fX1
with KDE. Moreover, it is worth noting

that model uncertainty is limited to the marginal distributions here. An example where it also affects

the copula distribution is examined in Section 5. For a given joint PDF that has been learnt according

toM, the failure domain in the standard normal space is described by:

D̂Nf =
{
w ∈ R

d : Ĥ(w) = φ
(
T̂ −1(w)

)
> T

}
. (83)

where the inverse Nataf transformation T̂ −1 = ψ1 ◦ ψ2 has been adapted to the KDE framework in

the following manner:

T̂ −1 : R
3 −−−→ R

3 −−−→ R
3

w
ψ1
7−−−→ v = L̂w

ψ2
7−−−→ x with xj = K−1

j

(
Φ(vj)

) , (84)

where ψ1 introduces information about the estimated Gaussian copula and ψ2 transforms Gaussian

margins into KDE-like margins.

4.4.3. More about the theoretical values of Sobol indices

Just as in Section 3.5.3, the theoretical values of Sobol indices defined by Eq. (43) may be rewritten

according to how the estimated joint PDF is specified:

∀ 1 ≤ j ≤ d, Sj =
V

(
E

[
Pf

(
Zobs, ĥ, ρ̂

) ∣∣∣ f̂KDE

(
· | ĥj ,Z

[•j]
obs

)])

V

(
Pf

(
Zobs, ĥ, ρ̂

)) ,

Scop =
V

(
E

[
Pf

(
Zobs, ĥ, ρ̂

) ∣∣∣ ĉN
(
· | ρ̂

)])

V

(
Pf

(
Zobs, ĥ, ρ̂

)) ,

(85)

where ĥ :=
(
ĥ1, ĥ2, ĥ3

)
. All four similarities mentioned when dealing with the Gaussian linear test

case still hold here and hence it can be proved that S1 = S2. The theoretical values are estimated

with the “Pick-and-Freeze” scheme where all inputs training sets
{(

z
(i)
obs,v

(i)
obs

)}M
i=1

are simulated with

the underlying generators GZ and GV . The failure probabilities P̂
(i)
f are estimated sequentially with

an IS algorithm as already illustrated in Figure 8b. This approach is used despite what has been

previously said about its unworkable computational cost for realistic performance functions. There is

a clear reason for this. Since the objective is to estimate the theoretical Sobol indices for comparative

purposes, the methodology does not matter. Moreover, as φ(·) is still analytical, the number of times

it is evaluated is not of paramount importance. The chosen IS method consists in constructing a

Gaussian auxiliary PDF in the vicinity of the MPFP. Such a technique is then referred to as Gaussian

importance sampling (GIS). Further details may be found in Appendix B where it is fully explained

why GIS works well. Each GIS run is based on Ns = 5 × 104 input particles so that each estimator
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ROSA with GZ

/

GV : Ŝ1 Ŝ2 Ŝ3 Ŝcop

N = 300

mean : 42.97 % 43.60 % 3.45 % 12.10 %

std : 3.40 % 3.09 % 1.94 % 3.86 %

rank : (1) (1) (4) (3)

Table 4: Estimation of Sobol indices by means of the unknown generators GZ and GV

P̂
(i)
f might have the smaller possible variance. With such a computational effort, ROSA performed

with sequential GIS runs is intended to be as accurate as ROSA performed with sequential runs of a

deterministic reliability algorithm R that would be able to compute all exact value P
(i)
f . For a sample

size N = 300, Sobol indices are estimated Nrep = 50 times and the results are shown in Table 4. As

expected, one can notice that Ŝ1 ≈ Ŝ2. The rankings are very similar to those obtained in Table 1

for the Gaussian linear test case. However, the preeminence of both Ŝ1 and Ŝ2 has been strengthened

while Ŝcop no longer belongs to the leading group of indices.

4.4.4. Impact of the additional uncertainty induced by Rw

The aim of this subsection is to ensure that the forecast uncertainty introduced by Rw does not

deteriorate too much the estimation of Sobol indices. Let us go back to the situation faced in practice

where the only provided material is xobs. All ROSA procedures are conducted with the “inverse-

reverse” trick discussed in Section 4.2 and illustrated on Figure 8c. GIS is run once and the associated

auxiliary PDF x 7−→ ϕ3(x− x̂⋆1) is used to estimated all other failures probabilities:

P̂
(i)
f =

1

Ns

Ns∑

k=1

1{Y (k)>T}
(
X(k)

) ĝ(i)
(
X(k)

)

ϕ3

(
X(k) − x̂⋆1

) with





X(k) i.i.d
∼ N (x̂⋆1, I3)

Y (k) = φ
(
X(k)

) . (86)

It is straightforward to see that:

E

[
P̂

(i)
f

]
= P

(i)
f =

∫

Df

ĝ(i)(x) dx , (87)

V
(
P̂

(i)
f

)
=

Vi
Ns

=
1

Ns
V

(
1Df

(X)
ĝ(i)(X)

ϕ3(X − x̂⋆1)

)
with X ∼ N

(
x̂⋆1, I3

)
. (88)

V
(
P̂

(i)
f

)
mainly depends on how largeNs is. In Section 4.4.3, GIS is considered as a pseudo-deterministic

reliability algorithm because the use of Ns = 5 × 104 particles allows to eliminate almost all forecast

uncertainty. On the contrary, ifNs is lowered, the additional uncertainty due to the particles
{
X(k)

}Ns

k=1

rises. If so, the random variables P̂f (Z̃, Ṽ ) and Pf (Z̃, Ṽ ) may have very different distributions. In

practice, over the ROSA procedure, there is a risk that the sequence
{
P̂

(i)
f

}Mt

i=1
that gathers all

estimated failure probabilities and the sequence
{
P

(i)
f

}Mt

i=1
that gathers all exact failure probabilities
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lead to dissimilar conclusions. The ROSA algorithm is run Nrep = 10 times with Ns taking a decreasing

series of values. The results are shown in Table 5. When Ns = 5×103, the estimated Sobol indices are

very close to those obtained in Table 4 after conducting a ROSA procedure fueled by the underlying

generators GZ and GV and relying on sequential runs of the GIS algorithm. Three lessons may be

drawn from this:

1. The data-driven ROSA algorithm fulfills its initial objective because accurate estimates of the

theoretical indices are derived from the only knowledge of xobs. It is positive to note that using

the resampling mechanism B does not introduce any blatant bias.

2. Using a sampling-based reliability algorithm Rw does not disturb ROSA provided that the

additional uncertainty introduced by rare-event simulations remains small compared with the

initial learning uncertainty. For Ns = 5× 103, it can be easily verified that:

V
(
P̂

(i)
f

)
=

Vi
Ns

≪ V

(
P̂f (Z̃, Ṽ

))
where (Z̃, Ṽ ) ∼ (µ̂ZV [xobs])

⊗N . (89)

3. The computational strategy described by Eq. (86) is effective since it allows to perform ROSA

accurately with an alleviated simulation budget. With the “inverse-reverse” trick, the overall

computational cost only amounts to Ntot = N⋆ + Ns calls to φ(·) where N
⋆ is the number of

calls consumed by FORM to find x̂⋆1.

When Ns becomes smaller (for instance 100 ≤ Ns ≤ 103), the mean values of Sobol indices are still

almost unbiased. It emphasizes the fact that GIS is an appropriate method to address reliability

analysis even when it only incorporates a limited number of particles. In addition, it reinforces the

idea that using one single auxiliary PDF is quite enough. However, it must be observed that the

dispersion of the estimated Sobol indices tends to soar as Ns decreases. When less than Ns = 500

particles are used, the standard deviations exceed 10% for large indices. When Ns becomes even

smaller, the estimators suffer further deterioration. In such a situation, no one would venture trusting

the ROSA results and drawing definitive conclusions from them. A key idea is thus to understand that

ROSA can be performed with a sampling-based reliability method Rw provided that it is unbiased

and sufficiently robust.

Remark. In Table 5, all mean values and standard deviations are obtained after running Nrep times

the ROSA algorithm on the dataset under study. Unlike what was said in the concluding remark of

Section 3.5.4, it is here necessary to do so and it cannot be avoided. Dispersion is properly assessed

only if it takes into account the uncertainty due to bootstrap resampling and the uncertainty due to

the change of auxiliary PDF. If new sequences of training sets
{(

z̃(ik), ṽ(ik)
)}M
k=1

are derived from the

first sequence
{(

z̃(i), ṽ(i)
)}M
i=1
, the first uncertainty is propagated but the second one is not. Therefore,
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ROSA with B : Ŝ1 Ŝ2 Ŝ3 Ŝcop

GIS

Ns = 5× 103

mean : 41.83 % 41.40 % 2.50 % 17.01 %

std : 3.20 % 3.02 % 1.40 % 3.66 %

rank : (1) (1) (4) (3)

Ns = 103

mean : 41.96 % 39.54 % 1.96 % 16.57 %

std : 6.90 % 5.68 % 1.57 % 3.20 %

rank : (1) (2) (4) (3)

Ns = 500

mean : 40.78 % 41.00 % 3.94 % 15.91 %

std : 9.28 % 8.45 % 2.29 % 3.25 %

rank : (2) (1) (4) (3)

Ns = 100

mean : 39.29 % 44.64 % 2.80 % 12.39 %

std : 18.26 % 19.23 % 1.62 % 3.89 %

rank : (2) (1) (4) (3)

Ns = 50

mean : 38.54 % 38.15 % 4.60 % 18.11 %

std : 12.14 % 12.82 % 2.15 % 5.60 %

rank : (1) (2) (4) (3)

Ns = 10

mean : 47.16 % 36.55 % 7.57 % 14.20 %

std : 33.29 % 30.97 % 8.34 % 11.37 %

rank : (1) (2) (4) (3)

Table 5: Impact on the ROSA results of a gradual decline in GIS robustness
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to succeed in propagating simultaneously both uncertainties, the only solution is to repeat the overall

ROSA procedure several times.

4.4.5. Comparison of several ROSA algorithms

The idea is now to verify whether the MIS approach is a trustworthy option in order to perform

ROSA. The simulation study is based on the dataset xobs that has already been used to produce the

results found in Table 5. An additional IS solution is introduced in this subsection. Indeed, a more

flexible way of constructing an auxiliary PDF might be to use the nonparametric adaptive importance

sampling (NAIS) algorithm designed in [137]. In this test case, for any input PDF ĝ(i), NAIS needs

Niter = 3 iterations to construct a weighted KDE estimate ĥ
(i)
opt of the optimal auxiliary PDF h

(i)
opt.

For comparative purposes, ROSA is performed in three different manners:

(St1) Sequential runs of FORM ⇒ Ntot = (d+ 2)×M ×N⋆ = 500× 103 ;

(St2) MIS based on n = 5 GIS runs ⇒ Ntot = n×NIS = n× (N⋆ +Ns) ≈ 25× 103 ;

(St3) MIS based on n = 5 NAIS runs ⇒ Ntot = n×NIS = n× (Niter ×Ns) = 75× 103 .

The computational costs are calculated with d = 3,M = 103, N⋆ = 102, Ns = 103 and Niter = 3. Each

scenario is repeated Nrep = 10 times and the results are presented in Table 6. It can be seen that the

choice of the reliability algorithm has little influence on the estimation of Sobol indices. The results

obtained with (St2) and (St3) are very close to the theoretical values. This shows that combining a MIS

strategy with either GIS or NAIS fulfills the declared objective. Even if the inner workings of these two

IS techniques are different, both are well adapted to the Gaussian nonlinear test case. NAIS is maybe

too sophisticated here and GIS seems to be a much easier way of performing reliability assessment. The

fact that both IS techniques behave in a similar way is positive because this highlights the fact that

any IS approach may be implemented within the ROSA procedure as long as it is sufficiently robust.

One can also notice that (St1) provides accurate estimates of Sobol indices. It is rather surprising

because it has been verified numerically that the FORM algorithm results in a slight overestimation of

Pf . In this nonlinear test case, the forecast error due to the linear approximation of the limit state in

the standard normal space is not large enough to impact the distribution of P̂f
(
Z̃, Ṽ

)
. This explains

why using FORM unexpectedly delivers the right results. Because of this, it is decided to apply the

ROSA algorithm to a physical test case where no information is provided about the input probabilistic

model and where φ(·) is much more complicated.
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ROSA with B : Ŝ1 Ŝ2 Ŝ3 Ŝcop

R
el

ia
b
il
it
y

a
lg

o
ri

th
m

R FORM

mean : 42.19 % 43.68 % 3.18 % 10.64 %

std : 3.99 % 3.70 % 1.53 % 3.92 %

rank : (2) (1) (4) (3)

Rw

GIS
E

x
p
lo

ra
ti

o
n
s n = 5

mean : 41.75 % 42.55 % 3.67 % 17.29 %

std : 2.63 % 3.53 % 2.82 % 3.32 %

rank : (2) (1) (4) (3)

NAIS n = 5

mean : 40.75 % 43.93 % 3.23 % 17.95 %

std : 2.99 % 3.83 % 3.08 % 3.15 %

rank : (2) (1) (4) (3)

Table 6: Estimation of Sobol indices with the ROSA procedure by means of three reliability algorithms

5. Application to the buckling of a composite plate

5.1. Description

After experimenting the proposed methodology on two purely analytical test cases, let us now

consider a real-life simulation code φ(·) that provides information about the elastic behavior of a

laminate composite plate. Plated structures are major components in most industrial facilities and

have been widely studied in the literature to meet the needs of aerospace, civil and offshore engineering.

Depending on its dimensions, the plate may be poorly or higly sensitive to compressive loads. The

sudden loss of stability due to external compressive efforts is called buckling and may cause disastrous

outcomes in terms of structural safety [143]. Let us imagine a square plate (a/b = 1) simply supported

on its four edges. The vertical translation is blocked but all other five degrees of freedom remain

possible. A linear compressive stress Lx is applied on both sides of the plate and along the x-axis.

An illustration may be found on the left part of Figure 10. It is a rather classical configuration, for

example to study the buckling phenomenon occurring between the stiffeners of aircraft wing panels.

In this aeronautical context, the plate is seldom square but the assumption is kept here in order to

alleviate formulas. The plate is made of a 8-ply carbon/epoxy composite laminate. It consists of

an assembly of fibrous composite materials that are bonded together in order to acquire enhanced

physical properties, in particular outstanding stiffness-to-density ratios. The laminate plate presents

mirror symmetry, which means that its midplane is a symmetry plane of the layer stacking. In that

respect, two layers that are positioned at an equal distance of the midplane have their fibers oriented

in the same direction θ (see the last row in Table 7).

In the rest of this case study, the retained modeling implies two major assumptions: (a) there is

no coupling between the membrane behavior and the bending behavior, and (b) the bending behavior
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Figure 10: Buckling of a simply supported plate under uniaxial loading. The buckling mode is (p⋆, q⋆) = (2, 1). The

colormap corresponds to the displacement in the z-direction.

is orthotropic [144]. In order to determine resultant forces and moments, one has to construct the

following stiffness matrix: 


A B

B D


 ∈ R

6×6 (90)

whereA ∈ R
3×3 is the membrane stiffness matrix,B ∈ R

3×3 is the membrane/bending coupling matrix

andD ∈ R
3×3 is the bending stiffness matrix. For further details, the reader is invited to consult [145].

One has B = 0 because of what is assumed in (a) while at the same time the orthotropic behavior

highlighted in (b) allows to reduce to zero several coefficients in D. In addition, as D is a symmetric

positive definite matrix, its final expression only involves four relevant coefficients:

D =




D11 D12 D13

D21 D22 D23

D31 D32 D33


 =




D11 D12 0

D12 D22 0

0 0 D33


 =




X1 X4 0

X4 X2 0

0 0 X3


 . (91)

The focus is then exclusively on D since its coefficients suffice to predict whether or not buckling will

take place. A buckling mode is a wave-shaped deformation of the plate which is characterized by p

half-waves in the x-direction and q half-waves in the y-direction. An illustration for the particular case

where p = 2 and q = 1 is presented on the right part of Figure 10. For a given mode (p, q) ∈ (N⋆)
2
,

the buckling load is estimated using the following closed-form solution :

N0(p, q) =
π2

p2a2

[
p4D11 + 2 p2q2 (D12 + 2D3) + q4D22

]
. (92)

The buckling factor Λp,q associated to a given buckling mode (p, q) is the ratio between its critical load

and the actual applied load:

Λp,q =
N0(p, q)

Lx
. (93)
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It may be seen as a factor of safety that indicates how many times Lx has to be multiplied to result

in the specified buckling mode. In case buckling happens, the plate adopts the mode (p⋆, q⋆) that

corresponds to the minimum buckling factor over all possible modes:

Λ := Λp⋆, q⋆ = min
p,q

Λp,q = φ(D) . (94)

For a given loading Lx, two typical situations are then encountered:




Λ > 1 ⇒ Buckling is not predicted.

Λ ≤ 1 ⇒ Buckling occurs.

From Eq. (93) and Eq. (94), it is straightforward to see that an increase in Lx lowers E
[
Λ
]
and raises

the failure probability P
{
Λ ≤ 1

}
. In this test case, as it is highlighted in the right-hand side of

Eq. (94), the performance function φ takes D as input and yields Λ as output. The relevancy of this

test case is mainly due to the fact that there is a lack of knowledge about the input probability measure

µD. However, basic notions in mechanics of composite materials allow to express the bending stiffness

matrix D in terms of better-known physical parameters. Thus, one has:

D = φ0

(
E11 , E22 , ν12 , G12 , e , Θ1 , . . . , Θ8

)
(95)

with φ0(·) another deterministic simulation code. All variables involved in the above equation are

assumed independent and they are specified in Table 7. One can therefore understand that aleatory

uncertainty on D is attributable to the combined effect of the dispersion observed on the elastic

properties of the ply material and the existence of small random errors in the ply orientations. At this

step, a notable assumption is to consider that all plies have exactly the same elastic behavior, hence

the same Young’s modulus and so on. Moreover, it is also assumed that the bending behavior remains

orthotropic in presence of those uncertainties, and the simplification brought in Eq. (91) still holds.

Input Description (Unit) Type Parameters

E11 Young’s modulus in fiber direction (MPa) N
(

m1, σ
2
1

)

m1 = 1.81× 105 σ1
m1

= 0.01

E22 Young’s modulus in transverse direction (MPa) N
(

m2, σ
2
2

)

m2 = 1.03× 104 σ2
m2

= 0.02

G12 Shear modulus (MPa) N
(

m3, σ
2
3

)

m3 = 7.17× 103 σ3
m3

= 0.04

ν12 Poisson’s ratio (1) N
(

m4, σ
2
4

)

m4 = 0.28 σ4
m4

= 0.01

e Thickness (mm) N
(

me, σ
2
e

)

me = 1.52 σe

me
= 0.002

Θi Fibers orientations (◦) U
(

[θi ± 2◦]
)

θi ∈ {45, 0,−45, 90, 90,−45, 0, 45}

Table 7: Probabilistic models chosen to represent aleatory uncertainties on physical variables

In this situation, the joint PDF fD can not be derived analytically but D can be simulated if the

state of knowledge provided in Table 7 is combined with Eq. (95). It is therefore possible to estimate
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Figure 11: Overview of uncertainty modeling for the buckling of a composite laminate plate.

Pf = P{Λ < 1} with the two-step sampling approach presented in Figure 11. A brute-force CMC

estimation thus gives P̂CMC
f = 4.6 × 10−3 when one has a = 103 mm and Lx = 485 N/mm. The

change of notation suggested in Eq. (91) and amounting to replace D ∈ R
9 by X ∈ R

4 becomes

effective in what follows in order to stick to the formalism used from the very start of this paper.

5.2. Construction of a probabilistic model for the joint distribution of bending stiffness coefficients

Within the established framework, the lack of knowledge about the underlying type of distribution

concerns here both the margins and the copula. KDE is again used to learn all marginal distributions.

Unlike what was done in Sections 3.5 and 4.4 where a Gaussian copula is estimated with MLE, copula

estimation is here conducted differently since there is no reason to believe that the whole dependence

structure in H4 is well described by such a light-tail copula family. To enable an accurate and flexible

assessment of the distribution tails, it is preferred to switch to regular vine copulas (R-vines). They

are one popular solution (among many others) to tackle copula estimation in higher dimension [146].

Many recent works insist on their usefulness to grasp most intricacies existing within a multivariate

dependence pattern [75, 147, 148]. Their tree-based structure responds to the lack of polymorphism

observed on both elliptical and Archimedean copulas. Using R-vines is of great interest in this study

because learning uncertainty is likely to affect at the same time: (a) the tree structure T̂ , (b) the
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pair-copula families F̂ and (c) their associated parameters θ̂. Over the ROSA process, several R-vine

models are thus expected to be observed under the effects of learning uncertainty. To recapitulate, the

joint PDF of bending stiffness coefficients can be estimated with the following learning model:

f̂Xj

(
· | Mj , z̃j

)
= f̂KDE

(
· | ĥj , z̃j

)
and ĉU

(
· | Mcop, ṽ

)
= ĉRV

(
· | T̂ , F̂ , θ̂

)
. (96)

5.3. Results

A small-sized dataset xobs ∈ R
N×d is set up. It is compound of N = 300 simulated bending stiffness

matrices which are reduced to their d = 4 relevant coefficients. The ROSA algorithm based on MIS

is applied Nrep = 10 times and the averaged values are presented in Table 8. The settings validated

beforehand are kept unchanged for this test case. In particular, M = 103 bootstrap replications are

simulated to fuel the “Pick-and-Freeze” estimation scheme A. Regarding Rw, n = 5 NAIS runs lead

to an auxiliary PDF ĥn with the MIS method. As each NAIS run is based on Ns = 5 × 103 input

particles and requires Niter = 3 iterations to be able to construct ĥ
(i)
opt, the total number of calls to φ(·)

is given by Eq. (79) and is equal to:

Ntot = n×Niter ×Ns = 5× 3× (5× 103) = 75× 103 . (97)

The copula distribution ĉU is the most influential component since it is responsible for more than a

half of the variance observed on the reliability estimator P̂f
(
Z̃, Ṽ

)
. The next two most influential

components are f̂X4
and f̂X1

. On the contrary, f̂X2
and f̂X3

have much smaller indices. Moreover,

the standard deviations of all Sobol indices remain at the same low level than in the previous cases.

This provides further support for the claim that the sensitivity indices computed with the ROSA

algorithm only quantify the impact of the epistemic uncertainties conveyed by statistical learning.

Those indices are not subject to the undesirable uncertainty coming from how well ĥn is trained. The

results collected in Table 8 give further proof of the attention that must be paid to copula estimation

in reliability analysis. In this particular case where the copula distribution is the main contributor

for uncertainty in reliability assessment, targeted data assimilation no longer makes sense. Indeed, if

one is willing to collect additional data for the copula, a prerequisite is always to collect additional

joint observations in R
d. If such an operation is undertaken, additional observations are then also

available to improve the state of knowledge about all marginal distributions. In that way, if the copula

is identified as the leading entity in the propagation of epistemic uncertainties, the practitioner has

to face a dilemma. On the one hand, a practical expedient may consist in collecting observations for

the next most influential margin. However, there are strong concerns that variance reduction will be

barely visible. On the other hand, one has to prospect for other joint observations in order to create

a larger dataset, which is often a time-wasting process.
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ROSA with B : Ŝ1 Ŝ2 Ŝ3 Ŝ4 Ŝcop

xobs

N = 300

mean : 20.95 % 15.08 % 7.84 % 23.65 % 38.51 %

std : 1.54 % 1.57 % 1.02 % 3.14 % 3.10 %

rank : (3) (4) (5) (2) (1)

Table 8: Sobol indices for the simulation code Λ = φ(D).

Conclusion

This paper describes a global data-driven ROSA procedure which is able to quantify the amount of

epistemic uncertainty conveyed on the failure probability P̂f by the different parts of a copula-based

distribution inferred from the available data (margins and copula). The situation corresponding to

exact failure calculation and estimation via simulation-based algorithms are addressed. The computed

global ROSA indices take into account the combined effect of both data scarcity and model uncertainty

and allow to identify which element of the joint distribution (margins or copula) have to be refined

in order to decrease the uncertainty affecting reliability assessment. The efficiency of the method is

illustrated on analytical test cases and a real-world case study relative to the buckling of laminar

plate. Straightforward further works will consist in coupling the proposed approach with an adaptive

strategy relying on the refinement of a small number of margins to reduce uncertainty in reliability

assessment. Furthermore, when the copula is identified as the most influential entity, one may wonder

how to improve the state of knowledge about the dependence structure without having to collect joint

observations. A technique developed by the same authors in [149] consists in looking for the pair-copula

that most impacts reliability assessment. However, this ROSA algorithm rests on the assumption that

all marginal distributions are prescribed. As this does not hold in the present context, some work has

to be done before achieving a synergetic combination of both ROSA procedures.
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Appendix A. Adaptation of the resampling strategy to enable data assimilation

Appendix A.1. Pseudo-code

Algorithm 4: Joint density estimation in presence of additional data for X1

Inputs:

xobs ∈ R
N1×d ⇒ initial dataset

x
[•1]
extra ∈ R

N2×1 ⇒ additional data for X1

Mj ⇒ distribution models for the margins fXj

Mcop ⇒ distribution model for the copula cU

◮ Concatenate all observations of X1 into one vector c1 := x
[•1]
obs ∪ x

[•1]
extra.

◮ Draw a (N1 +N2)-sample z̃1 with µ̂[c1].

◮ Learn f̂X1

(
· | M1, z̃1

)
.

forall j ∈ {2, . . . , d} do

◮ Extract the j-th column cj := x
[•j]
obs .

◮ Draw a N1-sample z̃j with µ̂[cj ].

◮ Learn f̂Xj

(
· | Mj , z̃j

)
.

◮ Compute the rescaled dataset ûobs from xobs and x
[•1]
extra as follows:

û
(i)
1 =

1

N1 +N2 + 1

N1+N2∑

k=1

1{

c
(k)
1 ≤ x

(i)
1

} and ∀ j 6= 1, û
(i)
j =

1

N1 + 1

N1∑

k=1

1{

x
(k)
j ≤ x

(i)
j

}

◮ Draw a N1-sample ṽ with µ̂[ûobs].

◮ Learn ĉU
(
· | Mcop, ṽ

)
.

Outputs:

f̂Xj

(
· | Mj , z̃j

)
⇒ estimated marginal distributions

ĉU
(
· | Mcop, ṽ

)
⇒ estimated copula distribution

f̂X
(
· | M, z̃, ṽ

)
⇒ estimated joint distribution after reassembling

Appendix A.2. Matrix manipulations

The resampling mechanism used to assimilate new observations of X1 is denoted by B1 and obeys

the following scheme :

B1 : R
N1×d × R

N2 −→ R
N1+N2 × R

N × . . .× R
N ×

[
0, 1

]N

xobs x
[•1]
extra 7−→ z̃1 z̃2, . . . , z̃d ṽ

.
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)

Figure A.12: Resampling mechanism B1 adapted from B in order to assimilate additional observations of X1
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Appendix B. Gaussian Importance Sampling (GIS)

In Section 4.4, the performance function φ(·) is given by:

Y = φ(X) = a1X1 + a2X2 + a3X3 + a4X1X2 ,

and any estimated input PDF may be denoted by f̂X
(
· | z̃, ĥ, ρ̂

)
since it is reassembled from:

f̂Xj

(
· | Mj , z̃j

)
= f̂KDE

(
· | ĥj , z̃j

)
and ĉU

(
· | Mcop, ṽ

)
= ĉN

(
· | ρ̂

)
.

The failure probability associated to the input PDF f̂X
(
· | z̃, ĥ, ρ̂

)
can be expressed as follows :

Pf
(
z̃, ĥ, ρ̂

)
=

∫

R3

1Df
(x)f̂X

(
x | z̃, ĥ, ρ̂

)
dx .

Let us imagine that one tries to estimate Pf
(
z̃, ĥ, ρ̂

)
with the CMC approach. This situation is

represented on Figure B.13a where no input particle hits the failure domain D̂Nf defined in Eq. (83). A

better strategy could be to sample in the vicinity of the MPFP. To achieve so, one option might be to

consider a Gaussian auxiliary distribution N (x̂⋆,Σ). Gaussian importance sampling (GIS) is deeply

investigated in [150, 151] where it is advised to take a diagonal covariance matrix Σ where the j-th

coefficient is roughly equal to V(Xj). In the context of Section 4.4, this yields to I3. In what follows,

it is accepted that using I3 as covariance matrix for the auxiliary PDF is an appropriate tuning. The

resulting GIS estimator is therefore provided by :

P̂f
(
z̃, ĥ, ρ̂

)
=

1

Ns

Ns∑

i=1

1{Y (i)>T}
f̂X

(
X(i) | z̃, ĥ, ρ̂

)

ϕ3

(
X(i) − x̂⋆

) with





X(i) i.i.d
∼ N (x⋆, I3)

Y (i) = φ
(
X(i)

) .

The reader is invited to have a look at Figure B.13b in order to intuitively understand why this change

of sampling distribution is actually effective. GIS is thus a two-step procedure including:

1. The computation of x̂⋆ through FORM by means of N⋆ black-box calls (N⋆ ≪ Ns).

2. The implementation of an IS methodology based on the auxiliary PDF x 7−→ ϕ3(x− x̂⋆).

At first sight, the GIS approach may seem very crude in order to construct a suboptimal auxiliary

distribution. It is indeed the case in general. However, it is quite enough for the very elementary

test case examined here. It is assumed that a1, . . . , a4 are positive and the following notations are

established:

γa = −
a2
a4

; δa = −
a1
a4

; ξa =
T + a2a4
a3a4

; κa(x1, x3) =
T − a1x1 − a3x3

a2 + a4x1
.
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(a) Crude Monte Carlo (CMC) (b) Gaussian Importance Sampling (GIS)

Figure B.13: Visualization of two sampling techniques in the standard normal space

After small efforts, one can see that the failure domain Df (in the physical space) may be divided into

four subdomains:

Df = {x ∈ R
d : φ(x) > T}

= (Df ∩ {x3 < ξa}) ∪ (Df ∩ {x3 > ξa}) ,

=
(
DA1

f ∪DA2

f

)
∪
(
DB1

f ∪DB2

f

)
,

which are defined by:

DA1

f := {x1 > γa avec x3 < ξa et x2 > κa(x1, x3)} ;

DA2

f := {x1 < γa avec x3 < ξa et x2 < κa(x1, x3)} ;

DB1

f := {x1 > γa avec x3 > ξa et x2 > κa(x1, x3)} ;

DB2

f := {x1 < γa avec x3 > ξa et x2 < κa(x1, x3)} .

The plane x3 = ξa separates the two subdomains DA1

f et DA2

f from the two subdomains DB1

f et DB2

f .

One may refer to Figure B.14 for an overview of the possible failure modes. Figures B.14a and B.14b

show how the profile of the limit state evolves on either side of the plane x3 = ξa. Unlike D
A1

f and

DA2

f that are fully disconnected, DB1

f and DB2

f are tangent along the plane x1 = γa. For the numerical

values chosen in Section 4.4, µ3 < ξa and this means that µ is located in the same half-space than the

subdomains DA1

f and DA2

f . Furthermore, the values assigned to µ1 and µ2 are such that µ is much
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(a) Cross-section plane x3 = α with α < ξa (b) Cross-section plane x3 = α with α > ξa

Figure B.14: Visualization of the failure domain Df in the physical space

closer to DA1

f than DA2

f . In view of this, it is quite reasonable to write that:

Pf =

∫

Df

fX(x) dx ≈

∫

D
A1
f

fX(x) dx . (B.1)

Because of its characteristics, fX only activates DA1

f and resorting to a unimodal auxiliary PDF is

therefore sensible.
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