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Abstract
Comparing probability distributions is at the crux of many machine learning algorithms. Maximum
Mean Discrepancies (MMD) and Optimal Transport distances (OT) are two classes of distances be-
tween probability measures that have attracted abundant attention in past years. This paper es-
tablishes some conditions under which the Wasserstein distance can be controlled by MMD norms.
Our work is motivated by the compressive statistical learning (CSL) theory, a general framework for
resource-efficient large scale learning in which the training data is summarized in a single vector
(called sketch) that captures the information relevant to the considered learning task. Inspired by
existing results in CSL, we introduce the Hölder Lower Restricted Isometric Property (Hölder LRIP)
and show that this property comes with interesting guarantees for compressive statistical learning.
Based on the relations between the MMD and the Wasserstein distance, we provide guarantees for
compressive statistical learning by introducing and studying the concept of Wasserstein learnability
of the learning task, that is when some task-specific metric between probability distributions can be
bounded by a Wasserstein distance.
Keywords: Optimal Transport, Kernel norms, Statistical Learning, Inverse problems
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1. Introduction

Countless methods in machine learning and data science rely on comparing probability distribu-
tions. Whether it is to measure errors between parametric models and empirical datasets or to
produce statistical tests, a recurring problem is to define loss functions that could faithfully quan-
tify the discrepancy between two probability measures π and π′. Divergences and metrics between
probability distributions are frequently used to address this problem and are at the core of numer-
ous works, ranging from signal processing (Kolouri et al., 2017), generative modeling (Arjovsky
et al., 2017; Genevay et al., 2018), supervised and semi-supervised learning (Frogner et al., 2015;
Solomon et al., 2014), fairness (Gordaliza et al., 2019), two-sample testing (Gretton et al., 2012) or
in information theory (Liese and Vajda, 2006). An important issue is the choice of such a metric, as
finding a suitable one is delicate and often depends on many criteria such as its associated topology,
its computational cost, the type of the problem being considered, the task at hand . . . Consequently
it is often of great interest to understand the links/relationships between them. Integral Probability
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Metrics (IPMs) introduced by (Mueller, 1997) (see also (Sriperumbudur et al., 2009, 2012)) offer
an important class of distances that take the following form:

dG(π, π′) := sup
g∈G
|
∫
gdπ −

∫
gdπ′| (1)

where π, π′ are appropriately integrable distributions and G is a class of real-valued functions param-
eterizing the distance. The choice of an adequate function class G whose generated IPM faithfully de-
scribes the “right notion” of discrepancy is not straightforward. One possibility is to choose G based
on the learning task, e.g. by considering functions g ∈ G that depend on the loss and the hypothesis
space. This produces task-specific pseudo-metrics1 between probability distributions, abreviated as
TaskMetric, and can be used, inter alia, to obtain bounds on the generalization error of a learning
task (Shalev-Shwartz and Ben-David, 2014; Reid and Williamson, 2011). Another possibility is to
rely on task-agnostic IPM and to choose G based on the prior knowledge that this class is appro-
priate for the task at hand. Notable examples of task-agnostic IPMs include the popular Maximum
Mean Discrepancies (MMD) (when G is the unit ball in a Reproducible Kernel Hilbert Space (RKHS)
(Berlinet and Thomas-Agnan, 2004)) and the 1-Wasserstein distance W1 (Villani, 2008) (when G is
the class of 1-Lipschitz functions). Both are attracting increasing interest from the machine learning
community due to their ability to handle the metric structure of the feature space e.g. see (Peyré
and Cuturi, 2019; Muandet et al., 2017) and references therein.

Our first contribution is to exhibit some relationships between task-specific metrics between prob-
ability distributions, MMD and Optimal Transport (OT) distances. We first give necessary and suf-
ficient conditions, on the kernel that defines the RKHS, under which the MMD can be bounded
by a Wasserstein distance. We study in a second step the other direction, more difficult to obtain,
which corresponds to finding the conditions under which the Wasserstein distance Wp can be upper-
bounded by an MMD with a “Hölder” exponent, that is, informally, when:

Wp(π, π
′) . MMDδ(π, π′) for some δ ∈]0, 1] (2)

Especially, we are interested in MMD associated to RKHS engendered by translation invariant (TI)
positive semi-definite (p.s.d.) kernels that are widely used in many machine learning (ML) applica-
tions and are at the core of many large-scale learning algorithms (Rahimi and Recht, 2008, 2007).
Despite some connections between MMD and regularized OT distances, such as the Sinkhorn diver-
gences (Feydy et al., 2019) or Gaussian smoothed OT (Nietert et al., 2021b; Zhang et al., 2021),
little is known regarding the relationships between non-regularized Wp and such MMD. We show
the bound (2) can not hold in full generality and that one needs to find additional constraints on
the distributions π, π′. This will be formalized by the means of a model set of distributions S, so that
(2) holds for every π, π′ ∈ S. We shed light on several controls of the type (2) depending on the
properties of this model set S and the TI kernel (see Section 4).

This study is motivated by the compressive statistical learning (CSL) framework whose aim is to
provide resource efficient large-scale learning algorithms (Gribonval et al., 2021a,b; Keriven et al.,
2018) and which heavily relies on MMD with TI kernels. Large-scale ML faces nowadays a number
of computational challenges, due to the high dimensionality of data and, often, very large training
collections. Compressive statistical learning is one remedy to this situation: its objective is: 1) to
summarize a large dataset X ∈ Rd×n, where d is the dimension and n the number of samples, into
a single vector s ∈ Rm or Cm with m� nd and 2) to rely solely on s to solve the learning task, such
as finding centroids in K-means or learning mixture models (Keriven et al., 2017, 2018; Gribonval
et al., 2021b). The generic idea behind compressive learning is that, for many tasks, we only need to
have access to informations from a “low-dimensional” subspace, captured by a well-designed sketch
vector s.

1. A pseudo-metric D satisfies all the axioms of a metric except (possibly) for separation. In other words, D is symmetric
D(x, y) = D(y, x), non-negative D(x, y) ≥ 0, satsifies the triangular inequality D(x, y) ≤ D(x, z) + D(z, y) and is
such that D(x, x) = 0 (but possibly D(x, y) = 0 for some x 6= y)

3
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Figure 1: The reasoning used in the paper to obtain compressive statistical learning guarantees.
(left) Given two distributions π, π′ on a model set S, our goal is to control some task-specific metric
TaskMetric(π, π′) that depends on the learning task (see Section 2). (middle left) First, in Section
3, we use an upper-bound TaskMetric(π, π′) . Wp(π, π

′) by introducing the notion of Wasserstein
learnability of the task. (middle right) Then, in Section 4 we show how to control the Wasserstein
distance by an MMD with a Hölder exponent δ ∈]0, 1],Wp(π, π

′) . MMDδ(π, π′). (right) Finally
in Section 5 we discuss how to control the MMD by the distance between the finite dimensional
sketches of the distributions A(π),A(π′) in Rm. The whole pipeline gives the Hölder LRIP property
which allows us to derive CSL guarantees (Section 2)

This framework requires specific statistical tools for establishing learning guarantees compared
to standard learning approaches. One of the main notion in this context is found in the Lower
Restricted Isometric Property (LRIP) which is a condition on the sketching operator that maps a
dataset to a sketch. However, this property is far from trivial to prove and is usually obtained by 1)
carefully designing a model set of distributions S, 2) finding a translation invariant kernel whose
MMD dominates TaskMetric (property being known as the Kernel LRIP) and 3) approximating this
MMD using random features (Gribonval et al., 2021a).

Based on the relationships between the MMD and the Wasserstein distance discussed above we
will show that a slightly different property, namely the Kernel Hölder LRIP, can be proved for a
wide range of tasks where it is natural to control TaskMetric by a Wasserstein distance (Wasserstein
learnability). In particular we prove that many unsupervised learning tasks such as compression-type
tasks (K-means/medians, PCA (Gribonval et al., 2021a)), generative learning tasks or supervised
learning tasks, such as regression and binary classification with Lipschitz regressors/classifiers, fall
into this category. From this study we will propose a property which generalizes the LRIP, namely the
Hölder LRIP, and we will show that this property also comes with interesting compressive statistical
learning guarantees. Figure 1 summarizes the whole reasoning used in this paper to establish these
CSL guarantees.

Organization of the paper We organize our work as follows: we start by presenting in Section
2 the compressive statistical learning framework which motivates our study. We introduce in this
section the different notations used in the rest of the paper and define the different concepts at stake
in CSL. We study a generalization of the LRIP, namely the Hölder LRIP, and we show that this prop-
erty has many advantages for CSL. In Section 3 we study the relations between task-specific metrics
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between probability distributions and the Wasserstein distance. We introduce the concept of Wasser-
stein learnability of the learning task and show that, when it holds, the excess risk can be bounded
by a Wasserstein distance. The goal of Section 4 is to study the relations between Wasserstein and
MMD. We provide conditions so that Wp .MMDδ holds for some δ ∈]0, 1]. Although Section 3 and
4 provide many important results for establishing CSL guarantees they are of independent interest
and a reader interested primarily in the connections between OT and MMD may skip Section 2 at
first reading. We conclude with in Section 5 by giving an instruction for the use of the different
results in the case of CSL.

1.1 Notations and definitions

Metric spaces. In this article the space X will always be a complete, separable metric space. The
relation d(x,y) . d′(x,y) hides a multiplicative constant, i.e. d(x,y) ≤ Cd′(x,y) with C > 0 that
does not depend on x,y. The class of L-Lipschitz functions from a metric space (X , dX ) to (Y, dY)
is denoted by LipL((X , dX ), (Y, dY)) simply by LipL(X ,Y) when it is clear from the context. If
f ∈ LipL((X , dX ), (Y, dY)) we have ∀x,x′ ∈ X , dY(f(x), f(x′)) ≤ LdX (x,x′). The support of a
function f : X → R is denoted as supp(f) and is defined as the closure of {x ∈ X , f(x) 6= 0}. In the
following, ‖.‖2 denotes the `2 norm, vectors and matrices are written in bold. By abuse of notation
a vector in x ∈ Rd is also considered to be a column matrix. On a normed space (X , ‖.‖), the ball
centered at x0 ∈ X and with radius R > 0 is denoted B‖.‖(x0, R) or simply by B(x0, R) when it is
clear from the context.

Measures and probability distributions. We note P(X ) the set of probability measures on X .
M(X ) is the space of finite signed measures on X and M+(X ) is the space of non-negative finite
measures on X . For a probability distribution π ∈ P(Rd) which admits a density f w.r.t. the
Lebesgue measure on Rd we adopt the notation π � fdx. Given a probability distribution π ∈ P(X )
and a measurable function T : X → Y the pushforward operator # defines a probability measure
T#π ∈ P(Y) via the relation T#π(A) = π(T−1(A)) for every measurable set A in Y. In other
words, if X ∼ π is a random variable then Y = T (X) has for law T#π. The support of a probability
distribution is denoted as supp(π) and it is defined as the smallest closet set S such that π(S) = 1.

Integrability, Fourier transform and Sobolev spaces For a measurable space X and a Borel mea-
sure µ on X we note Lp(µ) the space of real-valued p-integrable functions w.r.t µ, i.e. that satisty∫
X |f(x)|pdµ(x) < +∞. When X = Rd we note Lp(Rd) the space of p-integrable functions with

respect to the Lesbegue measure. For a integrable function f ∈ L1(Rd) we note f̂(ω) = F [f ](ω) =∫
Rd e

−iω>xf(x)dx its Fourier transform. The Fourier transform of a non-negative finite measure
µ ∈ M+(Rd) is defined for ω ∈ Rd by µ̂(ω) :=

∫
Rd e

−iω>xdµ(x). We recall some concepts related
to Sobolev spaces and we refer to (Adams and Fournier, 2003) for a more detailed description.
A multi-index is a tuple of non negative integers: α = (α1, · · · , αd) where αi ∈ N. We define
|α| = α1 + · · · + αd the order of α, α! = α1 · α2 · · ·αd. For x ∈ Rd we adopt the notation
xα = xα1

1 · x
α2
2 · · ·x

αd
d . For a function φ ∈ Cs(Rd) we adopt the notation ∂αφ = ∂|α|φ

∂x
α1
1 ···∂x

αd
d

for

|α| ≤ s. For a function u ∈ L1,loc(Rd) we use the same notation ∂αu for its weak derivative which
satisfies

∫
(∂αu)φdx = (−1)|α|

∫
u(∂αφ)dx for all φ ∈ C∞c (Rd) (smooth functions with compact sup-

port). Recall that if u is differentiable in the conventional sense then its weak derivative is identical
to its conventional derivative. In the following we use the following definition of the Sobolev norm:

‖u‖W s,p(Rd) :=

∑
|α|≤s

∫
Rd
|∂αu(x)|pdx

1/p

(3)

5



VAYER AND GRIBONVAL

This norm makes sense, i.e. ∂αu exists in the conventional or weak sense, as soon as u ∈ L1,loc(Rd)
or when u ∈ Cs(Rd). The Sobolev space W s,p(Rd) of functions is defined as the space of functions
u ∈ Lp(Rd) such that ‖u‖W s,p(Rd) < +∞.

2. From statistical learning to compressive statistical learning

In this section we present the main objective of the compressive statistical learning theory by first
introducing the main concept of statistical learning.

2.1 A gentle introduction to the notations: statistical learning

Statistical learning is a formalism that offers many tools to study the guarantees of learning algo-
rithms. The problem is usually expressed as follows: given a collection of data (xi)i∈[[n]], where xi is
a sample in the data space X , how do we select a hypothesis h ∈ H (whereH is called the hypothesis
space) that best performs the task at hand ? For supervised learning problems, e.g. in the context
of classification, the samples are tuples xi = (zi, yi) where zi is generally a vector in Rd and yi is a
label in a space Y such as {+1,−1} in the context of binary classification. The learning algorithm
aims here at producing a classifier i.e. a function h ∈ H which takes as input a sample zi and out-
puts a label, which should be close to yi, the true label of the sample. For unsupervised learning
problems one may desire to faithfully summarize the collection of samples by reducing its size, or to
find suitable representatives of this collection. As an illustrative example of unsupervised learning
problem we can think of K-means where one wishes to select a set of centroids, h = (c1, · · · , cK)
with ci ∈ X = Rd, that best represents our dataset.

In all of these problems the ideal hypothesis minimizes a certain risk which provides a perfor-
mance measure. It is most of the time defined with the help of a loss function ` : X ×H → R which
takes as input a sample and a hypothesis (x, h) and returns a scalar value `(x, h). To illustrate, in
K-Means this loss is defined by `(x, h = (c1, · · · , cK)) = mini∈[[k]] ‖x − ci‖22 that is the (squared)
distance between x and its closest centroid. In the context of linear regression the loss is defined as
`(x = (z, y), h = θ) = (y − θ>z)2 where y ∈ R is the value to predict, h = θ ∈ Rd is the parameters
to choose and z ∈ Rd. Given a data-generating distribution π ∈ P(X ), i.e. the law under which our
samples are produced, most of the machine learning algorithms attempt to minimize the so-called
expected risk which is defined by:

R(π, h) = Ex∼π[`(x, h)] (4)

This quantity reflects how effective is h on average on the data-generating distribution. As such,
the optimal hypothesis h∗ ∈ H is such that h∗ ∈ arg minh∈HR(π, h). The major difficulty is that
the generating distribution π is unknown and that we only have access to finitely many samples
(xi)i∈[[n]]. Methods such as empirical risk minimization (ERM) produce an estimated hypothesis
ĥ from the training dataset by minimizing the risk R(πn, ·) associated to the empirical probability
distribution πn = 1

n

∑n
i=1 δxi of the training samples. The excess risk , i.e. how good ĥ behaves

compared to h∗ is measured by the quantity R(π, ĥ)−R(π, h∗) where π is the true data-generating
distribution. One aims at guaranteeing, with high probability, the following bound on the excess
risk:

R(π, ĥ)−R(π, h∗) ≤ ηn (5)

where ηn decays as 1/
√
n or better. This simply reflects that we may expect a hypothesis that is

close to the best one as the training set grows, i.e. when we have access to enough data. To obtain a

6



CONTROLLING Wp BY MMD WITH APPLICATION TO CSL

control of the excess risk by ηn one often relies on the following bound2:

R(π, ĥ)−R(π, h∗) ≤ 2 sup
h∈H
|R(π, h)−R(πn, h)| (6)

Consequently, being able to control the right term in the previous equation is a central problem
in statistical learning and e.g. arguments involving Rademacher complexities can lead to the de-
sired bound in (5) (see e.g. (Shalev-Shwartz and Ben-David, 2014)). The term suph∈H |R(π, h) −
R(πn, h)|, that was reffered as TaskMetric(π, π′) in the introduction, defines a central quantity for
the rest of the paper and we introduce the following notation for π, π′ ∈ P(X ):

‖π − π′‖L(H) := sup
h∈H
|R(π, h)−R(π′, h)| (7)

The quantity ‖ · ‖L(H) defines a semi-norm3 on the space of finite signed measureM(X ) and is an
IPM by considering the space of functions G = L(H) := {x→ `(x, h);h ∈ H}. It is important to note
that this semi-norm is task-specific i.e. that it depends on the learning task via the function family
L(H). In the rest of the paper we will denote, as a language shortcut, L(H) as “the learning task”. As
described previously, when ‖π − πn‖L(H) ≤ ηn one can control the excess risk (5), thus controlling
‖ · ‖L(H) with other metrics that are more easily computable is of certain interest. When the loss
function is non-negative, i.e., when ` : X ×H → R+, we introduce for p ≥ 1 the semi-norm:

‖π − π′‖L(H),p := sup
h∈H
|R1/p(π, h)−R1/p(π′, h)| (8)

A control of this semi-norm implies a slighlty different control of the excess risk as ‖π− πn‖L(H),p ≤
ηn implies that R(π, ĥ)1/p − R(π, h∗)1/p ≤ ηn. In the following we will often write ‖π − πn‖L(H),p

without specifying that the loss function is non-negative and that p ≥ 1 (this will be implicitly
assumed).

Remark 1. Controlling the quantity ‖π − πn‖L(H) sometimes leads to pessimistic bounds on the excess
risk. A sharper bound can be produced by considering the following semi-norm ‖π − π′‖∆L(H) :=
suph,h0∈H [{R(π, h)−R(π, h0)} − {R(π′, h)−R(π′, h0)}] which is related to ‖π − π′‖L(H) via the
inequality ‖π − π′‖∆L(H) ≤ 2‖π − π′‖L(H) (Gribonval et al., 2021a). However in this work we choose
to focus only on the quantities defined in (7) and (8) and leave the analysis of ‖ · ‖∆L(H) for further
works.

2.2 Compressive statistical learning

In contrast to the empirical risk minimization approach described in Section 2.1 the principle of
compressive statistical learning is to learn a hypothesis ĥ by relying on a single sketch vector s ∈ Rm
instead of the full dataset (xi)i∈[[n]] (or equivalently the empirical distribution πn). This sketch aims
to summarize the properties of the empirical distribution that are essential for the learning task.
The benefits of this approach are numerous. First, as a side effect of its definition, the sketching
mechanism is adapted for distributed and streaming scenarios since the sketch of a concatenation of
datasets is a simple average of the sketches of those datasets. More importantly, when m � nd the
data are drastically compressed, which facilitates their storage and transfer. Finally, it has be shown
that sketching can preserve privacy (Chatalic, 2020; Balog et al., 2018) since the transformation
which turns a dataset into a single vector discard the individual-user informations.

2. This can be proved by noting that R(π, ĥ) − R(π, h∗) =
{
R(π, ĥ)−R(πn, ĥ)

}
+
{
R(πn, ĥ)−R(πn, h∗)

}
+

{R(πn, h∗)−R(π, h∗)}. Since R(πn, h∗) − R(πn, ĥ) ≤ 0 by definition of ĥ we have R(π, ĥ) − R(π, h∗) ≤
2 suph∈H |R(π, h)−R(πn, h)|

3. A semi-norm ‖.‖ on a vector space is non-negative, satisfies the triangle inequality, is such that: a) if x = 0 then ‖x‖ = 0
(but not necessarily the converse); and b) for λ ∈ R, ‖λx‖ = |λ|‖x‖.
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Figure 2: The principle of CSL (when X = Rd). From a dataset X with n samples (usually n is large)
we push each sample xi ∈ Rd to either Rm or Cm using a well-chosen feature function Φ(xi). The
second step is to average all the Φ(xi) to form a sketch of of the dataset s = 1

n

∑n
i=1 Φ(xi) (which is

convenient for distributed data and data streams). We finally learn a hypothesis ĥ ∈ H based only
the sketch whose size is driven by the learning task and is usually of the order of the number of
parameters to learn.

The compressive statistical learning framework requires two steps: 1) to compute a sketch vector
s ∈ Rm of sizem driven by the complexity of the learning task 2) to address a nonlinear least-squares
optimization problem on this sketch to learn the hypothesis ĥ that best solves our learning task. As
described latter, this step is a inverse problem in the space of measures and can related to the
generalized method of moments (Hall, 2005). We summarize in the following the main concepts
related to the CSL theory established in (Gribonval et al., 2021a,b) that will be useful to describe
our contributions.

The sketching operator Given a collection of data points X = (xi)i∈[[n]] where xi ∈ X , the CSL
procedure relies on an operator Φ which maps a sample xi ∈ X to either Φ(xi) ∈ Rm or Cm. Based
on this operator, a sketch of a dataset (xi)i∈[[n]] is defined via the vector:

s :=
1

n

n∑
i=1

Φ(xi) (9)

The main challenge is to find, depending on the task, an adequate Φ and a reasonable sketch size
m to learn the specific task (see Figure 2). As described in the next sections this can be achieved
by exploiting links with the formalism of linear inverse problems, compressive sensing, and low
complexity recovery (Gribonval et al., 2021a,b). Given Φ, the associated sketching operator is defined
by:

A : P(X )→ Rm or Cm

π → A(π) :=

∫
X

Φ(x)dπ(x)
(10)

This operator is linear in π in that A((1− λ)π + λπ′) = (1− λ)A(π) + λA(π′) for λ ∈ [0, 1]4. When
applied to the empirical distribution of the dataset, πn = 1

n

∑n
i=1 δxi we recover the sketch s as:

A(πn) = A(
1

n

n∑
i=1

δxi) =
1

n

n∑
i=1

Φ(xi) = s. (11)

4. We can extend A to the space of finite signed measureM(X ) where it is a linear operator in the usual sense.
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This sketch can be understood as a the average of generalized empirical moments on the training
collection based on the feature function Φ (Hall, 2005).

The model set and the decoder A central operator in CSL is the decoder that is, informally, an
operator ∆ that goes in the other direction thanA: it takes as input a vector and outputs a probability
distribution. Ideally we would like to be able to perfectly decode our original distribution from the
sketch, i.e. to find ∆ such that ∆ ◦ A = id. However, as described in (Gribonval et al., 2021a),
we can not hope to perfectly recover any distribution without assumptions. These assumptions
are formalized by the means of a model set S ⊆ P(X ) which describes a subset of probability
distributions where the decoding is perfect and robust to noise. A decoder is defined very generally
as an operator:

∆ : s→ ∆[s] ∈ S (12)

Suppose for the moment that we know how to sketch and how to decode i.e. we know A and ∆ (we
will describe in the next sections how to construct these operators). Given a sketch s of the dataset
and a decoder ∆ we can find a hypothesis based on the following risk minimization:

ĥ ∈ arg min
h∈H
R(∆[s], h) (13)

As such in CSL the risk R(∆[s], ·) acts as a proxy for the empirical risk R(πn, ·), and one hopes to
produce a hypothesis which is as good as the one obtained by empirical risk minimization.

How to obtain statistical guarantees ? Theoretical guarantees of CSL can be derived when the
operator A satisfies the so-called Lower Restricted Isometric Property (LRIP) (Gribonval et al., 2021a;
Keriven and Gribonval, 2018):

∀π, π′ ∈ S, ‖π − π′‖L(H) . ‖A(π)−A(π′)‖2 (14)

This property implies that two distributions in the model set S (i.e.̀‘simple” distributions for which
we hope that everything works “fine”) have the same sketches then they are “equal” with respect to
the task-dependent metric, i.e., they lead to the same risk for every hypothesis. When this condition
holds, the following decoder ∆ provides many interesting guarantees:

∆[s] ∈ arg min
π∈S
‖A(π)− s‖2 (15)

Indeed it can be shown (Gribonval et al., 2021a) that this decoder is ideal in the sense that it
satisfies the Instance Optimality Property (IOP) which allows to have a control on the excess risk for
all probability distributions. We will described this property more in depth in Section 2.3 and only
give now its consequence when we consider any data generating distribution π ∈ P(X ) associated
to the optimal hypothesis h∗ ∈ arg minh∈HR(π, h) and πn an empirical distribution associated to a
dataset drawn from π. Suppose that we have access only to a sketch of this empirical distribution
i.e. s = A(πn) with A that satisfies the LRIP. Consider the decoder ∆ defined in (15) and ĥ such that
ĥ ∈ arg minh∈HR(∆[s], h). Then it can be shown using the IOP property (Gribonval et al., 2021a):

‖π −∆[s]‖L(H) . Bias(π,S) + ‖A(π)−A(πn)‖2 (16)

where Bias(π,S) is a bias term (which will be properly defined latter) which is large when π is far
from the model set and vanishes when π ∈ S. This leads to the following bound on the excess risk:

R(π, ĥ)−R(π, h∗) . Bias(π,S) + ‖A(π)−A(πn)‖2 (17)

This inequality echoes the well-known risk decomposition in statistical learning: the first term
Bias(π,S) resembles the approximation error coming from the chosen model and ‖A(π)−A(πn)‖2
resembles the estimation error and typically converges to zero in O(n−1/2). Consequently, if the
model set S is such that the bias term is of the order of the true risk R(π, h∗) (this can be ensured
for certain learning tasks (Gribonval et al., 2021b)) then R(π, ĥ) converges to the order of the true
risk as n grows.
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A quick overview To summarize, the reasoning in CSL follows four important steps:

(i) Design a well chosen model set S. This choice is driven by the learning task and can be
achieved with prior knowledge on general properties of the true underlying distribution (such
as being a mixture of Gaussian distributions (Gribonval et al., 2021b)). The main idea here
is to choose S so that the bias term Bias(π,S) will be small or comparable to the true risk
R(π, h∗).

(ii) Find a sketching operator A which satisfies the LRIP (14) on S. This step is crucial: finding
a large class of model sets S for which it is possible to find such A is of particular interest.
Our paper focuses on this step, with a generalized different notion of LRIP for which we
establish generalized compressive learning guarantees (see Section 2.3).

(iii) Solve a Generalized Method of Moments problem associated to the decoder

∆[s] ∈ arg min
π∈S
‖A(π)− s‖2

This optimization problem is an inverse problem on the space of measure and is not trivial
to solve. When S is the space of mixture of k diracs (as in compressive K-means (Keriven
et al., 2017; Gribonval et al., 2021b)) this problem echoes to the Beurling LASSO which has
an extensive literature (see e.g. (Candes and Fernandez-Granda, 2012; Gao and Pavel, 2018;
Denoyelle et al., 2018) and references therein) and greedy methods like orthogonal matching
pursuit (OMP) were proposed (Keriven et al., 2018; Elvira et al., 2020). We do not cover this
aspect of sketching and leave it to further works.

(iv) Find a hypothesis ĥ which solves ĥ ∈ arg minh∈HR(∆[s], h). At first sight it seems that what
is gained by not doing an ERM is lost in solving arg minh∈HR(∆[s], h). The crucial point is
that, by definition ∆[s] is a probability distribution in the model set S and thus usually admits
a simple expression. Consequently finding ĥ with this procedure is most of the time negligible
compared to doing an ERM.

2.3 Extending compressive statistical learning guarantees with Hölder LRIP and Hölder IOP

Our first contribution is to define an extended notion of LRIP, namely the Hölder LRIP, and to show
it can be exploited to control the statistical performance of compressive statistical learning. The
Hölder LRIP is basically a relaxation of the LRIP with a Hölder exponant δ ∈]0, 1]. We will show that
this definition has many advantages, and also some drawbacks that we will discuss. More precisely
we consider the following definition:

Definition 1 (Hölder LRIP and IOP). Consider a learning task L(H), an exponent p ∈ [1,+∞[, and
a model set S. A sketching operator A : P(X ) → Cm satisfies the Hölder LRIP for δ ∈]0, 1] with error
η ≥ 0 and constant C > 0 if:

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C ‖A(π)−A(π′)‖δ2 + η (Hölder-LRIP)

A decoder ∆ : Cm → S satisfies the Hölder IOP for δ ∈]0, 1] with error η ≥ 0 and constant C > 0 if:

∀π ∈ P(X ),∀e ∈ Cm, ‖π −∆[A(π) + e]‖L(H),p ≤ Bias(π,S) + C ‖e‖δ2 + η (Hölder-IOP)

where Bias(·,S) : P(X )→ R+ is a function such that ∀π ∈ S, Bias(π,S) = 0.

The instance optimality property means that the decoder is able to retrieve (with error η) any
probability distribution when the modeling is exact (i.e. π ∈ S and e = 0). As this condition is rarely
met in practice, the IOP property also captures robustness to some noise e and modeling error. As
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such, the decoding error ‖π −∆[A(π) + e]‖L(H),p is bounded by the amplitude of the noise and the
bias term. The previous definition generalizes the classical LRIP and IOP property (including their
definition with an error term η (Gribonval et al., 2021a)) since both are met when δ = 1. It turns
out that both Hölder LRIP and IOP are equivalent as stated in the next result:

Proposition 1 (Equivalence of Hölder LRIP and IOP). Consider a learning task L(H), an exponent
p ∈ [1,+∞[ , and a model set S.

(i) If A satisfies (Hölder-LRIP) with error η ≥ 0 and constant C > 0 then the ”ideal” decoder defined
by:

∆[s] ∈ arg min
π∈S
‖A(π)− s‖2 (18)

satisfies (Hölder-IOP) with constant 2C > 0, error η ≥ 0 and

Bias(π,S) := inf
τ∈S
‖π − τ‖L(H),p + 2C‖A(π)−A(τ)‖δ2

(ii) Conversely if the decoder ∆ defined in (18) satisfies (Hölder-IOP) with error η ≥ 0, constant
C > 0 and Bias(π,S) defined above, then A satisfies (Hölder-LRIP) with constant C > 0 and
error 2η.

The proof is deferred to Appendix A.1. In this paper we always assume that the minimization
problem (18) has at least one solution and, as in (Bourrier et al., 2014), the result can be adjusted
to handle the case where the arg min defining the ideal decoder is only approximated to a certain
accuracy. This proposition states that if the Hölder LRIP is satisfied, then the decoder that returns
the element in the model that best matches the measurement A(π) is instance optimal. On the other
hand, if some instance optimal decoder exists, then the Hölder LRIP must be satisfied. In other
words, when the Hölder LRIP is satisfied, we know that a negligible amount of information is lost
when encoding a probability measure in S. As advertised the Hölder LRIP property allows us to
have some guarantees on the excess risk as described in the next theorem:

Theorem 1 (Compressed statistical learning guarantees) Consider a sketching operator A :
P(X ) → Cm that satisfies the Hölder LRIP with δ ∈]0, 1], constant C > 0 and error η ≥ 0.
Let π ∈ P(X ) be the true data generating distribution and πn an empirical distribution i.e.
πn = 1

n

∑n
i=1 δxi where xi ∼ π. Consider a sketch of the dataset s = A(πn) and ∆ the ideal

decoder ∆[s] ∈ arg minπ∈S ‖A(π)− s‖2
Let h∗ ∈ arg minh∈HR(π, h) be the optimal hypothesis and ĥ ∈ arg minh∈HR(∆[s], h). Then:

R(π, ĥ)1/p −R(π, h∗)1/p ≤ 2 Bias(π,S) + 2C‖A(π)−A(πn)‖δ2 + 2η (19)

where Bias(π,S) = infτ∈S ‖π − τ‖L(H),p + 2C‖A(π)−A(τ)‖δ2

Proof Using Proposition 1 we know that the decoder is instance optimal and satisfies the Hölder
IOP (Hölder-IOP). Consider e = A(πn) − A(π) we have by definition ‖π − ∆[A(π) + e]‖L(H),p ≤
Bias(π,S) + C ‖e‖δ2 + η which gives ‖π −∆[A(πn)]‖L(H),p ≤ Bias(π,S) + C ‖A(πn)−A(π)‖δ2 + η.
However as described in the introduction we have R(π, ĥ)1/p −R(π, h∗)1/p ≤ 2‖π −∆[s]‖L(H),p =
2‖π −∆[A(πn)]‖L(H),p which concludes the proof.

This result is essential: it illustrates that if we have carefully designed S so that the bias term is
of the order of R1/p(π, h∗) and if we know a sketching operator with the Hölder LRIP property then
R(π, ĥ) converges to the true risk as n grows (with some additive term η ≥ 0). The notable price to
pay between this result and the one presented in the context of the LRIP (δ = 1) is that while the
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usual guaranteed speed of convergence is O(n−1/2) here it becomes O(n−δ/2), which is slower. This
nevertheless comes with a benefit : as we will show the existence of a sketching operator satisfying
the Hölder LRIP with δ < 1 is easier to prove than with δ = 1.

2.4 The roadmap to the Hölder LRIP

As described in Theorem 1, guarantees on the excess risk can be achieved with a sketching operator
A that satisfies the Hölder LRIP. It is natural to wonder whether such operators exist at all, and
the second main contribution of this paper is to provide conditions ensuring their existence and
to exhibit them. In line with the approach developed in (Gribonval et al., 2021a), the core of our
reasoning is based on the theory of kernel embedding of probability distributions. We briefly describe
here the main notions of this theory and we refer to (Berlinet and Thomas-Agnan, 2004) for more
details about kernels.

Kernels and Maximum Mean Discrepancy. The theory of kernel has a long history when it comes
to learning problems or more generally to probability and statistics (Aronszajn, 1950; Berlinet and
Thomas-Agnan, 2004; Muandet et al., 2017). In the rest of the paper κ will denote a positive semi-
definite (p.s.d.) kernel on a space X 5. Such kernel defines a Hilbert space of functions from X to
C denoted by Hκ endowed with an inner product 〈·, ·〉Hκ . This space is called a Reproducing Kernel
Hilbert space (RKHS) and is defined by the reproducing property f ∈ Hκ if f(x) = 〈f, κ(·,x)〉Hκ for
any x ∈ X . Such a p.s.d. kernel also defines the so-called Maximum Mean Discrepancy (MMD) which
can be used to compare two probability distributions π ∈ P(X ) and π′ ∈ P(X ) via6:

‖π − π′‖κ :=

(
E

(x,x′)∼π
[κ(x,x′)] + E

(y,y′)∼π
[κ(y,y′)]− 2 Re( E

(x,y)∼π
[κ(x,y)])

)1/2

(20)

This quantity defines a semi-norm on the space of probability distribution and can be completed
to a proper norm when the kernel is characteristic (Simon-Gabriel et al., 2020; Sriperumbudur
et al., 2010), i.e. when ‖π − π′‖κ = 0 ⇐⇒ π = π′. The MMD admits also the characterization
‖π − π′‖κ = sup‖f‖Hκ≤1

|
∫
f(x)dπ(x) −

∫
f(x)dπ′(x)| and can be naturally extended to any finite

signed measure µ ∈M(X ) by defining the semi-norm ‖µ‖2κ :=
∫ ∫

κ(x,y)dµ(x)dµ(y).
An important family of kernels, namely translation invariant (TI) p.s.d. kernels, are particularly

interesting in our context. They are defined for X = Rd and when κ(x,y) = κ0(x − y) for some
continuous p.s.d. function κ0 : Rd → C 7 . This family encompasses many popular kernels such
as Gaussian, Laplacian or kernels of the Matèrn class (Sriperumbudur et al., 2010). The following
characterization of such kernels is due to the celebrated Bochner theorem (see Theorem 6.6 and
Theorem 6.11 in (Wendland, 2004)):

Proposition 2 (Bochner). Let κ0 : Rd → C. A function κ of the form κ(x,y) = κ0(x− y) where κ0 is
continuous is a p.s.d. kernel if and only if there exists a probability distribution Λ ∈ P(Rd) such that:

∀x ∈ Rd, κ0(x) = κ0(0)

∫
Rd
e−iω

>xdΛ(ω) (21)

If κ0 is continuous and in L1(Rd) then κ(x,y) = κ0(x − y) is a p.s.d. kernel if and only if ∀ω ∈
Rd, κ̂0(ω) ≥ 0.

5. A function κ : X × X → C is a p.s.d. kernel if it is Hermitian i.e. κ(x,y) = κ(y,x) and for all x1, · · · ,xn ∈ X and any
c1, · · · , cn ∈ C we have

∑n
i,j=1 cicjκ(xi,xj) ≥ 0.

6. The MMD ‖π − π′‖κ is finite for any probability distributions π, π′ for example when the kernel κ is bounded.
7. A function κ0 : Rd → C is p.s.d. if for all x1, · · · ,xn ∈ Rd and c1, · · · , cn ∈ C we have

∑n
i,j=1 cicjκ0(xi − xj) ≥ 0.

Such function is bounded |κ0(x)| ≤ κ0(0) and satisfies κ0(−x) = κ0(x) (Wendland, 2004, Theorem 6.2). In other
words if κ0 is even (κ0(−x) = κ0(x)) then κ0 and thus κ are real-valued.
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Bochner’s theorem shows that a translation invariant p.s.d. kernel κ (when properly scaled
to ensure κ0(0) = 1) can be written as an expectation κ(x,y) = Eω∼Λ[φ(x,ω)φ(y,ω)] where
Λ ∈ P(Rd) and φ(x,ω) = e−iω

>x. An interesting property of such kernels is that they can be
approximated using finite dimensional vectors by sampling from the frequencies ω ∼ Λ and ap-
proximating Eω∼Λ[φ(x,ω)φ(y,ω)] using a Monte-Carlo algorithm (Li et al., 2021; Sutherland and
Schneider, 2015; Sriperumbudur and Szabo, 2015). This property is at the core of methods that rely
on Random Fourier Features (RFF) (the functions φ(·,ωi)) to accelerate kernel learning algorithms
(Rahimi and Recht, 2008, 2007).

From kernels to sketching operator: the LRIP case So far the construction of a sketching opera-
tor that satisfies the LRIP (δ = 1) is mostly based on kernel embeddings of probability distributions.
The idea is, given a model set S and a task L(H), to follow these two steps (Gribonval et al., 2021a):

(i) Find a translation invariant p.s.d. kernel κ such that:

∀π, π′ ∈ S, ‖π − π′‖L(H) . ‖π − π′‖κ (Kernel-LRIP)

(ii) Use the random feature expansion of the kernel to define A : P(X ) → Cm using random
features. More precisely the sketching operator A is based on a feature function Φ defined by:

Φ(x) :=
1√
m

(φ(x,ω1), · · · , φ(x,ωm))>

where ωi ∼ Λ and φ(·,ωi) = exp(−i〈·,ωi〉). Based on the approximation properties of random
features and the “low-dimensionality” of S prove that for m sufficiently large:

∀π, π′ ∈ S, ‖π − π′‖κ ≈ ‖A(π)−A(π′)‖2 w.h.p (22)

As a consequence of steps (i) and (ii) we can prove that the sketching operator satisfies the LRIP
‖π − π′‖L(H) . ‖A(π) − A(π′)‖2 for any π, π′ ∈ S. However both (i) and (ii) are quite difficult to
establish and highly depend on the model set S. The first step (i) is called the Kernel LRIP and is
delicate to prove in general. Most of the existing theoretical work on compressive statistical learning
focuses on this property when the model set S is the space of well separated K-mixtures of diracs
or Gaussian distributions (Gribonval et al., 2021b; Keriven et al., 2018). As for it, the second step
(ii) can be proven using arguments from the convergence of empirical estimation of the MMD to the
true MMD but also requires a precise control of the covering numbers of the so-called normalized
secant set of S (Gribonval et al., 2021a). This can be also proven based on separability assumptions.

Hölder LRIP case: roadmap We will show that establishing CSL guarantees is easier in the context
of the Hölder LRIP. Our strategy is, given a model set S, to find A, κ and δ ∈]0, 1] such that we can
prove the following chain of inequality for π, π′ ∈ S:

‖π − π′‖L(H),p

Section 3

. Wp(π, π
′)
Section 4

. ‖π − π′‖δκ
Section 5

. ‖A(π)−A(π′)‖δ2 (23)

The next Section 3 is devoted to the first step of this roadmap and will be called Wasserstein
learnability. The motivation is twofold. First, we will show that this bound is quite natural for
several learning tasks and even holds universally, i.e. for S = Pp(X ). Second, in Section 4 we will
show that under some assumptions on the kernel and the model set, we can control the Wasserstein
distance by an MMD. Together with the Wasserstein learnability results this will prove that the task
metric ‖.‖L(H),p can be controlled uniformly on S by an MMD with an Hölder exponent δ ∈]0, 1] i.e.

∀π, π′ ∈ S, ‖π − π′‖L(H),p . ‖π − π′‖δκ
This will establish the so-called Kernel Hölder LRIP. Finally, in Section 5, we will conclude that when
the latter property holds and under additional assumptions on the model set a sketching operator
that satisfies the Hölder LRIP can be found, thus establishing CSL guarantees.
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3. Wasserstein learnability

As described, the first problem is to study how to control the task-metric ‖·‖L(H),p defined in (8) by a
Wasserstein distance. We briefly describe the main notions of OT and Wasserstein distance and refer
the reader to (Peyré and Cuturi, 2019; Santambrogio, 2015) for a more detailed discussion. Broadly
speaking the interest of Optimal Transport (OT) lies in both its ability to provide correspondences
between sets of points and its ability to induce a geometric notion of distance between probability
distributions thanks to the popular Wasserstein distance. Considering a complete and separable
metric space (X , D), the Wasserstein distance is defined for two probability distributions π, π′ ∈
P(X ) and p ∈ [1,+∞[ as:

Wp(π, π
′) = ( inf

γ∈Π(π,π′)

∫
X×X

D(x,y)pdγ(x,y))1/p (24)

where Π(π, π′) is the set of couplings of π and π′ i.e. the set of joint distributions γ ∈ P(X ×X ) such
that both marginals of γ are respectively π and π′. More formally Π(π, π′) = {γ ∈ P(X×X )|∀A,B ⊆
X , γ(A × X ) = π(A), γ(X × B) = π′(B)}. This quantity satisfies all the axioms of a distance and
endows the space:

Pp(X ) = {π ∈ P(X );

∫
X
D(x0,y)pdπ(y) < +∞ for some arbitrary x0 ∈ X} (25)

with a metric structure (Villani, 2008)8. When (X , D) is a normed space such as (Rd, ‖.‖2) the
space Pp(X ) is the space of probability distributions with p-finite moments

∫
X ‖x‖

p
2dπ(x) < +∞.

More generally, we can define OT problems by using a cost function c : X × X → R instead of a
distance D and by minimizing the quantity

∫
c(x,y)dγ(x,y) over γ ∈ Π(π, π′). With a slight abuse

of terminology we will denote the optimal value of both problems by the term Wasserstein distance
and we will specify, when necessary, the choice of the cost function. A coupling γ∗ minimizing (24)
is called optimal coupling and it provides a probabilistic matching of the points in the support of
the distributions π, π′ that can be used to find their correspondences. As such, computing an OT
distance equals to finding the most cost-efficient way to match one distribution to the other. An
important property of the Wasserstein distance rely on its dual formulation (Santambrogio, 2015).
It allows, among others, to characterize W1 by consider the following maximization problem:

W1(π, π′) = sup
f∈Lip1(X ,R)

|
∫
f(x)dπ(x)−

∫
f(y)dπ′(y)| (26)

where Lip1(X ,R) is the set of 1-Lipschitz function from (X , D) to R.
As introduced in the previous sections, our goal is to study compressive statistical learning in a

specific context, namely when the task-specific norm ‖π − π′‖L(H),p (Section 2) can be bounded by
the Wasserstein distance between π and π′. We formalize this in the following definition:

Definition 2 (Wasserstein learnability). Given a model set S ⊆ P(X ) and p ∈ [1,+∞[, we say that a
task L(H) is p-Wasserstein learnable w.r.t. S if there exists C > 0 such that:

∀π, π ∈ S, ‖π − π′‖L(H),p = sup
h∈H
|R1/p(π, h)−R1/p(π′, h)| ≤ CWp(π, π

′) (27)

We simply say that a task L(H) is p-Wasserstein learnable if the previous holds when S = Pp(X ).

At first sight the Wasserstein learnability seems a bit unexpected since the Wasserstein distance
does not take into account the underlying learning task L(H). However we will show below that
this property is quite natural and that several learning tasks satisfy this property independently of
the choice of the model set. In other words we will see that many tasks L(H) are p-Wasserstein
learnable. More importantly, the following result shows that this property is a necessary condition
for the LRIP when the sketching operator is based on random features:

8. The space Pp(X ) is here to formalize that Wp is finite and thus defines a proper distance.
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When do we have ∀π, π′ ∈ Pp(X ), ‖π − π′‖L(H),p .Wp(π, π
′) for some p ≥ 1 and task L(H)?

Condition on the task Condition on p Examples

Density estimation
Hypothesis: h ∈ RD, Risk:
R(π, h) = W1(π, πh)

p = 1 GAN, GMM (Section 3.1)

Compression type-tasks
Loss: `(x, h) = Dp(x, Ph(x)),
Ph is a projection function

p ≥ 1 PCA, K-means, K-medians,
NMF, Dictionary learning

(Section 3.2)

Regression tasks
Hypothesis: h Lipschitz

function, Loss: square-loss or
`p loss

p ≥ 1 Linear regression, regression
using MLP with bounded

params (Section 3.3 and 3.4)

Binary classification
Hypothesis: h Lipschitz
function, Loss: convex

surrogate
`(x = (z, y), h) = ϕ(yh(z))

p = 1 MLP classifier (bounded
params) + Lipschitz ouput

layer (Section 3.5)

Table 1: Summary of the differents results of Section 3.

Proposition 3 (Wasserstein learnability is necessary). Consider X = Rd, p ∈ [1,+∞[, and any
model set S ⊆ Pp(Rd). Consider a sketching operator A defined using random features Φ(x) =
(φ(x,ω1), · · · , φ(x,ωm))> where ωi ∼ Λ. Assume that each φ(·,ωi), i ∈ [[m]], is Li-Lipschitz with
respect to the metric used to define the Wasserstein distance. If A satisfies (Hölder-LRIP) with error
η = 0, constant C > 0 and δ = 1 then we have:

∀π, π ∈ S, ‖π − π′‖L(H),p ≤ C ′ Wp(π, π
′) (28)

where C ′ = C
√∑m

i=1 L
2
i . In other words, if A satisfies the LRIP (δ = 1) then L(H) is p-Wasserstein

learnable w.r.t. S.

The proof is deferred to Appendix B.2. In particular this proposition applies when φ(·,ωi) =
1√
m

exp(−i〈·,ωi〉) which is 1√
m
‖ωi‖2-Lipschitz with respect to the Euclidean norm. Consequently,

the Wasserstein learnability is necessary to the LRIP when Φ is defined using RFF as in (Gribonval
et al., 2021a). In other words, if one hopes that an LRIP property (δ = 1) holds, it is of interest to
understand what kind of model sets and tasks satisfy the Wasserstein learnability. This is the goal of
the next section and we provide a summary of the different results in Table 1.

Remark 2 (Particular case S = Pp(X )). A interesting special case of Definition 2 is when then task
is p-Wasserstein learnable. Then we can show that the excess-risk is always bounded by a Wasserstein
distance, i.e. if π ∈ Pp(X ) is any data generating distribution and πn the empirical distribution:

R1/p(π, ĥ)−R1/p(π, h∗) ≤ 2CWp(π, πn) (29)

where h∗ ∈ arg minh∈HR(π, h) is an optimal hypothesis and ĥ ∈ arg minh∈HR(πn, h) the hypothesis
found by empirical risk minimization9. Therefore, the smaller the Wasserstein distance between πn and
π, the better ĥ is.

9. This can be proved by noting that R1/p(π, ĥ) − R1/p(π, h∗) =
{
R1/p(π, ĥ)−R1/p(πn, ĥ)

}
+{

R1/p(πn, ĥ)−R1/p(πn, h∗)
}

+
{
R1/p(πn, h∗)−R1/p(π, h∗)

}
. Since R1/p(πn, h∗) − R1/p(πn, ĥ) ≤ 0 by
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3.1 Parametric density estimation with a Wasserstein loss

The most straightforward case of Wasserstein Learnability is when the risk itself can be rewritten
as a Wasserstein distance. In this section we consider the important statistical problem of fitting
densities, i.e. estimating the parameters of a chosen model that meaningfully fits the observed data.
A prime example of such a learning task is Gaussian Mixture Modeling (GMM) (Dasgupta, 1999)
where one wants to find a linear combination of K Gaussian density functions such that the true
distribution π is well described by this combination. We can also cite Generative Adversarial Netwoks
(GAN) (Goodfellow et al., 2014) where one wants to fit a distribution which is parametrized by a
neural network.

In all of these cases the hypothesis space H ⊆ RM is simply a set of parameters, e.g. containing
the variances and means of the Gaussian components and the terms of the linear combination for
GMM or describing the weights of the neural network for GANs. Formally the goal is to find h ∈
RM (i.e. the parameters) such that the parametrized distribution πh best fits the data generating
distribution π. To find the hypothesis h ∈ H a principled way is to consider the negative likehood
loss function `(x, h) = − log(πh(x)). In practice this corresponds to minimizing over h ∈ H the risk
R(π, h) = KL(π||πh) +H(π) where KL is the Kullback-Leibler divergence and H the entropy.

While this is the most common strategy, this approach is sometimes flawed so that alternatives
to the KL fitting criterion have emerged. As described in many contexts such as generative mod-
eling (Genevay et al., 2018; Frogner et al., 2015; Arjovsky et al., 2017) or deconvolution problems
(Nguyen, 2013; Rigollet and Weed, 2018; Caillerie et al., 2011; Scricciolo, 2017; Dedecker and
Michel, 2013) the Wasserstein distance, or its entropic regularized counterpart, is quite suited. The
problem of density estimation in these cases often boils down to minimize the following risks:

R(π, h) = W1(π, πh) (30)

which corresponds to finding the parametrized distribution πh closest to π in Wasserstein distance.
Using the metric property of the Wasserstein distance (triangle inequality) it is easy to check that for
any π, π′ ∈ P1(X ) and h ∈ H:

|R(π, h)−R(π′, h)| = |W1(π, πh)−W1(π′, πh)| ≤W1(π, π′) (31)

Hence we can conclude that ‖π − π′‖L(H) ≤ W1(π, π′) for any π, π′ ∈ P1(X ). In other words, the
problem of density estimation using the Wasserstein distance is Wasserstein learnable with constant
1, and this independently of the model set S = P1(Rd).

3.2 Compression-type tasks are Wasserstein learnable

A wide range of unsupervised learning tasks can also be recast as a learning problem which involves
the Wasserstein distance. Indeed many unsupervised problems such as K-means or PCA can be
shown to be performing exactly the task of estimating the data-generating distribution π in the
sense of the Wasserstein distance (Canas and Rosasco, 2012). Such problems will be very connected
with compression-type tasks as defined below :

Definition 1 (Compression-type tasks (Gribonval et al., 2021a)). Consider a metric space (X , D)
and a hypothesis space H. A task L(H) is called a compression-type task if the loss can be written as
`(x, h) = D(x, Ph(x))p where p ≥ 1 and Ph : X → X is a measurable projection function i.e. that
satisfies Ph ◦ Ph = Ph and D(x, Ph(x)) ≤ D(x, Ph(x′)) for all x,x′ ∈ X .

Notable examples of such tasks are PCA and K-means compression-type tasks. These two prob-
lems are actually related to a wider class of problems, namely k-dimensional coding schemes which

definition of ĥ we have R1/p(π, ĥ) − R1/p(π, h∗) ≤ 2 suph∈H |R1/p(π, h) − R1/p(πn, h)| ≤ 2CWp(π, πn) by
hypothesis.
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are particular types of compression-type tasks. As described in (Maurer and Pontil, 2010), one en-
counters these problems when X is a Hilbert space (with some norm ‖.‖) and when the loss can
be written as `(x, h) = miny∈Y ‖x − hy‖2 for Y ⊆ Rk a prescribed set of codes (or codebook) and
h : Rk → X is a linear map which defines a implementation of the codebook. It corresponds to a
projection function which satisfies ‖x − Ph(x)‖2 = miny∈Y ‖x − hy‖2. In particular, non-negative
matrix factorization (NMF) (Lee and Seung; Udell et al., 2016) and dictionary learning (also known
as sparse coding) (Lee et al., 2007; Mairal et al., 2009b,a) are other well known unsupervised learn-
ing methods which corresponds to projection-type tasks. As described in (Canas and Rosasco, 2012)
there are interesting connections between these problems and the Wasserstein distance. More pre-
cisely, we have the following lemma (see a proof in Appendix B.1 adapted to our notational context)

Lemma 1 (Canas and Rosasco (2012)). Consider S ⊆ X , p ∈ [1,+∞[ and π ∈ Pp(X ). Consider
PS : X → S, measurable, such that D(x, PS(x)) ≤ D(x,y) for all x ∈ X and y ∈ S. Then we have:

Ex∼π[D(x, PS(x))p] = W p
p (π, PS#π) (32)

Moreover for any ν ∈ Pp(X ) such that supp(ν) ⊆ S we have Wp(π, PS#π) ≤Wp(π, ν)

We recall that PS#π is the probability measure defined by PS#π(A) := π(P−1
S (A)) for every

measurable set A. Based on this lemma we now prove that compression-type tasks are Wasserstein
learnable, i.e. that the task-specific norm ‖.‖L(H),p can be bounded by a Wasserstein distance.

Proposition 4 (Compression-type tasks are Wasserstein learnable). Consider a metric space (X , D),
a hypothesis space H, p ∈ [1,+∞[ and a compression-type task L(H) as in Definition 1. Then we have:

∀h ∈ H, π ∈ Pp(X ),R(π, h) = W p
p (π, Ph#π) (33)

∀π, π′ ∈ Pp(X ), ‖π − π′‖L(H),p ≤Wp(π, π
′) (34)

Proof Let h ∈ H and Ph be the projection function. We denote S = {Ph(x);x ∈ X} the image of Ph.
Using Lemma 1 we have for π ∈ Pp(X ):

R(π, h) = Ex∼π[`(x, h)] = Ex∼π[D(x, Ph(x))p] = W p
p (π, Ph#π) (35)

Hence, for π, π′ ∈ Pp(X ) and h ∈ H:

R(π, h)1/p −R(π′, h)1/p = Wp(π, Ph#π)−Wp(π
′, Ph#π′) ≤Wp(π, Ph#π′)−Wp(π

′, Ph#π′)

≤Wp(π, π
′)

(36)

where we used Wp(π, Ph#π) ≤ Wp(π, ν) if supp(ν) ⊆ S (Lemma 1) and applied it to ν = Ph#π′

(since supp(Ph#π′) ⊆ S by definition of S). The last inequality is due the the triangle inequality. By
symmetry |R(π, h)1/p −R(π′, h)1/p| ≤Wp(π, π

′). Taking the supremum over h ∈ H concludes.

3.3 Linear regression tasks are Wasserstein learnable

Appart from the unsupervised learning tasks discussed above, some supervised tasks are also Wasser-
stein learnable. To begin with, let us consider the problem of linear regression with a scalar out-
put. This corresponds to X = Rd+1 and a loss function defined by `(x = (z, y),θ) = (y − θ>z)2

where z ∈ Rd,θ ∈ Rd and y ∈ R is the ouput. To write this loss in a more convinient way con-
sider the hypothesis space H = {θ = (θ,−1) ∈ Rd+1;θ ∈ Rd, ‖θ‖2 ≤ R} where ‖.‖2 is the `2

norm in Rd and R > 0. For θ ∈ H the loss can be rewritten as `(x,θ) = (θ
>
x)2 and we have

‖θ‖22,Rd+1 = ‖θ‖22 + 1 where ‖.‖2,Rd+1 is the `2 norm on Rd+1. It is easy to check by Cauchy Swartz
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in Rd+1 that
∣∣∣|θ>x| − |θ>x′|∣∣∣ ≤ √R2 + 1‖x− x′‖2,Rd+1 so that the loss `(·,θ) is the square of a Lip-

schitz function. This property will allow us to prove that the task is Wasserstein learnable by using
the following lower-bound on the Wasserstein distance:

Proposition 5 (Proposition 7.29 in (Villani, 2008)). Let (X , D) be a complete separable metric space,
p ≥ 1 and π, π′ ∈ Pp(X ). Then for any φ ∈ LipL(X ,R+):∣∣∣∣∣

(∫
φ(x)pdπ(x)

)1/p

−
(∫

φ(y)pdπ′(y)

)1/p
∣∣∣∣∣ ≤ LWp(π, π

′) (37)

With this theorem in mind, consider for θ ∈ H the function φθ : Rd+1 → R+ defined by φθ(x) =

|θ>x|. By the previous reasoning this function satisfies |φθ(x) − φθ(x′)| ≤
√
R2 + 1‖x − x′‖2,Rd+1

and thus is
√
R2 + 1-Lipschitz from (Rd+1, ‖.‖2,Rd+1) to R+. Using Proposition 5, we obtain:∣∣∣∣∣
(∫

φθ(x)2dπ(x)

)1/2

−
(∫

φθ(y)2dπ′(y)

)1/2
∣∣∣∣∣ ≤√R2 + 1W2(π, π′) (38)

for any π, π′ ∈ P2(Rd+1). It suffices now to notice that φθ(x)2 = (θ
>
x)2 = `(x,θ) so that

|(
∫
φ2
θ
dπ)1/2 − (

∫
φ2
θ
dπ′)1/2| = |R(π,θ)1/2 − R(π′,θ)1/2|. Overall, we have the following result:

Proposition 6 (Linear regression is Wasserstein learnable). Consider X = Rd+1 and the linear re-
gression loss `(x = (z, y),θ) = |y − θ>z|2 along with the hypothesis space H = {θ ∈ Rd, ‖θ‖2 ≤ R}
where R > 0. The task L(H) is 2-Wasserstein learnable with constant

√
R2 + 1, i.e. :

∀π, π′ ∈ P2(Rd+1), ‖π − π′‖L(H),2 ≤
√
R2 + 1W2(π, π′) (39)

where the Wasserstein distance is computed with the distance D(x,x′) = ‖x−x′‖2,Rd+1 where ‖.‖2,Rd+1

is the `2 norm on Rd+1.

A straightforward extension of this result is when the loss writes instead `(x = (z, y),θ) =
|y − θ>z|p for any p ≥ 1. By using the same argument it is easy to see that this task is p-Wasserstein
learnable i.e.

∀π, π′ ∈ Pp(Rd+1), ‖π − π′‖L(H),p ≤
√
R2 + 1Wp(π, π

′) (40)

Interestingly this result generalizes also for “multi-outputs” regression i.e. when we wish to predict
a vector y = (y1, · · · , yK) ∈ RK . In this case the hypothesis space is a space of matrices and the loss
can be written for x = (z,y) ∈ Rd+K as ‖y −Mz‖p

2,RK where M ∈ RK×d and p ≥ 1. In the same

way we can define M =
(
M −IK,K

)
∈ RK×(d+K) where IK,K is the identity matrix of size RK×K

so that `(x,M) = ‖Mx‖p
2,RK . We have:

Proposition 7 (Multi-outputs Linear regression task is Wasserstein learnable). Consider X = Rd+K

and the multi-output linear regression loss `(x = (z,y),M) = ‖y −Mz‖p
2,RK for p ≥ 1 along with the

hypothesis space H = {M ∈ RK×d, ‖M‖2→2 ≤ R} where R > 0 and ‖ · ‖2→2 is the 2-operator norm
for matrices. Then the task L(H) is p-Wasserstein learnable with constant

√
R2 + 1, i.e. :

∀π, π′ ∈ Pp(Rd+K), ‖π − π′‖L(H),p ≤
√
R2 + 1Wp(π, π

′) (41)

where the Wasserstein distance is computed with the distanceD(x,x′) = ‖x−x′‖2,Rd+K where ‖.‖2,Rd+K

is the `2 norm on Rd+K .
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Proof We have
∣∣‖Mx‖2,RK − ‖Mx′‖2,RK

∣∣ ≤ ‖M(x− x′)‖2,RK ≤ ‖M‖2→2‖x− x′‖2,Rd+K . As such if
‖M‖2→2 ≤ R then ‖M‖22→2 ≤ R2 + 1 so that |‖Mx‖2,RK − ‖Mx′‖2,RK | ≤

√
R2 + 1‖x − x′‖2,Rd+K .

We can use the same reasoning as before by defining the function φM(x) = ‖Mx‖2,RK which is√
R2 + 1-Lipschitz whenever ‖M‖2→2 ≤ R, hence by using the bound from Proposition 5 we can

conclude.

3.4 Regression tasks beyond linear regression: multi-layer perceptron (MLP)

With the previous reasoning in mind, a straightforward calculus shows that if we consider general
Lipschitz regressors with uniformly bounded Lipschitz constant then the regression task (with the `p
loss) will be p-Wasserstein learnable:

Lemma 2. Consider X = Rd+K and the regression loss `(x = (z,y), h) = ‖y − h(z)‖p
2,RK for p ≥ 1

along with the hypothesis spaceH ⊆ LipL(Rd,RK). Then the task L(H) is p-Wasserstein learnable with
constant max{L, 1}, i.e. :

∀π, π′ ∈ Pp(Rd+K), ‖π − π′‖L(H),p ≤ max{L, 1}Wp(π, π
′) (42)

where the Wasserstein distance is computed with the distance D(x = (z,y),x′ = (z′,y′)) = ‖z −
z′‖2,Rd + ‖y − y′‖2,RK .

Proof We have for x = (z,y),x′ = (z′,y′):

|‖y − h(z)‖2,RK − ‖y − h(z)‖2,RK | ≤ ‖y − y′ − (h(z)− h(z′))‖2,RK
≤ ‖y − y′‖2,RK + L‖h(z)− h(z′)‖2,Rd
≤ max{L, 1}D(x = (z,y),x′ = (z′,y′))

(43)

Such that the loss can be written as the p-th power of a Lipschitz function, hence by using the bound
from Proposition 5 we can conclude.

In particular this situation encompasses regressors such as MLP h(z) = fMLP(z) = TJ ◦ ρJ−1 ◦ · · · ◦
ρ1 ◦ T1(z) where Tj(w) = Mjw + bj is an affine function and ρj is a non-linear activation function.
Designing Lipschitz-continuous neural networks and computing precisely their Lipschitz constant
is an (NP)hard problem and is an active line of research (Virmaux and Scaman, 2018; Fazlyab
et al., 2019; Latorre et al., 2020; Kim et al., 2021). However, for fully-connected networks such as
MLP with 1-Lipschitz activation functions (e.g. ReLU, Leaky ReLU, SoftPlus, Tanh, Sigmoid, ArcTan
or Softsign) a simple upper-bound of the Lipschitz constant of fMLP is given by ΠJ

j=1‖Mj‖2→2

(Virmaux and Scaman, 2018). This bound is not necessarily tight, however we can use it to prove
that regression tasks using MLP with bounded parameters and with 1-Lipschitz activation functions
is Wasserstein learnable as soon as ‖Mj‖2→2 ≤ R for some R > 0 which gives a (naive) Lipschitz
constant L = RJ

3.5 Binary classification tasks with a Lipschitz classifier are Wasserstein learnable

Binary classifications tasks can also be related to Wasserstein learnability. These problems corre-
sponds to X = Rd × {+1,−1}. In binary classification one often relies on convex surrogates of
the 0 − 1 loss and considers losses of the type `(x = (z, y), h) = ϕ(yh(z)) where y ∈ {−1,+1},
h : Rd → [−1,+1] and ϕ : R → R is convex. Well known examples include the logistic loss
ϕ(t) = log(1+e−t) the hinge loss ϕ(t) = max(1−t, 0) or the squared hinge loss ϕ(t) = max(1−t, 0)2.

Suppose now that ϕ is also Lϕ-Lipschitz (such as the hinge loss) and that the hypothesis is L-
lipschitz. This includes hypothesis of the type h(z) = ρ(fMLP (z)) where fMLP : Rd → R is an
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MLP with bounded parameters, with 1-Lipschitz activation functions as described in Section 3.4
and ρ : R → [−1, 1] is an “output-layer” function that is Lipschitz such as the sigmoid function
ρ(t) = 1

1+e−t .
In this setting we can apply the duality argument of the Wasserstein distance and prove the

following result:

Proposition 8 (Binary classification tasks with Lipschitz classifier). Consider a binary classification
problem where X = Rd × {+1,−1}. Consider the hypothesis space H ⊆ LipL(Rd, [−1, 1]). Consider a
convex surrogate loss defined for x = (z, y) ∈ Rd×{+1,−1} and h ∈ H by `(x = (z, y), h) = ϕ(yh(z))
where ϕ : R → R+ is Lϕ-Lipschitz. Then L(H) is 1-Wasserstein learnable with constant Lϕ max(L, 1)
i.e. :

∀π, π′ ∈ P1(Rd × {+1,−1}), ‖π − π′‖L(H) ≤ Lϕ max(L, 1)W1(π, π′) (44)

where the Wasserstein distance is computed with the distance D((z, y), (z′, y′)) = ‖z − z′‖2 + |y − y′|
on Rd × {+1,−1}.

Proof For any x = (z, y),x′ = (z′, y′) we have:

|ϕ(yh(z))− ϕ(y′h(z′))| ≤ |ϕ(yh(z))− ϕ(yh(z′))|+ |ϕ(yh(z′))− ϕ(y′h(z′))|
≤ Lϕ(|yh(z)− yh(z′)|+ |yh(z′)− y′h(z′)|)
≤ Lϕ(|y||h(z)− h(z′)|+ |h(z′)||y − y′|)
≤ Lϕ max(L, 1)(‖z− z′‖2 + |y − y′|).

(45)

Thus, |`(x = (z, y), h)− `(x′ = (z′, y′), h)| ≤ Lϕ max(L, 1)D((z, y), (z′, y′)) whereD((z, y), (z′, y′)) =
‖z − z′‖2 + |y − y′| is a distance on X = Rd × {−1,+1}. In this way for all h ∈ H the loss `(·, h) is
Lϕ max(L, 1)-Lipchitz and we can use the duality representation of the 1-Wasserstein distance (26)
to conclude that the task is 1-Wasserstein learnable with constant Lϕ max(L, 1).

Remark 3. It is sufficient that ϕ = gp for p ≥ 1 where g is Lg Lipschitz to obtain Wasserstein learnabil-
ity. Indeed we can use the same reasoning as in the previous section, based on Proposition 5, to obtain
that L(H) is p-Wasserstein learnable i.e. ‖π − π′‖L(H),p ≤ Lϕ max(L, 1)Wp(π, π

′). In particular this
includes the case of the squared hinge loss ϕ(t) = max(1− t, 0)2.

3.6 Conclusion on Wasserstein learnability

We have established in this section various controls of the task-specific metric by a Wasserstein
distance. These bounds are based on the Wasserstein learnability property and encompasses tasks
where CSL is known to provide guarantees (K-means, GMM) (Gribonval et al., 2021a,b). Inter-
estingly enough, little is known in CSL concerning tasks such as regression and classification tasks
that are also considered here. The advantages of the previous results are that they give a bound on
‖π − π′‖L(H),p . Wp(π, π

′) for every π, π′ ∈ Pp(X ) for various tasks L(H). We would like also to
emphasize that these bounds do not require any restriction to a model set S.

4. Controlling Wasserstein distances by kernel norms

We focus in this section on the second step of our reasoning, that is comparing Optimal Transport
distances (see definition in Section 3) and Maximum Mean Discrepancies (see Section 2). We first
derive some necessary and sufficient conditions under which the MMD associated to a kernel can be
controlled by a Wasserstein distance. More precisely we have the following result (the proof can be
found in Appendix C.1):
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Proposition 9. Let (X , D) be a complete separable metric space, κ : X ×X → R a p.s.d. kernel andHκ
the associated RKHS, and Bκ := {f ∈ Hκ, ‖f‖Hκ ≤ 1} the unit ball in Hκ. Consider the Wasserstein
distances computed with the metric D. For any C > 0 the following statements are equivalent:

(i)
Bκ ⊆ LipC((X , D),R) (46)

(ii)
∀p ∈ [1,+∞[,∀π, π′ ∈ Pp(X ), ‖π − π′‖κ ≤ C Wp(π, π

′) (47)

(iii)
∃p ∈ [1,+∞[,∀π, π′ ∈ Pp(X ), ‖π − π′‖κ ≤ C Wp(π, π

′) (48)

(iv)
∀x,y ∈ X , κ(x,x) + κ(y,y)− 2κ(x,y) ≤ C2D2(x,y) (49)

For the sake of clarity, we restrict ourselves to the case where D is a proper metric but extensions
of this result are possible by considering an OT problem with a more general cost. In particular, this
type of bound has already been considered in (Arbel et al., 2018; Sriperumbudur et al., 2010) with
the pseudo-metric D(x,y) = ‖κ(x, ·) − κ(y, ·)‖Hκ which gives C = 1 and an equality in (49). As a
corollary of this proposition we have the following result (see Appendix C.1 for a proof):

Corollary 1. Consider X = Rd equipped with the Euclidean distance D(x,y) = ‖x− y‖2 and a p.s.d.
kernel κ : Rd × Rd → R that is normalized, i.e. κ(x,x) = 1 for every x ∈ X . Assume that for each
x ∈ X the function φx : y 7→ κ(x,y) is C2 in a neighborhood of x, and denote Hx = −∇2[φx](x) its
negative Hessian matrix evaluated at x. Then the following holds:

(i) Any of the four equivalent properties of Proposition 9 implies that:

sup
x∈Rd

λmax(Hx) ≤ C2. (50)

(ii) If κ is translation invariant, i.e. κ(x,y) = κ0(x − y) for every x,y ∈ X then conversely, (47)
holds with C :=

√
supx λmax(Hx) =

√
λmax(−∇2[κ0](0)).

The previous results show that under mild assumptions on a TI kernel the MMD is bounded by
constant times a Wasserstein distance, for any distributions π, π′ for which these quantities are well-
defined. In particular it holds for popular kernels such as the Gaussian or kernels of the Matérn class
with parameter10 ν > 1 (for a definition see (65) in Section 4.5). Note that when the kernel is TI
but is not normalized the point (ii) of Corollary 1 holds also with C := κ0(0)

√
λmax(−∇2[κ0](0)).

For other type of normalized kernels, the condition (49) is a necessary and sufficient condition
that amounts to checking if there is a constant C > 0 such that 1 − κ(x,y) ≥ C2

2 D
2(x,y) for all

x,y ∈ X . Interestingly, it echoes the ”C-strongly locally characteristic“ property of the kernel as in
(Gribonval et al., 2021b, Definition 5.14) but with the reverse inequality. When the kernel is C2 a
necessary condition is given by the maximum eigenvalue of the negative Hessian as in (50). Overall
Proposition 9 shows that it is not too difficult to find necessary and sufficient conditions under which
the MMD can be controlled by a Wasserstein distance. What is more difficult to characterize is the
inequality in the other direction.

The goal of this section is thus to find reasonable conditions on a model set of distributions
S ⊆ P(X ) and on a p.s.d. kernel κ such that the Wasserstein distance can be controlled with the
MMD with kernel κ. To formalize we adopt the following definition:

10. In this case κ0 is C2 in a neighbourhood of 0 since κ0 ∈ L1(Rd) and ω → ‖ω‖22κ̂0(ω) ∈ L1(Rd) when ν > 1
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Definition 3. Let S ⊆ P(X ) be a model set, κ a real-valued p.s.d. kernel on X and δ ∈]0, 1]. We say
that the space (S,Wp) is (κ, δ)-embeddable with error η ≥ 0 if:

∃C > 0,∀π, π′ ∈ S,Wp(π, π
′) ≤ C‖π − π′‖δκ + η (51)

When η = 0 we simply say that (S,Wp) is (κ, δ)-embeddable.

Note that the constants C, η, δ in (51) do not depend on the probability distributions π, π′: we
want to bound uniformly on the whole model set S. Moreover, as advertised in Section 2, we are
particularly interested in establishing such an inequality for translation invariant p.s.d. kernels that
at the core of the compressive statistical learning theory since they admit a random feature expansion
useful to find a sketching operator based on random features (Gribonval et al., 2021a). Let us
emphasize that, unlike in the previous section where the comparisons between task-based metrics
‖.‖L(H),p and Optimal Transport distances Wp were valid regardless on the choice of the model set
(i.e., valid for any π, π′ ∈ Pp(X )), here and in the next section the comparison is restricted to model
sets S with certain properties such as regularity. Section 5 will further strengthen the assumptions
on these model sets to obtain finite dimensional embeddings.

Remark 4. An immediate consequence of this definition is that when (S,Wp) is (κ, δ)-embeddable (i.e.
with no error) then the kernel κ is necessarily characteristic to S (Simon-Gabriel et al., 2020, Section
1.2), in other words ‖π − π′‖κ = 0 ⇐⇒ π = π′ for all π, π′ ∈ S (indeed when the MMD vanishes
then the Wasserstein distance also vanishes which implies equality of the distributions). Moreover, when
(S,Wp) is (κ, δ)-embeddable and when the condition (49) is also fulfilled Wp and ‖.‖κ induce the same
topology on S and define equivalent metric on S when δ = 1.

Remark 5. If S ⊆ S′ where (S′,Wp) is (κ, δ)-embeddable then (S,Wp) is also (κ, δ)-embeddable.
In other words, if S is contained in a space that is (κ, δ)-embeddable it is also (κ, δ)-embeddable. On
the other hand, if S′ contains a subspace S for which there is a necessary condition to the (κ, δ)-
embeddability property then the same condition applies to S′.

In this section we focus on property (51) with no error i.e. η = 0. First we consider necessary
conditions, i.e., we argue that property (51) with no error can only be expected to hold for a kernel
κ and a model set S if certain appropriate assumptions are made. Conversely, we then derive some
sufficient conditions on S and κ such that (S,Wp) is (κ, δ)-embeddable. Unless stated otherwise,
we consider in the following that X = Rd is endowed with the `2 norm, which is used to define
Wasserstein distances.

4.1 Boundedness of the model set is necessary.

Consider a model set S ⊆ P1(Rd) and denote

m(π) :=

∫
xdπ(x) (52)

the mean of π ∈ P1(Rd). On the one hand, simple calculus (Lemma 14 in Appendix C.3) shows that
for any π, π′ ∈ P(Rd) and p ∈ [1,+∞[:

Wp(π, π
′) ≥ ‖m(π)−m(π′)‖2. (53)

On the other hand, if κ is a bounbed p.s.d. kernel (i.e., supx κ(x,x) ≤ K < +∞) then, by the
Cauchy-Schwarz inequality for kernels |κ(x,y)| ≤

√
κ(x,x)

√
κ(y,y) ≤ K for every x,y hence for

any (π, π′) ∈ S we have ‖π − π′‖κ ≤
√

2K. As a result, if S is unbounded in the sense that:
supπ,π′∈S ‖m(π)−m(π′)‖2 = +∞. Then for each δ > 0 we have:

sup
(π,π′)∈S

Wp(π, π
′)

‖π − π′‖δκ
= +∞ (54)
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hence can not hope to have (51) for any δ > 0. In other words, we have shown that:

Lemma 3. If κ is bounded and (S,Wp) is (κ, δ)-embeddable for some δ > 0 then S is necessarily
bounded in the sense that m-diam(S) := supπ,π′∈S ‖m(π)−m(π′)‖2 <∞.

4.2 Bounds on δ due to the convergence rate of empirical measures.

Another obstacle to (51) concerns the samples rate of convergence of both terms with empirical
measures : it is known that the Wasserstein distance suffers from the curse of dimensionality while
the MMD does not. More precisely if π ∈ P1(Rd) is absolutely continuous with respect to the
Lebesgue measure on Rd then it is known that E[W1(π, πn)] & n−1/d where πn = 1

n

∑n
i=1 δxi , xi ∼ π

and the expectation is taken w.r.t. the draws of xi (Dudley, 1969; Weed and Bach, 2017). By
monotonicity of Wp in p this is also true for Wp with p ≥ 1 (since for p ≤ q,Wp(π, π) ≤ Wq(π, π

′)
for any π, π′11). On the contrary, it is not difficult to see that if the p.s.d. kernel κ is bounded by K
then E[‖π − πn‖δκ] ≤ (2K)δ/2n−δ/2 (see Lemma 13 in Appendix C.2). Consequently, even when the
model set S ⊆ P1(Rd) satisfies m-diam(S) < +∞ (to avoid the obstacles to (51) already identified
in Lemma 3), if S is rich enough to contain a distribution π that is absolutely continuous w.r.t. the
Lebesgue measure, as well as its empirical distributions πn for every n, then (51) implies n−1/d .
n−δ/2, hence δ ≤ 2/d. An example of such a model set is the set of all probability distributions
producing almost surely vectors in a prescribed Euclidean ball, leading to the following result:

Lemma 4. Consider R > 0, Ω = B(0, R) ⊆ X = Rd, S := {π ∈ P(X );π(Ω) = 1}, κ a bounded p.s.d.
kernel, and p ∈ [1,+∞[. If (S,Wp) is (κ, δ)-embeddable then δ ≤ 2/d.

In the context of CSL, as described in Section 2, such δ ≤ 2/d would imply in a very slow con-
vergence rate of the order of O(n−

1
d ) at best. In other words, if the strategy described in Section

2 is followed we would require a exponential amount of samples in order to have reasonable CSL
guarantees which is problematic for large scale scenario where d is usually large. This discussion
suggests that we must find suitable constraints on p, δ, κ and S to avoid such a curse of dimensional-
ity. Sufficient conditions to achieve this goal will be discussed later, but first we continue with some
additional necessary conditions.

4.3 Another bound on δ for certain model sets

Another restriction comes from the type of distributions in the model set. We will prove that, as soon
as S contains two distributions whose supports are disjoint as well as the convex segment between
these distributions, we can not hope to have (51) with error η = 0 when p · δ > 1.

Proposition 10. Let (X , D) be a complete and separable metric space and consider the Wasserstein
distances computed with the distance D. Let κ be any p.s.d. kernel. Consider two arbitrary probability
distributions π0, π1 ∈ P(X ) such that ‖π0 − π1‖κ < +∞ and supp(π0) and supp(π1) are disjoint12.
Consider S := {(1− t)π0 + tπ1, t ∈ [0, 1]}. If (S,Wp) is (κ, δ)-embeddable then δ ≤ 1/p.

The result is mostly based on (Niles-Weed and Berthet, 2020). Its proof in Appendix C.4 es-
sentially amounts to showing (54) as soon as p · δ > 1. Following Remark 5, the same conclusion
holds if S only contains the convex combinations of distributions π0, π1 as in the above proposition.
For a bounded kernel, since ‖π0 − π1‖κ is always finite, the same result is thus valid in particular
when the model set S contains a segment whose extreme points have disjoint supports. This is
notably the case when S is convex and contains two distributions with disjoint supports. As a con-
sequence, given any p.s.d. kernel κ, (S,Wp) is not (κ, δ)-embeddable for δ > 1/p when S contains

11. This is a consequence of Jensen inequality see e.g. Section 5.1 in (Santambrogio, 2015)
12. We recall that the support supp(π) of a probability distribution π ∈ P(X ) is defined as the smallest closed set S such

that π(S) = 1.
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e.g. mixtures of two Diracs or more generally mixtures of two compactly supported distributions.
We postulate that a similar result holds when we can find (π0, π1) ∈ S such that only a small faction
of the mass of π0 and π1 can be put in-between supp(π0) and supp(π1). We emphasize that this
result does not depend on the dimension of the ambient space and is true for any p.s.d. kernel.

4.4 Bound on δ for mixture models and smooth TI kernels

In most of the concrete applications, one often has to compare discrete distributions. We will show
in this paragraph that the regularity of the kernel plays an important role when trying to control the
Wasserstein distance with an MMD as in (51) for model sets made of discrete distributions. In the
following we define for M ∈ N∗ and Ω ⊆ X = Rd a non-empty set the space of mixtures of M diracs
located in Ω

SK(Ω) := {
M∑
i=1

aiδxi ; ai ∈ R+,

M∑
i=1

ai = 1,∀i ∈ [[M ]],xi ∈ Ω}. (55)

This type of model with Ω = B(0, R) for some R > 0 plays a central role in compressive learning
theory and is used to show that the LRIP does not hold for tasks such as K-means without separability
assumptions on the diracs (Gribonval et al., 2021b). We show in the next theorem that there is a
trade-off between the Hölder exponent δ and the regularity of the kernel provided that the model
set is rich enough to contain discrete distributions with enough diracs.

Theorem 2 Consider a TI p.s.d. kernel κ(x,y) = κ0(x−y) on Rd such that κ0 is k times differen-
tiable at 0 with k ∈ N∗. Let p ∈ [1,+∞[, x0 ∈ Rd, R > 0 and Ω = B(x0, R).
If (Sb k2 c+1(Ω),Wp) is (κ, δ)-embeddable then δ ≤ 2/k.

Following Remark 5, the same conclusion holds if S only contains all mixtures of Dirac supported
in some arbitrary Euclidean ball. The proof in Appendix C.5 amounts to showing (54) as soon as
δ > 2/k. Theorem 2 shows that if the kernel is k times differentiable and if S is rich enough to
contain bk2 c+ 1 diracs then we can not control the Wasserstein distance with MMDδ uniformly over
S when δ > 2/k. As an immediate consequence we have the following corollary when the kernel is
smooth:

Corollary 2. Consider a TI p.s.d. kernel κ(x,y) = κ0(x − y) on Rd such that κ0 ∈ C∞(Rd,R) and a
model set S ⊆ P(Rd). Assume that SK(Ω) ⊆ S with K ≥ 2 where Ω ⊆ Rd is an open set.
If (S,Wp) is (κ, δ)-embeddable, where p ∈ [1,+∞[, then δ ≤ 2/K.

These results have many consequences. First it shows that when κ is smooth and S contains
mixtures of arbitrarily many diracs located in some open set, (S,Wp) is not (κ, δ)-embeddable for
any δ > 0. In other words, it shows that finding a absolute constant C > 0 such that Wp(π, π

′) ≤
C MMDδ

κ(π, π′) for all discrete distributions π, π′ is hopeless when the kernel κ is smooth even if
these distributions lie also in some fixed ball of Rd. It suggest that finding suitable constraints on the
model set S and on the kernel κ is required in order to have the control (51). We will show in the
next sections how to obtain these types of control with additional hypotheses on the regularity of the
distributions in S. Finally, from a CSL perspective when one considers sketching operators defined
with random Fourier features (Section 2), Corollary 2 shows that when the model set is the space
of K diracs, the strategy proposed in (23) can only be achieved when δ ≤ 2/K without additional
assumptions. Indeed in this case ‖A(π) − A(π′)‖2 = ‖π − π′‖κΦ

where κΦ is the empirical kernel
κΦ(x,y) = 1

m

∑m
i=1 e

−iω>i (x−y) where ωi ∼ Λ and thus is can be written as κΦ(x,y) = κ0(x − y)
with κ0 that is smooth. This suggests that the same separability assumptions that the one made in
(Gribonval et al., 2021b) may help. The Figure 3 summarizes the necessary conditions established
in the previous sections.
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Figure 3: Summary of the established necessary conditions to the (κ, δ)-embedabbility property.

4.5 A study on the real line

In this section we restrict ourselves to the case of probability distributions on the real line R that
admit a density with respect to the Lesbegue measure. We will prove that, under some regularity
conditions on the kernel and as long as the probability distributions have the same mean and are
regular enough (Sobolev) then we have have the control (51) with error η = 0, δ = 1/2 and W2.
This result will be based on the closed-form expression of the Wasserstein distance on the real line
which states that if π, π′ ∈ Pp(R)13 admit a density with respect to the Lesbesgue measure in R then
(Santambrogio, 2015):

Wp(π, π) =

(∫
R
|F (x)−G(x)|pdx

)1/p

(56)

where the Wasserstein distance is computed using the distance D(x, y) = |x− y| and F,G stand for
the cumulative distribution functions (CDF) of the probability densities of π, π′. We recall that the
Fourier transform of a integrable function f is defined by f̂(ω) =

∫
R e
−iωxf(x)dx. The equation (56)

allows us to connect the Wasserstein distance and any MMD associated with a TI p.s.d. kernel on R
as shown in the next Lemma (the proof can be found in Appendix C.6):

Lemma 5. Consider π, π′ ∈ P2(R) with densities f, g with respect to the Lesbegue measure, i.e. π �
fdx, π′ � gdx. Let κ(x, y) = κ0(x− y) be a TI p.s.d. kernel on R with κ0 ∈ L1(R). Then we have:

W2(π, π′) ≤ (2π)−1/4

(∫
R

|f̂(ω)− ĝ(ω)|2

|ω|4κ̂0(ω)
dω

)1/4

‖π − π′‖1/2κ (57)

where the Wasserstein distance is computed using D(x, y) = |x− y|.

The integral term in the previous lemma may be infinite and depends on π, π′. Using some
additional assumptions on the kernel and on the regularity of the densities we are now able to
bound this integral by a constant as described in the next theorem:

13. We recall that if π ∈ Pp(R) then
∫
R |x|

pdπ(x) < +∞ see (25)
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Theorem 3 Let κ(x, y) = κ0(x − y) be a TI p.s.d. kernel on R with κ0 ∈ L1(R) and such that
κ̂0(ω) > 0 for every ω, 1

κ̂0(ω) = O(ωqκ) as ω → 0 and 1
κ̂0(ω) = O(ωsκ) as ω → +∞ for some

qκ > −1, sκ ∈ R+. Consider any s ≥ sκ
2 + 1, 0 < M < +∞ and the following model set:

S := {π ∈ P2(R) : ∃f ∈ Cs(R), π � fdx, ‖f‖W s,1(R) ≤M} (58)

1. There exists C = C(M, s, κ) > 0 such that for every 1 ≤ p ≤ 2:

∀π, π′ ∈ S, if m(π) = m(π′) then Wp(π, π
′) ≤ C‖π − π′‖1/2κ (59)

2. If in addition κ0 is L-Lipschitz continuous, then for every 1 ≤ p ≤ 2

∀π, π′ ∈ S, Wp(π, π
′) ≤ C‖π−π′‖1/2κ +CL1/4|m(π)−m(π′)|1/4 + |m(π)−m(π′)|. (60)

Remark 6. On the one hand, the assumption κ̂0(ω) = O(ωsκ) at infinity means that the Fourier
transform of κ0 should not decay too fast, i.e., it should not be too regular. On the other hand, the
additional Lipschitz assumption essentially corresponds to assuming a sufficiently fast O(ω−1) decay of
this Fourier transform.

Following Remark 5, the same conclusion also holds for any model set that is contained in the
model set S defined in (58). The proof can be found in Appendix C.7.

The first claim of this theorem implies that (S′,Wp) is then (κ, 1
2 )-embeddable as soon as 1 ≤

p ≤ 2, κ is a TI p.s.d. kernel with some regularity, and the distributions in S′ are sufficiently regular
with the same mean. The latter hypothesis is important in the proof in order to have the finiteness
of the integral from Lemma 5. Note that thanks to the assumption on the means there is no pair of
distributions in S′ with disjoint supports, hence this result does not contradict Proposition 10 (also
p · δ = 1 in this case). Moreover since the distributions in S′ admit a density then the constraints of
Theorem 2 do not apply here and, as such, the kernel can be smooth.

Focusing now our attention on a bounded model set S′ (in light of Lemma 3), the second claim
of the theorem similarly implies that (S′,Wp) is (κ, 1

2 )-embeddable with error

η ≤ CL1/4 m-diam1/4(S) + m-diam(S),

under slightly stronger regularity assumptions on the TI p.s.d. kernel κ, provided again that the
distributions in S′ are sufficiently regular (but without requiring the same means). As we now
show, we can actually obtain a result without error by slightly changing the kernel.

Corollary 3. Consider κ0, s, M and S as in Theorem 3. Assume that κ0 is L-Lipschitz continuous and
that S′ ⊆ S satisfies m-diam(S′) < +∞. There is a constant C = C(M, s, κ, L,m-diam(S′)) such
that for every 1 ≤ p ≤ 2:

∀π, π′ ∈ S′, Wp(π, π
′) ≤ C‖π − π′‖1/2κ̃ (61)

with the p.s.d. kernel κ̃(x, y) := κ0(x− y) + xy.

Proof First, we can apply the second claim of Theorem 3 to obtain (64). Second, since t = t1/4t3/4 ≤
t1/4T 3/4 for any 0 ≤ t ≤ T := m-diam(S′), we have

∀π, π′ ∈ S′, |m(π)−m(π′)| ≤ |m(π)−m(π′)|1/4 ·m-diam3/4(S′).

hence there is a constant C1 depending only on C(M, s, κ), L, and m-diam(S′), such that for every
π, π′ ∈ S′ the right hand side in (64) is bounded by C1(‖π − π′‖1/2κ + |m(π) − m(π′)|1/4). Since
a+ b ≤ 23/4(a4 + b4)1/4 for every a, b ≥ 0, we have

‖π − π′‖1/2κ + |m(π)−m(π′)|1/4 ≤ 23/4
(
‖π − π′‖2κ + |m(π)−m(π′)|2

)1/4
.
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To conclude, observe that

‖π − π′‖2κ + |m(π)−m(π′)|2 =Ex∼πEy∼πκ(x, y)− 2Ex∼πEy∼π′κ(x, y) + Ex∼π′Ey∼π′κ(x, y)

+ Ex∼πEy∼πxy − 2Ex∼πEy∼π′xy + Ex∼π′Ey∼π′xy
=Ex∼πEy∼πκ̃(x, y)− 2Ex∼πEy∼π′ κ̃(x, y) + Ex∼π′Ey∼π′ κ̃(x, y)

= ‖π − π′‖κ̃.

This shows that if S′ is made of sufficiently smooth distributions and m-diam(S′) is finite, then for
every 1 ≤ p ≤ 2 (S′,Wp) is (κ̃, 1

2 )-embeddable. Notice that unlike the initial kernel κ, the modified
one κ̃ (which is still p.s.d.) is no longer translation invariant. As described next (the proof can be
found in Appendix C.9), the regularity assumptions on S′ can be met e.g. with certain Gaussian
mixtures on R.

Corollary 4 (GMM on R). Let κ(x, y) = κ0(x − y) be a TI p.s.d. kernel on R with κ0 ∈ L1(R) and
such that κ̂0(ω) > 0 for every ω, 1

κ̂0(ω) = O(ωqκ) as ω → 0 and 1
κ̂0(ω) = O(ωsκ) as ω → +∞ for some

qκ > −1, sκ ∈ R+. For K ∈ N∗, Ω ⊂ R, and σmin > 0 consider the model set:

SGMM(Ω,K, σmin) := {π =

K∑
k=1

αkN (ck, σ
2
k),α ∈ ∆K , ck ∈ R, σk ≥ σmin,

K∑
k=1

αkck ∈ Ω} (62)

where ∆K = {α ∈ RK+ ,
∑K
k=1 αk = 1} is the probability simplex on RK .

1. There exists a constant C = C(σmin,K, κ) > 0 such that if Ω = {m} is a prescribed mean then:

∀π, π′ ∈ SGMM(Ω,K, σmin),W2(π, π′) ≤ C‖π − π′‖1/2κ (63)

2. If in addition κ0 is L-Lipschitz and diam(Ω) := supx,y∈Y |x− y| < +∞, then for every 1 ≤ p ≤ 2:

∀π, π′ ∈ S, Wp(π, π
′) ≤ C ′‖π − π′‖1/2κ̃ (64)

with κ̃(x, y) := κ0(x− y) + xy. The constant C ′ depends only on C(σmin,K, κ), L and diam(Ω).

Proof [Sketch of proof] The goal is to show that any probability distribution in SGMM has a density
which lies in a Sobolev ball with radius M . Indeed we can show that for s = dk/2 + 1e the density
F of any π ∈ S satisfies ‖F‖W s,1(R) ≤ max(1, σ1−s

min )
∑s
n=1

√
n!, independently of the choice of π.

Interestingly, this corollary shows that the space of GMM with K-mixtures is (κ, δ)-embeddable
with δ = 1/2 even without separation assumptions on the mixtures. Note that this is true only when
the means of the GMM mixtures are identical (but the variances can vary and are lower bounded)
or for a kernel that is not TI. In the compressive learning context, this can be put in perspective with
(Gribonval et al., 2021b) where separation assumptions on Dirac/Gaussian mixtures (with identical
covariance matrices) are required in order to find a finite dimensional kernel mean embedding of
the distributions that satisfy the LRIP.

Admissible TI kernels An important family of TI kernels satisfies the hypothesis of Theorem 3, that
is the kernels of the Matérn class (Rasmussen and Williams, 2005, Section 4.2.1). These kernels are
given in any dimension by the relation κ(x,y) = 21−ν

Γ(ν) (
√

2ν‖x−y‖2
σ )νKν(

√
2ν‖x−y‖2

σ ) for ν > 0, σ > 0

where Γ is the gamma function, and Kν is the modified Bessel function of the second kind of order
ν. This family of kernel admit the following Fourier transform14 :

κ̂0(ω) =
2d+νπd/2Γ(ν + d/2)νν

Γ(ν)σ2ν

(
2ν

σ2
+ ‖ω‖22

)−(ν+d/2)

(65)

14. This result be found in (Rasmussen and Williams, 2005, Section 4.2.1) with a slight modification due the conventions of
the Fourier transforms.
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Interestingly enough, when ν = 1
2 it gives the Laplacian kernel κ(x,y) = exp(−‖x − y‖2/σ) whose

Fourier transform is 2dπ
d−1

2 Γ( d+1
2 )

σ ( 1
σ2 + ‖ω‖22)−

d+1
2 while when ν → +∞ it recovers the RBF kernel

see (Rasmussen and Williams, 2005, Section 4.2.1)15. The Fourier transform of the RBF kernel
however decays too fast to satisfy the assumptions of Theorem 3. In the context of compressive
learning, translation invariant kernels are most useful if they can be approximated with random
Fourier features (see Section 2) with good concentration properties. An interesting question for
future work is thus whether the “slow decay” of the Fourier transform needed to apply Theorem 3
appears as a strong constraint in such a context.

4.6 From the real line to the Euclidean space: the case of compactly supported distributions

From the real line study of the previous section we can derive a control (51) in the Rd case. As we
can no longer exploit the closed-form expression of the Wasserstein distances in terms of cumulative
density functions (56), the idea is to use the connections between the Wasserstein distance and the
Sliced-Wasserstein distance (SW) (Rabin et al., 2011; Kolouri et al., 2016) that enjoys the same
topological properties than the Wasserstein distance for compactly supported measures (Bonnotte,
2013). This distance is defined as follows:

Definition 4 (Sliced-Wasserstein distance). Let π, π′ ∈ P(Rd). For θ ∈ Sd−1 (i.e.‖θ‖2 = 1) we
note Pθ the function Pθ(x) = 〈x,θ〉. Let σ be the probability measure associated with the uniform
distribution on the sphere Sd−1. Then the Sliced-Wasserstein distance between π and π′ is defined by:

SW1(π, π′) := Eθ∼σ[W1(Pθ#π, Pθ#π′)] (66)

We recall that Pθ#π is the probability meassure on R defined by Pθ#π(A) := π(P−1
θ (A)) for

every measurable set A ⊆ R. The key intuition behind SW is to randomly select lines in Rd, to
project the measures into these lines and to compute the resulting 1D-Wasserstein distance between
Pθ#π, Pθ#π′ which can be done in closed-form and relies only on simple sorts of the supports
(Peyré and Cuturi, 2019). The Sliced-Wasserstein distance admits also a useful alternative definition
using the Radon transform (Helgason, 2011):

Definition 5 (Radon transform). Let f ∈ L1(Rd). The Radon transform of f is defined for (t,θ) ∈
R× Sd−1 by R[f ](t,θ) =

∫
x:〈x,θ〉=t f(x)dx =

∫
y∈θ⊥ f(tθ + y)dy.

Based on this definition, when π and π′ admit densities f and g with respect to the Lesbegue
measure on Rd we have16 (Kolouri et al., 2016; Rabin et al., 2011):

SW1(π, π′) = Eθ∼σ[W1(R[f ](·,θ),R[g](·,θ))] (67)

As introduced, a fundamental result connects the Wasserstein distance and the Sliced-Wasserstein
distance when the measures have compact supports:

Lemma 6 (Lemma 5.1.4 in (Bonnotte, 2013)). Let π, π′ ∈ P(Rd) such that π, π′ are supported in
B(0, R) for some R > 0. There exists a constant C = C(d,R) > 0 such that:

W1(π, π′) ≤ C SW1(π, π′)1/(d+1) = C (Eθ∼σ[W1(Pθ#π, Pθ#π′)])
1/(d+1) (68)

15. Likewise we have adapted the conventions of the Fourier transforms.
16. If f is a probability density function on Rd thenR[f ](·,θ) is a probability density function on R. This is a consequence of

Fubini’s theorem:
∫
RR[f ](t,θ)dt =

∫
R
∫
y∈θ⊥ f(tθ + y)dydt =

∫
Rd f(x)dx = 1. As such, when π � fdx the density

of Pθ#π is exactly R[f ](·,θ). This is clear by considering that, by definition, Pθ#π(A) = π({x : 〈x,θ〉 ∈ A}) =∫
x:〈x,θ〉∈A f(x)dx for every measurable set A ⊆ R.
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The strategy to derive a control of the type (51) is then to consider regular probability distribu-
tions with compact support and to use the study on R (Theorem 3) to upper bound each Wasserstein
distanceW1(Pθ#π, Pθ#π′) with an MMD. This will allow us to define a TI p.s.d. kernel on Rd whose
MMD dominates the Wassertein distance. In order to apply Theorem 3 we need to relate the regu-
larity of the density of π with the one of Pθ#π. We can prove that, as soon as the densities on Rd
are regular enough the densities “on each line” are also regular on R. More precisely:

Lemma 7. Suppose that d ≥ 2. Let f ∈ Cs(Rd) be integrable and compactly supported. For any
θ ∈ Sd−1 the Radon transform satisfies R[f ](·,θ) ∈ Cs(R) and ‖R[f ](·,θ)‖W s,1(R) ≤ ds+1‖f‖W s,1(Rd)

We also need one other technical lemma which exhibits a TI kernel on Rd and an MMD on P(Rd)
from a translation kernel on R:

Lemma 8. Let κR(x, y) = κ0(x − y) be a TI p.s.d. kernel on R where κ0 is continuous. Consider the
kernel κ on Rd defined by κ(x,y) := Eθ∼σ[κR(θ>x,θ>y)] = Eθ∼σ[κ0(θ>(x − y))]. Then κ is TI,
continuous, bounded and positive semi-definite. Moreover we have for any (π, π′) ∈ P(Rd):

‖π − π′‖2κ = Eθ∼σ[‖Pθ#π − Pθ#π′‖2κR
] (69)

The proof of these two lemmas can be found in Appendix C.10. Lemma 8 exhibits a way of
constructing an MMD on P(Rd) from slices of the distributions and an MMD on P(R), in the exact
same manner of the Sliced-Wasserstein distance (as in (Nadjahi et al., 2020)). Based on these results
we can prove the main theorem of this section:

Theorem 4 Let κR(x, y) = κ0(x − y) be a TI p.s.d. kernel on R with κ0 ∈ L1(R) and such that
κ̂0(ω) > 0 for every ω, 1

κ̂0(ω) = O(ωqκ) as ω → 0 and 1
κ̂0(ω) = O(ωsκ) as ω → +∞ for some

qκ > −1, sκ ∈ R+. Consider for any s ≥ sκ
2 + 1, 0 < M,R < +∞, and the model set:

S := {π ∈ P2(Rd) : ∃f ∈ Cs(Rd), π � fdx, ‖f‖W s,1(Rd) ≤M, supp(f) ⊆ B(0, R)}

1. There exists a constant C = C(R,M, s, d) > 0 such that:

∀π, π′ ∈ S, if m(π) = m(π′) then W1(π, π′) ≤ C‖π − π′‖
1

2(d+1)
κ (70)

where κ is a translation invariant p.s.d. kernel defined by:

κ(x,y) := Eθ∼σ[κR(θ>x,θ>y)] = Eθ∼σ[κ0(θ>(x− y))] (71)

2. If in addition κ0 is L-Lipschitz then there is C = C(R,M, s, d, L) such that

∀π, π′ ∈ S,W1(π, π′) ≤ C‖π − π′‖
1

2(d+1)

κ̃ (72)

where κ̃ (which is no longer translation invariant) is a p.s.d. kernel defined by:

κ̃(x,y) := κ(x,y) +
1

d
〈x,y〉 (73)

Proof Let π, π′ ∈ S with densities f, g. By hypothesis f, g are supported on B(0, R) so m(π),m(π′) ∈
B(0, R) and m-diam(S) ≤ 2R and by Lemma 6 we have W1(π, π′) ≤ C SW1(π, π′)1/(d+1) for a con-
stant C > 0 that only depends on the dimension and on R. Moreover since the distributions admit a
density, by (67) we can write SW1(π, π′) = Eθ∼σ[W1(R[f ](·,θ),R[g](·,θ))]. Then for each θ ∈ Sd−1

we can use Lemma 7 to prove that R[f ](·,θ),R[g](·,θ) ∈ Cs(R) and ‖R[f ](·,θ)‖W s,1(R) ≤ ds+1M

29



VAYER AND GRIBONVAL

since ‖f‖W s,1(Rd) ≤M by hypothesis (same for g). Moreover, since π, π′ ∈ P2(Rd) we have also that
Pθ#π and Pθ#π′ are in P2(R). Indeed,

∫
|x|2dPθ#π(x) =

∫
|〈x,θ〉|2dπ(x) ≤

∫
‖x‖22dπ(x) < +∞.

Overall this proves that Pθ#π and Pθ#π′ with densitiesR[f ](·,θ),R[g](·,θ) belong to the following
set:

Sθ := {π ∈ P2(R) : ∃h ∈ Cs(R), π � hdx, ‖h‖W s,1(R) ≤ ds+1M} (74)

We also have m(π) = Ex∼Pθ#π[x] = Ex∼π[〈θ,x〉] = 〈θ,Ex∼π[x]〉 = 〈θ,m(π)〉 by linearity of the
expectation, and similarly m(π′) = 〈θ,m(π′)〉.

For the first claim, since m(π) = m(π′) we have m(Pθ#π) = m(Pθ#π′). We can thus apply the
first claim of Theorem 3 to Pθ#π, Pθ#π′ with the kernel κR so that we have:

W1(Pθ#π, Pθ#π′) ≤ C2‖Pθ#π − Pθ#π′‖1/2κR
(75)

where C2 depends only on M, s and the kernel κ (and not on θ since the constant does not depend
on the mean). For the second claim, since ‖θ‖2 = 1 we have |m(Pθ#π)−m(Pθ#π)| = |〈θ,m(π)−
m(π′)〉| ≤ ‖m(π) − m(π′)‖2 ≤ m-diam(S) ≤ 2R, hence m-diam(Sθ) ≤ 2R and we can apply
Corollary 3 to Pθ#π, Pθ#π′ to obtain:

W1(Pθ#π, Pθ#π′) ≤ C2‖Pθ#π − Pθ#π′‖1/2κ̃R
(76)

where κ̃R(x, y) := κ0(x − y) + xy and C2 is a constant that only depends on M, s, L,R and κ.
Consequently, since C2 does not depend on θ, we have:

W1(π, π′) ≤ C · C1/(d+1)
2 Eθ∼σ[‖Pθ#π − Pθ#π′‖1/2κR

]1/(d+1) (77)

Using Hölder inequality we get:

Eθ∼σ[‖Pθ#π − Pθ#π′‖1/2κR
] ≤ Eθ∼σ[‖Pθ#π − Pθ#π′‖2κR

]1/4 (78)

Finally we can apply Lemma 8 to conclude for the first claim. For the second claim, the last two
inequalities can be repeated with κR replaced by κ̃R. Since Eθ∼σ[〈θ,u〉2] = u>

(
Eθ∼σ[θθ>]

)
u =

‖u‖22/d for every vector u, we have

Eθ∼σ[|m(Pθ#π)−m(Pθ#π′)|2] = Eθ∼σ[〈θ,m(π)−m(π′)〉2] = ‖m(π)−m(π′)‖22/d

hence

Eθ∼σ[‖Pθ#π − Pθ#π′‖2κ̃R
] = Eθ∼σ[‖Pθ#π − Pθ#π′‖2κR

] + Eθ∼σ[|m(Pθ#π)−m(Pθ#π′)|2]

= ‖π − π′‖2κ + ‖m(π)−m(π′)‖22/d = ‖π − π′‖2κ̃
where we applied again Lemma 8 and used the same arguments as in the proof of Corollary 3 for
the last inequality.

As a corollary of this result we can deduce that under the same hypothesis the Wp distance
satisfies the same control for any p ∈ [1,+∞[:

Corollary 5. Consider a kernel κR(x, y) = κ0(x − y) on R, S ⊆ P2(Rd) and κ, κ̃ as in Theorem 4. If
κ0 is L-Lipschitz then for each p ≥ 1 there exists a constant C = C(R,M, s, d, L, p) > 0 such that:

∀π, π′ ∈ S,Wp(π, π
′) ≤ C‖π − π′‖

1
2p(d+1)

κ̃ . (79)

Proof When the probability distributions are supported on B(0, R) we have (see (Santambrogio,
2015, Section 5.1)) Wp(π, π

′) ≤ (2R)
p−1
p W1(π, π′)1/p which concludes.

This theorem proves that for such S, κ̃ we have that (S,Wp) is (κ̃, 1
2p(d+1) )-embeddable. We

would like to emphasize that, as discussed in Section 2, we can only expect to have slow rates for
CSL by using this bound with a curse of dimensionality phenomenon.
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4.7 The case of non-compactly supported distributions

The case of non-compactly supported measures on Rd is more delicate to study, as one can not rely
anymore on the closed-form of the Wasserstein distance on R. We will however prove that, at the
price of an arbitrary small additive term η > 0, we have the control (51) under mild assumptions
on the model set S. The core idea is to regularize the probability distributions π, π′ and to obtain
bounds between the true Wasserstein and the “smoothed” Wasserstein distance which is easier to
relate to an MMD. We adopt the following definition:

Definition 6 (Regularizer). We say that a function α : Rd → R+ is a regularizer if it is a non-
negative, continuous, even and bounded function such that

∫
Rd α = 1 and α ∈ L2(Rd). We say that

the regularizer has p-finite moments if
∫
‖z‖pα(z)dz < +∞ for some p ≥ 1.

When considering a regularizer α and a probability distribution π ∈ P(Rd) (not necessarily
regular) the convolution α∗π defines a probability density function17 on Rd via α∗π(x) =

∫
Rd α(x−

y)dπ(y). In the following we will note πα the probability distribution associated to the density α∗π.
Note that πα is usually regular by imposing that α is (such as when α is the Gaussian density). The
interpretation behind πα is the following: if X ∼ π and Yα is a random variable independant of
X and whose distribution has density α then the random variable X + Yα has distribution πα. The
idea of regularizing the measure to derive properties on the Wasserstein distance is not new and was
used in various contexts (Dedecker and Michel, 2013; Niles-Weed and Berthet, 2020; Goldfeld and
Greenewald, 2020; Nguyen, 2013). We have the following lemma which relatesWp to its regularized
counterpart:

Lemma 9. Consider a regularizer α with p-finite moments where p ≥ 1. We have:

∀π, π′ ∈ P(Rd), Wp(π, π
′) ≤Wp(πα, π

′
α) + 2

(∫
‖z‖p2α(z)dz

)1/p

(80)

Proof Using the triangle inequality we have Wp(π, π
′) ≤ Wp(π, πα) +Wp(πα, π

′
α) +Wp(π

′, π′α). Let
X ∼ π and Yα be a random variable independent of X and whose distribution has density α so
that X + Yα ∼ πα. By definition of Wp we have W p

p (π, πα) = infγ∈Π(π,πα) E(Z1,Z2)∼γ [‖Z1 − Z2‖p]
hence taking (Z1, Z2) = (X,X + Yα) we obtain W p

p (π, πα) ≤ E[‖X − (X + Yα)‖p] = E[‖Yα‖p].
Consequently W p

p (π, πα) ≤
∫
‖y‖p2α(y)dy. The same applies for the term Wp(π

′, π′α) so that we
have the advertised result.

When α is the density of the Gaussian N (0, σ2I) the distance Wp(πα, π
′
α) is usually called the

Gaussian-smoothed OT and enjoys good properties in terms of sample-complexity and topological
properties (Goldfeld and Greenewald, 2020; Nietert et al., 2021a). Our formalism is more general
as it considers any type of regularizers. The main idea now is to show that, given the regularizer,
Wp(πα, π

′
α) can be controlled by an MMD associated to a translation invariant kernel. We will use

the following lemma:

Lemma 10. Let s > 1. Assume that π, π′ ∈ Ps(Rd) have densities f, g with respect to the Lebesgue
measure. Then for any 1 ≤ p < s we have:

Wp(π, π
′) ≤ 2

1
p+1− 1

sV
s−p

(d+2s)p

d (Ex∼π[‖x‖s2] + Ey∼π′ [‖y‖s2])
2p+d

(d+2s)p ‖f − g‖
2(s−p)
(d+2s)p

L2(Rd)
(81)

with Vd = πd/2Γ(d/2 + 1) the volume of the d-dimensional unit sphere.

17. Since α is a regularizer we have
∫
α = 1 and consequently

∫
(
∫
α(x − y)dπ(y))dx =

∫
(
∫
α(x − y)dx)dπ(y) = 1 by

using Fubini’s theorem (α is non-negative) and the fact that the Lesbegue measure is invariant by translation.
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The proof of this result can be found in Appendix C.11. To connect with the MMD we will use
the following result whose proof is in Appendix C.12:

Lemma 11. Let α be a regularizer and κ0 := α ∗ α. Then κ0 ∈ L1(Rd) is even, bounded, continuous
and has non-negative Fourier transform. Consider the kernel κ(x,y) := κ0(x − y). We have that κ
defines a TI p.s.d. kernel. Moreover, for π, π′ ∈ P(Rd):

‖π − π′‖κ = ‖α ∗ π − α ∗ π′‖L2(Rd) (82)

Based on these results we have the following upper-bound on Wp(πσ, π
′
σ) using the MMD asso-

ciated to a TI p.s.d. kernel (the proof can be found in Appendix C.12):

Proposition 11. Let s > 1. Consider a regularizer α with s-finite moments. Consider the kernel
κ(x,y) = κ0(x − y) where κ0 := α ∗ α. It defines a TI p.s.d kernel by Lemma 11. Moreover, we have
for any π, π′ ∈ Ps(Rd) and 1 ≤ p < s:

Wp(πα, π
′
α) ≤ Cd,s,p

(
Ex∼πα [‖x‖s2] + Ey∼π′α [‖y‖s2]

) 2p+d
(d+2s)p ‖π − π′‖

2(s−p)
(d+2s)p
κ

where Cd,s,p = 2
1
p+1− 1

sV
s−p

(d+2s)p

d is a constant.

As a corollary of Proposition 11 and Lemma 9 we are now able to prove the main theorem of this
section (the proof is in Appendix C.12):

Theorem 5 Let s > 1. Consider a regularizer α with s-bounded moments. Consider the kernel
κ(x,y) = κ0(x− y) where κ0 := α ∗ α. It defines a TI p.s.d kernel by Lemma 11. We consider the
following model set:

S := {π ∈ P(Rd),Ex∼π[‖x‖s2] ≤M} (83)

Then for any 1 ≤ p < s there exists a constant C = Cd,s,p > 0 such that:

∀π, π′ ∈ S,Wp(π, π
′) ≤ C

(
M +

∫
‖z‖s2α(z)dz

) 2p+d
(d+2s)p

‖π− π′‖
2(s−p)
(d+2s)p
κ + 2

(∫
‖z‖p2α(z)dz

)1/p

This theorem has many implications. First it shows that, for a wide range of TI p.s.d. kernels,
and under mild assumptions, (S,Wp) is (κ, δ = 2(s−p)

(d+2s)p )-embeddable with error η > 0. We will
see with the example in Section 4.8 how this error term can be controlled. We emphasize that few
assumptions on S are required: the distributions in the model set must have uniformly bounded
s-moment, i.e. supπ∈S Ex∼π[‖x‖s2] < +∞. This assumption is verified when, for example if S is
the space of GMMs whose parameters are in a compact subspace as considered in CSL (Keriven
et al., 2018). Interestingly, when s is big compared to d, p, i.e. the model set contains sufficiently
well-behaved distributions, then δ ≈ 1

p . In the context of CSL (Section 2), this would give a rate of

convergence of the empirical sketch to the true sketch of the order of O(n−
1
2p ), which is reasonable

compared to the O(n−
1
2 ) of the LRIP when p is small (as in Section 3).

Condition on the TI kernel κ The condition κ0 = α ∗ α can be met in two ways. First, fixing a
regularizer α with s-bounded moments gives a TI p.s.d. kernel such that Theorem 5 holds. This can
be achieved for example by considering a p.s.d. function α ∈ L1(Rd) with a sufficient number of
bounded moments that is even, continuous and positive (continuous, integrable and p.s.d. functions
are bounded (Wendland, 2004)). A simple normalization α ← α/

∫
α will then produce a suitable

α. We give an example in Section 4.8 of such function α by considering the Gaussian density that
produces the Gaussian kernel. The second way is to fix the kernel κ(x,y) = κ0(x− y) and to check
that it can be decomposed as κ0 = α ∗α with α a regularizer with s-bounded moments and α̂ ≥ 0 so
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that Theorem 4 will hold. This problem is related to the one of finding a so-called convolution root, or
Boas–Kac root of a positive definite function which can be shown to exist under certain assumptions
on the function (Ehm et al., 2004; Akopyan and Efimov, 2017; R. P. Boas and Kac, 1945).

4.8 An application with the RBF kernel

As an example of use of Theorem 5 consider the Gaussian function ϕ(x) = (2π)−d/2 exp(−‖x‖22/2).
Define for σ > 0 the regularizer α(x) = σ−dϕ(x

σ ). We have that α is continuous, even, bounded,
all s-moments are finite,

∫
Rd α = 1. The associated kernel is then defined by κ̂0(ω) = (ϕ̂(σω))2 =

(e−
1
2σ

2‖ω‖22)2 = e−σ
2‖ω‖22 , hence κ(x,y) = πd/2σ−d exp(−‖x−y‖

2
2

4σ2 ). Consider the case p = 1 and
s > 1. The error term 2

∫
‖z‖2α(z)dz = 2σ

∫
‖z‖2ϕ(z)dz can be controlled as:

2σ

∫
‖x‖2(2π)−d/2 exp(−‖x‖22/2)dx ≤ 2σ(

∫
‖x‖22(2π)−d/2 exp(−‖x‖22/2)dx)1/2

by Jensen since x→ (2π)−d/2 exp(−‖x‖22/2) is a probability density function. Thus we can bound the
error therm by 2σ(Ex∼N (0,I)[‖x‖22])1/2 = 2σ

√
d. We have also that

∫
‖z‖s2α(z)dz = σs

∫
‖z‖s2ϕ(z)dz =

Ex∼N (0,I)[‖x‖s2] = 2s/2
Γ( s+d2 )

Γ( s2 ) (it is the s-th moment of a χ2 distribution). Then using Theorem 5 we
have:

Corollary 6. Consider the kernel κ(x,y) = πd/2σ−d exp(−‖x−y‖
2
2

4σ2 ) for σ > 0 and two numbers s >
1,M > 0. Consider the model set S defined as:

S := {π ∈ P(Rd), Ex∼π[‖x‖s2] ≤M}. (84)

We have

∀π, π′ ∈ S, W1(π, π′) ≤ C

(
M + 2s/2σs

Γ( s+d2 )

Γ( s2 )

) d+2
d+2s

‖π − π′‖
2(s−1)
d+2s
κ + 2σ

√
d (85)

with C = Cd,s,1 defined in Proposition 11.

Interestingly enough, the error term behaves as O(σ) and can me made as small as possible at
a price of a ”sharper” kernel (the bound is true for any σ > 0). Consequently, in the context of
CSL (Section 2) this error term can always be chosen smaller compared to the bias term Bias(π,S).
Moreover, when s is big compared to d then δ = 2(s−1)

d+2s ≈ 1, such that, if the model set contains
distributions with enough bounded moments, δ is close to the δ = 1 case of the LRIP.

4.9 Conclusion and related works

We have shown in this section various controls of the form Wp . MMDδ
κ that depend on δ ∈]0, 1],

the properties of the model set and the kernel κ. All these results are summarized in Figure 4.
Most of them were obtained for translation invariant p.s.d. kernels on Rd, that are at the core of
the CSL framework when using RFF (Section 2), and for Wasserstein distances based on the metric
D(x,y) = ‖x − y‖2 that corresponds to the results of Section 3. Some other connections between
MMD and the Wasserstein distance have been explored in the literature when the latter constraints
are relaxed. The most simple one is when the metric D used to define the Wasserstein distance is the
metric in the RKHS corresponding the the kernel κ, i.e. D(x,y) = ‖κ(·,x)− κ(·,y)‖H. In this case it

is known that we can control the Wasserstein distance W1 by
√

MMD2
κ +K when κ is bounded by

K (Sriperumbudur et al., 2010).
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Figure 4: Summary of the different results of Section 4. TI= Translation invariant kernel as
κ(x,y) = κ0(x − y). The mention ”with error” means that the relation holds when adding an
error η > 0 that does not depends on the measures. π � fdx means that the measure has density f
with respect to the Lesbegue measure.

Relaxing the translation-invariance property Other interesting connections can be found in the
literature and are based on the Gaussian-smoothed Wasserstein distance (Goldfeld and Greenewald,
2020) where authors consider α the probability density function of the Gaussian N (0, σ2I) and the
Wasserstein distance between the regularized distributions πα = α ∗ π. In (Zhang et al., 2021)
authors show that we can control the Gaussian-smoothed Wasserstein distance with an MMD, by
considering a p.s.d. kernel that is not translation-invariant and not bounded but defined as κ(x,y) =

exp
(
−‖x−y‖

2

4σ2

)
If

(
‖x+y‖√

2σ

)
where If is a function parametrized by some probability density function

f such as generalized beta-prime distributions. More precisely they prove (Zhang et al., 2021,
Theorem 2):

∀π, π′ ∈ Sκ,Wp(πα, π
′
α) ≤ 2σ‖π − π′‖1/pκ (86)

where Sκ := {π ∈ P(Rd);
∫ √

κ(x,x′)dπ(x) < +∞}. With the same type of arguments than
those presented in Lemma 9 we can prove that for any π, π′ ∈ Sκ we have Wp(π, π

′) ≤ 2σ‖π −
π′‖1/pκ + η where η = 2

(∫
‖z‖p2α(z)dz

)1/p
. As a corollary, for this kernel that is not TI we can

use the result of (Zhang et al., 2021) to prove that (Sκ,Wp) is (κ, 1
p )-embeddable with error η =

2
(∫
‖z‖p2α(z)dz

)1/p
that will behave as O(σ) as shown in Section 4.8. We can mention another line

of works which draws connections between the Wasserstein distance and some specific dual Sobolev
norms which can be related to MMD. In (Nietert et al., 2021b) authors control the Wasserstein
distance with an MMD whose kernel, which is not TI, is defined by κ(x,y) = −σ2 Ein(−〈x,y〉/σ2)

where Ein =
∫ z

0
(1−e−t)

t dt. Despite the fact that our two approaches are related our work differs
from the Gaussian-smoothed OT in the sense that we do not want to estimate precisely the smoothed
Wasserstein distance Wp(πα, π

′
α) by controlling it with an MMD based on specific kernel but instead

to control Wp(π, π
′) by kernel norms for many types of TI kernels.
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Relaxing the p.s.d. assumption on the kernel Beyond p.s.d. kernels other types of kernels can be
used to define interesting divergences between probability distributions that can be linked with the
Wasserstein distance. These divergences are not stricly speaking MMD norms as defined in Section
2 but share similar topological properties. For example, by considering the conditionally p.s.d. 18

kernel κ(x,y) = −‖x − y‖β2 for β ∈]0, 2] the term ‖π − π′‖κ is non-negative for π, π′ ∈ P(Rd) and
defines a valid MMD which is called the energy (or Cramer) distance (Székely and Rizzo, 2017;
Szekely and Rizzo, 2004; Sejdinovic et al., 2013). It connects with OT distances in the sense that
the Sinkhorn divergence (regularized OT) was shown to interpolate between this MMD and the
Wasserstein distance (Feydy et al., 2019). Another notable example is when one considers the so
called d-dimensional Coulomb kernel defined by κ(x,y) = κ0(x− y) where:

κ0(x) :=

{
log 1
‖x‖2 if d = 2

1

‖x‖d−2
2

if d ≥ 3
(87)

In this case, for compactly supported π, π′ ∈ P(Rd) with ‖π‖κ, ‖π′‖κ < +∞, the quantity ‖π − π′‖κ
is well defined, finite, non-negative, and vanishes if and only if π = π′ (Chafäı et al., 2016; Saff
and Totik, 2013). Consequently it defines a valid MMD that remarkably controls the W1 distance as
described in (Chafäı et al., 2016). More precisely consider, for K ⊆ Rd compact, a model set S such
that:

S = {π ∈ P(Rd), supp(π) ⊆ K, ‖π‖κ < +∞}
Then (Chafäı et al., 2016, Theorem 1) shows that there exists C = C(K) > 0 such that:

∀π, π′ ∈ S,W1(π, π′) ≤ C‖π − π′‖κ (88)

This result shows that, with the above S, (S,W1) is (κ, δ = 1)-embeddable with no error. It is
remarkable in the sense few assumptions on the model set are required and in particular the distri-
butions can be discrete. An important remark is that the kernel is TI but not p.s.d. and, consequently,
this result is not in contradiction with Theorem 2. This also suggests that finite dimensional approx-
imations of TI conditionally p.s.d. kernels (as done in (Sun, 1993; Narcowich et al., 2007)) could
lead to interesting feature maps for CSL.

5. From kernel embeddings of distributions to sketching operators

At this point, we propose to refocus on CSL and to make a brief summary of the different notions
used in this paper to establish CSL learning guarantees. As described in Section 2, when one finds
a sketching operator A : P(X ) → Rm that satisfies the Hölder LRIP with constant C > 0 and η ≥ 0
on a model set S (Definition 1) then we can control the excess risk for any probability distribution
π ∈ P(X ) (Theorem 1). We conclude this paper by outlining a possible strategy to find such a
sketching operator using the tools developed in the previous sections. We have seen in Section 3
that several learning tasks L(H) satisfy the Wasserstein learnability property:

∀π, π′ ∈ Pp(X ), ‖π − π′‖L(H),p ≤ C1Wp(π, π
′) (89)

In Section 4 we also exhibited conditions on a model set S and a TI p.s.d. kernel κ under which
(S,Wp) is (κ, δ)-embedabble with (potentially) an error err ≥ 0 i.e.

∀π, π′ ∈ S,Wp(π, π
′) ≤ C2‖π − π′‖δκ + err (90)

By combining both properties we obtain the Kernel Hölder-LRIP with error η = C1×err ≥ 0, constant
C = C1 × C2 > 0 and δ ∈]0, 1]:

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C‖π − π′‖δκ + η (Kernel Hölder LRIP)

18. A conditionally p.s.d. kernel on X is such that
∑n
i,j=1 cicjκ(xi,xj) ≥ 0 for any x1, · · · ,xn ∈ X and c1, · · · cn ∈ R

such that
∑n
i=1 ci = 0 (Berg et al., 1984)
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The goal of this section is to further constrain the model set S in order to find a finite dimension m
and a sketching operator A : P(X )→ Rm that satisfies the Hölder LRIP.

5.1 From the kernel Hölder LRIP to the Hölder LRIP: existence of a sketching operator

Interestingly enough we will see that as soon as we have the Kernel Hölder LRIP with a bounded
kernel (not necessarily translation invariant) with a compact model set with respect to the total
variation norm then there exists a sketching operator that satisfies the Hölder LRIP. To establish this
we will rely on general Banach spaces embedding results from (Robinson, 2010). We first introduce
some definitions:

Definition 7. Let (X , D) be a (pseudo)metric space with (pseudo)metric D. Consider a set S ⊆ X
and ε > 0. We say that (x1, · · · , xN ) ∈ SN is an ε-net of S of size N if S ⊆ ∪i∈[[N ]]BD(xi, ε) where
BD(xi, ε) is the closed ball centered at xi of radius ε. Equivalently there is an ε-net of S of size N > 0
if:

∃(x1, · · · , xN ) ∈ SN ,∀x ∈ S,∃i ∈ [[N ]], D(x, xi) ≤ ε (91)

The ε-covering number of S is defined by:

N (S,D, ε) = min{N : ∃ε− net of S of size N} (92)

The covering number of a set S is the minimal number of closed balls that we need to have to
cover the whole set S. It allows to define a notion of “dimension” of a set S which is given by the
upper box-counting dimension:

dB(S) := lim sup
ε→0

log(N (S,D, ε))

− log(ε)
(93)

In the following we consider the Banach space of finite signed measure M(X ) on X equipped
with the total variation norm ‖.‖TV i.e. ‖µ‖TV = |µ|(X ) (see (Halmos, 1976)). We are now ready
to prove that, under some mild assumptions on S and when we have the Kernel Hölder LRIP there
exists an operator A that satisfies the Hölder LRIP. The following result is a consequence of Theorem
8.1 in (Robinson, 2010) and its proof is deferred to Appendix D.1:19

Theorem 6 (Existence of a sketching operator when the Kernel Hölder LRIP holds) Consider a
model set S ⊆ P(X ) such that S is compact in (M(X ), ‖.‖TV) and has finite upper box-counting
dimension, i.e. dB(S) < +∞. Suppose that there exists β > 0, C > 0 and η ≥ 0 such that:

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C‖π − π′‖βκ + η (94)

for some bounded kernel κ (i.e. such that supx∈X κ(x,x) ≤ K). Then for any finite dimension
m > 2dB(S) there exists 0 < δ < β,C ′ > 0, and a prevalent set of bounded linear mapsa

A :M(X )→ Rm such that:

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C ′‖Aπ −Aπ′‖δ2 + η (95)

19. When carefully looking at the proof of Theorem 6 it seems at first sight that the assumption that S is compact in
(M(X ), ‖.‖TV) may be replaced by a compactness assumption in the metric space (M(X ), ‖.‖κ) (with κ bounded). In
order to do the same reasoning, the space (M(X ), ‖.‖κ) should however be a complete normed space, which is only
possible when κ is characteristic toM(X ) (thus ‖.‖κ defines a pre-Hilbert norm onM(X )). However, it was shown in
(Steinwart and Ziegel, 2017, Theorem 3.1) that (M(X ), ‖.‖κ) is complete (hence a Hilbert space) only when ‖.‖κ and
‖.‖TV are equivalent. Consequently we choose to keep the compactness assumption with respect to ‖.‖TV
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In other words if β ≤ 1 there exists a sketching operator that satisfies the Hölder LRIP with some
0 < δ < 1 and error η ≥ 0.

a. A prevalent set is a set whose complement is shy that is, informally, negligeable: in the case of Euclidean space it
is a space whose complement has Lesbegue measure zero.

In particular, this result states that when the Kernel Hölder LRIP holds with no error (η = 0)
there exists a finite dimensional embedding of our distributions in S and a sketching operator A
that satisfies the Hölder LRIP with error η = 0. This result can be put in contrast to the LRIP case
(δ = 1) where such existence theorem do not exists. The previous discussion leads to the following
informal proposition that summarizes the different contributions:

Proposition 12. Consider a task L(H) and a model set S ⊂ P(X ) and p ∈ [1,+∞[. Suppose that:

• The task L(H) is p-Wasserstein learnable with constant C1 > 0 (Definition 2, Section 3)

• The space (S,Wp) is (κ, β)-embeddable with constant C2 > 0 and error err ≥ 0 for some bounded
kernel κ on X and β ∈]0, 1] (Definition 3, Section 4)

• S is compact in (M(X ), ‖.‖TV ) and has finite upper box-counting dimension, i.e. dB(S) <
+∞.

Then for m > 2dB(S) there exists a sketching operator that satisfies the Hölder LRIP with constant
C = C1 × C2 > 0, error η = C1 × err ≥ 0 and 0 < δ < β ≤ 1.

This result gives necessary conditions under which we theoretically have CSL guarantees via
the Hölder LRIP and based on the different results presented in this paper. However it comes with
limitations. Indeed, this proposition proves the existence of a sketching operator that comes with
CSL guarantees but does not give its concrete, calculable expression. Moreover the finite dimension
m > 2dB(S) could be potentially very large and the Hölder exponent δ may be very close to zero
implying slow learning rates. Fortunately the different results established in (Gribonval et al., 2021a)
are directly applicable to our setting since most of the kernels considered in Section 4 are TI. For the
sake of conciseness we only give here some intuitions and we refer the reader to (Gribonval et al.,
2021a) for a more detailed discussion. Informally these results allow to prove that, for a controlled
dimension m, a TI p.s.d. kernel κ and A defined with RFF (Section 2) we have:

∀π, π′ ∈ S, ‖π − π′‖κ ≈ ‖A(π)−A(π′)‖2 (96)

This property is valid when certain covering numbers of the normalized secant-set of S are con-
trolled (Gribonval et al., 2021a). As such, when the task L(H) is p-Wasserstein learnable and the
space (S,Wp) is (κ, δ)-embeddable the approach presented in this paper combined with the one of
(Gribonval et al., 2021a) show that sketching operators based on RFF are suited for a wide range of
tasks and lead to CSL guarantees.

6. Conclusion & perspectives

The main contributions of this paper are the following. We establish different bounds between met-
rics between probability distributions. First, we show that for many learning tasks, the task-related
metric can be controlled by a Wasserstein distance. In particular, many supervised and unsupervised
tasks fall into this category (PCA, K-Means, GMM learning, linear and nonlinear regression...). We
then show that this Wasserstein distance can be controlled by kernel norms to the power of a Hölder
exponent smaller than 1 and under certain conditions on the regularity of the kernel and of the
distributions at stake (by introducing a model set of distributions). These different results allow us
to establish learning guarantees in the context of compressive statistical learning (CSL) whose goal
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is to summarized the training data in a single vector, by a so-called sketching operator, and to rely
solely on this vector to solve the learning task. We show that the different bounds allow us to estab-
lish a property called the Hölder LRIP that generalizes the LRIP property in CSL and allows, for the
given sketching operator, to control the excess risk related to the compressive learning procedure.
Therefore, one of the contributions of this article is to provide a general framework for obtaining
CSL guarantees.

This work opens many perspectives. The first one is to use our results for new compressive
learning tasks that have been tackled in practice but for which theoretical guarantees are miss-
ing. In particular, we envision applications of our framework for learning generative models based
on sketching (Schellekens and Jacques, 2020) or for classification tasks (Schellekens and Jacques,
2018). Related to the CSL theory, another interesting line of works would be to see if we can con-
struct interesting sketching operators from the different kernels used in this paper for tasks for which
there are already CSL guarantees. More precisely, for compressive learning tasks such as K-means
and GMM one question would be to see if we can obtain CSL guarantees without separation assump-
tions (Gribonval et al., 2021b), possibly at the price of a Hölder exponent δ < 1 hence with reduced
rate of convergence with respect to the number of samples. Another interesting perspective concern
the bounds between the Wasserstein distance and the MMD. We believe that the different results
presented in this paper could be used for specific problems related to the statistical estimation of
the Wasserstein distance. Finally, an interesting question would be to see if these bounds can be
used to mitigate the curse of dimensionality of the Wasserstein distance when the distributions are
constrained to a certain model set (since the MMD do not suffer from the curse of dimensionality).
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Appendix A. Proofs of Section 2

A.1 Proof of Proposition 1

We recall the result here:

Proposition 1 (Equivalence of Hölder LRIP and IOP). Consider a learning task L(H), an exponent
p ∈ [1,+∞[ , and a model set S.

(i) If A satisfies (Hölder-LRIP) with error η ≥ 0 and constant C > 0 then the ”ideal” decoder defined
by:

∆[s] ∈ arg min
π∈S
‖A(π)− s‖2 (18)

satisfies (Hölder-IOP) with constant 2C > 0, error η ≥ 0 and

Bias(π,S) := inf
τ∈S
‖π − τ‖L(H),p + 2C‖A(π)−A(τ)‖δ2

(ii) Conversely if the decoder ∆ defined in (18) satisfies (Hölder-IOP) with error η ≥ 0, constant
C > 0 and Bias(π,S) defined above, then A satisfies (Hölder-LRIP) with constant C > 0 and
error 2η.

Proof For the proof we will need that if (a, b) ∈ R+ and δ ∈ [0, 1] then (a+ b)δ ≤ aδ + bδ.
IOP =⇒ LRIP Suppose that ∆ satisfies (Hölder-IOP). Let π, π′ ∈ S. Then by the triangle

inequality:

‖π − π′‖L(H),p ≤ ‖π −∆[A(π)]‖L(H),p + ‖π′ −∆[A(π)]‖L(H),p (97)

For the first term ‖π − ∆[A(π)]‖L(H),p we can apply the Hölder IOP with e = 0 which gives ‖π −
∆[A(π)]‖L(H),p ≤ η since π ∈ S so Bias(π,S) = 0. For the second term see that A(π) = A(π′) +
(A(π)−A(π′)) so we can apply the IOP with e = A(π)−A(π′) which gives ‖π′ −∆[A(π)]‖L(H),p =

‖π′ − ∆[A(π′) + e]‖L(H),p ≤ 0 + C‖A(π) − A(π′)‖δ2 + η and finally we have (Hölder-LRIP) with
constant C and error 2η.

LRIP =⇒ IOP Suppose that A satisfies (Hölder-LRIP). Consider the decoder:

∆[s] ∈ arg min
π∈S
‖A(π)− s‖2 (98)

which means that ‖A(∆[s])− s‖2 ≤ ‖A(τ)− s‖2 for any τ ∈ S. We define

Bias(π,S) := inf
τ∈S

(
‖π − τ‖L(H),p + 2C‖A(τ)−A(π)‖δ2

)
We show that this decoder satisfies (Hölder-IOP) with this Bias term. Let π ∈ P(X ) and e ∈ Cm.
Consider any τ ∈ S. We have:

‖π −∆[A(π) + e]‖L(H),p ≤ ‖π − τ‖L(H),p + ‖τ −∆[A(π) + e]‖L(H),p

∗
≤ ‖π − τ‖L(H),p + C‖A(τ)−A(∆[A(π) + e])‖δ2 + η
∗∗
≤ ‖π − τ‖L(H),p + C‖A(τ)− (A(π) + e)‖δ2
+ C‖(A(π) + e)−A(∆[A(π) + e])‖δ2 + η

(99)

where in (*) we use the LRIP since τ and ∆[A(π)+e] are in S. In (**) we use the triangle inequality
and the property (a+b)δ ≤ aδ+bδ. By the properties of the decoder we have ‖(A(π)+e)−A(∆[A(π)+
e])‖2 ≤ ‖(A(π) + e)−A(τ)‖2 so:

‖π −∆[A(π) + e]‖L(H),p ≤ ‖π − τ‖L(H),p + 2C‖A(τ)− (A(π) + e)‖δ2 + η

≤ ‖π − τ‖L(H),p + 2C‖A(τ)−A(π)‖δ2 + 2C‖e‖δ2 + η.

‖π −∆[A(π) + e]‖L(H),p

∗
≤ Bias(π,S) + 2C‖e‖δ2 + η

(100)
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where in (*) we used the definition of Bias(π,S) since the previous was true for any τ ∈ S.

Appendix B. Proofs of Section 3

B.1 Proof of Lemma 1

Lemma 1 (Canas and Rosasco (2012)). Consider S ⊆ X , p ∈ [1,+∞[ and π ∈ Pp(X ). Consider
PS : X → S, measurable, such that D(x, PS(x)) ≤ D(x,y) for all x ∈ X and y ∈ S. Then we have:

Ex∼π[D(x, PS(x))p] = W p
p (π, PS#π) (32)

Moreover for any ν ∈ Pp(X ) such that supp(ν) ⊆ S we have Wp(π, PS#π) ≤Wp(π, ν)

Proof The proof in mainly taken from (Canas and Rosasco, 2012) but we rewrite it in our context.
Considering the admissible coupling γ = (id× PS)#π ∈ Π(π, PS#π) we have

W p
p (π, PS#π) ≤

∫
Dp(x,y)dγ(x,y) =

∫
Dp(x, PS(x))dπ(x) = Ex∼π[D(x, PS(x))p] (101)

Conversely, if γ∗ is an optimal coupling for Wq(π, PS#π) then for all (x,y) ∈ supp(γ∗) we have
that y ∈ supp(PS#π) by definition of a coupling which means that y ∈ S and so by hypothesis
Dp(x,y) ≥ Dp(x, PS(x)). Therefore:

W p
p (π, PS#π) =

∫
Dp(x,y)dγ∗(x,y) ≥

∫
Dp(x, PS(x))dγ∗(x,y) =

∫
Dp(x, PS(x))dπ(x) (102)

Hence W p
p (π, PS#π) ≥ Ex∼π[D(x, PS(x))p]. The last inequality can be proved in the same way by

considering an optimal coupling γ∗ between π and ν this time:

W p
p (π, ν) =

∫
Dp(x,y)dγ∗(x,y)

supp(ν)⊆S
≥

∫
Dp(x, PS(x))dγ∗(x,y)

=

∫
Dp(x, PS(x))dπ(x) = Ex∼π[D(x, PS(x))p] = W p

p (π, PS#π)

(103)

B.2 Proof of Proposition 3

Proposition 3 (Wasserstein learnability is necessary). Consider X = Rd, p ∈ [1,+∞[, and any
model set S ⊆ Pp(Rd). Consider a sketching operator A defined using random features Φ(x) =
(φ(x,ω1), · · · , φ(x,ωm))> where ωi ∼ Λ. Assume that each φ(·,ωi), i ∈ [[m]], is Li-Lipschitz with
respect to the metric used to define the Wasserstein distance. If A satisfies (Hölder-LRIP) with error
η = 0, constant C > 0 and δ = 1 then we have:

∀π, π ∈ S, ‖π − π′‖L(H),p ≤ C ′ Wp(π, π
′) (28)

where C ′ = C
√∑m

i=1 L
2
i . In other words, if A satisfies the LRIP (δ = 1) then L(H) is p-Wasserstein

learnable w.r.t. S.

Proof Under the hypothesis of the proposition we have:

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C‖A(π)−A(π′)‖2 (104)
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for some C > 0. We will show that the duality property of the Wasserstein distance implies ‖A(π)−
A(π′)‖2 ≤W1(π, π′). Indeed we have for π, π′ ∈ S:

‖A(π)−A(π′)‖22 = ‖
∫
Rd

Φ(x)dπ(x)−
∫
Rd

Φ(y)dπ′(y)‖22

=

m∑
i=1

∣∣∣∣∫ φ(x,ωi)dπ(x)−
∫
φ(y,ωi)dπ

′(y)

∣∣∣∣2
?
≤

m∑
i=1

[LiW1(π, π′)]2 =

m∑
i=1

L2
i [W1(π, π′)]2

(105)

Where in (?) we used that φ is Li-Lipschitz so that |
∫
φ(x,ωi)dπ(x)−

∫
φ(y,ωi)dπ

′(y)| ≤ LiW1(π, π′)
using the duality of the Wasserstein distance. Overall we have:

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C

√√√√ m∑
i=1

L2
i ·W1(π, π′) (106)

Finally we use that W1(π, π′) ≤Wp(π, π
′) since p ∈ [1,+∞[ (Santambrogio, 2015, Section 5.1).

Appendix C. Proofs of Section 4

C.1 Proof of Proposition 9 and Corollary 1

We recall the proposition:

Proposition 9. Let (X , D) be a complete separable metric space, κ : X ×X → R a p.s.d. kernel andHκ
the associated RKHS, and Bκ := {f ∈ Hκ, ‖f‖Hκ ≤ 1} the unit ball in Hκ. Consider the Wasserstein
distances computed with the metric D. For any C > 0 the following statements are equivalent:

(i)
Bκ ⊆ LipC((X , D),R) (46)

(ii)
∀p ∈ [1,+∞[,∀π, π′ ∈ Pp(X ), ‖π − π′‖κ ≤ C Wp(π, π

′) (47)

(iii)
∃p ∈ [1,+∞[,∀π, π′ ∈ Pp(X ), ‖π − π′‖κ ≤ C Wp(π, π

′) (48)

(iv)
∀x,y ∈ X , κ(x,x) + κ(y,y)− 2κ(x,y) ≤ C2D2(x,y) (49)

Proof We will prove (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i).
(i) =⇒ (ii). Assuming (i) we prove (ii) for p = 1. By monotonicity of the Wasserstein distance
with respect to p we have the conclusion for any p ∈ [1,+∞[. Considering π, π′ ∈ P1(X ), we have
‖π − π′‖κ = supf∈Bκ |

∫
f(x)dπ(x) −

∫
f(y)dπ′(y)| (Sriperumbudur et al., 2010). For any f ∈ Bκ,

by hypothesis (i) we have 1
C f ∈ Lip1((X , D), (R, | · |)) thus by the dual characterization of the 1-

Wasserstein distance (26) we obtain ‖π − π′‖κ ≤ CW1(π, π′). The implication (ii) =⇒ (iii) is
straightforward.
(iii) =⇒ (iv). Consider π = δx, π

′ = δy for arbitrary x,y ∈ X . We have ‖π − π′‖2κ = κ(x,x) +
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κ(y,y)− 2κ(x,y) and Wp(π, π
′) = D(x,y), hence the conclusion.

(iv) =⇒ (i). Considering f ∈ Bκ, we have for any x,y ∈ X :

|f(x)− f(y)|2 = |〈f, κ(x, ·)〉Hκ − 〈f, κ(y, ·)〉Hκ |2 = |〈f, κ(x, ·)− κ(y, ·)〉Hκ |2

≤ ‖f‖2Hκ‖κ(x, ·)− κ(y, ·)‖2Hκ ≤ 1 · (‖κ(x, ·)‖2Hκ + ‖κ(y, ·)‖2Hκ − 2κ(x,y))

= κ(x,x) + κ(y,y)− 2κ(x,y)
(iv)

≤ C2D2(x,y)

(107)

This gives |f(x)− f(y)| ≤ CD(x,y) hence f is C-Lipschitz with respect to the metric D.

Corollary 1. Consider X = Rd equipped with the Euclidean distance D(x,y) = ‖x− y‖2 and a p.s.d.
kernel κ : Rd × Rd → R that is normalized, i.e. κ(x,x) = 1 for every x ∈ X . Assume that for each
x ∈ X the function φx : y 7→ κ(x,y) is C2 in a neighborhood of x, and denote Hx = −∇2[φx](x) its
negative Hessian matrix evaluated at x. Then the following holds:

(i) Any of the four equivalent properties of Proposition 9 implies that:

sup
x∈Rd

λmax(Hx) ≤ C2. (50)

(ii) If κ is translation invariant, i.e. κ(x,y) = κ0(x − y) for every x,y ∈ X then conversely, (47)
holds with C :=

√
supx λmax(Hx) =

√
λmax(−∇2[κ0](0)).

Proof For the first part (i). Since the kernel is normalized, using formulation (iv) of the four equiv-
alent properties of Proposition 9 and setting h = y − x yields:

∀x,h ∈ Rd, κ(x,x + h) ≥ 1− C2

2
‖h‖22 (108)

Given any x ∈ Rd, since φx is C2 in a neighborhood of x, a Taylor expansion yields:

φx(x + h) = φx(x) + 〈∇φx(x),h〉+
1

2
h>∇2φx(x)h + ‖h‖22g(x + h) (109)

where g is a function such that lim
h→0

g(x + h) = 0. Moreover φx(x) = κ(x,x) = 1 and ∇φx(x) = 0

since the maximum of y→ κ(x,y) is always attained at y = x when κ is a p.s.d. kernel. Hence

κ(x,x + h) = 1− 1

2
h>Hxh + o‖h‖2→0(‖h‖22) (110)

Considering an arbitrary unit vector u and h = εu and using (108) gives: −ε2u>Hxu ≥ −ε2(C2 +
oε→0(1)) hence u>Hxu ≤ C2. Since φx is C2 in a neighborhood of x, by Schwarz’s theorem its
Hessian matrix is symmetric hence diagonalizable, and the above property implies that λmax(Hx) ≤
C2. As this holds for every x we get the desired conclusion.

For (ii), observe first that Hx = −∇2φx(x) = −∇2[κ0](0) is independent of x . Since φx is
C2 the matrix Hx is also symmetric, and since φx(y) is maximum at y = x, Hx is also positive
semi-definite, hence supx λmax(Hx) = λmax(−∇2κ0) ≥ 0 and C :=

√
λmax(−∇2κ0) is well-defined.

Now, by Bochner’s theorem, since the kernel is normalized, real-valued, and twice continuously
differentiable in the neighborhood of zero, there is a frequency distribution Λ ∈ P2(Rd) such that
κ0(x) = Eω∼Λ[cos(ω>x)]. It follows by standard arguments that the gradient and Hessian can
be written as ∇κ0(x) = −Eω∼Λ[ω sin(ω>x)], ∇2κ0(x) = −Eω∼Λ[ωω> cos(ω>x)] Consequently,
Hx = −∇2[κ0](0) = Eω∼Λ[ωω>] and C =

√
λmax(Eω∼Λ[ωω>]). Consider z ∈ Rd, we will show

that:
2(1− Eω∼Λ[cos(ω>z)]) ≤ C2‖z‖22 (111)
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which will prove property (iv) of Proposition 9, and consequently all other equivalent properties.
Indeed, using that 1−cos(t) ≤ t2

2 for all t ∈ R we have 1−Eω∼Λ[cos(ω>z)] = Eω∼Λ[1−cos(ω>z)] ≤
Eω∼Λ[ |ω

>z|2
2 ] = z>

(
Eω∼Λ[ωω>]

)
z ≤ λmax(Eω∼Λ[ωω>])‖z‖22 = C2‖z‖22.

C.2 Convergence of finite samples

We have the following result which is a direct consequence of Lemma 2 in (Briol et al., 2019):

Lemma 12. et π ∈ P(X ) and πn = 1
n

∑n
i=1 δxi where xi ∼ π i.i.d. Then:

E[‖π − πn‖2κ] = n−1(

∫
κ(x,x)dπ(x)−

∫ ∫
κ(x,y)dπ(x)dπ(y)) (112)

where the expectation is taken on the draws of the (xi)i∈[[n]].

Lemma 13. Let π ∈ P(X ) and πn = 1
n

∑n
i=1 δxi where xi

i.i.d∼ π. If supx k(x,x) ≤ K then for each
δ ∈ (0, 2] we have:

E[‖π − πn‖δκ] ≤ (2K)δ/2n−δ/2 (113)

Proof By the previous lemma, since supx k(x,x) ≤ K we have E[‖π − πn‖2κ] ≤ 2Kn−1 since for all
x,y ∈ X |k(x,y)| ≤ supx∈X k(x,x) ≤ K because the kernel is positive semi-definite (the maximum
value of a p.s.d. kernel is necessarily on the diagonal). The fact that E[‖π − πn‖δκ] ≤ (2K)δ/2n−δ/2

is a direct consequence of Jensen’s inequality as (E[‖π−πn‖δκ])2/δ ≤ E[‖π−πn‖2κ]) when 2/δ ≥ 1.

C.3 Simple bound between Wassersein and distance between the means

Lemma 14. Let π, π′ ∈ P(Rd). Then for every 1 ≤ p <∞ we have:

Wp(π, π
′) ≥ ‖m(π)−m(π′)‖2. (114)

Proof Consider u ∈ Rd an arbitrary unitary vector and denote fu(x) = 〈u,x〉 ∈ R for any x ∈ Rd.
Since ‖u‖2 = 1 the function fu : Rd → R is 1-Lipschitz with respect to the Euclidean norm, hence
by duality of the Wasserstein distance (cf (26))

|〈u,m(π)−m(π′)〉| =
∣∣∣∣∫ fu(x)dπ(x)−

∫
fu(y)dπ(y)

∣∣∣∣ ≤W1(π, π′).

The supremum with respect to unitary vectors u yields ‖m(π)−m(π′)‖2 ≤ W1(π, π′). The last step
uses the fact that W1(π, π′) ≤Wp(π, π

′) for any p ∈ [1,+∞[ which concludes the proof.

C.4 Proof of Proposition 10

We will prove the following result:

Proposition 10. Let (X , D) be a complete and separable metric space and consider the Wasserstein
distances computed with the distance D. Let κ be any p.s.d. kernel. Consider two arbitrary probability
distributions π0, π1 ∈ P(X ) such that ‖π0 − π1‖κ < +∞ and supp(π0) and supp(π1) are disjoint20.
Consider S := {(1− t)π0 + tπ1, t ∈ [0, 1]}. If (S,Wp) is (κ, δ)-embeddable then δ ≤ 1/p.

20. We recall that the support supp(π) of a probability distribution π ∈ P(X ) is defined as the smallest closed set S such
that π(S) = 1.
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In order to prove this proposition we will use the following lemma:

Lemma 15. (Niles-Weed and Berthet, 2020, Lemma 9) Let π0, π1 ∈ P(Rd) be any probability distribu-
tions. Suppose that there exist two compact sets S, T ⊆ Rd such that d(S, T ) := inf(x,y)∈S×T ‖x−y‖2 ≥
c > 0 and that the supports of π0 and π1 lie in S ∪ T . Then:

∀p ∈ [1,+∞[,Wp(π0, π1) ≥ c|π0(S)− π0(S)|1/p (115)

Proof [Of Proposition 10] This result is mainly taken from Theorem 9 in (Niles-Weed and Berthet,
2020) but we rewrite it in our context for completeness. For any λ ∈ [0, 1], set:

πλ = 1
2 ((1 + λ)π0 + (1− λ)π1)

π′λ = 1
2 ((1− λ)π0 + (1 + λ)π1)

Note that πλ, π′λ ∈ S by assumption and ‖πλ − π′λ‖κ = λ‖π0 − π1‖κ. Since the sets supp(π0)
and supp(π1) are disjoint, there exist two sets S and T and c > 0 such that supp (π0) ⊆ S and
supp (π1) ⊆ T and d(x,y) ≥ c > 0 for any x ∈ S,y ∈ T . Moreover it is clear by definition that
supp(πλ) and supp(π′λ) lie in S ∪ T . The Lemma 15 gives for any p:

Wp(πλ, π
′
λ) ≥ c |πλ(S)− π′λ(S)|1/p = cλ1/p (116)

We obtain for δ ∈]0, 1]:

sup
(π,π′)∈S

Wp(π, π
′)

‖π − π′‖δκ
≥ sup
λ∈(0,1)

Wp(πλ, π
′
λ)

‖πλ − π′λ‖δκ
& sup
λ∈[0,1]

λ1/p−δ = +∞

The last equality is true because pδ > 1.

C.5 Proof of Theorem 2

We recall that that for M ∈ N∗ and Y ⊆ Rd the space of mixtures of M diracs located in Y is defined
by:

SM (Y) := {
M∑
i=1

aiδxi ; ai ∈ R+,

M∑
i=1

ai = 1,∀i ∈ [[M ]],xi ∈ Y} (117)

The goal of this section is to prove the following theorem:

Theorem 2 Consider a TI p.s.d. kernel κ(x,y) = κ0(x−y) on Rd such that κ0 is k times differen-
tiable at 0 with k ∈ N∗. Let p ∈ [1,+∞[, x0 ∈ Rd, R > 0 and Ω = B(x0, R).
If (Sb k2 c+1(Ω),Wp) is (κ, δ)-embeddable then δ ≤ 2/k.

We will need the following lemma which states that if the kernel is regular at zero and that we
can construct some vectors α,β that satisfy certain conditions then we have a constraint on the
Hölder exponent.

Lemma 16. Consider a TI p.s.d. kernel κ(x,y) = κ0(x−y) on Rd such that κ0 is k times differentiable
at 0 with k ∈ N∗. Let M ∈ N∗ and define for 1 ≤ s ≤ k and α,β ∈ RM the function cs(α,β) :=∑M
i,j=1 βiβj(αi−αj)s. Suppose that there exists α ∈ RM \{0} with αi 6= αj for i 6= j and β ∈ RM \{0}

with
∑M
i=1 βi = 0 such that:

c1(α,β) = c2(α,β) = · · · = ck−1(α,β) = 0 (118)
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Define r(β) = max{#T+(β),#T−(β)} where T+(β) := {i ∈ [[M ]], βi ≥ 0} and T−(β) := {i ∈
[[M ]], βi < 0}.

Consider S = Sr(β)(Ω) with Ω = B(x0, R) where x0 ∈ Rd, R > 0 are arbitrary. If (S,Wp) is
(κ, δ)-embeddable, where p ∈ [1,+∞[, then δ ≤ 2/k.

Proof Recall that for a finite signed measure µ ∈ M(Rd) we have ‖µ‖2κ =
∫ ∫

κ(x,y)dµ(x)dµ(y).
Consider M ∈ [[N ]]

∗
,β ∈ RM such that

∑M
i=1 βi = 0 and α ∈ RM \ {0} with αi 6= αj when i 6= j. We

define the measure:

µε :=

M∑
i=1

βiδx0+εαiu (119)

where u ∈ Rd \ {0} and 0 < ε < R
‖α‖∞‖u‖2 is sufficiently small to ensure that x0 + εαiu ∈ Ω =

B(x0, R). We define T+ := {i ∈ [[M ]], βi ≥ 0} and T− := {i ∈ [[M ]], βi < 0} such that T− ∪ T+ = [[M ]]
and T− ∩ T+ = ∅. We define also ρ =

∑
i∈T+

βi = −
∑
i∈T− βi > 0 and:

πε :=
∑
i∈T+

βi
ρ
δx0+εαiu and π′ε :=

∑
i∈T−

−βi
ρ
δx0+εαiu (120)

We have that #T+ ≤ r(β) and #T− ≤ r(β) by definition of r(β). Since ε is small enough we have
that πε, π′ε ∈ Sr(β)(Ω). Moreover we have µε = 1

ρ (πε − π′ε). Hence:

‖πε − π′ε‖2κ = ρ2‖µε‖2κ = ρ2
M∑

i,j=1

βiβjκ(x0 + εαiu,x0 + εαju) = ρ2
M∑

i,j=1

βiβjκ0(ε(αi − αj)u) (121)

Since the kernel is k times differentiable at 0, the function g : t 7→ κ0(tu) is also k times differentiable
at 0. A Taylor expansion yields

κ0(εu) = g(ε) = g(0) +

k∑
n=1

g(n)(0)

n!
εn + oε→0(εk) (122)

hence

‖πε − π′ε‖2κ = ρ2
M∑

i,j=1

βiβj

(
g(0) +

k∑
n=1

g(n)(0)

n!
(αi − αj)nεn + oε→0(εk)

)

= ρ2
k∑

n=1

 M∑
i,j=1

βiβj(αi − αj)n
 εk

g(n)(0)

n!
+ oε→0(εk)

(123)

where we used that
∑M
i,j=1 βiβjg(0) = 0 since (

∑M
i=1 βi)

2 = 0. With the notations of the Lemma we
have:

‖πε − π′ε‖2κ = ρ2
k∑

n=1

cn(α,β)εk
g(n)(0)

n!
+ oε→0(εk) (124)

Now, since by assumption we have

c1(α,β) = · · · = ck−1(α,β) = 0, (125)

we get

‖πε − π′ε‖2κ = ρ2ck(α,β)εk
g(k)(0)

k!
+ oε→0(εk) = Oε→0(εk) (126)
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hence ‖πε− π′ε‖κ = Oε→0(εk/2). Moreover, defining for i ∈ T+ ai = βi/ρ and for j ∈ T− bj = −βj/ρ
we have:

W p
p (πε, π

′
ε) = min

γ∈Π(a,b)

∑
i∈T+,j∈T−

‖εαiu− εαju‖pγij = εp‖u‖p min
γ∈Π(a,b)

∑
i∈T+,j∈T−

|αi − αj |pγij (127)

therefore

W p
p (πε, π

′
ε) ≥

(
ε‖u‖ min

i∈T+,j∈T−
|αi − αj |

)p
(128)

hence Wp(πε, π
′
ε) ≥ ε‖u‖mini∈T+,j∈T− |αi − αj |. When i 6= j we have that αi 6= αj by assumption.

Hence since T+ ∩ T− = ∅ we have that mini∈T+,j∈T− |αi − αj | > 0. This discussion proves that, as
soon as the condition (125) holds and δ > 2

k , we have:

sup
(π,π′)∈S

Wp(π, π
′)

‖π − π′‖δκ
≥ sup

ε>0

Wp(πε, π
′
ε)

‖πε − π′ε‖δκ
& sup

ε>0

ε

εδk/2
= sup

ε>0
ε1−δk/2 = +∞ (129)

So (S,Wp) is not (κ, δ)-embeddable when δ > 2
k which concludes the proof by contraposition.

The idea now is to find a couple (α,β) that satisfy the conditions
∑M
i=1 βi = 0 and c1(α,β) =

c2(α,β) = · · · = ck−1(α,β) = 0. The following lemma show that it is possible to construct such
vectors provided that M = k + 1.

Lemma 17. Consider a TI p.s.d. kernel κ(x,y) = κ0(x−y) on Rd such that κ0 is k times differentiable
at 0 with k ∈ N∗. With the same notations cs(α,β) and r(β) as in Lemma 16, there exists α ∈
Rk+1 \ {0} with αi 6= αj for i 6= j and β ∈ Rk+1 \ {0} with

∑k+1
i=1 βi = 0 such that:

c1(α,β) = c2(α,β) = · · · = ck−1(α,β) = 0 (130)

Also if k is odd then #T+(β) = #T−(β) = k+1
2 and if k is even #T+(β) = k

2 + 1 and #T−(β) = k
2 .

Overall for any k ∈ N∗ we have r(β) ≤ bk2 c+ 1.

Proof The condition c1(α,β) = 0 writes
∑k+1
i,j=1 βiβj(αi − αj) = 0 which is true for any α ∈ Rk+1

when β ∈ Rk+1 satisfies
∑k+1
i=1 βi = 0. Indeed

∑k+1
i,j=1 βiβj(αi − αj) = (

∑k+1
j=1 βj)

∑k+1
i βiαi −

(
∑k+1
i=1 βi)

∑k+1
j βjαj = 0. The condition c2(α,β) = 0 writes

∑k+1
i,j=1 βiβj(αi − αj)2 = 0. However∑k+1

i,j=1 βiβj(αi − αj)2 =
∑k+1
i,j=1 βiβj(α

2
i + α2

j − 2αiαj). The term
∑k+1
i,j=1 βiβjαiαj vanishes as soon

as
∑k+1
i=1 βiαi = 0. The other terms

∑k+1
i,j=1 βiβjα

2
i and

∑k+1
i,j=1 βjβiα

2
j as soon as

∑k+1
i=1 βi = 0. With

an immediate recurrence by using the Binomial formula we see that c1(α,β) = c2(α,β) = · · · =
ck−1(α,β) = 0 as soon as:

k+1∑
i=1

βi =

k+1∑
i=1

βiαi =

k+1∑
i=1

βiα
2
i = · · · =

k+1∑
i=1

βiα
k−1
i = 0 (131)

Define β ∈ Rk+1 by for all 1 ≤ i ≤ k + 1, βi = (−1)i−1
(
k
i−1

)
and α ∈ Rk+1 by αi = i. Then the

αi’s are pairwise distinct and:

0 =

k∑
i=0

(−1)i
(
k

i

)
=

k+1∑
i=1

(−1)i−1

(
k

i− 1

)
=

k+1∑
i=1

βi (132)

Then for any 1 ≤ s ≤ k − 1 we have that:

k+1∑
i=1

βiα
s
i =

k+1∑
i=1

(−1)i−1

(
k

i− 1

)
is =

k∑
i=0

(−1)i
(
k

i

)
(i+ 1)s =

k∑
i=0

(−1)i
(
k

i

)( s∑
l=0

(
s

l

)
il

)
(133)
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So:
k+1∑
i=1

βiα
s
i =

s∑
l=0

(
s

l

)( k∑
i=0

(−1)i
(
k

i

)
il

)
(134)

But for 0 ≤ l ≤ s we have that:

k∑
i=0

(−1)i
(
k

i

)
il =

k∑
i=0

(−1)k−i
(

k

k − i

)
(k−i)l =

k∑
i=0

(−1)k−i
(
k

i

)
(k−i)l = (−1)k

k∑
i=0

(−1)i
(
k

i

)
(k−i)l

(135)
so
∑k
i=0(−1)i

(
k
i

)
il = (−1)kk!S2(l, k) where S2(l, k) is the Stirling number of the second kind which

is zero as soon as l < k. Since l ≤ s ≤ k − 1 < k by hypothesis we have that
∑k
i=0(−1)i

(
k
i

)
il = 0

and thus
∑k+1
i=1 βiα

s
i = 0 for all 1 ≤ s ≤ k − 1 and

∑k+1
i=1 βi = 0. So this implies that c1(α,β) =

c2(α,β) = · · · = ck−1(α,β) = 0. For such β we have that #T+(β) = #T−(β) = k+1
2 for k odd. If k

is even then #T+(β) = k
2 + 1 and #T−(β) = k

2 .

With this results we can now prove Theorem 2.
Proof [Proof of Theorem 2] Define (α,β) as in Lemma 17. Then we have c1(α,β) = c2(α,β) =
· · · = ck−1(α,β) = 0 and r(β) ≤ bk2 c + 1 which proves the theorem by using Lemma 16 with
M = k + 1.

C.6 Proof of Lemma 5

We recall the Lemma:

Lemma 5. Consider π, π′ ∈ P2(R) with densities f, g with respect to the Lesbegue measure, i.e. π �
fdx, π′ � gdx. Let κ(x, y) = κ0(x− y) be a TI p.s.d. kernel on R with κ0 ∈ L1(R). Then we have:

W2(π, π′) ≤ (2π)−1/4

(∫
R

|f̂(ω)− ĝ(ω)|2

|ω|4κ̂0(ω)
dω

)1/4

‖π − π′‖1/2κ (57)

where the Wasserstein distance is computed using D(x, y) = |x− y|.

Proof This proof is inspired from (Carrillo and Toscani, 2008, Theorem 2.21). With the previous
notations we have F ′ = f where F is the CDF. We have moreover F̂ ′(ω) = iωF̂ (ω) (same with g).
So iωF̂ (ω) = f̂(ω). This gives:

F̂ −G(ω) =
f̂(ω)− ĝ(ω)

iω
(136)

Moreover the Wasserstein distance in this case is given by Wp(π, π
′) = (

∫
R |F (x)−G(x)|pdx)1/p. For

p = 2 this gives:

W 2
2 (π, π′) =

∫
R
|F (x)−G(x)|2dx (137)

Based on the Plancherel formula with the convention of the Fourier transform f̂(ω) =
∫
R f(x)e−iωxdx

we have: ∫
R
|F (x)−G(x)|2dx =

1

2π

∫
R
|F̂ (ω)− Ĝ(ω)|2dω (138)
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which gives, using Cauchy-Schwarz inequality,

W 2
2 (π, π′) =

1

2π

∫
R
|ω|−2|f̂(ω)− ĝ(ω)|2dω =

1

2π

∫
R

|ω|−2√
κ̂0(ω)

|f̂(ω)− ĝ(ω)|
√
κ̂0(ω)|f̂(ω)− ĝ(ω)|dω

≤ 1

2π

(∫
R

|f̂(ω)− ĝ(ω)|2

|ω|4κ̂0(ω)
)dω

)1/2(∫
R
κ̂0(ω)|f̂(ω)− ĝ(ω)|2dω

)1/2

∗
= (2π)−1/2

(∫
R

|f̂(ω)− ĝ(ω)|2

|ω|4κ̂0(ω)
)dω

)1/2

‖π − π′‖κ

(139)

where in (*) we used the Lemma 18 below.

We recall that the Fourier transform of a non-negative finite measure µ ∈M+(Rd) is defined for
ω ∈ Rd by µ̂(ω) :=

∫
Rd e

−iω>xdµ(x). We have the following result:

Lemma 18. Let κ(x,y) = κ0(x − y) be a TI p.s.d. kernel on Rd × Rd where κ0 ∈ L1(Rd). Then for
π, π′ ∈ P(Rd). Then:

‖π − π′‖2κ = (2π)−d
∫
κ̂0(ω)|π̂(ω)− π̂′(ω)|2dω (140)

In particular when π, π′ have densities f, g with respect to the Lesbegue measure we have:

‖π − π′‖2κ = (2π)−d
∫
κ̂0(ω)|f̂(ω)− ĝ(ω)|2dω (141)

Proof This result can be found in (Sriperumbudur et al., 2010) but we rewrite the proof for com-
pleteness. Since κ0 is a continuous p.s.d. function and κ0 ∈ L1(Rd) then by Bochner theorem
κ̂0 ≥ 0. So κ0 is even (κ is symmetric), integrable, continuous (in particular at 0) and has nonnega-
tive Fourier transform so κ̂0 ∈ L1(Rd) (Stein and Weiss, 2016). Then by Fourier inversion theorem:

∀x ∈ Rd, κ0(x) = (2π)−d
∫
eiω
>xκ̂0(ω)dω (142)

In the following we define the measure Λ by dΛ(ω) := (2π)−dκ̂0(ω)dω (which is a non-negative
finite measure thanks to Bochner theorem). We have:

‖π − π′‖2κ =

∫ ∫
κ0(x− y)d(π − π′)(x)d(π − π′)(y)

?
=

∫ ∫ ∫
eiω
>(x−y)dΛ(ω)d(π − π′)(x)d(π − π′)(y)

=

∫ (∫
eiω
>xd(π − π′)(x)

)(∫
e−iω

>yd(π − π′)(y)

)
dΛ(ω)

=

∫
(π̂(ω)− π̂′(ω))(π̂(ω)− π̂′(ω))dΛ(ω) =

∫
|π̂(ω)− π̂′(ω)|2dΛ(ω)

= (2π)−d
∫
κ̂0(ω)|π̂(ω)− π̂′(ω)|2dω

(143)

where in (?) we used (142) and Fubini theorem.

48



CONTROLLING Wp BY MMD WITH APPLICATION TO CSL

C.7 Proof of Theorem 3

We recall the theorem

Theorem 3 Let κ(x, y) = κ0(x − y) be a TI p.s.d. kernel on R with κ0 ∈ L1(R) and such that
κ̂0(ω) > 0 for every ω, 1

κ̂0(ω) = O(ωqκ) as ω → 0 and 1
κ̂0(ω) = O(ωsκ) as ω → +∞ for some

qκ > −1, sκ ∈ R+. Consider any s ≥ sκ
2 + 1, 0 < M < +∞ and the following model set:

S := {π ∈ P2(R) : ∃f ∈ Cs(R), π � fdx, ‖f‖W s,1(R) ≤M} (58)

1. There exists C = C(M, s, κ) > 0 such that for every 1 ≤ p ≤ 2:

∀π, π′ ∈ S, if m(π) = m(π′) then Wp(π, π
′) ≤ C‖π − π′‖1/2κ (59)

2. If in addition κ0 is L-Lipschitz continuous, then for every 1 ≤ p ≤ 2

∀π, π′ ∈ S, Wp(π, π
′) ≤ C‖π−π′‖1/2κ +CL1/4|m(π)−m(π′)|1/4 + |m(π)−m(π′)|. (60)

Proof We prove the results for p = 2. The results then also immediately hold for Wp, 1 ≤ p ≤ 2
under the same hypothesis on S since Wp(π, π

′) ≤W2(π, π′) for any π, π′.

Case of distributions with the same mean (first claim). To prove the first result for p = 2 we
prove the finiteness of the integral

∫
R
|f̂(ω)−ĝ(ω)|2
|ω|4κ̂0(ω) dω from Lemma 5. Given any R > 0 we decompose

it as
∫
R
|f̂(ω)−ĝ(ω)|2
|ω|4κ̂0(ω) dω =

∫
|ω|<R

|f̂(ω)−ĝ(ω)|2
|ω|4κ̂0(ω) dω +

∫
|ω|≥R

|f̂(ω)−ĝ(ω)|2
|ω|4κ̂0(ω) dω and use the shorthand I|ω|<R

and I|ω|≥R for the two terms. Since π, π′ are in P2(R) the Fourier transform of f, g are at least twice
differentiable. Then, by a Taylor expansion at zero we have:

f̂(ω) =

K∑
n=0

f̂ (n)(0)

n!
ωn +HK,f̂ (ω) (144)

where HK,f̂ (ω) is the remainder (same for ĝ). We have moreover that f̂ (0)(0) = ĝ(0)(0) = 1 since
f, g are probability density functions. Also using the properties of the Fourier transform we have
f̂ (1)(0) = i−1EX∼α[X] hence f̂ (1)(0) = ĝ(1)(0) since m(π) = m(π′). So we have using Taylor with
K = 1:

|f̂(ω)− ĝ(ω)| = |H1,f̂ (ω)−H1,ĝ(ω)| (145)

Moreover the remainder can be written asH1,f̂ (ω) =
∫ ω

0
f̂ (2)(ω)(ω−t)dt so that |H1,f̂ (ω)−H1,ĝ(ω)| ≤∫ ω

0
|f̂ (2)(t)−ĝ(2)(t)||ω−t|dt. Now note that for all t ∈ R |f̂ (2)(t)| = |

∫
f (2)(x)e−itxdx| ≤ ‖f (2)‖L1(R) ≤∑s

j=0 ‖f (j)‖L1(R). Hence |f̂ (2)(t)| ≤ ‖f‖W s,1(R) (and same for g) and we obtain

|H1,f̂ (ω)−H1,ĝ(ω)| ≤
(
‖f‖W s,1(R) + ‖g‖W s,1(R)

) ∫ ω

0

|ω − t|dt ≤ 2M
1

2
|ω|2 = M |ω|2. (146)

This gives I|ω|<R ≤ M2
∫
|ω|<R

1
κ̂0(ω)dω. Since κ0 ∈ L1(R) is a p.s.d kernel, its Fourier transform is

non-negative, continuous, and decays to zero at infinity. Since 1/κ̂0(ω) = O(ωqκ) as ω → 0 with
qκ > −1 the integral

∫
|ω|<R

1
κ̂0(ω)dω is finite (and obviously does not depends on f, g). Now consider
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I|ω|≥R. We have:∫
|ω|≥R

|ω|−4|f̂(ω)− ĝ(ω)|2 1

κ̂0(ω)
dω =

∫
|ω|≥R

|ω|2s−4|f̂(ω)− ĝ(ω)|2|ω|−2s 1

κ̂0(ω)
dω

=

∫
|ω|≥R

(|ω|2)s−2|f̂(ω)− ĝ(ω)|2|ω|−2s 1

κ̂0(ω)
dω

≤ sup
|ω|≥R

(
|ω|s−2|f̂(ω)− ĝ(ω)|

)2
∫
|ω|≥R

|ω|−2s

κ̂0(ω)
dω

(147)

By hypothesis |ω|
−2s

κ̂0(ω) = Oω→+∞(|ω|sκ−2s), since s ≥ sκ
2 + 1 then sκ − 2s ≤ −2 so that |ω|

−2s

κ̂0(ω) =

Oω→+∞(|ω|−2) and
∫
|ω|≥R

|ω|−2s

κ̂0(ω) dω < +∞. Moreover:

|ωs−2f̂(ω)| = |f̂ (s−2)(ω)| = |
∫
f (s−2)(x)e−iωxdx| ≤ ‖f (s−2)‖L1(R) ≤

s−2∑
j=0

‖f (j)‖L1(R)

≤
s∑
j=0

‖f (j)‖L1(R)

(148)

Hence |ωs−2f̂(ω)| ≤ ‖f‖W s,1(R) and same with g. So:

|ω|s−2|f̂(ω)− ĝ(ω)| ≤ ‖f‖W s,1(R) + ‖g‖W s,1(R) ≤ 2M (149)

This gives (|ω|s−2|f̂(ω) − ĝ(ω)|)2 ≤ 4M2. Hence sup|ω|≥R(|ω|s−2|f̂(ω) − ĝ(ω)|)2 ≤ 4M2. This gives

C = C(M, s, κ,R) = M2
∫
|ω|<R

1
κ̂0(ω)dω + 4M2

∫
|ω|≥R

|ω|−2s

κ̂0(ω) dω. Since this is true for any R > 0 we
can take the infimum over R to have a constant C(M, s, κ).

Case of distributions with different means, with a Lipschitz kernel. Denote Tx the transla-
tion function Tx(y) = x+y and m(π) the mean of a distribution π so that the distribution T−m(π)#π
is centered. We will use the following lemma (see Appendix C.8):

Lemma 19 (Translation properties of W2 and the MMD). For any π, π′ ∈ P2(Rd) we have:

W 2
2 (π, π′) = W 2

2 (T−m(π)#π, T−m(π′)#π
′) + ‖m(π)−m(π′)‖22 (150)

Moreover, if κ(x,y) = κ0(x− y) is a p.s.d TI kernel on Rd such that κ0 is L-Lipschitz continuous with
respect to the Euclidean norm, then

‖π − π′‖2κ = ‖T−m(π)#π − T−m(π′)#π
′‖2κ +Rπ,π′,κ (151)

where |Rπ,π′,κ| ≤ L‖m(π)−m(π′)‖2.

Let π, π′ ∈ S. Using the translation properties of W2 described in Lemma 19 we have

W 2
2 (π, π′) = W 2

2 (T−m(π)#π, T−m(π′)#π
′) + |m(π)−m(π′)|2

Since T−m(π)#π and T−m(π′)#π
′ are both centered and as smooth as π, π′, by the first claim of

Theorem 3 (that we just proved) we have

W2(T−m(π)#π, T−m(π′)#π
′) ≤ C‖T−m(π)#π − T−m(π′)#π

′‖1/2κ

where C = C(M, s, κ) > 0. Further, by the second part of Lemma 19 (with d = 1)

‖T−m(π)#π − T−m(π′)#π
′‖2κ = ‖π − π′‖2κ −Rπ,π′,κ ≤ ‖π − π′‖2κ + L|m(π)−m(π′)| (152)
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Since
√
a2 + b2 ≤ a+ b and (a+ b)1/4 ≤ a1/4 + b1/4 for every a, b ∈ R+, we get

W2(π, π′) ≤W2(T−m(π)#π, T−m(π′)#π
′) + |m(π)−m(π′)|

≤ C‖T−m(π)#π − T−m(π′)#π
′‖1/2κ + |m(π)−m(π′)|

≤ C‖π − π′‖1/2κ + C · L1/4|m(π)−m(π′)|1/4 + |m(π)−m(π′)|.

C.8 Proof of Lemma 19

Lemma 19 (Translation properties of W2 and the MMD). For any π, π′ ∈ P2(Rd) we have:

W 2
2 (π, π′) = W 2

2 (T−m(π)#π, T−m(π′)#π
′) + ‖m(π)−m(π′)‖22 (150)

Moreover, if κ(x,y) = κ0(x− y) is a p.s.d TI kernel on Rd such that κ0 is L-Lipschitz continuous with
respect to the Euclidean norm, then

‖π − π′‖2κ = ‖T−m(π)#π − T−m(π′)#π
′‖2κ +Rπ,π′,κ (151)

where |Rπ,π′,κ| ≤ L‖m(π)−m(π′)‖2.

Proof For the first point see (Auricchio et al., 2020, Lemma 2). For the second point, using the
translation invariance property of the kernel, it is easy to check that:

‖π−π′‖2κ−‖T−m(π)#π−T−m(π′)#π
′‖2κ = 2Ex∼π,y∼π′ [κ0((x−y)−(m(π)−m(π′)))−κ0(x−y)] (153)

Since κ0 is L-Lipschitz with respect to the Euclidean norm we have for any x,y

|κ0((x− y)− (m(π)−m(π′)))− κ0(x− y)| ≤ L‖m(π)−m(π′)‖2,

hence ∣∣‖π − π′‖2κ − ‖T−m(π)#π − T−m(π′)#π
′‖2κ
∣∣ ≤ L · ‖m(π)−m(π′)‖2 (154)

which proves (151) by defining Rπ,π′,κ = 2Ex∼π,y∼π′ [κ0((x− y)− (m(π)−m(π′)))− κ0(x− y)].

C.9 Proof of Corollary 4

Corollary 4 (GMM on R). Let κ(x, y) = κ0(x − y) be a TI p.s.d. kernel on R with κ0 ∈ L1(R) and
such that κ̂0(ω) > 0 for every ω, 1

κ̂0(ω) = O(ωqκ) as ω → 0 and 1
κ̂0(ω) = O(ωsκ) as ω → +∞ for some

qκ > −1, sκ ∈ R+. For K ∈ N∗, Ω ⊂ R, and σmin > 0 consider the model set:

SGMM(Ω,K, σmin) := {π =

K∑
k=1

αkN (ck, σ
2
k),α ∈ ∆K , ck ∈ R, σk ≥ σmin,

K∑
k=1

αkck ∈ Ω} (62)

where ∆K = {α ∈ RK+ ,
∑K
k=1 αk = 1} is the probability simplex on RK .

1. There exists a constant C = C(σmin,K, κ) > 0 such that if Ω = {m} is a prescribed mean then:

∀π, π′ ∈ SGMM(Ω,K, σmin),W2(π, π′) ≤ C‖π − π′‖1/2κ (63)
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2. If in addition κ0 is L-Lipschitz and diam(Ω) := supx,y∈Y |x− y| < +∞, then for every 1 ≤ p ≤ 2:

∀π, π′ ∈ S, Wp(π, π
′) ≤ C ′‖π − π′‖1/2κ̃ (64)

with κ̃(x, y) := κ0(x− y) + xy. The constant C ′ depends only on C(σmin,K, κ), L and diam(Ω).

Proof Given the assumption on the kernel, it is sufficient to show that there exists M = M(σmin) > 0
such that SGMM(Ω,K, σmin) ⊆ S where S is defined in Theorem 3 with for s := dk/2+1e. By Theorem
3 the conclusion will then hold using C = C(M, s, κ).

The goal is thus to exhibit a radius M such that any probability distribution in SGMM(Ω,K, σmin)
admits a density which lies in the Sobolev ball with radius M . Let f(x|c, σ) be the density function
for the Gaussian N (c, σ2). In the following we note φ(x) = (2π)−1/2 exp(−x2/2) and Hn(x) =

(−1)nex
2/2 dn

dxn e
−x2/2 the Hermite polynomial. For any n ∈ N, we have the relation φ(n)(x) =

(−1)nHn(x)φ(x). Moreover f(x|c, σ) = φ(x−cσ ) so:

‖f (n)(·|c, σ)‖L1(R) =

∫
R
|f (n)(x|c, σ)|dx = σ−n

∫
R
|φ(n)(

x− c
σ

)|dx = σ1−n
∫
R
|φ(n)(x)|dx

= σ1−n
∫
R
|Hn(x)|φ(x)dx = σ1−nEX∼N (0,1)[|Hn(X)|].

(155)

Now consider π ∈ SGMM(Ω,K, σmin) with density F =
∑K
k=1 αkf(·|ck, σk). We have:

‖F (n)‖L1(R) =

∫
R
|
K∑
k=1

αkf
(n)(x|ck, σk)|dx ≤

K∑
k=1

αk

∫
R
|f (n)(x|ck, σk)|dx

=

K∑
k=1

αkσ
1−n
k EX∼N (0,1)[|Hn(X)|]

(156)

By Cauchy-Swartz inequality we have EX∼N (0,1)[|Hn(X)|] ≤ (EX∼N (0,1)[|Hn(X)|2])1/2 =
√
n! (Gold-

feld et al., 2020, Lemma 1) so that we have for any integer s ≥ 1:

‖F‖W s,1(R) =

s∑
n=0

‖F (n)‖L1(R) ≤
s∑

n=0

K∑
k=1

αkσ
1−n
k

√
n! ≤ max(1, σ1−s

min )

s∑
n=1

√
n! (157)

where in the last inequality we used that σk ≥ σmin and a1−n ≤ max(1, a1−s) for every a ∈ R∗+
and 1 ≤ n ≤ s. This bounds is independent of F and true for any s ≥ 1 hence we can set
M := max(1, σ1−s

min )
∑dk/2+1e
n=1

√
n!.

C.10 Proof of Lemma 7 and 8

In order to prove Lemma 7 we will need the following result:

Lemma 2. Let f ∈ Cs(Rd) be integrable and compactly supported. Then for any θ ∈ Sd−1 we have
R[f ](·,θ) ∈ Cs(Rd) and for any |α| ≤ s,R[∂αf ](·,θ) = θα∂|α|R[f ](·,θ)

Proof The proof of this result can be found in (Evans, 2010, Theorem 3) for f ∈ C∞ with compact
support. For completeness we write the proof for our context. By definition, for each i ∈ [[d]],

∂if =
∂f

∂xi
(x) = lim

h→0

f(x + hei)− f(x)

h
(158)
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First we prove that for any (t,θ) ∈ R × Sd−1 the partial derivative ∂tR[f ](t,θ) exists and we have
R[∂if ](t,θ) = θi∂tR[f ](t,θ) for each i ∈ [[d]]. By induction it is easy to check that this implies for
|α| ≤ s:

R[∂αf ](·,θ) = θα∂|α|R[f ](·,θ) (159)

hence the claimed result.
First (we slightly postpone the justification of step (?) below), for (t,θ) ∈ R× Sd−1 we have

R[∂if ](t,θ) =

∫
x:〈x,θ〉=t

∂if(x)dx
?
= lim
h→0

∫
x:〈x,θ〉=t

f(x + hei)− f(x)

h
dx

= lim
h→0
R[x 7→ f(x + hei)− f(x)

h
](t,θ).

(160)

Second, for any h6=0, since

R[x 7→ f(x + hei)](t,θ) =

∫
x:〈x,θ〉=t

f(x + hei)dx =

∫
y:〈y−hei,θ〉=t

f(y)dy

=

∫
y:〈y,θ〉=t+h〈ei,θ〉

f(y)dy =

∫
y:〈y,θ〉=t+hθi

f(y)dy

= R[f ](t+ hθi,θ)

(161)

we obtain by linearity of the Radon transform (with respect to f)

R[x 7→ f(x + hei)− f(x)

h
](t,θ) =

R[x 7→ f(x + hei)](t,θ)−R[f ](t,θ)

h
=
R[f ](t+ hθi,θ)−R[f ](t,θ)

h
(162)

Overall we have proven that for all θ ∈ Sd−1 and i ∈ [[d]], lim
h→0

R[f ](t+hθi,θ)−R[f ](t,θ)
h exists and

is equal to R[∂if ](t,θ). Since θ ∈ Sd−1, there is at least one index i∗ ∈ [[d]] such that θi∗ 6= 0.
The fact that this limit exists for this index implies that ∂tR[f ](t,θ) is well defined and satisfies
R[∂i∗f ](t,θ) = θi∗∂tR[f ](t,θ). It similarly follows that for every i ∈ [[d]] we have R[∂if ](t,θ) =
θi∂tR[f ](t,θ) as claimed.

To finish the proof we have to justify that we can do (?). We will use the dominated convergence
theorem to justify it. First see that f is compactly supported so there existsR > 0 such that supp(f) ⊆
B(0, R). Then as soon as ‖x‖2 > R+h we have that f(x+hei)−f(x)

h = 0. Indeed in this case ‖x‖2 > R
and f(x) = 0. Moreover, ‖x + hei‖2 ≥ |‖x‖2 − ‖ − hei‖2| ≥ ‖x‖2 − h > R + h − h = R and thus
f(x + hei) = 0. By noting Hθ,t = {x : 〈x,θ〉 = t} we have:∫

x:〈x,θ〉=t

f(x + hei)− f(x)

h
dx =

∫
Hθ,t

f(x + hei)− f(x)

h
− ∂if(x)dx +

∫
Hθ,t

∂if(x)dx

=

∫
Hθ,t

1‖x‖2≤R+h(x)

(
f(x + hei)− f(x)

h
− ∂if(x)

)
dx

+

∫
Hθ,t

∂if(x)dx

(163)

We will show that the first term vanishes as h → 0. Consider x = (x1, · · · , xd) ∈ Hθ,t and the

function gx : h → 1‖x‖2≤R+h(x)
(
f(x+hei)−f(x)

h − ∂if(x)
)

. Then gx converges pointwise to zero

as h → 0 since f(x+hei)−f(x)
h tends to ∂if(x) and 1‖x‖2≤R+h(x) tends to 1‖x‖2≤R(x) ≤ 1. Now

take 0 < h < h0 sufficiently small and that does not depend on x. We can first bound |gx(h)| ≤
1‖x‖2≤R+h0

(x)| f(x+hei)−f(x)
h − ∂if(x)|.
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If we note F = f(x1, · · · , xi−1, ·, xi+1, · · · , xd) then by the mean value theorem there exists
t ∈]xi, xi + h[ such that f(x+hei)−f(x)

h = F (xi+h)−F (xi)
h = F ′(t). By defining:

zx,h = (x1, · · · , xi−1, t, xi+1, · · · , xd)

(which depends on x, h) we have f(x+hei)−f(x)
h = ∂if(zx,h). Then

|gx(h)| ≤ 1‖x‖2≤R+h0
(x)|∂if(zx,h)− ∂if(x)|.

Note that ‖zx,h − x‖2 = |t − xi| ≤ h < h0 so ‖zx,h‖2 ≤ ‖x‖2 + h0 ≤ R + 2h0 and |∂if(zx,h)| ≤
sup‖y‖2≤R+2h0

|∂if(y)|. As a consequence:

1‖x‖2≤R+h0
(x)|∂if(zx,h)− ∂if(x)| ≤ 21‖x‖2≤R+h0

(x) sup
‖x‖2≤R+2h0

|∂if(x)| (164)

Using the fact that ∂if is continuous and {x : ‖x‖2 ≤ R + 2h0} is compact the supremum is finite
and smaller that some M = M(f,R, h0) > 0. Overall for all x ∈ Hθ,t and 0 < h < h0 we have
|gx(h)| ≤ 2M1‖x‖2≤R+h0

(x) which is an integrable function on Hθ,t and does not depend on h.
Using the dominated convergence theorem we have then:

lim
h→0

∫
Hθ,t

1‖x‖2≤R+h(x)

(
f(x + hei)− f(x)

h
− ∂if(x)

)
dx = 0 (165)

Lemma 7. Suppose that d ≥ 2. Let f ∈ Cs(Rd) be integrable and compactly supported. For any
θ ∈ Sd−1 the Radon transform satisfies R[f ](·,θ) ∈ Cs(R) and ‖R[f ](·,θ)‖W s,1(R) ≤ ds+1‖f‖W s,1(Rd)

Proof By Lemma 2, since f has bounded support and continuous partial derivatives of order s,
each of its Radon slices t 7→ R[f ](t,θ) is s-times differentiable in t and we have for each |α| ≤
s,R[∂αf ](·,θ) = θα∂|α|R[f ](·,θ) hence

‖θα∂|α|R[f ](·,θ)‖L1(R) = ‖R[∂αf ](·,θ)‖L1(R) ≤ ‖∂αf‖L1(Rd) (166)

where in the last inequality we used that the L1(R) norm of the radon transform is smaller than the
L1(Rd) norm of the function. Indeed, for all θ and all functions g ∈ L1(Rd) we have:

‖R[g](·,θ)‖L1(R) =

∫
R
|R[g](t,θ)|dt =

∫
R
|
∫
y∈θ⊥

g(tθ + y)dy|dt

≤
∫
R

∫
y∈θ⊥

|g(tθ + y)|dydt =

∫
Rd
|g(x)|dx = ‖g‖L1(Rd)

(167)

where for the last equality we used a orthogonal change of variable and used that x ∈ Rd can be
written as the projection on the line supported by θ plus an vector that is orthogonal to this line
x = tθ + y where y ∈ θ⊥, t ∈ R. As a result, for any integer 0 ≤ k ≤ s we have:∑

α:|α|=k

‖θα∂kR[f ](·,θ)‖L1(R) =
∑

α:|α|=k

‖R[∂αf ](·,θ)‖L1(R) ≤
∑

α:|α|=k

‖∂αf‖L1(Rd) (168)

hence ∑
α:|α|=k

‖θα∂kR[f ](·,θ)‖L1(R) ≤
∑

α:|α|≤s

‖∂αf‖L1(Rd) = ‖f‖W s,1(Rd). (169)
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In addition, for each 0 ≤ k ≤ s we also have

∑
α:|α|=k

‖θα∂kR[f ](·,θ)‖L1(R) =

 ∑
α:|α|=k

|θα|

 ‖∂kR[f ](·,θ)‖L1(R)

?
≥ ‖θ‖

k
2

dk
‖∂kR[f ](·,θ)‖L1(R)

‖θ‖2=1
= d−k‖∂kR[f ](·,θ)‖L1(R)

(170)

Where in (?) we used Lemma 21 in Section C.13. Combining (169) and (170) we obtain that for
each 0 ≤ k ≤ s

‖∂kR[f ](·,θ)‖L1(R) ≤ dk‖f‖W s,1(Rd), (171)

hence

‖R[f ](·,θ)‖W s,1(R) =

s∑
k=0

‖∂kR[f ](·,θ)‖L1(R) ≤ ‖f‖W s,1(Rd)(

s∑
k=0

dk) =
ds+1 − 1

d− 1
‖f‖W s,1(Rd) (172)

Then if d ≥ 2 we have ‖R[f ](·,θ)‖W s,1(R) ≤ ds+1‖f‖W s,1(Rd) which concludes the proof.

Lemma 8. Let κR(x, y) = κ0(x − y) be a TI p.s.d. kernel on R where κ0 is continuous. Consider the
kernel κ on Rd defined by κ(x,y) := Eθ∼σ[κR(θ>x,θ>y)] = Eθ∼σ[κ0(θ>(x − y))]. Then κ is TI,
continuous, bounded and positive semi-definite. Moreover we have for any (π, π′) ∈ P(Rd):

‖π − π′‖2κ = Eθ∼σ[‖Pθ#π − Pθ#π′‖2κR
] (69)

Proof The fact that κ is translation invariant is obvious as it can be written κ(x,y) = f(x− y) with
f : Rd → R defined by f(·) := Eθ∼σ[κ0(〈θ, ·〉)]. To show that κ is continuous we show that f is
continuous: take a sequence (zn)n∈N such that zn →

n→+∞
z. Then:

|f(zn)− f(z)| ≤ Eθ∼σ[|κ0(〈θ, zn〉)− κ0(〈θ, z〉)|] (173)

For θ ∈ Sd−1, we have limn→+∞ |κ0(〈θ, zn〉) − κ0(〈θ, z〉)| = 0 since κ0 is continuous. Also, for
n ∈ N,θ ∈ Sd−1, |κ0(〈θ, zn〉) − κ0(〈θ, z〉)| ≤ 2κ0(0) since κ0 is a p.s.d. function (Wendland, 2004,
Theorem 6.2). Since 2κ0(0) is σ-integrable we can apply the dominated convergence theorem that
gives limn→+∞ Eθ∼σ[|κ0(〈θ, zn〉)−κ0(〈θ, z〉)|] = 0. So f is continuous. Moreover it is bounded since
|κ0(x)| ≤ κ0(0) thus |κ(x,y)| ≤ κ0(0). Now take x1, · · · ,xn ∈ Rd and c1, · · · , cn ∈ R. Then:

n∑
i,j=1

cicjκ(xi,xj) =

n∑
i,j=1

cicjEθ∼σ[κR(θ>xi,θ
>xj)] = Eθ∼σ[

n∑
i,j=1

cicjκR(θ>xi,θ
>xj)]

which is ≥ 0 since κR is a p.s.d. kernel. So the kernel κ defines a valid MMD. Moreover we have by
definition: ∫

κ(x,y)dπ(x)dπ′(y) =

∫
Eθ∼σ[κR(θ>x,θ>y)]dπ(x)dπ′(y)

= Eθ∼σ
[∫

κR(θ>x,θ>y)dπ(x)dπ′(y)

]
= Eθ∼σ

[∫
κR(x, y)dPθ#π(x)dPθ#π′(y)

] (174)

55



VAYER AND GRIBONVAL

Hence using the definition of the MMD:

‖π − π′‖2κ =

∫ ∫
κdπdπ +

∫ ∫
κdπ′dπ′ − 2

∫ ∫
κdπdπ′

= Eθ∼σ
[∫

κR(x, y)dPθ#π(x)dPθ#π(y) +

∫
κR(x, y)dPθ#π′(x)dPθ#π′(x)

−2

∫
κR(x, y)dPθ#π(x)dPθ#π′(y)

] (175)

which is by definition Eθ∼σ[‖Pθ#π − Pθ#π′‖2κR
].

C.11 Proof of Lemma 10

With some abuse of notations when f is a probability density function we will note x ∼ f which
means x ∼ π where π is the probability distribution associated to f . We use the following result:

Lemma 20 (Lemma 6 in (Nguyen, 2013)). Assume that f and g are two probability density functions
on (Rd, ‖.‖2) with bounded s -moments. Then for t ∈ R such that 0 < t < s,∫

‖x‖t2 |f(x)− g(x)|dx ≤ 2 ‖f − g‖(s−t)/s
L1(Rd)

(Ex∼f‖x‖s2 + Ey∼g‖y‖s2)
t/s

Let Vd = πd/2Γ(d/2 + 1) denote the volume of the d -dimensional unit sphere. Then,

‖f − g‖L1(Rd) ≤ 2V
s/(d+2s)
d (Ex∼f‖x‖s2 + Ey∼g‖y‖s2)

d/(d+2s) ‖f − g‖2s/(d+2s)

L2(Rd)

We recall the statement of Lemma 10 which is to be proved:

Lemma 10. Let s > 1. Assume that π, π′ ∈ Ps(Rd) have densities f, g with respect to the Lebesgue
measure. Then for any 1 ≤ p < s we have:

Wp(π, π
′) ≤ 2

1
p+1− 1

sV
s−p

(d+2s)p

d (Ex∼π[‖x‖s2] + Ey∼π′ [‖y‖s2])
2p+d

(d+2s)p ‖f − g‖
2(s−p)
(d+2s)p

L2(Rd)
(81)

with Vd = πd/2Γ(d/2 + 1) the volume of the d-dimensional unit sphere.

Proof First, we use the fact (Villani, 2008, Theorem 6.15) that the Wasserstein distance is bounded
by a weighted Total Variation distance

W p
p (π, π′) ≤ 2p−1

∫
Rd
‖x‖p2d|π − π′|(x) = 2p−1

∫
Rd
‖x‖p2|f(x)− g(x)|dx. (176)

Second, using Lemma 20 we obtain∫
Rd
‖x‖p2|f(x)− g(x)|dx ≤ 2‖f − g‖

s−p
s

L1(Rd)
(Ex∼f‖x‖s2 + Ey∼g‖y‖s2)

p/s (177)

as well as

‖f − g‖L1(Rd) ≤ 2V
s/(d+2s)
d (Ex∼π‖x‖s2 + Ey∼π′‖y‖s2)

d/(d+2s) ‖f − g‖2s/(d+2s)

L2(Rd)
. (178)

Combining both inequalities yields the following bound, which allows to conclude:∫
Rd
‖x‖p2|f(x)− g(x)|dx ≤ 22− ps V

s−p
(d+2s)

d (Ex∼π‖x‖s2 + Ey∼π′‖y‖s2)
p
s+(1− ps ) d

d+2s

× ‖f − g‖
2(s−p)
d+2s

L2(Rd)

(179)
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Using (176) (i.e. multiplying by 2p−1 and taking the power 1/p):

Wp(π, π
′) ≤ 2

s+p(s−1)
ps V

s−p
(d+2s)p

d (Ex∼π[‖x‖s2] + Ey∼π′ [‖y‖s2])
2p+d

(d+2s)p ‖f − g‖
2(s−p)
p(d+2s)

L2(Rd)
(180)

C.12 Proof of Lemma 11, Proposition 11 and Theorem 5

We recall that the Fourier transform of a non-negative finite measure µ ∈ M+(Rd) is defined for
ω ∈ Rd by µ̂(ω) :=

∫
Rd e

−iω>xdµ(x).

Lemma 11. Let α be a regularizer and κ0 := α ∗ α. Then κ0 ∈ L1(Rd) is even, bounded, continuous
and has non-negative Fourier transform. Consider the kernel κ(x,y) := κ0(x − y). We have that κ
defines a TI p.s.d. kernel. Moreover, for π, π′ ∈ P(Rd):

‖π − π′‖κ = ‖α ∗ π − α ∗ π′‖L2(Rd) (82)

Proof We first prove that the kernel in this proposition defines a TI p.s.d. kernel. It is clearly
translation invariant by definition and symmetric since the convolution of even functions is even
thus κ0 is even. Also κ0 is continuous and bounded since α is continuous and bounded. Moreover
since α is even its Fourier transform is real-valued hence κ̂0 = α̂2 = |α̂|2 ≥ 0 so the Fourier transform
of κ0 is non negative. Finally we have κ0 ∈ L1(Rd) as the convolution of two integrable functions.
Using Bochner’s theorem (see Theorem 2) shows that the kernel κ is a TI p.s.d. kernel. Moreover
we have:

‖α ∗ π − α ∗ π‖2L2(Rd) =

∫
|α ∗ π(x)− α ∗ π′(x)|2dx

?
= (2π)−d

∫
|α̂ ∗ π(ω)− α̂ ∗ π′(ω)|2dω (181)

where in (?) we used Plancherel formula which is possible since α ∗ π ∈ L2(Rd) because α ∈ L2(Rd)
(same for α ∗π′). So using that α̂ ∗ π = α̂× π̂ (α is a probability density function and π a probability
distribution):

‖α∗π−α∗π‖2L2(Rd) = (2π)−d
∫
|α̂(ω)π̂(ω)− α̂(ω)π̂′(ω)|2dω = (2π)−d

∫
|α̂(ω)|2|π̂(ω)− π̂′(ω)|2dω.

(182)
Finally, since κ̂0 = |α̂|2 we get

‖α ∗ π − α ∗ π‖2L2(Rd) = (2π)−d
∫
κ̂0(ω)|π̂(ω)− π̂′(ω)|2dω

??
= ‖π − π′‖2κ (183)

where in (??) we used Lemma 18. This concludes the proof.

Proposition 11. Let s > 1. Consider a regularizer α with s-finite moments. Consider the kernel
κ(x,y) = κ0(x − y) where κ0 := α ∗ α. It defines a TI p.s.d kernel by Lemma 11. Moreover, we have
for any π, π′ ∈ Ps(Rd) and 1 ≤ p < s:

Wp(πα, π
′
α) ≤ Cd,s,p

(
Ex∼πα [‖x‖s2] + Ey∼π′α [‖y‖s2]

) 2p+d
(d+2s)p ‖π − π′‖

2(s−p)
(d+2s)p
κ

where Cd,s,p = 2
1
p+1− 1

sV
s−p

(d+2s)p

d is a constant.
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Proof In order to prove the proposition we will apply the Lemma 10 with πα and π′α that admit
the densities f = α ∗ π and g = α ∗ π′ and thus the term ‖f − g‖L2(Rd) in Lemma 10 becomes
‖f − g‖L2 = ‖α ∗ π − α ∗ π′‖L2(Rd). To apply Lemma 10 we need to show that πα, π′α have s-finite
moments which will be true by using that π, π′ and α have s-finite moments. Indeed:

Ex∼πα‖x‖s2 =

∫
‖x‖s2(α ∗ π)(x)dx =

∫
‖x‖s2

(∫
α(x− y)dπ(y)

)
dx

?
=

∫ ∫
‖x‖s2α(x− y)dxdπ(y) =

∫ (∫
‖x‖s2α(x− y)dx

)
dπ(y)

(184)

where in (?) we used the Fubini theorem (α is non-negative). Moreover, for any y ∈ Rd:∫
‖x‖s2α(x− y)dx =

∫
‖y + z‖s2α(z)dz ≤ 2s

(
‖y‖s2

∫
α(z)dz +

∫
‖z‖s2α(z)dz

)
(185)

where in the last inequality we used ‖z + y‖s2 ≤ 2s(‖z‖s2 + ‖y‖s2). Moreover since
∫
α(z)dz = 1 we

have:

Ex∼πα‖x‖s2 ≤ 2s
(∫
‖y‖s2dπ(y) +

∫
‖z‖s2α(z)dz

)
< +∞ (186)

So by applying Lemma 10 we have:

Wp(π, π
′) ≤ 2

1
p+1− 1

sV
s−p

(d+2s)p

d

(
Ex∼πα‖x‖s2 + Ey∼π′α‖y‖

s
2

) 2p+d
(d+2s)p ‖α ∗ π − α ∗ π′‖

2(s−p)
(d+2s)p

L2(Rd)
(187)

Finally, to relate the term ‖α ∗ π − α ∗ π′‖L2(Rd) with the MMD we use the Lemma 11

Finally we can prove the following theorem:

Theorem 5 Let s > 1. Consider a regularizer α with s-bounded moments. Consider the kernel
κ(x,y) = κ0(x− y) where κ0 := α ∗ α. It defines a TI p.s.d kernel by Lemma 11. We consider the
following model set:

S := {π ∈ P(Rd),Ex∼π[‖x‖s2] ≤M} (83)

Then for any 1 ≤ p < s there exists a constant C = Cd,s,p > 0 such that:

∀π, π′ ∈ S,Wp(π, π
′) ≤ C

(
M +

∫
‖z‖s2α(z)dz

) 2p+d
(d+2s)p

‖π− π′‖
2(s−p)
(d+2s)p
κ + 2

(∫
‖z‖p2α(z)dz

)1/p

Proof With the notations of the theorem we have by Proposition 11:

Wp(πα, π
′
α) ≤ Cd,s,p

(
Ex∼πα [‖x‖s2] + Ey∼π′α [‖y‖s2]

) 2p+d
(d+2s)p ‖π − π′‖

2(s−p)
(d+2s)p
κ (188)

where Cd,s,p is defined in Proposition 11. We can control both terms Ex∼πα [‖x‖s2],Ey∼π′α [‖y‖s2] as in
the proof of Proposition 11 so that:

Ex∼πα [‖x‖s2] ≤ 2s
(∫
‖y‖s2dπ(y) +

∫
‖z‖s2α(z)dz

)
≤ 2s(M +

∫
‖z‖s2α(z)dz) (189)

since π ∈ S (and in the same way for Ey∼π′α [‖y‖s2]). Consequently:

Wp(πα, π
′
α) ≤ Cd,s,p2(s+1)( 2p+d

(d+2s)p
)(M +

∫
‖z‖s2α(z)dz)

2p+d
(d+2s)p ‖π − π′‖

2(s−p)
(d+2s)p
κ (190)
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Consequently, by defining C ′d,s,p = 2(s+1) 2p+d
(d+2s)pCd,s,p and using Lemma 9 we have:

Wp(πα, π
′
α) ≤ C ′d,s,p(M +

∫
‖z‖s2α(z)dz)

2p+d
(d+2s)p + 2

(∫
‖z‖p2α(z)dz

)1/p

(191)

which concludes the proof.

C.13 Postponed results

Lemma 21. Consider a vector x = (x1, · · · , xd) ∈ Rd and α = (α1, · · · , αd) ∈ Nd a multi index. For
any k ∈ N we have:

‖x‖k2 ≤ dk
∑
|α|=k

|xα| (192)

Proof We have ‖x‖2 ≤ ‖x‖1 hence for k ∈ N:

‖x‖k2 ≤ (

d∑
i=1

|xi|)k =
∑
|α|=k

k!

α!
|xα| (193)

This implies that:

‖x‖k2 ≤ max
|α|=k

(
k!

α!
)
∑
|α|=k

|xα| ≤ (
∑
|β|=k

k!

β!
)(
∑
|α|=k

|xα|) = dk
∑
|α|=k

|xα| (194)

where we used that max|α|=k( k!
α! ) ≤

∑
|β|=k

k!
β! = (1 + · · ·+ 1︸ ︷︷ ︸

d

)k = dk.

Appendix D. Proofs of Section 5

D.1 Proof of Theorem 6

The goal of this section is to prove the following result:

Theorem 6 (Existence of a sketching operator when the Kernel Hölder LRIP holds) Consider a
model set S ⊆ P(X ) such that S is compact in (M(X ), ‖.‖TV) and has finite upper box-counting
dimension, i.e. dB(S) < +∞. Suppose that there exists β > 0, C > 0 and η ≥ 0 such that:

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C‖π − π′‖βκ + η (94)

for some bounded kernel κ (i.e. such that supx∈X κ(x,x) ≤ K). Then for any finite dimension
m > 2dB(S) there exists 0 < δ < β,C ′ > 0, and a prevalent set of bounded linear mapsa

A :M(X )→ Rm such that:

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C ′‖Aπ −Aπ′‖δ2 + η (95)

In other words if β ≤ 1 there exists a sketching operator that satisfies the Hölder LRIP with some
0 < δ < 1 and error η ≥ 0.

a. A prevalent set is a set whose complement is shy that is, informally, negligeable: in the case of Euclidean space it
is a space whose complement has Lesbegue measure zero.
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We will need some definitions and results. In particular we introduce the notion of ”dual thick-
ness” (Robinson, 2010):

Definition 8. Given θ > 0, let nθ(S, ε) denote the lowest dimension of any linear subspace V of B∗ such
that for any x, y ∈ S with ‖x− y‖ ≥ ε there exists an element ψ ∈ V such that ‖ψ‖∗ = 1 and

|ψ(x− y)| ≥ ε1+θ

Set

τ∗θ (S) = lim sup
ε→0

log nθ(S, ε)

− log ε

and define the dual thickness τ∗(S) by

τ∗(S) = lim
θ→0

τ∗θ (S)

We have that τ∗(S) ≥ 0 and if S is a compact subspace of B we have τ∗(S) ≤ dB(S) (Robinson,
2010, Corollary 7.8). We recall the following important result:

Proposition 13 (Theorem 8.1 in (Robinson, 2010)). Let S be a compact subset of a real Banach space
(B, ‖ · ‖) with dB(S) < +∞. Let any integer m > 2dB(S) and any δ with:

0 < δ <
m− 2dB(S)

m(1 + ατ∗(S))
(195)

where α = 1/2 if B is a Hilbert space and α = 1 if it is a general Banach space. Then there exists a
prevalent set of bounded linear maps L : B → Rm such that:

∀(x, y) ∈ S, ‖x− y‖ ≤ CL‖Lx− Ly‖δ2 (196)

Based on Proposition 13 we prove:

Proposition 14. Consider a model set S ⊆ P(X ) such that S is compact in (M(X ), ‖.‖TV) and has
finite upper box-counting dimension, i.e. dB(S) < +∞.

Suppose that the following property holds for some C ′ > 0, β > 0 and η ≥ 0:

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C ′‖π − π′‖βTV + η (197)

Then for any integer m > 2dB(S) there exists 0 < δ < β, a prevalent set of bounded linear maps
A :M(X )→ Rm and C = C(A, β) > 0 such that:

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C‖Aπ −Aπ′‖δ2 + η (198)

Proof By hypothesis S is compact in B := (M(X ), ‖.‖TV) which is a Banach space and we have
dB(S) < +∞, so we can apply Proposition 13 with the total variation norm. Take anym = 2dB(S)+
k for k ≥ 1 and any θ with:

0 < θ <
m− 2dB(S)

m(1 + τ∗(S))
=

k

(2dB(S) + k)(1 + τ∗(S))
≤ (1 + τ∗(S))−1 ≤ 1 (199)

By Proposition 13 there exists a prevalent set of bounded linear maps A : M(X ) → Rm and C =
C(A) such that:

∀π, π′ ∈ S, ‖π − π′‖TV ≤ C‖Aπ −Aπ′‖θ2 (200)

The fact that ‖ · ‖L(H),p is dominated by ‖ · ‖βTV on S for some β ∈]0, 1] concludes with the Hölder
exponent being δ = βθ. Since θ < 1 we have 0 < δ < β.
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Proof [Proof of Theorem 6] By hypothesis we have for some β > 0 and C > 0:

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C‖π − π′‖βκ + η (201)

However since the kernel is bounded by K we have ‖π−π′‖κ ≤
√
K‖π−π′‖TV for any π, π′ ∈ P(X )

(see Theorem 21 in (Sriperumbudur et al., 2010)). In particular we can apply Proposition 14 since
‖ · ‖L(H),p is in this case dominated on the secant set S − S by CKβ/2‖ · ‖βTV + η which gives the
desired result.
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Rémi Gribonval, Gilles Blanchard, Nicolas Keriven, and Yann Traonmilin. Compressive Statis-
tical Learning with Random Feature Moments, August 2021a. URL https://hal.inria.fr/

hal-01544609. Main novelties between version 1 and version 2: improved concentration bounds,
improved sketch sizes for compressive k-means and compressive GMM that now scale linearly
with the ambient dimensionMain novelties of version 3: all content on compressive clustering
and compressive GMM is now developed in the companion paper hal-02536818; improved sta-
tistical guarantees in a generic framework with illustration of the improvements on compressive
PCA.
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