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Abstract

Comparing probability distributions is at the crux of many machine learning algorithms. Maxi-
mum Mean Discrepancies (MMD) and Wasserstein distances are two classes of distances between
probability distributions that have attracted abundant attention in past years. This paper estab-
lishes some conditions under which the Wasserstein distance can be controlled by MMD norms.
Our work is motivated by the compressive statistical learning (CSL) theory, a general framework
for resource-efficient large scale learning in which the training data is summarized in a single vector
(called sketch) that captures the information relevant to the considered learning task. Inspired by
existing results in CSL, we introduce the Hölder Lower Restricted Isometric Property and show
that this property comes with interesting guarantees for compressive statistical learning. Based
on the relations between the MMD and the Wasserstein distances, we provide guarantees for com-
pressive statistical learning by introducing and studying the concept of Wasserstein regularity of
the learning task, that is when some task-specific metric between probability distributions can be
bounded by a Wasserstein distance.

Keywords: optimal transport, maximum mean discrepancy, statistical learning, compressive
learning, kernel methods, inverse problems.

1. Introduction

Countless methods in machine learning (ML) and data science rely on comparing probability dis-
tributions. Whether it is to measure errors between parametric models and empirical datasets or
to produce statistical tests, a recurring problem is to define loss functions that could faithfully
quantify the discrepancy between two probability distributions π and π′. Divergences and metrics
are frequently used to address this problem and are at the core of numerous works, ranging from
signal processing (Kolouri et al., 2017), generative modeling (Arjovsky et al., 2017; Genevay et al.,
2018), supervised and semi-supervised learning (Frogner et al., 2015; Solomon et al., 2014), fairness
(Gordaliza et al., 2019), two-sample testing (Gretton et al., 2012) or in information theory (Liese
and Vajda, 2006). The choice of such a metric is an important issue, as finding a suitable one is
delicate and often depends on many criteria such as its associated topology, its computational cost,
the type of the problem being considered, the task at hand . . . Consequently it is often of great
interest to understand the links/relationships between them. Integral Probability Metrics (IPMs)
introduced by Mueller (1997) (see also Sriperumbudur et al., 2009, 2012) offer an important class of
distances that take the form

dG(π, π′) := sup
g∈G
|
∫
gdπ −

∫
gdπ′| , (1)
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where π, π′ are appropriately integrable distributions and G is a class of real-valued functions param-
eterizing the distance. The choice of an adequate function class G whose generated IPM faithfully
describes the “right notion” of discrepancy is not straightforward. One possibility is to choose G
based on the learning task, for example by considering functions g ∈ G that depend on the loss and
the hypothesis space. This produces task-specific pseudo-metrics1 between probability distributions,
abreviated as TaskMetric, that can be used, inter alia, to obtain bounds on the generalization error
of a learning task (Shalev-Shwartz and Ben-David, 2014; Reid and Williamson, 2011). Another pos-
sibility is to rely on task-agnostic IPM and to choose G based on the prior knowledge that this class
is appropriate for the task at hand. Notable examples of task-agnostic IPMs include the popular
Maximum Mean Discrepancies (MMD) (when G is the unit ball in a Reproducible Kernel Hilbert
Space (RKHS), see Berlinet and Thomas-Agnan, 2011) and the 1-Wasserstein distance W1 (when G
is the class of 1-Lipschitz functions, see Villani, 2008). Both are gaining interest from the machine
learning community due to their ability to handle the metric structure of the feature space (see
Peyré and Cuturi, 2019; Muandet et al., 2017 and references therein).

Our first contribution is to exhibit some relationships between task-specific metrics between
probability distributions, MMD and optimal transport (OT) distances. We first give necessary and
sufficient conditions, on the kernel that defines the RKHS, under which the MMD can be bounded
by a Wasserstein distance. We study in a second step the other direction, more difficult to obtain,
which corresponds to finding the conditions under which the Wasserstein distance Wp can be upper-
bounded by an MMD with a “Hölder” exponent, that is when

Wp(π, π
′) . MMDδ(π, π′) for some δ ∈ (0, 1] . (2)

Especially, we are interested in MMDs associated to RKHSs generated by translation-invariant pos-
itive semi-definite kernels that are widely used in many machine learning applications and are at the
core of many large-scale learning algorithms (Rahimi and Recht, 2008, 2007). Despite some connec-
tions between MMDs and regularized OT distances, such as the Sinkhorn divergences (Feydy et al.,
2019) or Gaussian smoothed OT (Nietert et al., 2021b; Zhang et al., 2021), little is known regarding
the relationships between non-regularized Wp and such MMDs. We show that the bound (2) can
not hold in full generality and that one needs to find additional constraints on the distributions
π, π′. This will be formalized by the means of a model set of distributions S, so that (2) applies for
every π, π′ ∈ S. We shed light on several controls of the type (2) depending on the properties of
this model set S and the TI kernel (see Section 2).

This study is motivated by the compressive statistical learning (CSL) framework whose aim is to
provide resource-efficient large-scale learning algorithms (Gribonval et al., 2021a,b; Keriven et al.,
2018) and which heavily relies on MMDs with TI kernels. Large-scale ML faces nowadays a number
of computational challenges, due to the high dimensionality of data and, often, very large training
collections. Compressive statistical learning is one remedy to this situation. Its objective is: 1) to
summarize a large dataset X ∈ Rd×n, where d is the dimension and n the number of samples, into a
single vector s ∈ Rm or Cm with m� nd; and 2) to rely solely on s to solve the learning task, such
as finding centroids in K-means or learning mixture models (Keriven et al., 2017, 2018; Gribonval
et al., 2021b). The generic idea behind compressive learning is that, for many tasks, we only need to
have access to informations from a “low-dimensional” subspace, captured by a well-designed sketch
vector s.

This framework requires specific statistical tools for establishing learning guarantees compared to
standard machine learning approaches. One of the main notion in this context is found in the Lower
Restricted Isometric Property (LRIP) which is a condition on the sketching operator that maps a
dataset to a sketch. However, this property is far from trivial to prove and is usually obtained by:
1) carefully designing a model set of distributions S; 2) finding a kernel whose MMD dominates

1. A pseudo-metric D satisfies all the axioms of a metric except (possibly) for separation. In other words, D is
symmetric D(x, y) = D(y, x), non-negative D(x, y) ≥ 0, satisfies the triangular inequality D(x, y) ≤ D(x, z) +
D(z, y) and is such that D(x, x) = 0 (but possibly D(x, y) = 0 for some x 6= y).
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Figure 1: The reasoning used in the paper to obtain compressive statistical learning guarantees.
(left) Given two distributions π, π′ on a model set S, our goal is to control some task-
specific metric TaskMetric(π, π′) that depends on the learning task. (middle left) In
Section 3, we use an upper-bound TaskMetric(π, π′) . Wp(π, π

′) by introducing the notion
of Wasserstein regularity of the task. (middle right) In Section 2, we first show how to
control the MMD by the Wasserstein distance, then we study the other direction that is
controling Wp by an MMD with a Hölder exponent δ ∈ (0, 1]: Wp(π, π

′) . MMDδ(π, π′).
(right) In Section 4 we discuss how to control the MMD by the distance between the finite
dimensional sketches of the distributions A(π),A(π′) in Rm. The whole pipeline gives the
Hölder LRIP property which allows us to derive CSL guarantees.

TaskMetric, a property being known as the Kernel LRIP ; and 3) approximating this MMD using
random features (Gribonval et al., 2021a).

Based on the relationships between the MMD and the Wasserstein distance discussed above we
will show that a slightly different property, namely the Kernel Hölder LRIP, can be proved for a
wide range of tasks where it is natural to control TaskMetric by a Wasserstein distance (Wasserstein
regularity). In particular we prove that many unsupervised learning tasks such as compression-type
tasks (K-means/medians, PCA, see Gribonval et al., 2021a) or supervised learning tasks, such as
regression and binary classification with Lipschitz regressors/classifiers, fall into this category. From
this study we will propose a property which generalizes the LRIP, namely the Hölder LRIP, and we
will show that this property also comes with interesting compressive statistical learning guarantees.
Figure 1 summarizes the whole reasoning used in this paper to establish these CSL guarantees.

Organization of the paper We start by presenting in Section 2 the relations between the Wasser-
stein distance and the MMD. We provide conditions so that Wp . MMDδ holds for some δ ∈ (0, 1].
In Section 3 we study the relations between task-specific metrics between probability distributions
and the Wasserstein distance. For this, we introduce the concept of Wasserstein regularity of the
learning task. In Section 4 we introduce the compressive statistical learning framework which mo-
tivates our study. We study a generalization of the LRIP, namely the Hölder LRIP, and we show
that this property has many advantages for CSL.

3
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1.1 Notations and Definitions

We first detail the different usual notations and definitions used in this article.

1.1.1 Metric Spaces

In this article the space X will always be a complete, separable metric space. The relation d(x,y) .
d′(x,y) hides a multiplicative constant, i.e. d(x,y) ≤ Cd′(x,y) with C > 0 that does not depend
on x,y. The class of L-Lipschitz continuous functions from a metric space (X , dX ) to (Y, dY)
is denoted by LipL((X , dX ), (Y, dY)) or simply by LipL(X ,Y) when it is clear from context. If
f ∈ LipL((X , dX ), (Y, dY)) we have ∀x,x′ ∈ X , dY(f(x), f(x′)) ≤ LdX (x,x′). In the following ‖ · ‖2
denotes the `2 norm, and vectors and matrices are written in bold. On a normed space (X , ‖ · ‖),
the ball centered at x0 ∈ X and with radius R > 0 is denoted B‖·‖(x0, R) or simply by B(x0, R)
when it is clear from context.

1.1.2 Measures and Probability Distributions

We note P(X ) the set of probability measures on X . M(X ) is the space of finite signed measures
on X . For the sake of brevity, for a probability distribution π ∈ P(Rd) that admits a density f
w.r.t. the Lebesgue measure on Rd we adopt the notation π = fdx. Given a probability distribution
π ∈ P(X ) and a measurable function T : X → Y the pushforward operator # defines a probability
distribution T#π ∈ P(Y) via the relation T#π(A) = π(T−1(A)) for every measurable set A in Y.
In other words, if X ∼ π is a random variable then Y = T (X) has the law T#π. The support of
a probability distribution is denoted as supp(π) and it is defined as the smallest closed set S such
that π(S) = 1.

1.1.3 Integrability, Fourier Transform and Sobolev Space

For a measurable space X and a Borel measure µ on X we note Lp(µ) the space of real-valued p-
integrable functions w.r.t µ, i.e. that satisfy

∫
X |f(x)|pdµ(x) < +∞. When X = Rd we note Lp(Rd)

the space of p-integrable functions with respect to the Lebesgue measure. For an integrable function

f ∈ L1(Rd) we adopt the convention of the Fourier transform f̂(ω) = F [f ](ω) :=
∫
Rd e

−iω>xf(x)dx.

The Fourier transform of a non-negative finite measure µ ∈ M+(Rd) is defined for ω ∈ Rd by

µ̂(ω) :=
∫
Rd e

−iω>xdµ(x). For s ≥ 0, we define the Sobolev space of order s as (Adams and
Fournier, 2003):

Hs(Rd) :=
{
f ∈ L2(Rd) : ω → (1 + ‖ω‖22)s/2F [f ](ω) ∈ L2(Rd)

}
.

It is a Hilbert space whose corresponding norm is ‖f‖Hs(Rd) :=
(∫

Rd(1 + ‖ω‖22)s|F [f ](ω)|2dω
)1/2

.
It corresponds to the space of functions whose weak derivatives up to order s are squared-integrable.

2. Controlling Wasserstein Distances by Kernel Norms

We focus in this section on the first main contributions of this paper, that is the comparison of
optimal transport distances and maximum mean discrepancies. We begin by describing the main
notions related to these two metrics.

The interest of optimal transport lies in both its ability to provide correspondences between sets
of points and its ability to induce a geometric notion of distance between probability distributions
thanks to the popular Wasserstein distances (Villani, 2008; Santambrogio, 2015; Peyré and Cuturi,
2019). Considering a complete and separable metric space (X , D) and p ∈ [1,+∞), the Wasserstein
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distance of order p between two probability distributions π, π′ ∈ P(X ) is defined as

Wp(π, π
′) :=

(
inf

γ∈Π(π,π′)

∫
X×X

D(x,y)pdγ(x,y)

)1/p

, (3)

where Π(π, π′) is the set of couplings of π and π′ i.e. the set of joint distributions γ ∈ P(X × X )
such that both marginals of γ are respectively π and π′. More formally Π(π, π′) = {γ ∈ P(X ×X ) :
∀A,B ⊆ X , γ(A × X ) = π(A), γ(X × B) = π′(B)}. This quantity satisfies all the axioms of a
distance and endows the space

Pp(X ) := {π ∈ P(X ) :

∫
X
D(x0,y)pdπ(y) < +∞ for some arbitrary x0 ∈ X} ,

with a metric structure2 (Villani, 2008). When (X , D) is a normed space such as (Rd, ‖ · ‖2) the
space Pp(X ) is the space of probability distributions with finite p-th moment

∫
X ‖x‖

p
2dπ(x) < +∞.

More generally, we can define OT problems by using a cost function c : X × X → R instead of a
distance D and by minimizing the quantity

∫
c(x,y)dγ(x,y) over γ ∈ Π(π, π′). With a slight abuse

of terminology we will denote the optimal value of both problems by the term Wasserstein distance
and we will specify, when necessary, the choice of the cost function. A coupling γ∗ minimizing (3) is
called optimal coupling and it provides a probabilistic matching of the points in the support of the
distributions π, π′. As such, computing an OT distance equals to finding the most cost-efficient way
to “match” one distribution to the other. An important property of the Wasserstein distance relies
on its dual formulation. It allows, among others, to characterize W1 by considering the maximization
problem

W1(π, π′) = sup
f∈Lip1(X ,R)

|
∫
f(x)dπ(x)−

∫
f(y)dπ′(y)| ,

where Lip1(X ,R) is the set of 1-Lipschitz function from (X , D) to R (Santambrogio, 2015).
The other important technical ingredient of this section, the theory of kernels, has a long history

when it comes to learning problems or more generally to probability and statistics (Aronszajn, 1950;
Berlinet and Thomas-Agnan, 2011; Muandet et al., 2017). In the rest of the paper κ will denote
a positive semi-definite (PSD) kernel3 on a space X . It defines a Hilbert space of functions from
X to C denoted by Hκ endowed with an inner product 〈·, ·〉Hκ . This space is called a reproducing
kernel Hilbert space and is characterized by the property ∀x ∈ X , κ(·,x) ∈ Hκ and the reproducing
property: each f ∈ Hκ can be evaluated as f(x) = 〈f, κ(·,x)〉Hκ for any x ∈ X . A PSD kernel
also defines the so-called Maximum Mean Discrepancy (MMD) which can be used to compare two
probability distributions π ∈ P(X ) and π′ ∈ P(X ) with the formula4

MMDκ(π, π′) :=

(
E

x,x′∼π
[κ(x,x′)] + E

y,y′∼π′
[κ(y,y′)]− 2 Re( E

x∼π,y∼π′
[κ(x,y)])

)1/2

.

This quantity defines a pseudo-metric on the space of probability distributions and is a true met-
ric when the kernel is characteristic: MMDκ(π, π′) = 0 ⇐⇒ π = π′ (Simon-Gabriel et al.,
2020; Sriperumbudur et al., 2010). The MMD is also characterized by the relation MMDκ(π, π′) =
sup‖f‖Hκ≤1

|
∫
f(x)dπ(x)−

∫
f(x)dπ′(x)|. Moreover, it can be extended to any finite signed measure

µ ∈M(X ) by defining a semi-norm5 on M(X ) with the formula

‖µ‖κ :=

(∫ ∫
κ(x,y)dµ(x)dµ(y)

)1/2

. (4)

2. The space Pp(X ) is here to formalize that Wp is finite and thus defines a proper distance.

3. A function κ : X ×X → C is a PSD kernel if it is Hermitian i.e. κ(x,y) = κ(y,x) and for all x1, · · · ,xn ∈ X and
any c1, · · · , cn ∈ C we have

∑n
i,j=1 cicjκ(xi,xj) ≥ 0.

4. When the kernel κ is bounded, the MMD ‖π − π′‖κ is finite for any probability distributions π, π′.
5. A semi-norm ‖ · ‖ on a vector space is non-negative, satisfies the triangle inequality, is such that: a) if x = 0 then
‖x‖ = 0 (but not necessarily the converse); and b) for λ ∈ R, ‖λx‖ = |λ|‖x‖.
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When κ is a PSD kernel this quantity is well defined, i.e. the integral in (4) is non-negative, and
we have ∀π, π′ ∈ P(X ),MMDκ(π, π′) = ‖π − π′‖κ. In the rest of the paper we informally denote
‖ · ‖κ by the term kernel norm or MMD norm. An important family of kernels, namely translation-
invariant (TI), PSD kernels, are particularly interesting in our context. They are defined for X = Rd
and when κ(x,y) = κ0(x − y) for some continuous PSD function6 κ0 : Rd → C . This family
encompasses many popular kernels such as Gaussian or Laplacian kernels, or kernels of the Matèrn
class (Sriperumbudur et al., 2010). The following characterization of such kernels is due to the
celebrated Bochner’s theorem (see Theorem 6.6 and Theorem 6.11 in Wendland, 2004):

Theorem 1 (Bochner) Let κ0 : Rd → C. A function κ of the form κ(x,y) = κ0(x− y), where κ0

is continuous, is a PSD kernel if and only if there exists a probability distribution Λ ∈ P(Rd) such
that

∀x ∈ Rd, κ0(x) = κ0(0)

∫
Rd
e−iω

>xdΛ(ω) .

If κ0 is continuous and in L1(Rd) then κ(x,y) = κ0(x − y) is a PSD kernel if and only if ∀ω ∈
Rd, κ̂0(ω) ≥ 0.

Bochner’s theorem shows that a translation invariant PSD kernel κ (when properly scaled to en-
sure κ0(0) = 1) can be written as an expectation κ(x,y) = Eω∼Λ[φ(x,ω)φ(y,ω)] where Λ ∈ P(Rd)
and φ(x,ω) = e−iω

>x. An interesting property of such kernels is that they can be approxi-
mated using finite dimensional vectors by sampling from the frequencies ω ∼ Λ and approximating
Eω∼Λ[φ(x,ω)φ(y,ω)] using a Monte-Carlo algorithm (Li et al., 2021; Sutherland and Schneider,
2015; Sriperumbudur and Szabo, 2015). This property is at the core of methods that rely on ran-
dom Fourier features to accelerate kernel learning algorithms (Rahimi and Recht, 2007, 2008).

2.1 Controlling MMDs by Wasserstein distances

When it comes to comparing MMD and Wp, one direction is easier: controlling MMD by Wp. More
precisely we have the following result (the proof can be found in Appendix A.1):

Proposition 2 Let (X , D) be a complete separable metric space, κ : X × X → R a PSD kernel,
Hκ the associated RKHS and Bκ := {f ∈ Hκ : ‖f‖Hκ ≤ 1} the unit ball in Hκ. Consider the
Wasserstein distances computed with the metric D. For any C > 0 the following statements are
equivalent:

(i)
Bκ ⊆ LipC((X , D),R) (5)

(ii)
∀p ∈ [1,+∞),∀π, π′ ∈ Pp(X ), ‖π − π′‖κ ≤ C Wp(π, π

′) (6)

(iii)
∃p ∈ [1,+∞),∀π, π′ ∈ Pp(X ), ‖π − π′‖κ ≤ C Wp(π, π

′) (7)

(iv)
∀x,y ∈ X , κ(x,x) + κ(y,y)− 2κ(x,y) ≤ C2D2(x,y) (8)

For the sake of clarity, we restrict ourselves to the case where D is a proper metric but extensions
of this result are possible by considering an OT problem with a more general cost. In particular,
this type of bound has already been considered in Arbel et al. (2018); Sriperumbudur et al. (2010)
with the pseudo-metric D(x,y) = ‖κ(x, ·) − κ(y, ·)‖Hκ which gives C = 1 and an equality in (8).
As a corollary of this proposition we have the following result (see Appendix A.1 for a proof):

6. A function κ0 : Rd → C is PSD if for all x1, · · · ,xn ∈ Rd and c1, · · · , cn ∈ C we have
∑n
i,j=1 cicjκ0(xi−xj) ≥ 0.

Such function is bounded |κ0(x)| ≤ κ0(0) and satisfies κ0(−x) = κ0(x) (Wendland, 2004, Theorem 6.2). When
κ0 is even (κ0(−x) = κ0(x)) then κ0 and thus κ are real-valued.

6
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Corollary 3 Consider X = Rd equipped with the Euclidean distance D(x,y) = ‖x−y‖2 and a PSD
kernel κ : Rd × Rd → R that is normalized, i.e. κ(x,x) = 1 for every x ∈ X . Assume that for each
x ∈ X the function φx : y 7→ κ(x,y) is C2 in a neighborhood of x, and denote Hx = −∇2[φx](x)
its negative Hessian matrix evaluated at x. Then the following holds:

(i) Any of the four equivalent properties of Proposition 2 implies

sup
x∈Rd

λmax(Hx) ≤ C2 , (9)

where λmax(Hx) denotes the largest eigenvalue of Hx.

(ii) If κ is translation invariant, i.e. κ(x,y) = κ0(x− y) for every x,y ∈ X , then conversely, (6)
holds with C :=

√
supx λmax(Hx) =

√
λmax(−∇2[κ0](0)).

The second point of the previous result shows that under mild assumptions on a TI kernel the
MMD is bounded by a constant times a Wasserstein distance, for any distributions π, π′ for which
these quantities are well-defined. In particular it holds for popular kernels such as the Gaussian
kernel, or kernels of the Matérn class with parameter7 ν > 1:

Example 4 An important family of TI kernels is the Matérn class (Rasmussen and Williams, 2005,

Section 4.2.1), given in any dimension by the relation κ(x,y) := 21−ν

Γ(ν) (
√

2ν‖x−y‖2
σ )νKν(

√
2ν‖x−y‖2

σ )

for ν > 0, σ > 0 where Γ is the gamma function, and Kν is the modified Bessel function of the
second kind of order ν. This family of kernel admits the following Fourier transform8 :

κ̂0(ω) =
2d+νπd/2Γ(ν + d/2)νν

Γ(ν)σ2ν

(
2ν

σ2
+ ‖ω‖22

)−(ν+d/2)

. (10)

Interestingly, ν = 1
2 corresponds to the Laplacian kernel κ(x,y) = exp(−‖x−y‖2/σ) whose Fourier

transform is
2dπ

d−1
2 Γ( d+1

2 )

σ ( 1
σ2 + ‖ω‖22)−

d+1
2 while ν → +∞ recovers the RBF kernel see Rasmussen

and Williams (2005, Section 4.2.1)9.

Note that when the kernel is TI but is not normalized the second point of Corollary 3 holds
also with C = κ0(0)

√
λmax(−∇2[κ0](0)). For other types of normalized kernels, condition (8) is

a necessary and sufficient condition that amounts to checking if there is a constant C > 0 such

that 1 − κ(x,y) ≤ C2

2 D
2(x,y) for all x,y ∈ X . Interestingly, it echoes the “C-strongly locally

characteristic” property of the kernel as in Gribonval et al. (2021b, Definition 5.14) but with the
reverse inequality. When the kernel is C2 a necessary condition is given by the maximum eigenvalue
of the negative Hessian as in (9).

Overall Proposition 2 shows that it is not too difficult to find necessary and sufficient conditions
under which the MMD can be controlled by a Wasserstein distance. What is more difficult to
characterize is the inequality in the other direction.

2.2 Controlling Wasserstein distances by MMDs ?

Thereafter, the objective is thus to find reasonable conditions on a subset of probability distributions
S ⊆ P(X ) and on a PSD kernel κ such that the Wasserstein distance can be controlled with the
MMD with kernel κ uniformly on S. We adopt the following definition:

7. In this case κ0 is C2 in a neighbourhood of 0 since κ0 ∈ L1(Rd) and ω → ‖ω‖22κ̂0(ω) ∈ L1(Rd) when ν > 1
8. See Rasmussen and Williams (2005, Section 4.2.1) with slightly modified conventions on Fourier transforms.
9. Likewise, with adapted conventions on Fourier transforms.
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Definition 5 Let S ⊆ P(X ) be a subset of probability distributions, p ∈ [1,+∞), κ a real-valued
PSD kernel on X and δ ∈ (0, 1]. We say that the space (S,Wp) is (κ, δ)-embeddable with error η ≥ 0
if

∃C > 0,∀π, π′ ∈ S,Wp(π, π
′) ≤ C‖π − π′‖δκ + η . (11)

When η = 0 we simply say that (S,Wp) is (κ, δ)-embeddable.

Note that the constants C, η, δ in (11) do not depend on the probability distributions π, π′: we
want to bound uniformly on the whole subset S. In the following, we will call model set this subset
S. As discussed later in Section 4, introducing S will also be crucial in order to obtain compressive
statistical learning guarantees. Moreover, we are particularly interested in establishing such an
inequality for translation-invariant PSD kernels that at the core of the CSL theory since they admit
a random Fourier feature expansion useful to find a sketching operator based on random Fourier
features (Gribonval et al., 2021a).

Remark 6 An immediate consequence of Definition 5 is that when (S,Wp) is (κ, δ)-embeddable
(i.e. with no error) then the kernel κ is necessarily characteristic to S (Simon-Gabriel et al., 2020,
Section 1.2), in other words ‖π − π′‖κ = 0 ⇐⇒ π = π′ for all π, π′ ∈ S (indeed when the MMD
vanishes then the Wasserstein distance also vanishes which implies equality of the distributions).
Moreover, if (S,Wp) is (κ, δ = 1)-embeddable and if the condition (8) is also fulfilled, then Wp and
‖ · ‖κ induce the same topology on S and define equivalent metrics on S.

Remark 7 If S ⊆ S′ where (S′,Wp) is (κ, δ)-embeddable then (S,Wp) is also (κ, δ)-embeddable.
In other words, if S is contained in a space that is (κ, δ)-embeddable it is also (κ, δ)-embeddable.
On the other hand, if S′ contains a subspace S for which there is a necessary condition to the
(κ, δ)-embeddability property then the same condition applies to S′.

In the following we focus on property (11) with no error η = 0. First we consider necessary
conditions, that is, we argue that property (11) with no error can only be expected to hold for a
kernel κ and a model set S if certain appropriate assumptions are made. Conversely, we then derive
some sufficient conditions on S and κ such that (S,Wp) is (κ, δ)-embeddable.

2.3 Necessary Conditions

Let us first review some necessary conditions for property (11) with no errror.

2.3.1 Boundedness of the Model Set is Necessary.

Consider a model set S ⊆ P1(Rd) and denote by

m(π) :=

∫
xdπ(x)

the mean of π ∈ P1(Rd). On the one hand, simple calculus (Lemma 42 in Appendix A.3) shows that
for any π, π′ ∈ P(Rd) and p ∈ [1,+∞), if Wp is defined based on some norm ‖ · ‖ and ‖ · ‖? denotes
the dual norm defined by ‖z‖? = sup‖x‖≤1〈x, z〉, then

Wp(π, π
′) ≥ ‖m(π)−m(π′)‖?.

On the other hand, if κ is a bounded PSD kernel (i.e., supx κ(x,x) ≤ K < +∞) then, by the Cauchy-
Schwarz inequality for kernels we have ∀x,y, |κ(x,y)| ≤

√
κ(x,x)

√
κ(y,y) ≤ K. Hence, for any

(π, π′) ∈ S, ‖π− π′‖κ ≤
√

2K. As a result, if S is unbounded in the sense that supπ,π′∈S ‖m(π)−
m(π′)‖? = +∞, then for each δ > 0,

sup
(π,π′)∈S

Wp(π, π
′)

‖π − π′‖δκ
= +∞ . (12)

8
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Consequently, we can not have (11) for any δ > 0. Since all norms are equivalent in finite dimension
the following lemma holds:

Lemma 8 Consider X = Rd, p ∈ [1,+∞) and assume that Wp is based on a norm on Rd. If κ is
bounded and (S,Wp) is (κ, δ)-embeddable for some δ > 0 then S is bounded:

m-diam(S) := sup
π,π′∈S

‖m(π)−m(π′)‖2 < +∞ .

2.3.2 Bounds on δ due to the Convergence Rate of Empirical Measures.

Another obstacle to (11) concerns the samples rate of convergence of both terms with empirical
measures : it is known that the Wasserstein distance suffers from the curse of dimensionality while
the MMD does not. More precisely if π ∈ P1(Rd) is absolutely continuous with respect to the
Lebesgue measure on Rd then it is known that E[W1(π, πn)] & n−1/d where πn = 1

n

∑n
i=1 δxi ,

xi ∼ π and the expectation is taken w.r.t. the draws of xi (Dudley, 1969; Weed and Bach, 2019).
By monotonicity of Wp in p this is also true for Wp with p ≥ 1 (since for p ≤ q,Wp(π, π) ≤Wq(π, π

′)
for any10 π, π′). On the contrary, it is not difficult to see that if the PSD kernel κ is bounded by
K then E[‖π − πn‖δκ] ≤ (2K)δ/2n−δ/2 (see Lemma 41 in Appendix A.2). Consequently, even when
the model set S ⊆ P1(Rd) satisfies m-diam(S) < +∞ (to avoid the obstacles to (11) already
identified in Lemma 8), if S is rich enough to contain a distribution π that is absolutely continuous
w.r.t. the Lebesgue measure, as well as its empirical distributions πn for every n, then (11) implies
n−1/d . n−δ/2, so necessarily δ ≤ 2/d. An example of such a model set is the set of all probability
distributions producing almost surely vectors in a prescribed ball, leading to the following result:

Lemma 9 Consider R > 0, Ω = B(0, R) ⊆ X = Rd, S := {π ∈ P(X ) : π(Ω) = 1}, κ a bounded
PSD kernel, and Wp based on a norm in Rd with p ∈ [1,+∞). If (S,Wp) is (κ, δ)-embeddable then
δ ≤ 2/d.

In the context of CSL, as described in Section 4, such δ ≤ 2/d would imply a very slow convergence

rate of the order of O(n−
1
d ). In other words, if the strategy described in Section 4 is followed we

would require an exponential amount of samples in order to have reasonable CSL guarantees which
is problematic for a large scale scenario where d is usually large. This discussion suggests that we
must find suitable constraints on p, δ, κ and S to avoid such a curse of dimensionality. Sufficient
conditions to achieve this goal will be discussed later, but first we continue with some additional
necessary conditions.

2.3.3 Another Bound on δ for Certain Model Sets

Another restriction comes from the type of distributions in the model set. We will prove that, as
soon as S contains two distributions whose supports are disjoint, as well as the convex segment
between these distributions, we cannot hope to have (11) with error η = 0 when p · δ > 1.

Proposition 10 Let (X , D) be a complete and separable metric space and consider the Wasserstein
distances computed with the distance D. Let κ be any PSD kernel. Consider two arbitrary probability
distributions π0, π1 ∈ P(X ) such that ‖π0 − π1‖κ < +∞ and supp(π0) and supp(π1) are disjoint11.
Consider S := {(1− t)π0 + tπ1 : t ∈ [0, 1]}. If (S,Wp) is (κ, δ)-embeddable then δ ≤ 1/p.

The result is mostly based on Niles-Weed and Berthet (2022). Its proof in Appendix A.4 essen-
tially amounts to showing (12) as soon as p · δ > 1. Following Remark 7, the same conclusion holds
if S only contains the convex combinations of distributions π0, π1 as in the above proposition. For

10. This is a consequence of Jensen inequality (Santambrogio, 2015, Section 5.1).
11. We recall that the support supp(π) of a probability distribution π ∈ P(X ) is the smallest closed set S such that

π(S) = 1.
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a bounded kernel, since ‖π0 − π1‖κ is always finite, the same result is thus valid in particular when
the model set S contains a segment whose extreme points have disjoint supports. This is notably
the case when S is convex and contains two distributions with disjoint supports. As a consequence,
given any PSD kernel κ, (S,Wp) is not (κ, δ)-embeddable for δ > 1/p when S contains for example
mixtures of two Diracs or more generally mixtures of two compactly supported distributions. We
emphasize that this result does not depend on the dimension of the ambient space and is true for
any PSD kernel.

2.3.4 Bound on δ for Mixture Models and Smooth TI Kernels

In most concrete applications, one often has to compare discrete distributions. We show in this sec-
tion that the regularity of the kernel plays an important role when trying to control the Wasserstein
distance with an MMD for model sets made of discrete distributions. In the following we define, for
K ∈ N∗ and Ω ⊆ X = Rd, the space of mixtures of K diracs located in Ω:

SK(Ω) :=
{ K∑
i=1

aiδxi : ai ∈ R+,

K∑
i=1

ai = 1,∀i ∈ [[K]],xi ∈ Ω
}
.

This type of model with Ω = B(0, R) for some R > 0 plays a central role in compressive learning
theory and is used to show that the LRIP (Section 4) does not hold for tasks such as K-means
without separability assumptions on the diracs (Gribonval et al., 2021b). We show in the next
theorem (proof in Appendix A.5) that there is a trade-off between the exponent δ and the regularity
of the kernel provided that the model set is rich enough to contain discrete distributions with enough
diracs.

Theorem 11 Consider a TI, PSD kernel κ(x,y) = κ0(x − y) on Rd such that κ0 is k times
differentiable at 0 with k ∈ N∗. Consider p ∈ [1,+∞), a Wasserstein distance Wp based on a norm
in Rd, a vector x0 ∈ Rd, R > 0 and Ω = B(x0, R). If (Sb k2 c+1(Ω),Wp) is (κ, δ)-embeddable then

δ ≤ 2/k.

Following Remark 7, the same conclusion holds if S only contains all mixtures of Dirac supported
in some arbitrary Euclidean ball. Theorem 11 proves that if the kernel is k times differentiable and
if S is rich enough to contain bk2 c + 1 diracs then we can not control the Wasserstein distance

with MMDδ uniformly over S when δ > 2/k. As an immediate consequence we have the following
corollary when the kernel is smooth:

Corollary 12 Consider a TI, PSD kernel κ(x,y) = κ0(x − y) on Rd such that κ0 ∈ C∞(Rd,R)
and a model set S ⊆ P(Rd). Assume that SK(Ω) ⊆ S with K ≥ 2 where Ω ⊆ Rd is an open set.
If (S,Wp) is (κ, δ)-embeddable, where Wp is based on a norm in Rd and p ∈ [1,+∞), then δ ≤ 2/K.

These results have many consequences. First it shows that when κ is smooth and S contains
mixtures of arbitrarily many diracs located in some open set, (S,Wp) is not (κ, δ)-embeddable for
any δ > 0. In other words, it proves that finding a absolute constant C > 0 such that Wp(π, π

′) ≤
C MMDδ

κ(π, π′) for all discrete distributions π, π′ is hopeless when the kernel κ is smooth even if
these distributions lie also in some fixed ball of Rd (to take care of the necessary condition associated
to Lemma 8). It suggest that finding suitable constraints on the model set S and on the kernel κ
is required in order to have the control (11). We will show in the next sections how to obtain these
types of control with additional hypotheses on the regularity of the distributions in S. The Figure
2 summarizes the necessary conditions established in the previous sections.

2.4 Sufficient Conditions: Regular Distributions

We are now interested in sufficient conditions allowing to uniformly control the Wasserstein distance
by MMDδ on a subset of distributions S ⊂ P(Rd). In the following we consider Wasserstein distances

10
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Figure 2: Summary of the established necessary conditions to the (κ, δ)-embedabbility property.

defined with respect to the Euclidean norm ‖ · ‖2, and denote

Mr[π] := (Ex∼π[‖x‖r2])
1/r

the moment of order r of π ∈ P(Rd). At first we restrict to the case of “regular” distributions,
in the sense that probability distributions in S are assumed to admit densities with respect to the
Lebesgue measure (non-regular distributions will be studied in the next section). We recall that the
shorthand π = fdx indicates that π has density f with respect to the Lebesgue measure.

Our first Lemma (proved in Appendix A.6) controls Wp by a distance L2 between densities, under
the assumption that distributions in the model set S have a certain number of bounded moments:

Proposition 13 Consider π, π′ ∈ P(Rd) with densities f, g with respect to the Lebesgue measure,
i.e. π = fdx, π′ = gdx. If max{Mr[π],Mr[π

′]} ≤M , where r > 1, then for each 1 ≤ p < r we have

Wp(π, π
′) ≤ C

(∫
Rd
|f(x)− g(x)|2dx

) r−p
(d+2r)p

, (13)

with C = 2(max{Vd, 1})
1
2pM

(d+2p)r
(d+2r)p with Vd = πd/2/Γ(d/2 + 1) the volume of the d-dimensional unit

sphere.

The L2 distance between densities that appears in the right hand side of (13) can be further
bounded by an MMD with an appropriate kernel. Indeed, using Plancherel’s formula and introducing
the Fourier transform κ̂0 of a TI, PSD kernel, Cauchy-Schwarz inequality yields∫
Rd
|f(x)−g(x)|2dx ∝

∫
Rd
|f̂(ω)−ĝ(ω)|2dω ≤

(∫
Rd

|f̂(ω)− ĝ(ω)|2

κ̂0(ω)
dω
) 1

2
(∫

Rd
κ̂0(ω)|f̂(ω)−ĝ(ω)|2dω

) 1
2

.

where f̂ , ĝ denote the Fourier transforms of f, g. The second integral of the right hand side of this
expression being proportional to the MMD (Lemma 48) one can transform the bound (13) into a

bound involving an MMD if we can control the integral
∫
Rd κ̂0(ω)−1|f̂(ω)− ĝ(x)|2dω by a constant.

Moreover, we also have the following relation (see12 Wendland 2004, Theorem 10.12):

(2π)−d
∫
Rd

|f̂(ω)− ĝ(ω)|2

κ̂0(ω)
dω = ‖f − g‖2Hκ ,

12. With adapted conventions on Fourier transforms.
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where Hκ is the RKHS associated to the kernel κ and ‖ · ‖Hκ is the corresponding RKHS norm.
Consequently, when the distributions in S have densities in some RKHS ball, we can bound∫
Rd κ̂0(ω)−1|f̂(ω)− ĝ(x)|2dω by a constant:

Theorem 14 Let κ(x,y) = κ0(x−y) be a TI, PSD kernel on Rd such that κ0 ∈ L1(Rd), κ̂0(ω) > 0
for every ω. For B,M, r ≥ 0, denote

SB,M,r,κ :=
{
π ∈ P(Rd) : π = fdx, ‖f‖Hκ ≤ B and Mr[π] ≤M

}
⊂ Pr(Rd) . (14)

If r > 1 then for each 1 ≤ p < r we have

∀π, π′ ∈ SB,M,r,κ, Wp(π, π
′) ≤ C ′‖π − π′‖

r−p
p(d+2r)
κ ,

where C ′ = 8(max{Vd, 1})
1
2pB

r−p
(d+2r)pM

(d+2p)r
(d+2r)p .

The proof is given in Appendix A.7. With the model set S = SB,M,r,κ, this theorem implies
that (S,Wp) is (κ, δ = r−p

p(d+2r) )-embeddable for every 1 ≤ p < r as soon as κ is a TI, PSD kernel

with very few assumptions. A limitation of this result is that the model set S depends on the kernel
κ so that it is not clear which family of distributions belongs to S. In the next theorem we decouple
the assumptions on the kernel from those on the model set. Assuming that the distributions have
densities that are sufficiently regular (Sobolev), a certain number of bounded moments and with
some assumptions on the kernel κ the following holds:

Theorem 15 Let κ(x,y) = κ0(x−y) be a TI, PSD kernel on Rd such that κ0 ∈ L1(Rd), κ̂0(ω) > 0
for every ω, and assume there is sκ > 0 such that

1

κ̂0(ω)
= O(‖ω‖sκ2 ) as ‖ω‖2 → +∞ . (15)

For r,B,M, s ≥ 0, denote

SB,M,r,s :=
{
π ∈ P(Rd) : π = fdx, ‖f‖Hs(Rd) ≤ B and Mr[π] ≤M

}
⊂ Pr(Rd) . (16)

If s ≥ sκ/2 and r > 1 then for each 1 ≤ p < r there exists C = C(B,M, r, s, d, κ, p) > 0 such that

∀π, π′ ∈ SB,M,r,s, Wp(π, π
′) ≤ C‖π − π′‖

r−p
p(d+2r)
κ .

The proof is given in Appendix A.7. With the model set S = SB,M,r,s, this theorem implies
that (S,Wp) is (κ, δ = r−p

p(d+2r) )-embeddable for every 1 ≤ p < r as soon as κ is a TI, PSD kernel

with some regularity, and the distributions in S are sufficiently regular with bounded r-moments.
This latter hypothesis is not very limiting in practice since it is also required in order to have finite
Wasserstein distances. The Sobolev condition on the densities requires that densities are in L2 and
have at least s ≥ sκ/2 (weak)derivatives in L2. In particular this is the case for the classical model
sets considered in compressive statistical learning literature such as Gaussian mixtures (Gribonval
et al., 2021b).

Remark 16 Since the distributions in S admit a density, the constraints of Theorem 11 (mixtures
of Diracs) do not apply here and, as such, the kernel is allowed to be smooth.

An important family of TI kernels satisfying the hypothesis of Theorem 15 is the Matérn class
(Rasmussen and Williams, 2005, Section 4.2.1), with parameter ν, as detailed in Example 4. The
limit of a Matèrn kernel when the parameter ν → ∞ is the RBF kernel, which is too regular: its
Fourier transform decays too fast to satisfy the assumption (15) of Theorem 15. In the context of
compressive learning, translation invariant kernels are most useful if they can be approximated with

12
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random Fourier features with good concentration properties (see Section 4). An interesting question
for future work is thus whether the “slow decay” of the Fourier transform needed to apply Theorem
15 appears as a strong constraint in such a context.

Observe that for fixed p and large r the exponent δ = r−p
p(d+2r) tends to 1

2p . Another consequence

of Theorem 15 is for distributions that have infinitely many bounded moments. In this case the
exponent δ can be independent of the dimension, as shown in the following two examples:

Example 17 (Uniformly bounded moments) Consider a kernel κ and an exponent s with the
same assumptions as in Theorem 15 and a function m : R→ R∗+ along with the following model set:

SB,m,s :=
{
π ∈ P(Rd) : π = fdx, ‖f‖Hs(Rd) ≤ B and ∀r > 1, Mr[π] ≤ m(r)

}
. (17)

i.e., the intersection of the model sets SB,m(r),r,s, r > 1. For any p ∈ [1,+∞) and 0 < δ < 1
2p we can

find a constant13 C = C(B,m(·), δ, s, d, κ, p) > 0 such that ∀π, π′ ∈ SB,m,s,Wp(π, π
′) ≤ C‖π−π′‖δκ.

In other words (SB,m,s,Wp) is (κ, δ)-embeddable for an exponent that is as close as we want to
δ∗ = 1

2p .

A notable example where such a model is relevant is in compressive statistical learning, where
the model set associated to Gaussian mixtures with bounded parameters fits into this framework
(Gribonval et al., 2021a). More generally one can also consider a model set made of sub-Gaussian
variables with smooth densities and bounded sub-Gaussiannity parameter σ. In this case m(r) =
cσmax

√
r for some constant c > 0 since, by the sub-Gaussian property, we have ∀r ≥ 1,Mr[π] ≤

cσ
√
r ≤ cσmax

√
r (see e.g. Foucart and Rauhut 2013, Section 7.4).

Example 18 (Compactly supported distributions) With the same assumptions of κ and s,
when all the distributions in S are smooth and have the same compact support, they can be shown
to belong to SB,m,s where the function m : R→ R∗+ can be chosen as constant. Indeed if supp(π) ⊆
B(0,M) for some ball of radius M then ∀r > 1,Mr[π] ≤ M . In this case the exponent δ = 1

2p is
exactly attainable as shown in Appendix A.8.

Remark 19 We recall that, due to the constraints of Proposition 10, the best possible rate achievable
is δ = 1/p since the model set SB,M,r,s in (16) contains a convex combination of two probability
distributions whose support are disjoint. Indeed, it is not difficult to construct two measures in the
model set π1 = f1dx and π2 = f2dx with ‖f1‖Hs(Rd), ‖f2‖Hs(Rd) ≤ B and such that supp(π1) ∩
supp(π2) = ∅. Then for any t ∈ [0, 1], (1− t)π1 + tπ2 ∈ Ss,B,M,r since it has density (1− t)f1 + tf2

such that ‖(1− t)f1 + tf2‖Hs(Rd) ≤ B and Mr
r[(1− t)π1 + tπ2] = (1− t) Mr

r[π1] + tMr
r[π2] by linearity

(with respect to the distribution) thus Mr
r[(1−t)π1+tπ2] ≤Mr which implies Mr[(1−t)π1+tπ2] ≤M .

It remains open whether exponents δ ∈ (1/2p, 1/p) are actually achievable on SB,M,r,s.

2.5 Sufficient Conditions: Non-Regular Distributions

The case of measures on Rd and that do not admit a density is more delicate to study. We will
however prove that, at the price of an arbitrary small additive term η > 0, we have the control (11)
under mild assumptions on the model set S. The core idea is to regularize the probability distri-
butions π, π′ and to obtain bounds between the true Wasserstein and the “smoothed” Wasserstein
distance which is easier to relate to an MMD. We adopt the following definition:

Definition 20 (Regularizer) We say that a function α : Rd → R+ is a regularizer if it is a non-
negative, continuous, even and bounded function such that

∫
Rd α(z)dz = 1 and α ∈ L2(Rd). We

say that the regularizer has r-finite moments if
∫
‖z‖r2α(z)dz < +∞ for some r ≥ 1.

13. It suffices to apply Theorem 15 with SB,m(r),r,s where r =
(1+δd)p
1−2δp

> p since δ = r−p
p(d+2r)

.
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When considering a regularizer α and a probability distribution π ∈ P(Rd) (not necessarily
regular) the convolution α∗π defines a probability density function14 on Rd via α∗π(x) =

∫
Rd α(x−

y)dπ(y). In the following we will note πα the probability distribution associated to the density α∗π.
Note that πα is usually regular by imposing that α is (such as when α is the Gaussian density). The
interpretation behind πα is the following: if X ∼ π and Yα is a random variable independant of X
and whose distribution has density α then the random variable X + Yα has distribution πα. The
idea of regularizing the measure to derive properties on the Wasserstein distance is not new and
was used in various contexts (Dedecker and Michel, 2013; Niles-Weed and Berthet, 2022; Goldfeld
and Greenewald, 2020; Nguyen, 2013). We have the following lemma which relates the Wasserstein
distance Wp to its regularized counterpart:

Lemma 21 Consider a regularizer α with p-finite moments where p ≥ 1. Then

∀π, π′ ∈ P(Rd), Wp(π, π
′) ≤Wp(πα, π

′
α) + 2

(∫
‖z‖p2α(z)dz

)1/p

.

Proof Using the triangle inequality we have Wp(π, π
′) ≤ Wp(π, πα) + Wp(πα, π

′
α) + Wp(π

′, π′α).
Let X ∼ π and Yα be a random variable independent of X and whose distribution has density α so
that X + Yα ∼ πα. By definition of Wp we have Wp

p(π, πα) = infγ∈Π(π,πα) E(Z1,Z2)∼γ [‖Z1 − Z2‖p2]
hence taking (Z1, Z2) = (X,X + Yα) we obtain Wp

p(π, πα) ≤ E[‖X − (X + Yα)‖p2] = E[‖Yα‖p2].
Consequently Wp

p(π, πα) ≤
∫
‖y‖p2α(y)dy. The same applies for the term Wp(π

′, π′α).

When α is the density of the Gaussian N (0, σ2I) the distance Wp(πα, π
′
α) is usually called the

Gaussian-smoothed OT and enjoys good properties in terms of sample-complexity and topological
properties (Goldfeld and Greenewald, 2020; Nietert et al., 2021a). Our formalism is more general
as it considers any type of regularizers. The main idea now is to show that, given the regularizer,
Wp(πα, π

′
α) can be controlled by the MMD associated to a TI kernel. Since πα, π

′
α admit a density

we will use the same idea as in the Proposition 13 to control Wp(πα, π
′
α) by ‖α ∗ π − α ∗ π′‖δL2(Rd)

for some δ ∈ (0, 1). To connect with the MMD we will rely on the following result whose proof is
given in Appendix A.9:

Lemma 22 Let α be a regularizer and κ0 := α ∗α. Then κ0 ∈ L1(Rd) is even, bounded, continuous
and has non-negative Fourier transform. Consider the kernel κ(x,y) := κ0(x− y). Then κ defines
a TI, PSD kernel. Moreover, for π, π′ ∈ P(Rd),

‖π − π′‖κ = ‖α ∗ π − α ∗ π′‖L2(Rd) .

Based on these results we have the following upper-bound on Wp(πα, π
′
α) using the MMD asso-

ciated to a TI, PSD kernel (the proof can be found in Appendix A.9):

Proposition 23 Let r > 1. Consider a regularizer α with r-finite moments and the kernel κ(x,y) =
κ0(x − y) where κ0 := α ∗ α. It defines a TI, PSD kernel by Lemma 22. Moreover, for any
π, π′ ∈ Pr(Rd) and 1 ≤ p < r, Wp defined with the Euclidean norm on Rd satisfies

Wp(πα, π
′
α) ≤ Cd,r,p

(
Ex∼πα [‖x‖r2] + Ey∼π′α [‖y‖r2]

) 2p+d
(d+2r)p ‖π − π′‖

2(r−p)
(d+2r)p
κ ,

for some constant Cd,r,p > 0.

As a corollary of Proposition 23 and Lemma 21 we are now able to prove the main theorem of
this section (the proof is in Appendix A.9):

14. Since α is a regularizer we have
∫
α = 1 and consequently

∫
(
∫
α(x − y)dπ(y))dx =

∫
(
∫
α(x − y)dx)dπ(y) = 1

by using Fubini’s theorem (α is non-negative) and the fact that the Lebesgue measure is invariant by translation.
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Theorem 24 Let r > 1. Consider a regularizer α with r-bounded moments. Consider the kernel
κ(x,y) = κ0(x− y) where κ0 := α ∗ α. It defines a TI, PSD kernel by Lemma 22. We consider the
model set

SM := {π ∈ P(Rd) : Mr[π] ≤M} ⊂ Pr(Rd) .
Then for any 1 ≤ p < r there exists a constant C ′ = C ′d,r,p > 0 such that

∀π, π′ ∈ S,Wp(π, π
′) ≤ C ′

(
Mr +

∫
‖z‖r2α(z)dz

) 2p+d
p(d+2r)

‖π − π′‖
2(r−p)
(d+2r)p
κ + 2

(∫
‖z‖p2α(z)dz

)1/p

.

This theorem has multiple implications. First it shows that, for a wide range of TI, PSD kernels,

and under mild assumptions, (S,Wp) is (κ, δ = 2(r−p)
p(d+2r) )-embeddable with error η > 0. Note that

the exponent δ is twice the exponent found in Section 2.4 for regular distributions, which is due
to the fact that we directly regularize the distributions using the kernel associated to the MMD.
Consequently, it leads to a slightly better better exponent (closer to 1) than the one of the regular
case, but at a price of an additive error term. We will also see in Example 25 how this error term
η > 0 can be controlled. We emphasize that few assumptions on S are required: the distributions
in the model set must have uniformly bounded r-moment, i.e. supπ∈S Ex∼π[‖x‖r2] < +∞. This
assumption is verified when, for example, S is the space of Gaussian mixtures whose parameters are
in a compact subspace as considered in compressive statistical learning (Gribonval et al., 2021b).
Interestingly, if r is big compared to d, p then we have δ ≈ 1

p .

Example 25 (RBF kernel) As an example of use of Theorem 24 consider the Gaussian den-
sity function ϕ(x) := (2π)−d/2 exp(−‖x‖22/2). Define for σ > 0 the regularizer α(x) := σ−dϕ(x

σ ).
The function α is continuous, even, bounded, all r-moments are finite,

∫
Rd α = 1. The associ-

ated kernel is then defined by κ̂0(ω) = (ϕ̂(σω))2 = (e−
1
2σ

2‖ω‖22)2 = e−σ
2‖ω‖22 , hence κ(x,y) =

πd/2σ−d exp(−‖x−y‖
2
2

4σ2 ). Consider the case p = 1 and r > 1 of Theorem 24. The error term
2
∫
‖z‖2α(z)dz = 2σ

∫
‖z‖2ϕ(z)dz can be controlled as

2σ

∫
‖x‖2(2π)−d/2 exp(−‖x‖22/2)dx ≤ 2σ(

∫
‖x‖22(2π)−d/2 exp(−‖x‖22/2)dx)1/2

by Jensen since x → (2π)−d/2 exp(−‖x‖22/2) is a probability density function. Thus, we can bound
the error therm by 2σ(Ex∼N (0,I)[‖x‖22])1/2 = 2σ

√
d. Moreover,

∫
‖z‖r2α(z)dz = σr

∫
‖z‖r2ϕ(z)dz =

Ex∼N (0,I)[‖x‖r2] = 2r/2
Γ( r+d2 )

Γ( r2 ) (it is the r-th moment of a χ2 distribution). Then, using Theorem 24

we have

∀π, π′ ∈ S, W1(π, π′) ≤ C ′
(
Mr + 2r/2σr

Γ( r+d2 )

Γ( r2 )

) d+2
d+2r

‖π − π′‖
2(r−1)
d+2r
κ + 2σ

√
d .

Interestingly enough, the error term behaves as O(σ) and can me made as small as possible at a price
of a “sharper” kernel (the bound is true for any σ > 0). Implications of this result wil be discussed
in the context of CSL in Section 4.

Remark 26 The condition κ0 = α ∗ α in Theorem 24 can be met in two ways. First, as done
in Example 25, fixing a regularizer α with r-bounded moments gives a TI, PSD kernel so that
Theorem 24 holds. This can be achieved for example by considering a PSD function α ∈ L1(Rd)
with a sufficient number of bounded moments and that is even, continuous and positive (continuous,
integrable and PSD functions are bounded Wendland, 2004). A simple normalization α ← α/

∫
α

will then produce a suitable α. The second way is to fix the kernel κ(x,y) = κ0(x− y) and to check
that it can be decomposed as κ0 = α ∗ α with α a regularizer with r-bounded moments and α̂ ≥ 0.
This problem is related to the one of finding a so-called convolution root, or Boas–Kac root of a
positive definite function which can be shown to exist under certain assumptions on the function
(Ehm et al., 2004; Akopyan and Efimov, 2017; R. P. Boas and Kac, 1945).
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Figure 3: Summary of the different results of Section 2. The mention “with error” means that the
relation holds when adding an error η > 0 that does not depends on S. π = fdx means
that the measure has density f with respect to the Lebesgue measure.

2.6 Conclusion and Related Works

We established in this section various controls of the form Wp . MMDδ
κ that depend on δ ∈ (0, 1],

the properties of the model set and the kernel κ. All these results are summarized in Figure 3. Some
other connections between MMDs and Wasserstein distances have been explored in the literature.
The most simple one is when the metric D used to define the Wasserstein distance is the metric
in the RKHS corresponding the the kernel κ, i.e. D(x,y) = ‖κ(·,x) − κ(·,y)‖Hκ . In this case it is

known that we can control the Wasserstein distance W1 by
√

MMD2
κ +K when κ is bounded by K

(Sriperumbudur et al., 2010).

2.6.1 Relaxing the Translation-Invariance Property

Other interesting connections are based on the Gaussian-smoothed Wasserstein distance (Goldfeld
and Greenewald, 2020) where authors consider α the probability density function of the Gaussian
N (0, σ2I) and the Wasserstein distance between the regularized distributions πα = α ∗ π. In Zhang
et al. (2021) authors show that we can control the Gaussian-smoothed Wasserstein distance with the
MMD, by considering a PSD kernel that is not translation-invariant and not bounded but defined

as κ(x,y) = exp
(
−‖x−y‖

2
2

4σ2

)
If

(
‖x+y‖2√

2σ

)
where If is a function parametrized by some probability

density function f such as generalized beta-prime distributions. More precisely they prove

∀π, π′ ∈ Sκ,Wp(πα, π
′
α) ≤ 2σ‖π − π′‖1/pκ ,

where Sκ := {π ∈ P(Rd) :
∫ √

κ(x,x)dπ(x) < +∞} (Zhang et al., 2021, Theorem 2). With the
same type of arguments as those presented in Lemma 21 we can prove that for any π, π′ ∈ Sκ we

have Wp(π, π
′) ≤ 2σ‖π−π′‖1/pκ + η where η = 2

(∫
‖z‖p2α(z)dz

)1/p
and Wp is computed with ‖ · ‖2.
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As a corollary, for this kernel that is not TI we can use the result of Zhang et al. (2021) to prove

that (Sκ,Wp) is (κ, 1
p )-embeddable with error η = 2

(∫
‖z‖p2α(z)dz

)1/p
that will behave as O(σ) as

shown in Example 25. We can mention another line of works which draws connections between the
Wasserstein distance and some specific dual Sobolev norms which can be related to the MMD. In
Nietert et al. (2021b) authors control the Wasserstein distance with an MMD whose kernel, which

is not TI, is defined by κ(x,y) = −σ2 Ein(−〈x,y〉/σ2) where Ein(z) =
∫ z

0
(1−e−t)

t dt. Despite the
fact that our two approaches are related our work differs from the Gaussian-smoothed OT in the
sense that we do not want to estimate precisely the smoothed Wasserstein distance Wp(πα, π

′
α) by

controlling it with an MMD based on a specific kernel but instead to control Wp(π, π
′) by kernel

norms for many types of TI kernels.

2.6.2 Relaxing the PSD Assumption on the Kernel

Beyond PSD kernels other types of kernels can be used to define interesting divergences between
probability distributions that can be linked with the Wasserstein distance. These divergences are
not stricly speaking MMD norms as defined in (4) with PSD kernels but share similar topological

properties. For example, by considering the conditionally PSD15 kernel κ(x,y) = −‖x−y‖β2 for β ∈
(0, 2], and π, π′ ∈ P(Rd), the integral in (4) is non-negative for µ = π−π′ so that the term ‖π−π′‖κ
is well defined (Sejdinovic et al., 2013, Example 15). It is called the energy, or Cramér, distance
(Székely and Rizzo, 2017; Szekely and Rizzo, 2004; Sejdinovic et al., 2013) and it connects with
OT distances in the sense that the Sinkhorn divergence (regularized OT) was shown to interpolate
between this MMD and the Wasserstein distance (Feydy et al., 2019). Another notable example
is when one considers the so called d-dimensional Coulomb kernel defined by κ(x,y) = κ0(x − y)
where

κ0(x) :=

{
− log ‖x‖2 if d = 2

‖x‖2−d2 if d ≥ 3

In this case, for compactly supported π, π′ ∈ P(Rd) with
∫ ∫

κ(x,x′)dπ(x)dπ(x′) < +∞ and∫ ∫
κ(y,y′)dπ′(y)dπ′(y′) < +∞, the quantity ‖π − π′‖κ is well defined, finite, and vanishes if

and only if π = π′ (Chafäı et al., 2016; Saff and Totik, 2013). Consequently it defines a valid MMD
that remarkably controls the W1 distance associated to an arbitrary norm in Rd, as described in
Chafäı et al. (2016). More precisely consider, for Ω ⊆ Rd compact, the model set

S := {π ∈ P(Rd) : supp(π) ⊆ Ω,

∫ ∫
κ(x,x′)dπ(x)dπ(x′) < +∞} .

Then Chafäı et al. (2016, Theorem 1) proves that there exists C = C(Ω) > 0 such that

∀π, π′ ∈ S,W1(π, π′) ≤ C‖π − π′‖κ .

In particular, with the above S, (S,W1) is (κ, δ = 1)-embeddable with no error. It is remarkable in
the sense that few assumptions on the model set are required (the distributions can be even discrete).
An important remark is that the kernel is TI but not PSD and, consequently, this result is not in
contradiction with Theorem 11. Finally, other connections between Wp and the Cramér distance
regarding asymptotic convergence in law can be found in (Modeste and Dombry, 2022).

3. Statistical Learning and Wasserstein Regularity

The bounds obtained previously allow us to control the Wasserstein distance by an MMD under
certain conditions. These results will be at the heart of the theoretical guarantees of compressive

15. A conditionally PSD kernel on X satisfies
∑n
i,j=1 cicjκ(xi,xj) ≥ 0 for any x1, · · · ,xn ∈ X and c1, · · · cn ∈ R

such that
∑n
i=1 ci = 0 (Berg et al., 1984)
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learning (Section 4). These guarantees require, in addition, to control metrics related to the learning
task (see the reasoning described in Figure 1). In this section we recall the statistical learning frame-
work and introduce more formally these task metrics (referred as TaskMetric in the introduction).
We then show how to control them by a Wasserstein distance for various learning tasks.

3.1 Statistical Learning & Task Metrics

Statistical learning is a formalism that offers many tools to study the guarantees of learning algo-
rithms. The problem is usually expressed as follows: given a collection of data (xi)i∈[[n]], where xi is
a sample in the data space X , how do we select a hypothesis h ∈ H (where H is called the hypothesis
space) that best performs the task at hand ? The ideal hypothesis minimizes a certain risk which
provides a performance measure and is derived from a certain loss function ` : X ×H → R.

For example, in the context of linear regression the loss is defined as `(x = (z, y), h = θ) =
(y − θ>z)2 where y ∈ R is the value to predict, h = θ ∈ Rd is the parameters to choose and z ∈ Rd
is the vector of input features. Given a data-generating distribution π ∈ P(X ), i.e. the law under
which our samples are produced, most of the machine learning algorithms attempt to minimize the
so-called expected risk (or generalization error):

R(π, h) = Ex∼π[`(x, h)] .

This quantity reflects how effective is h on average on the data-generating distribution. The optimal
hypothesis h∗ ∈ H, known as the Bayes prediction function (Steinwart and Christmann, 2008),
is such that h∗ ∈ arg minh∈HR(π, h). The major difficulty is that the generating distribution π
is unknown and that we only have access to finitely many samples (xi)i∈[[n]]. Methods such as

empirical risk minimization (ERM) produce an estimated hypothesis ĥ from the training dataset by
minimizing the risk R(πn, ·) associated to the empirical probability distribution πn = 1

n

∑n
i=1 δxi .

One aims at guaranteeing, with high probability, the following bound on the excess risk :

R(π, ĥ)−R(π, h∗) ≤ ηn , (18)

where ηn decays as 1/
√
n or better. This simply reflects that we may expect a hypothesis that is

close to the best one as the training set grows, i.e. when we have access to enough data. To obtain
a control of the excess risk by ηn one often relies on the following bound16:

R(π, ĥ)−R(π, h∗) ≤ 2 sup
h∈H
|R(π, h)−R(πn, h)| .

Consequently, being able to control the right term in the previous equation is a central problem
in statistical learning and for example arguments involving Rademacher complexities can lead to
the desired bound in (18) (see Shalev-Shwartz and Ben-David, 2014). The term suph∈H |R(π, h)−
R(πn, h)|, that was reffered as TaskMetric(π, π′) in the introduction, defines a central quantity for
our analysis and we introduce the following notation for π, π′ ∈ P(X ):

‖π − π′‖L(H) := sup
h∈H
|R(π, h)−R(π′, h)| . (19)

The quantity ‖ · ‖L(H) defines a semi-norm on the space of finite signed measures M(X ) and an
integral probability metric (1) with G = L(H) := {x → `(x, h);h ∈ H}. It is important to note
that this semi-norm is task-specific i.e. that it depends on the learning task via the family L(H).
In the rest of the paper we will denote, as a language shortcut, L(H) as “the learning task”. As

16. This can be proved by noting that R(π, ĥ) − R(π, h∗) =
{
R(π, ĥ)−R(πn, ĥ)

}
+
{
R(πn, ĥ)−R(πn, h∗)

}
+

{R(πn, h∗)−R(π, h∗)}. Since R(πn, h∗) − R(πn, ĥ) ≤ 0 by definition of ĥ we have R(π, ĥ) − R(π, h∗) ≤
2 suph∈H |R(π, h)−R(πn, h)|.
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When do we have ∀π, π′ ∈ Pp(X ), ‖π − π′‖L(H),p . Wp(π, π
′) for some p ≥ 1 and task L(H)?

Condition on the task Examples

Compression type-tasks. Loss:
`(x, h) = D(x, Ph(x))p, Ph projection function

PCA, K-means, K-medians, NMF, dictionary
learning (Section 3.3)

Regression tasks. Hypothesis: h Lipschitz,
loss: `(x = (z,y), h) = ‖y − h(z)‖p

Linear regression, regression using MLP with
bounded parameters (Section 3.4.1)

Binary classification. Hypothesis: h Lipschitz,
loss: convex surrogate

`(x = (z, y), h) = ϕp(yh(z))

MLP classifier with bounded parameters +
Lipschitz ouput layer (Section 3.4.2)

Table 1: Summary of the differents results of Section 3.

just described, when ‖π − πn‖L(H) ≤ ηn one can control the excess risk as in (18). Consequently,
controlling ‖ · ‖L(H) with other metrics that are more easily computable is of certain interest. When
the loss function is non-negative, ` : X ×H → R+, we introduce for p ≥ 1 the semi-norm

‖π − π′‖L(H),p := sup
h∈H
|R1/p(π, h)−R1/p(π′, h)| . (20)

A control of this semi-norm implies a slighlty different control of the excess risk as ‖π−πn‖L(H),p ≤ ηn
implies that R(π, ĥ)1/p −R(π, h∗)1/p ≤ ηn. In the following we often write ‖π − πn‖L(H),p without
specifying that the loss function is non-negative and that p ≥ 1 (this will be implicitly assumed).

Remark 27 Controlling the quantity ‖π−πn‖L(H) sometimes leads to pessimistic bounds on the ex-
cess risk. A sharper bound can be produced by considering the following semi-norm ‖π−π′‖∆L(H) :=
suph,h0∈H [{R(π, h)−R(π, h0)} − {R(π′, h)−R(π′, h0)}] which is related to ‖π − π′‖L(H) via the
inequality ‖π − π′‖∆L(H) ≤ 2‖π − π′‖L(H) (Gribonval et al., 2021a). However in this work we focus
on the quantities defined in (19) and (20) and leave the analysis of ‖ · ‖∆L(H) for further works.

3.2 Wasserstein Regularity

The main question investigated in this section, which will find applications to compressive statistical
learning in Section 4, is to understand when the task-specific norm ‖π − π′‖L(H),p can be bounded
by the Wasserstein distance between π and π′. We formalize this in the following definition:

Definition 28 (Wasserstein regularity) Given p ∈ [1,+∞), we say that a task L(H) is p-
Wasserstein regular if there exists C > 0, such that

∀π, π ∈ Pp(X ), ‖π − π′‖L(H),p = sup
h∈H
|R1/p(π, h)−R1/p(π′, h)| ≤ C Wp(π, π

′) .

At first sight the Wasserstein regularity seems a bit unexpected since the Wasserstein distance
does not take into account the underlying learning task L(H). However we will show below that this
property is quite natural for several learning tasks. We provide a summary of the different results
of this section in Table 1.

Remark 29 When the task is Wasserstein regular, we can show that the excess-risk is always
bounded by a Wasserstein distance, i.e. if π ∈ Pp(X ) is any data generating distribution, and πn the
empirical distribution, then

R1/p(π, ĥ)−R1/p(π, h∗) ≤ 2C Wp(π, πn) ,
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where h∗ ∈ arg minh∈HR(π, h) is an optimal hypothesis and ĥ ∈ arg minh∈HR(πn, h) the hypothesis
found by empirical risk minimization. Therefore, the smaller the Wasserstein distance between πn
and π, the better ĥ is.

We start by showing that many unsupervised tasks, called compression-type tasks, are Wasserstein
regular. Then we focus on supervised tasks and demonstrate, under certain Lipschitz assumptions
on the hypothesis class H, that these tasks are also Wasserstein regular. Unless stated otherwise,
until the end of Section 3, Wasserstein distances are defined with respect to the metric D associated
to the ambient metric space (X , D).

3.3 Compression-type Tasks are Wasserstein Regular

The most straightforward case of Wasserstein regularity is when the risk itself can be rewritten as a
Wasserstein distance. Interestingly, a wide range of unsupervised learning tasks can be recast in this
setting. For example, problems such as K-means or PCA can be shown to be performing exactly the
task of estimating the data-generating distribution π in the sense of a Wasserstein distance (Canas
and Rosasco, 2012). Such problems will be very connected with compression-type tasks as defined
below :

Definition 30 (Gribonval et al., 2021a) Consider a metric space (X , D) and a hypothesis space
H. A task L(H) is called a compression-type task if the loss can be written as `(x, h) = D(x, Ph(x))p

where p ≥ 1 and Ph : X → X is a measurable projection function that satisfies Ph ◦ Ph = Ph and
D(x, Ph(x)) ≤ D(x, Ph(x′)) for all x,x′ ∈ X .

Notable examples of such tasks are K-means and PCA. In the former, ` is defined by `(x, h =
(c1, · · · , cK)) = mini∈[[k]] ‖x− ci‖22 = ‖x− Ph(x)‖22 where Ph(x) is the projection of x on its closest
centroid. In the latter, Ph(x) is the projection of x on the linear subspace spanned by h. These two
problems are actually related to a wider class of problems, namely k-dimensional coding schemes
which are particular types of compression-type tasks. As described in Maurer and Pontil (2010),
one encounters these problems when X is a Hilbert space (with some norm ‖ · ‖) and when the loss
can be written as `(x, h) = miny∈Y ‖x − hy‖2 for Y ⊆ Rk a prescribed set of codes (or codebook)
and h : Rk → X is a linear map. In particular, non-negative matrix factorization (NMF) (Lee and
Seung, 1999; Udell et al., 2016) and dictionary learning (also known as sparse coding Lee et al., 2007;
Mairal et al., 2009b,a) are other well known unsupervised learning methods which correspond to
projection-type tasks. As described in Canas and Rosasco (2012) there are interesting connections
between these problems and the Wasserstein distance. More precisely, we have the following lemma
(see a proof in Appendix B.1 adapted to our notational context):

Lemma 31 (Canas and Rosasco, 2012) Let S ⊆ X , p ∈ [1,+∞) and π ∈ Pp(X ). Consider
PS : X → S, measurable, such that D(x, PS(x)) ≤ D(x,y) for all x ∈ X and y ∈ S. Then

Ex∼π[D(x, PS(x))p] = Wp
p(π, PS#π) .

Moreover for any ν ∈ Pp(X ) such that supp(ν) ⊆ S we have Wp(π, PS#π) ≤Wp(π, ν).

We recall that PS#π is the probability measure defined by PS#π(A) := π(P−1
S (A)) for every

measurable set A. Based on this lemma we now prove that compression-type tasks are Wasserstein
regular, i.e. that the task-specific norm ‖ · ‖L(H),p can be bounded by a Wasserstein distance.

Proposition 32 (Compression-type tasks are Wasserstein regular) Consider a metric space
(X , D), a hypothesis space H, p ∈ [1,+∞[, and a compression-type task L(H) as in Definition 30.
Then

∀h ∈ H, π ∈ Pp(X ), R(π, h) = Wp
p(π, Ph#π) and

∀π, π′ ∈ Pp(X ), ‖π − π′‖L(H),p ≤Wp(π, π
′) .
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Proof Let h ∈ H and Ph be the projection function. We denote S = {Ph(x); x ∈ X} the image of
Ph. Using Lemma 31 we have, for π ∈ Pp(X ),

R(π, h) = Ex∼π[`(x, h)] = Ex∼π[D(x, Ph(x))p] = Wp
p(π, Ph#π) .

Hence, for π, π′ ∈ Pp(X ) and h ∈ H,

R(π, h)1/p −R(π′, h)1/p = Wp(π, Ph#π)−Wp(π
′, Ph#π′) ≤Wp(π, Ph#π′)−Wp(π

′, Ph#π′)

≤Wp(π, π
′) ,

where we used Wp(π, Ph#π) ≤ Wp(π, ν) if supp(ν) ⊆ S (Lemma 31) and applied it to ν = Ph#π′

(since supp(Ph#π′) ⊆ S by definition of S). The last inequality is due the the triangle inequality.
By symmetry |R(π, h)1/p−R(π′, h)1/p| ≤Wp(π, π

′). Taking the supremum over h ∈ H concludes.

Remark 33 As described in Proposition 32, compression-type tasks can be interpreted as finding
a “simple” distribution πh = Ph#π that bests describe the data distribution π in the sense of the
Wasserstein distance. In PCA this distribution πh is given by the best low dimensional projection of
π, and in K-means πh by the best discrete distribution of K centroids. This idea is also related to the
problem of fitting densities, i.e. estimating the parameters h ∈ H ⊆ RM of a parametrized distribution
πh that best fits π. Two notable examples of such a learning task are Gaussian Mixture Modeling
(GMM) (Dasgupta, 1999) and generative adversarial netwoks (Goodfellow et al., 2020). In order to
find h ∈ RM a principled way is to consider the negative likehood loss function `(x, h) = − log(πh(x))
that corresponds to minimizing the risk KL(π||πh) where KL is the Kullback-Leibler divergence.
However, this approach is sometimes flawed, e.g. when the data distribution is supported on a low-
dimensional space or does not admit a density so that KL(π||πh) is undefined or infinite (Arjovsky
and Bottou, 2017). As described in many contexts such as generative modeling (Genevay et al., 2018;
Arjovsky et al., 2017) or deconvolution problems (Rigollet and Weed, 2018; Dedecker and Michel,
2013) the Wasserstein distance, or its entropic regularized counterpart, is an interesting alternative

fitting criterion to KL. It boils down to minimizing a different risk R̃(π, h) := Wp(π, πh) which is
not based on a loss function but can also be written as a Wasserstein distance. In this context, we
directly have the bound suph∈H |R̃(π, h)− R̃(π′, h)| ≤Wp(π, π

′) using the triangle inequality.

3.4 Loss Functions that are p-th Power of a Lipschitz Function

Compression-type tasks are special cases of loss functions that can be written as the p-th power of a
Lipchitz continuous function. Indeed, if Ph is a projection function then D(x, Ph(x))−D(y, Ph(y)) ≤
D(x, Ph(y))−D(y, Ph(y)) ≤ D(x,y), thus, by a symmetrical argument, |D(x, Ph(x))−D(y, Ph(y))| ≤
D(x,y). Interestingly, these more general tasks are also Wasserstein regular:

Proposition 34 Let (X , D) be a complete separable metric space. Consider a loss function that
can be written for h ∈ H as `(·, h) = φph, where p ≥ 1 and φh ∈ LipL(X ,R+), then

∀π, π′ ∈ Pp(X ), ‖π − π′‖L(H),p ≤ LWp(π, π
′) .

In other words, the task L(H) is p-Wasserstein regular with constant L.

Proof Using Villani (2008, Proposition 7.29) we have∣∣∣∣∣
(∫

φh(x)pdπ(x)

)1/p

−
(∫

φh(y)pdπ′(y)

)1/p
∣∣∣∣∣ ≤ LWp(π, π

′) ,

since φh ∈ LipL(X ,R+). The conclusion follows by taking the supremum over h ∈ H.
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As described previously, this argument can be used to recover Wasserstein regularity of compression-
type tasks as `(x, h) = D(x, Ph(x))p is the p-th power of a 1-Lipschitz function. More importantly,
the previous property allow us to prove that many supervised learning tasks are also Wasserstein
regular as described in the next example sections.

3.4.1 Regression Tasks

The first example we consider is that of the regression tasks where X = Rd+K is endowed with the
metric D(x = (z,y),x′ = (z′,y′)) = ‖z − z′‖Rd + ‖y − y′‖RK for some norm ‖ · ‖Rd (resp. ‖ · ‖RK )
on Rd (resp. RK). The loss function is given by `(x = (z,y), h) = ‖y − h(z)‖pRK for some p ≥ 1

and a regressor h that belongs to the hypothesis space H ⊆ LipL(Rd,RK). In particular when
p = 2, ‖ · ‖RK = ‖ · ‖2, the setting corresponds to a standard regression problem with the squared
loss, and when p = 1, ‖ · ‖RK = ‖ · ‖1, to the least absolute deviation regression problem. Then, for
x = (z,y),x′ = (z′,y′), we have

|‖y − h(z)‖RK − ‖y′ − h(z′)‖RK | ≤ ‖y − y′ − (h(z)− h(z′))‖RK
≤ ‖y − y′‖RK + ‖h(z)− h(z′)‖RK
≤ ‖y − y′‖RK + L‖z− z′‖Rd
≤ max{L, 1}D(x = (z,y),x′ = (z′,y′)) .

Consequently the loss can be written as the p-th power of a Lipschitz function and the task is
p-Wasserstein regular with constant max{L, 1} using Proposition 34 (with Wp computed with the
distance D).

This setting encompasses regressors such as multi-layer perceptron (MLP) h(z) = fMLP(z) =
TJ ◦ ρJ−1 ◦ · · · ◦ ρ1 ◦T1(z) where Tj(w) = Mjw + bj is an affine function with bounded weights and
ρj is a non-linear activation function. Designing Lipschitz-continuous neural networks and computing
precisely their Lipschitz constant is an (NP)hard problem and is an active line of research (Virmaux
and Scaman, 2018; Fazlyab et al., 2019; Latorre et al., 2020; Kim et al., 2021). However, for fully-
connected networks such as MLP with 1-Lipschitz activation functions (e.g. ReLU, Leaky ReLU,
SoftPlus, Tanh, Sigmoid, ArcTan or Softsign) a simple upper-bound of the Lipschitz constant of
fMLP is given by L = ΠJ

j=1‖Mj‖2→2 (Virmaux and Scaman, 2018) where ‖ · ‖2→2 denotes the 2-
operator norm for matrices. This bound is not necessarily tight, however we can use it to prove that
regression tasks using MLP with bounded parameters and with 1-Lipschitz activation functions is
Wasserstein regular as soon as ∀j ∈ [[J ]], ‖Mj‖2→2 ≤ R for some R > 0.

3.4.2 Classification Tasks

Binary classifications tasks can also be related to Wasserstein regularity. These problems corresponds
to X = Rd×{+1,−1} and often rely on convex surrogates of the 0−1 loss such as `(x = (z, y), h) =
β(yh(z)) where y ∈ {−1,+1}, h : Rd → R and β : R → R+ is convex (Bartlett et al., 2006). Well
known examples include the logistic loss β(t) = log(1 + e−t), the hinge loss β(t) = max(1− t, 0) or
the squared hinge loss β(t) = max(1 − t, 0)2. In all of these cases β can be written as ϕp for some
Lipschitz function ϕ and p ≥ 1. If the hypothesis space is made of uniformly bounded and Lipschitz
classifiers then the previous reasoning also applies. Indeed if h ∈ H ⊆ LipL(Rd,R), with ‖h‖∞ ≤ B
then, for any x = (z, y),x′ = (z′, y′), we have

|ϕ(yh(z))− ϕ(y′h(z′))| ≤ |ϕ(yh(z))− ϕ(yh(z′))|+ |ϕ(yh(z′))− ϕ(y′h(z′))|
≤ Lϕ(|yh(z)− yh(z′)|+ |yh(z′)− y′h(z′)|)
≤ Lϕ(|y||h(z)− h(z′)|+ |h(z′)||y − y′|)
≤ Lϕ max(L,B)(‖z− z′‖2 + |y − y′|).

Consequently, by Proposition 34, the task is p-Wasserstein regular with constant Lϕ max(L,B)
with Wp computed with the distance D((z, y), (z′, y′)) = ‖z − z′‖2 + |y − y′|. In particular, this
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example includes classifiers of the type h = ρ ◦ fMLP where fMLP : Rd → R as in Section 3.4.1 and
ρ : R→ [−1, 1] is an “output-layer” function that is Lipschitz such as the tanh function (in this case
B = 1).

4. Application to Compressive Statistical Learning

In the previous sections, we identified conditions allowing to 1) upper bound task-specific metrics
by a Wasserstein distance Wp (notion of Wasserstein regularity, Section 3); 2) control Wp by an
MMD, modulo an exponent δ ∈ (0, 1], under certain conditions on the model set of distributions
S at stake and the kernel of the MMD (Section 2). We apply in this section these results to the
theory of compressive statistical learning. The goal is to establish theoretical guarantees for CSL.
This section is organized as follows: we first recall the main concepts and objectives of CSL, then
we introduce a generalization of the existing framework (namely the Hölder LRIP) which we finally
connect with the results of Section 3 and 2 to establish the guarantees.

4.1 Compressive Statistical Learning

In contrast to the empirical risk minimization approach described in Section 3.1 the principle of
compressive statistical learning is to learn a hypothesis ĥ by relying on a single sketch vector s ∈ Rm
instead of the full dataset (xi)i∈[[n]] (or equivalently the empirical distribution πn). This sketch aims
to summarize the properties of the empirical distribution that are essential for the learning task.
The benefits of this approach are numerous. First, as a side effect of its definition, the sketching
mechanism is adapted for distributed and streaming scenarios since the sketch of a concatenation of
datasets is a simple average of the sketches of those datasets. More importantly, when m� nd the
data are drastically compressed, which facilitates their storage and transfer. Finally, it has be shown
that sketching can preserve privacy (Chatalic, 2020; Balog et al., 2018) since the transformation
which turns a dataset into a single vector discard the individual-user informations.

The compressive statistical learning framework requires two steps: 1) to compute a sketch vector
s ∈ Rm of size m driven by the complexity of the learning task 2) to address a nonlinear least-squares

optimization problem on this sketch to learn the hypothesis ĥ that best solves our learning task.
As described latter, this step is an inverse problem in the space of measures and can be related to
the generalized method of moments (Hall, 2005). We summarize in the following the main concepts
related to the CSL theory established in Gribonval et al. (2021a,b) that will be useful to describe
our contributions.

4.1.1 The Sketching Operator

Given a collection of data points X = (xi)i∈[[n]] where xi ∈ X , the CSL procedure relies on an
operator Φ which maps a sample xi ∈ X to either Φ(xi) ∈ Rm or Cm. Based on this operator, a
sketch of a dataset (xi)i∈[[n]] is defined via the vector

s :=
1

n

n∑
i=1

Φ(xi) .

The main challenge is to find, depending on the task, an adequate Φ and a reasonable sketch size
m to learn the specific task (see Figure 4). As described in the next sections this can be achieved
by exploiting links with the formalism of linear inverse problems, compressive sensing, and low
complexity recovery. Given Φ, the associated sketching operator is

A : P(X )→ Rm or Cm

π → A(π) :=

∫
X

Φ(x)dπ(x) .
(21)
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Figure 4: The principle of CSL (when X = Rd). From a dataset X with n samples (usually n
is large) we push each sample xi ∈ Rd to either Rm or Cm using a well-chosen feature
function Φ(xi). The second step is to average all the Φ(xi) to form a sketch of of the
dataset s = 1

n

∑n
i=1 Φ(xi) (which is convenient for distributed data and data streams).

We finally learn a hypothesis ĥ ∈ H based only the sketch whose size is driven by the
learning task and is usually of the order of the number of parameters to learn.

This operator is “linear”17 in π in that A((1 − λ)π + λπ′) = (1 − λ)A(π) + λA(π′) for λ ∈ [0, 1].
When applied to the empirical distribution πn = 1

n

∑n
i=1 δxi we recover the sketch s as

A(πn) = A(
1

n

n∑
i=1

δxi) =
1

n

n∑
i=1

Φ(xi) = s .

This sketch can be understood as a the average of generalized empirical moments on the training
collection based on the feature function Φ (Hall, 2005).

4.1.2 The Model Set and the Decoder

A central operator in CSL is the decoder that is, informally, an operator ∆ that goes in the other
direction than A: it takes as input a vector and outputs a probability distribution. Ideally we would
like to be able to perfectly decode our original distribution from the sketch, i.e. to find ∆ such that
∆ ◦A = id. However, as described in Gribonval et al. (2021a), we can not hope to perfectly recover
any distribution without assumptions. These assumptions are formalized by the means of a model
set S ⊆ P(X ) which describes a subset of probability distributions where the decoding is perfect
and robust to noise. A decoder is defined very generally as an operator

∆ : s→ ∆[s] ∈ S .

Suppose for the moment that we know how to sketch and how to decode i.e. we know A and ∆.
Given a sketch s of the dataset and a decoder ∆ we can find a hypothesis based on the following
risk minimization:

ĥ ∈ arg min
h∈H

R(∆[s], h) .

As such in CSL the risk R(∆[s], ·) acts as a proxy for the empirical risk R(πn, ·), and one hopes to
produce a hypothesis which is as good as the one obtained by empirical risk minimization (ERM). At

17. We can extend A to the space of finite signed measure M(X ) where it is a linear operator in the usual sense.
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first sight it seems that solving arg min
h∈H

R(∆[s], h) is as hard as doing ERM. The crucial point is that,

by definition, ∆[s] is a probability distribution in the model set S and thus usually admits a simple

expression. Consequently finding ĥ with this procedure is most of the time simpler than doing ERM.

How to obtain statistical guarantees ? Theoretical guarantees of CSL can be derived when the
operator A satisfies the so-called Lower Restricted Isometric Property (LRIP) (Gribonval et al.,
2021a; Keriven and Gribonval, 2018):

∀π, π′ ∈ S, ‖π − π′‖L(H) . ‖A(π)−A(π′)‖2 . (22)

This property implies that two distributions in the model set S (i.e. “simple” distributions for which
we hope that everything works “fine”) have the same sketches then they are equivalent with respect
to the task-dependent metric ‖ · ‖L(H), i.e., they lead to the same risk for every hypothesis. When
this condition holds, the following decoder ∆ provides many interesting guarantees:

∆[s] ∈ arg min
π∈S

‖A(π)− s‖2 . (23)

Indeed it can be shown Gribonval et al. (2021a) that this decoder is ideal in the sense that it
satisfies the Instance Optimality Property (IOP) which allows to have a control on the excess risk for
all probability distributions. We will describe this property more in depth in Section 4.2 and only
give now its consequence when we consider any data generating distribution π ∈ P(X ) associated
to the optimal hypothesis h∗ ∈ arg minh∈HR(π, h) and πn an empirical distribution associated
to samples from π. Suppose that we have access only to a sketch s = A(πn) of this empirical

distribution with A that satisfies the LRIP. Consider the decoder ∆ defined in (23) and ĥ such that

ĥ ∈ arg minh∈HR(∆[s], h). Using the IOP property it can be shown that

‖π −∆[s]‖L(H) . Bias(π,S) + ‖A(π)−A(πn)‖2 ,

where Bias(π,S) is a bias term (which will be properly defined latter) which is large when π is far
from the model set and vanishes when π ∈ S. This leads to the following bound on the excess risk:

R(π, ĥ)−R(π, h∗) . Bias(π,S) + ‖A(π)−A(πn)‖2 .

This inequality echoes the well-known risk decomposition in statistical learning: the first term
Bias(π,S) resembles the approximation error coming from the chosen model and ‖A(π)−A(πn)‖2
resembles the estimation error and typically converges to zero with a n−1/2 rate. Consequently, if
the model set S is such that the bias term is of the order of the true risk R(π, h∗) (this can be

ensured for certain learning tasks Gribonval et al., 2021b) then R(π, ĥ) converges to the order of
the true risk as n grows.

4.2 Extending Compressive Statistical Learning Guarantees with Hölder LRIP and
Hölder IOP

In this section we define an extended notion of LRIP, namely the Hölder LRIP, and show that it can
be exploited to control the statistical performance of compressive statistical learning. The Hölder
LRIP is basically a relaxation of the LRIP with a Hölder exponant δ ∈ (0, 1]. To connect with the
previous sections, this exponent will also be related to the one found in Section 2 to control Wp by
the MMD. We consider the following definition:

Definition 35 (Hölder LRIP and IOP) Consider a learning task L(H), an exponent p ∈ [1,+∞),
and a model set S. A sketching operator A : P(X ) → Cm satisfies the Hölder LRIP for δ ∈ (0, 1]
with error η ≥ 0 and constant C > 0 if

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C ‖A(π)−A(π′)‖δ2 + η . (Hölder-LRIP)
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A decoder ∆ : Cm → S satisfies the Hölder IOP for δ ∈ (0, 1] with error η ≥ 0 and constant C > 0
if

∀π ∈ P(X ),∀e ∈ Cm, ‖π −∆[A(π) + e]‖L(H),p ≤ Bias(π,S) + C ‖e‖δ2 + η , (Hölder-IOP)

where Bias(·,S) : P(X )→ R+ is a function such that ∀π ∈ S, Bias(π,S) = 0.

The instance optimality property means that the decoder is able to retrieve (with error η) any
probability distribution when the modeling is exact (i.e. π ∈ S and e = 0). As this condition is
rarely met in practice, the IOP property also captures robustness to some noise e and modeling
error. As such, the decoding error ‖π − ∆[A(π) + e]‖L(H),p is bounded by the amplitude of the
noise and the bias term. The previous definition generalizes the classical LRIP and IOP property
(including their definition with an error term η Gribonval et al., 2021a) since both are met when
δ = 1. It turns out that both Hölder LRIP and IOP are equivalent as stated in the next result:

Proposition 36 (Equivalence of Hölder LRIP and IOP) Consider a learning task L(H), an
exponent p ∈ [1,+∞) , and a model set S.

(i) If A satisfies (Hölder-LRIP) with error η ≥ 0 and constant C > 0 then the ”ideal” decoder
defined by

∆[s] ∈ arg min
π∈S

‖A(π)− s‖2 , (24)

satisfies (Hölder-IOP) with constant 2C > 0, error η ≥ 0 and

Bias(π,S) := inf
τ∈S
‖π − τ‖L(H),p + 2C‖A(π)−A(τ)‖δ2 .

(ii) Conversely if the decoder ∆ defined in (24) satisfies (Hölder-IOP) with error η ≥ 0, constant
C > 0 and Bias(π,S) defined above, then A satisfies (Hölder-LRIP) with constant C > 0 and
error 2η.

The proof is deferred to Appendix C.1. In this paper we always assume that the minimization
problem (24) has at least one solution and, as in Bourrier et al. (2014), the result can be adjusted
to handle the case where the arg min defining the ideal decoder is only approximated to a certain
accuracy. This proposition states that if the Hölder LRIP is satisfied, then the decoder that returns
the element in the model that best matches the measurement A(π) is instance optimal. On the
other hand, if some instance optimal decoder exists, then the Hölder LRIP must be satisfied. In
other words, when the Hölder LRIP is satisfied, we know that a negligible amount of information is
lost when encoding a probability measure in S. As advertised the Hölder LRIP allows us to have
some guarantees on the excess risk as described in the next theorem:

Theorem 37 (Compressed statistical learning guarantees) Consider a sketching operator A :
P(X ) → Cm that satisfies the Hölder LRIP with δ ∈ (0, 1], constant C > 0 and error η ≥ 0. Let
π ∈ P(X ) be the data generating distribution and x1, · · · ,xn ∼ π (not necessarily i.i.d.). Consider
the empirical distribution πn = 1

n

∑n
i=1 δxi and a sketch of the dataset s = A(πn).

Let h∗ ∈ arg minh∈HR(π, h) be the optimal hypothesis and ĥ ∈ arg minh∈HR(∆[s], h) where
∆[s] ∈ arg minπ∈S ‖A(π)− s‖2. Then

R(π, ĥ)1/p −R(π, h∗)1/p ≤ 2 Bias(π,S) + 2C‖A(π)−A(πn)‖δ2 + 2η ,

where Bias(π,S) = infτ∈S ‖π − τ‖L(H),p + 2C‖A(π)−A(τ)‖δ2.
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Proof Using Proposition 36 we know that the decoder is instance optimal and satisfies the Hölder
IOP (Hölder-IOP). Consider e = A(πn) − A(π) we have by definition ‖π − ∆[A(π) + e]‖L(H),p ≤
Bias(π,S)+C ‖e‖δ2 +η which gives ‖π−∆[A(πn)]‖L(H),p ≤ Bias(π,S)+C ‖A(πn)−A(π)‖δ2 +η. We

conclude the proof by usingR(π, ĥ)1/p−R(π, h∗)1/p ≤ 2‖π−∆[s]‖L(H),p = 2‖π−∆[A(πn)]‖L(H),p.

When the samples x1, · · · ,xn are i.i.d.18 This result is essential: it illustrates that if we have
carefully designed S so that the bias term is of the order of R(π, h∗)1/p, and if we know a sketching

operator with the Hölder LRIP property, then R(π, ĥ)1/p converges to a constant times the order of
the true risk as n grows (when the error term η = 0). The notable price to pay between this result
and the one presented in the context of the LRIP (δ = 1) is that while the usual guaranteed speed of
convergence is O(n−1/2) here it becomes O(n−δ/2), which is slower. The next section outlines how
the various results presented in this work can be applied to establish the Hölder LRIP.

4.3 Connecting the Hölder LRIP with the Results of Section 2 and 3

As described in Theorem 37, guarantees on the excess risk can be achieved with a sketching operator
A that satisfies the Hölder LRIP. In this section, we provide elements to obtain this property. In
line with the approach developed in Gribonval et al. (2021a), the core of our reasoning is based on
the theory of kernel embedding of probability distributions and random features.

4.3.1 Restricted Wasserstein Regularity is Necessary to the Hölder LRIP

Firstly, a prerequisite for the Hölder LRIP is the Wasserstein regularity condition (Definition 28) of
the learning task when restricted to the model set S. More precisely we have the following result:

Proposition 38 (Restricted Wasserstein regularity is necessary) Consider X = Rd equipped
with a norm ‖·‖, p ∈ [1,+∞), and a model set S ⊆ Pp(Rd). Consider a sketching operator A defined
by Φ : Rd → Rm with Φ ∈ LipL

(
(Rd, ‖ · ‖), (Rm, ‖ · ‖2)

)
. If A satisfies (Hölder-LRIP) with error

η = 0, constant C > 0 and δ = 1 then

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ CLW1(π, π′) ≤ CLWp(π, π
′) ,

where the Wasserstein distance is computed with the distance D(x,y) = ‖x− y‖.

The proof is deferred to Appendix C.2 and simply amounts to showing that ‖A(π)−A(π′)‖2 ≤
LW1(π, π′). According to this proposition, if Φ is Lipschitz and A satisfies the Hölder LRIP with δ =
1 then L(H) is necessarily p-Wasserstein regular when we restrict the Definition 28 to distributions
belonging to the model set S. In particular this proposition applies to the classical LRIP setting of
Gribonval et al. (2021a). More importantly the Lipschitz hypothesis encompasses the case where Φ is
defined with random Fourier features19 as usually considered in the compressive statistical learning
literature (Gribonval et al., 2021a,b; Belhadji and Gribonval, 2022; Shi et al., 2022a,b). This result
thus shows that a restricted Wasserstein regularity is necessary for establishing statistical guarantees
of CSL through the Hölder LRIP.

Remark 39 The previous result can be easily generalized to the case where δ ∈ (0, 1). Under the
same assumptions on Φ, if A satisfies (Hölder-LRIP) with an error of η = 0, a constant C > 0, and

18. We emphasize that the i.i.d. assumption is not required in order to obtain the bound in Theorem 37. It is only
used to guarantee that ‖A(π)−A(πn)‖2 →

n→+∞
0. the term ‖A(π)−A(πn)‖2, which is the empirical estimation

error, goes to zero as n→ +∞ with a typical n−1/2 rate.

19. In this setting Φ(x) = 1√
m

(√
2 sin(x>ω1),

√
2 cos(x>ω1), · · · ,

√
2 sin(x>ωm/2),

√
2 cos(x>ωm/2)

)>
for some

random draw of ωj .
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δ ∈ (0, 1), we can show that ∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ CLδ W1(π, π′)δ ≤ CLδ Wp(π, π
′)δ. This

condition extends the Wasserstein regularity property, and it raises the question of which learning
tasks satisfy it.

4.3.2 From Wasserstein Regularity to the Kernel Hölder LRIP and Hölder LRIP

Interestingly, a converse of Proposition 38 is also true. Indeed, as shown in Section 3 many learning
tasks are Wasserstein regular, and this, independently of the choice of the model set S. For instance,
this is true for compression-type tasks such as K-means/medians, PCA, or supervised learning tasks
such as regression and binary classification (see Table 1).

Consequently, if we add the elements of Section 2, namely that (S,Wp) is (κ, δ)-embeddable
(Definition 5), we can obtain, under certain assumptions about κ,S, that the metric associated
with the task satisfies the following chain of inequalities:

∀π, π′ ∈ S, ‖π − π′‖L(H),p

Section 3

. Wp(π, π
′)

Section 2

. ‖π − π′‖δκ . (25)

As shown in Section 2, the last inequality can be obtained with an MMD associated with TI,
PSD kernels and under certain assumptions on the moments of the distributions in S and their
regularity. In other words, by combining the results of Section 2 and 3, our analysis shows that for
many learning tasks and with some hypothesis on the kernel κ,S the task metric is bounded by
MMDδ uniformly on S. We refer to this property as the kernel Hölder LRIP, i.e. when there exists
C > 0, δ ∈ (0, 1], η ≥ 0 such that

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C‖π − π′‖δκ + η . (26)

The echoes the kernel LRIP described in Gribonval et al. (2021a) but with a Hölder exponent
δ ∈ (0, 1]. Informally, our findings show that a kernel Hölder LRIP is not so difficult to obtain for
many learning tasks. Therefore, as long as the MMD can be uniformly controlled on S by a distance
between finite-dimensional sketches, i.e. when

∀π, π′ ∈ S, ‖π − π′‖κ . ‖A(π)−A(π′)‖2 , (27)

we can use all the results from the previous sections to obtain the Hölder LRIP.
The property described in (27) depends only on the operator A, the kernel κ, and the model

set S. To establish it, several strategies have been considered in the literature. For the sake of
conciseness, we only provide some intuition here and refer the reader to Gribonval et al. (2021a) for
a more detailed discussion. The general idea is to construct, from a kernel κ, a function Φ : Rd → Rm
such that

∀x,y, 〈Φ(x),Φ(y)〉Rm ≈ κ(x,y) , (28)

and to “extend” this approximation to pairs of probability distributions as

∀π, π′ ∈ S, ‖π − π′‖2κ ≈ ‖A(π)−A(π′)‖22 , (29)

where A is given by Φ as in (21). Ensuring (28) is a well established area of research and, when κ
is TI, PSD, approaches such as random Fourier features (RFF) (Rahimi and Recht, 2007), which
rely on Bochner’s theorem, can be used (see e.g. Liu et al. 2021 for a review). On the other hand,
condition (29) is much more challenging to obtain. For TI, PSD kernels RFF can also be used:
given a pair π, π′, the main strategy is to prove a pointwise control of the form (1− ρ)‖π − π′‖2κ ≤
‖A(π) − A(π′)‖22 ≤ (1 + ρ)‖π − π′‖2κ with high probability for ρ ∈ (0, 1], and then being able to
control certain covering numbers related to S to obtain a uniform control (Gribonval et al., 2021a;
Belhadji and Gribonval, 2022). Another approach, considered for example in Chatalic et al. (2022),
is to construct Φ based on data-dependent Nyström approximation which exploits a small random
subset of the dataset (and also requires controlling covering numbers). These approaches ensure
that for a sufficiently large but controlled m, the condition (29) is satisfied and therefore also (27).
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4.3.3 Discussion

As a consequence, when the task L(H) is p-Wasserstein regular and the space (S,Wp) is (κ, δ)-
embeddable the approach presented in this paper combined with the one of Gribonval et al. (2021a)
to obtain (27) show that sketching operators based on random Fourier features are suited for a wide
range of tasks and lead to CSL guarantees. With this strategy, the convergence rate of the empirical
risk (Theorem 37) is governed by the exponent δ ∈ (0, 1] resulting from the comparison between Wp

and the MMD. This can be placed in the context of results already obtained in CSL for compressive
clustering and compressive mixture modeling.

Firstly, it is already established that for mixtures of K Diracs (used in compressive K-means)
separation assumptions on the centers are necessary to establish the LRIP (Gribonval et al., 2021b,
Lemma 3.4.). One might ask if these assumptions can be dispensed at the cost of slower convergence
with the Hölder LRIP. In this framework, our results demonstrate that the distance Wp cannot be
controlled by the MMD when δ > 2/K (Corollary 12). This raises the question of whether this
rate is indeed achievable without separation assumptions, and if, in such a case, (27) could also be
obtained, which would imply the Hölder LRIP with δ = 1/(2K) without separation.

Furthermore, these same separation assumptions are also used for compressive learning of Gaus-
sian mixture (for compressive GMM estimation). Interestingly, in this case, Theorem 15 ensures that
we can control Wp by MMDδ with an exponent δ as close as desired to δ = 1

2p and with a kernel

of the Matérn class. Establishing control (27) without separation for these models would enable
obtaining learning rates of the order of n−1/(4p) for compressive GMM with relaxed assumptions.

5. Conclusion & Perspectives

The main contributions of this paper are the following. We establish different bounds between
metrics between probability distributions. We show that for many learning tasks, the task-related
metric can be controlled by a Wasserstein distance. In particular, many supervised and unsupervised
tasks fall into this category (PCA, K-Means, GMM learning, linear and nonlinear regression...). We
show that the Wasserstein distance can be controlled by kernel norms to the power of a Hölder
exponent smaller than 1 and under certain conditions on the regularity of the kernel and of the
distributions at stake (by introducing a model set of distributions). These different results allow us
to establish learning guarantees in the context of compressive learning whose goal is to summarized
the training data in a single vector, by a so-called sketching operator, and to rely solely on this
vector to solve the learning task. The different bounds allow us to establish a property called the
Hölder LRIP that generalizes the LRIP property in compressive learning and provide a control of
the excess risk related to the compressive learning procedure. Therefore, one of the contributions of
this article is to provide a general framework for obtaining compressive learning guarantees.

This work opens many perspectives. The first one is to use our results for new compressive
learning tasks that have been tackled in practice but for which theoretical guarantees are missing.
In particular, we envision applications of our framework for learning generative models based on
sketching (Schellekens and Jacques, 2020), denoising (Shi et al., 2022a) or for classification tasks
(Schellekens and Jacques, 2018). Related to the compressive statistical learning theory, another
interesting line of works would be to see if we can construct interesting sketching operators from
the different kernels used in this paper for tasks for which there are already compressive learning
guarantees. More precisely, for compressive learning tasks such as K-means and GMM one question
would be to see if we can obtain compressive learning guarantees without separation assumptions
(Gribonval et al., 2021b), possibly at the price of a Hölder exponent δ < 1 hence with reduced
rate of convergence with respect to the number of samples. Another interesting perspective concern
the bounds between the Wasserstein distance and the MMD. We believe that the different results
presented in this paper could be used for specific problems related to the statistical estimation of
the Wasserstein distance.
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Appendix A. Proofs of Section 2

A.1 Proof of Proposition 2 and Corollary 3

We recall the proposition:

Proposition 2 Let (X , D) be a complete separable metric space, κ : X × X → R a PSD kernel,
Hκ the associated RKHS and Bκ := {f ∈ Hκ : ‖f‖Hκ ≤ 1} the unit ball in Hκ. Consider the
Wasserstein distances computed with the metric D. For any C > 0 the following statements are
equivalent:

(i)

Bκ ⊆ LipC((X , D),R) (5)

(ii)

∀p ∈ [1,+∞),∀π, π′ ∈ Pp(X ), ‖π − π′‖κ ≤ C Wp(π, π
′) (6)

(iii)

∃p ∈ [1,+∞),∀π, π′ ∈ Pp(X ), ‖π − π′‖κ ≤ C Wp(π, π
′) (7)

(iv)

∀x,y ∈ X , κ(x,x) + κ(y,y)− 2κ(x,y) ≤ C2D2(x,y) (8)

Proof We will prove (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i).
(i) =⇒ (ii). Assuming (i) we prove (ii) for p = 1. By monotonicity of the Wasserstein distance
with respect to p we have the conclusion for any p ∈ [1,+∞). Considering π, π′ ∈ P1(X ), we have
‖π − π′‖κ = supf∈Bκ |

∫
f(x)dπ(x) −

∫
f(y)dπ′(y)| (Sriperumbudur et al., 2010). For any f ∈ Bκ,

by hypothesis (i) we have 1
C f ∈ Lip1((X , D), (R, | · |)) thus by the dual characterization of the 1-

Wasserstein distance (2) we obtain ‖π − π′‖κ ≤ C W1(π, π′). The implication (ii) =⇒ (iii) is
straightforward.
(iii) =⇒ (iv). Consider π = δx, π

′ = δy for arbitrary x,y ∈ X . We have ‖π − π′‖2κ = κ(x,x) +
κ(y,y)− 2κ(x,y) and Wp(π, π

′) = D(x,y), hence the conclusion.
(iv) =⇒ (i). Considering f ∈ Bκ, we have for any x,y ∈ X :

|f(x)− f(y)|2 = |〈f, κ(x, ·)〉Hκ − 〈f, κ(y, ·)〉Hκ |2 = |〈f, κ(x, ·)− κ(y, ·)〉Hκ |2

≤ ‖f‖2Hκ‖κ(x, ·)− κ(y, ·)‖2Hκ ≤ 1 · (‖κ(x, ·)‖2Hκ + ‖κ(y, ·)‖2Hκ − 2κ(x,y))

= κ(x,x) + κ(y,y)− 2κ(x,y)
(iv)

≤ C2D2(x,y) .

(30)

This gives |f(x)− f(y)| ≤ CD(x,y) hence f is C-Lipschitz with respect to the metric D.

Corollary 3 Consider X = Rd equipped with the Euclidean distance D(x,y) = ‖x−y‖2 and a PSD
kernel κ : Rd × Rd → R that is normalized, i.e. κ(x,x) = 1 for every x ∈ X . Assume that for each
x ∈ X the function φx : y 7→ κ(x,y) is C2 in a neighborhood of x, and denote Hx = −∇2[φx](x)
its negative Hessian matrix evaluated at x. Then the following holds:

(i) Any of the four equivalent properties of Proposition 2 implies

sup
x∈Rd

λmax(Hx) ≤ C2 , (9)

where λmax(Hx) denotes the largest eigenvalue of Hx.
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(ii) If κ is translation invariant, i.e. κ(x,y) = κ0(x− y) for every x,y ∈ X , then conversely, (6)
holds with C :=

√
supx λmax(Hx) =

√
λmax(−∇2[κ0](0)).

Proof For the first part (i). Since the kernel is normalized, using formulation (iv) of the four
equivalent properties of Proposition 2 and setting h = y − x yields:

∀x,h ∈ Rd, κ(x,x + h) ≥ 1− C2

2
‖h‖22 (31)

Given any x ∈ Rd, since φx is C2 in a neighborhood of x, a Taylor expansion yields:

φx(x + h) = φx(x) + 〈∇φx(x),h〉+
1

2
h>∇2φx(x)h + ‖h‖22g(x + h) (32)

where g is a function such that lim
h→0

g(x + h) = 0. Moreover φx(x) = κ(x,x) = 1 and ∇φx(x) = 0

since the maximum of y→ κ(x,y) is always attained at y = x when κ is a PSD kernel. Hence

κ(x,x + h) = 1− 1

2
h>Hxh + o‖h‖2→0(‖h‖22) (33)

Considering an arbitrary unit vector u and h = εu and using (31) gives: −ε2u>Hxu ≥ −ε2(C2 +
oε→0(1)) hence u>Hxu ≤ C2. Since φx is C2 in a neighborhood of x, by Schwarz’s theorem its
Hessian matrix is symmetric hence diagonalizable, and the above property implies that λmax(Hx) ≤
C2. As this holds for every x we get the desired conclusion.

For (ii), observe first that Hx = −∇2φx(x) = −∇2[κ0](0) is independent of x . Since φx is
C2 the matrix Hx is also symmetric, and since φx(y) is maximum at y = x, Hx is also positive
semi-definite, hence supx λmax(Hx) = λmax(−∇2[κ0](0)) ≥ 0 and C :=

√
λmax(−∇2[κ0](0)) is

well-defined. Now, by Bochner’s theorem, since the kernel is normalized, real-valued, and twice
continuously differentiable in the neighborhood of zero, there is a frequency distribution Λ ∈ P2(Rd)
such that κ0(x) = Eω∼Λ[cos(ω>x)]. It follows by standard arguments that the gradient and Hessian
can be written as ∇κ0(x) = −Eω∼Λ[ω sin(ω>x)], ∇2κ0(x) = −Eω∼Λ[ωω> cos(ω>x)] Consequently,
Hx = −∇2[κ0](0) = Eω∼Λ[ωω>] and C =

√
λmax(Eω∼Λ[ωω>]). Consider z ∈ Rd, we will show

that:
2(1− Eω∼Λ[cos(ω>z)]) ≤ C2‖z‖22 (34)

which will prove property (iv) of Proposition 2, and consequently all other equivalent properties.

Indeed, using that 1−cos(t) ≤ t2

2 for all t ∈ R we have 1−Eω∼Λ[cos(ω>z)] = Eω∼Λ[1−cos(ω>z)] ≤
Eω∼Λ[ |ω

>z|2
2 ] = z>

(
Eω∼Λ[ωω>]

)
z ≤ λmax(Eω∼Λ[ωω>])‖z‖22 = C2‖z‖22.

A.2 Rate of Convergence of the MMD

We have the following result which is a direct consequence of Lemma 2 in Briol et al. (2019):

Lemma 40 et π ∈ P(X ) and πn = 1
n

∑n
i=1 δxi where xi ∼ π i.i.d. Then

E[‖π − πn‖2κ] = n−1(

∫
κ(x,x)dπ(x)−

∫ ∫
κ(x,y)dπ(x)dπ(y)) , (35)

where the expectation is taken on the draws of the (xi)i∈[[n]].

Lemma 41 Let π ∈ P(X ) and πn = 1
n

∑n
i=1 δxi where xi ∼ π i.i.d. If supx k(x,x) ≤ K then, for

any δ ∈ (0, 2], we have
E[‖π − πn‖δκ] ≤ (2K)δ/2n−δ/2 . (36)
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Proof By the previous lemma, since supx k(x,x) ≤ K we have E[‖π− πn‖2κ] ≤ 2Kn−1 since for all
x,y ∈ X |k(x,y)| ≤ supx∈X k(x,x) ≤ K because the kernel is positive semi-definite (the maximum
value of a PSD kernel is necessarily on the diagonal). The fact that E[‖π−πn‖δκ] ≤ (2K)δ/2n−δ/2 is
a direct consequence of Jensen’s inequality as (E[‖π − πn‖δκ])2/δ ≤ E[‖π − πn‖2κ]) when 2/δ ≥ 1.

A.3 Simple Bound Between Wassersein Distance and Distance Between the Means

Lemma 42 Let π, π′ ∈ P(Rd) and ‖ · ‖ a norm on Rd with the associated dual norm ‖ · ‖? defined
by ‖z‖? = sup‖x‖≤1〈x, z〉. Then for every 1 ≤ p <∞ we have

Wp(π, π
′) ≥ ‖m(π)−m(π′)‖? , (37)

where the Wassertein distance is computed with the distance D(x,y) = ‖x− y‖.

Proof Consider u ∈ Rd an arbitrary vector such that ‖u‖ = 1 and denote fu(x) = 〈u,x〉 ∈ R for
any x ∈ Rd. Since ‖u‖ = 1 the function fu : Rd → R is 1-Lipschitz with respect to D(x,y) = ‖x−y‖,
hence by duality of the Wasserstein distance (2)

|〈u,m(π)−m(π′)〉| =
∣∣∣∣∫ fu(x)dπ(x)−

∫
fu(y)dπ(y)

∣∣∣∣ ≤W1(π, π′).

The supremum with respect to unitary vectors u yields ‖m(π)−m(π′)‖? ≤W1(π, π′). The last step
uses the fact that W1(π, π′) ≤Wp(π, π

′) for any p ∈ [1,+∞) which concludes the proof.

A.4 Proof of Proposition 10

We will prove the following result:

Proposition 10 Let (X , D) be a complete and separable metric space and consider the Wasserstein
distances computed with the distance D. Let κ be any PSD kernel. Consider two arbitrary probability
distributions π0, π1 ∈ P(X ) such that ‖π0 − π1‖κ < +∞ and supp(π0) and supp(π1) are disjoint20.
Consider S := {(1− t)π0 + tπ1 : t ∈ [0, 1]}. If (S,Wp) is (κ, δ)-embeddable then δ ≤ 1/p.

In order to prove this proposition we will use the following lemma:

Lemma 43 (Niles-Weed and Berthet, 2022, Lemma 9) Let π0, π1 ∈ P(Rd) be any probability distri-
butions. Suppose that there exist two compact sets S, T ⊆ Rd such that d(S, T ) := inf(x,y)∈S×T ‖x−
y‖2 ≥ c > 0 and that the supports of π0 and π1 lie in S ∪ T . Then

∀p ∈ [1,+∞),Wp(π0, π1) ≥ c|π0(S)− π1(S)|1/p . (38)

Proof [Of Proposition 10] This result is mainly taken from Theorem 9 in Niles-Weed and Berthet
(2022) but we rewrite it in our context for completeness. For any λ ∈ [0, 1], set

πλ := 1
2 ((1 + λ)π0 + (1− λ)π1) ,

π′λ := 1
2 ((1− λ)π0 + (1 + λ)π1) .

20. We recall that the support supp(π) of a probability distribution π ∈ P(X ) is the smallest closed set S such that
π(S) = 1.
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Note that πλ, π
′
λ ∈ S by assumption and ‖πλ − π′λ‖κ = λ‖π0 − π1‖κ. Since the sets supp(π0)

and supp(π1) are disjoint, there exist two sets S and T and c > 0 such that supp (π0) ⊆ S and
supp (π1) ⊆ T and d(x,y) ≥ c > 0 for any x ∈ S,y ∈ T . Moreover it is clear by definition that
supp(πλ) and supp(π′λ) lie in S ∪ T . The Lemma 43 gives, for any p,

Wp(πλ, π
′
λ) ≥ c |πλ(S)− π′λ(S)|1/p = cλ1/p . (39)

We obtain, for δ ∈ (0, 1],

sup
(π,π′)∈S

Wp(π, π
′)

‖π − π′‖δκ
≥ sup
λ∈(0,1)

Wp(πλ, π
′
λ)

‖πλ − π′λ‖δκ
& sup
λ∈[0,1]

λ1/p−δ = +∞ .

The last equality is true because pδ > 1.

A.5 Proof of Theorem 11

We recall that, for K ∈ N∗ and Ω ⊆ Rd, the space of mixtures of K diracs located in Ω is defined
by

SK(Ω) :=

{
K∑
i=1

aiδxi : ai ∈ R+,

K∑
i=1

ai = 1,∀i ∈ [[K]],xi ∈ Ω

}
. (40)

The goal of this section is to prove the following theorem:

Theorem 11 Consider a TI, PSD kernel κ(x,y) = κ0(x − y) on Rd such that κ0 is k times
differentiable at 0 with k ∈ N∗. Consider p ∈ [1,+∞), a Wasserstein distance Wp based on a norm
in Rd, a vector x0 ∈ Rd, R > 0 and Ω = B(x0, R). If (Sb k2 c+1(Ω),Wp) is (κ, δ)-embeddable then

δ ≤ 2/k.

We will need the following lemma which states that if the kernel is regular at zero and that we
can construct some vectors α,β that satisfy certain conditions then we have a constraint on the
Hölder exponent δ.

Lemma 44 Consider a TI, PSD kernel κ(x,y) = κ0(x − y) on Rd such that κ0 is k times differ-
entiable at 0 with k ∈ N∗. Let M ∈ N∗ and define for 1 ≤ s ≤ k and α,β ∈ RM the function
cs(α,β) :=

∑M
i,j=1 βiβj(αi − αj)s. Suppose that there exists α ∈ RM \ {0} with αi 6= αj for i 6= j

and β ∈ RM \ {0} with
∑M
i=1 βi = 0 such that

c1(α,β) = c2(α,β) = · · · = ck−1(α,β) = 0 . (41)

Define r(β) := max{#T+(β),#T−(β)} where T+(β) := {i ∈ [[M ]] : βi ≥ 0} and T−(β) := {i ∈
[[M ]] : βi < 0}.

Consider S = Sr(β)(Ω) with Ω = B(x0, R) where x0 ∈ Rd, R > 0 are arbitrary. If (S,Wp) is

(κ, δ)-embeddable, where Wp is based on a norm ‖ · ‖ in Rd with p ∈ [1,+∞), then δ ≤ 2/k.

Proof Recall that for a finite signed measure µ ∈ M(Rd) we have ‖µ‖2κ =
∫ ∫

κ(x,y)dµ(x)dµ(y).

Consider M ∈ [[N ]]
∗
,β ∈ RM such that

∑M
i=1 βi = 0 and α ∈ RM \ {0} with αi 6= αj when i 6= j.

We define the measure

µε :=

M∑
i=1

βiδx0+εαiu , (42)
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where u ∈ Rd \ {0} and 0 < ε < R
‖α‖∞‖u‖2 is sufficiently small to ensure that x0 + εαiu ∈ Ω =

B(x0, R). We define T+ := {i ∈ [[M ]] : βi ≥ 0} and T− := {i ∈ [[M ]] : βi < 0} such that
T− ∪ T+ = [[M ]] and T− ∩ T+ = ∅. We define also ρ :=

∑
i∈T+

βi = −
∑
i∈T− βi > 0 and

πε :=
∑
i∈T+

βi
ρ
δx0+εαiu and π′ε :=

∑
i∈T−

−βi
ρ
δx0+εαiu . (43)

We have that #T+ ≤ r(β) and #T− ≤ r(β) by definition of r(β). Since ε is small enough we have
that πε, π

′
ε ∈ Sr(β)(Ω). Moreover µε = 1

ρ (πε − π′ε). Hence

‖πε − π′ε‖2κ = ρ2‖µε‖2κ = ρ2
M∑

i,j=1

βiβjκ(x0 + εαiu,x0 + εαju) = ρ2
M∑

i,j=1

βiβjκ0(ε(αi − αj)u) . (44)

Since the kernel is k times differentiable at 0, the function g : t 7→ κ0(tu) is also k times differentiable
at 0. A Taylor expansion yields

κ0(εu) := g(ε) = g(0) +

k∑
n=1

g(n)(0)

n!
εn + oε→0(εk) , (45)

hence

‖πε − π′ε‖2κ = ρ2
M∑

i,j=1

βiβj

(
g(0) +

k∑
n=1

g(n)(0)

n!
(αi − αj)nεn + oε→0(εk)

)

= ρ2
k∑

n=1

 M∑
i,j=1

βiβj(αi − αj)n
 εk

g(n)(0)

n!
+ oε→0(εk) ,

(46)

where we used that
∑M
i,j=1 βiβjg(0) = 0 since (

∑M
i=1 βi)

2 = 0. With the notations of the Lemma we
have

‖πε − π′ε‖2κ = ρ2
k∑

n=1

cn(α,β)εk
g(n)(0)

n!
+ oε→0(εk) . (47)

Now, since by assumption we have

c1(α,β) = · · · = ck−1(α,β) = 0 , (48)

we get

‖πε − π′ε‖2κ = ρ2ck(α,β)εk
g(k)(0)

k!
+ oε→0(εk) = Oε→0(εk) (49)

hence ‖πε−π′ε‖κ = Oε→0(εk/2). Moreover, defining for i ∈ T+ ai = βi/ρ and for j ∈ T− bj = −βj/ρ
we have

Wp
p(πε, π

′
ε) = min

γ∈Π(a,b)

∑
i∈T+,j∈T−

‖εαiu− εαju‖pγij = εp‖u‖p min
γ∈Π(a,b)

∑
i∈T+,j∈T−

|αi − αj |pγij . (50)

Therefore

Wp
p(πε, π

′
ε) ≥

(
ε‖u‖ min

i∈T+,j∈T−
|αi − αj |

)p
, (51)

hence Wp(πε, π
′
ε) ≥ ε‖u‖mini∈T+,j∈T− |αi − αj |. When i 6= j we have αi 6= αj by assumption.

Since T+ ∩ T− = ∅ we have mini∈T+,j∈T− |αi − αj | > 0. This discussion proves that, as soon as the
condition (48) holds and δ > 2

k , we have

sup
(π,π′)∈S

Wp(π, π
′)

‖π − π′‖δκ
≥ sup

ε>0

Wp(πε, π
′
ε)

‖πε − π′ε‖δκ
& sup

ε>0

ε

εδk/2
= sup

ε>0
ε1−δk/2 = +∞ . (52)
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Consequently, (S,Wp) is not (κ, δ)-embeddable when δ > 2
k which concludes the proof by contra-

position.

The idea now is to find a couple (α,β) that satisfy the conditions
∑M
i=1 βi = 0 and c1(α,β) =

c2(α,β) = · · · = ck−1(α,β) = 0. The following lemma show that it is possible to construct such
vectors provided that M = k + 1.

Lemma 45 Consider a TI, PSD kernel κ(x,y) = κ0(x − y) on Rd such that κ0 is k times differ-
entiable at 0 with k ∈ N∗. With the same notations cs(α,β) and r(β) as in Lemma 44, there exists

α ∈ Rk+1 \ {0} with αi 6= αj for i 6= j and β ∈ Rk+1 \ {0} with
∑k+1
i=1 βi = 0 such that

c1(α,β) = c2(α,β) = · · · = ck−1(α,β) = 0 . (53)

Also if k is odd then #T+(β) = #T−(β) = k+1
2 and if k is even #T+(β) = k

2 + 1 and #T−(β) = k
2 .

Overall for any k ∈ N∗ we have r(β) ≤ bk2 c+ 1.

Proof The condition c1(α,β) = 0 writes
∑k+1
i,j=1 βiβj(αi − αj) = 0 which is true for any α ∈ Rk+1

when β ∈ Rk+1 satisfies
∑k+1
i=1 βi = 0. Indeed

∑k+1
i,j=1 βiβj(αi − αj) = (

∑k+1
j=1 βj)

∑k+1
i βiαi −

(
∑k+1
i=1 βi)

∑k+1
j βjαj = 0. The condition c2(α,β) = 0 writes

∑k+1
i,j=1 βiβj(αi − αj)2 = 0. However∑k+1

i,j=1 βiβj(αi − αj)2 =
∑k+1
i,j=1 βiβj(α

2
i + α2

j − 2αiαj). The term
∑k+1
i,j=1 βiβjαiαj vanishes as soon

as
∑k+1
i=1 βiαi = 0. The other terms

∑k+1
i,j=1 βiβjα

2
i and

∑k+1
i,j=1 βjβiα

2
j as soon as

∑k+1
i=1 βi = 0. With

an immediate recurrence by using the Binomial formula we see that c1(α,β) = c2(α,β) = · · · =
ck−1(α,β) = 0 as soon as

k+1∑
i=1

βi =

k+1∑
i=1

βiαi =

k+1∑
i=1

βiα
2
i = · · · =

k+1∑
i=1

βiα
k−1
i = 0 . (54)

Define β ∈ Rk+1 by for all 1 ≤ i ≤ k + 1, βi = (−1)i−1
(
k
i−1

)
and α ∈ Rk+1 by αi = i. Then the

αi’s are pairwise distinct and

0 =

k∑
i=0

(−1)i
(
k

i

)
=

k+1∑
i=1

(−1)i−1

(
k

i− 1

)
=

k+1∑
i=1

βi . (55)

Then for any 1 ≤ s ≤ k − 1 we have

k+1∑
i=1

βiα
s
i =

k+1∑
i=1

(−1)i−1

(
k

i− 1

)
is =

k∑
i=0

(−1)i
(
k

i

)
(i+ 1)s =

k∑
i=0

(−1)i
(
k

i

)( s∑
l=0

(
s

l

)
il

)
. (56)

Consquently
k+1∑
i=1

βiα
s
i =

s∑
l=0

(
s

l

)( k∑
i=0

(−1)i
(
k

i

)
il

)
. (57)

But for 0 ≤ l ≤ s we have

k∑
i=0

(−1)i
(
k

i

)
il =

k∑
i=0

(−1)k−i
(

k

k − i

)
(k−i)l =

k∑
i=0

(−1)k−i
(
k

i

)
(k−i)l = (−1)k

k∑
i=0

(−1)i
(
k

i

)
(k−i)l ,

(58)

so
∑k
i=0(−1)i

(
k
i

)
il = (−1)kk!S2(l, k) where S2(l, k) is the Stirling number of the second kind which

is zero as soon as l < k. Since l ≤ s ≤ k − 1 < k by hypothesis we have that
∑k
i=0(−1)i

(
k
i

)
il = 0
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and thus
∑k+1
i=1 βiα

s
i = 0 for all 1 ≤ s ≤ k − 1 and

∑k+1
i=1 βi = 0. So this implies that c1(α,β) =

c2(α,β) = · · · = ck−1(α,β) = 0. For such β we have that #T+(β) = #T−(β) = k+1
2 for k odd. If

k is even then #T+(β) = k
2 + 1 and #T−(β) = k

2 .

With this results we can now prove Theorem 11.
Proof [Proof of Theorem 11] Define (α,β) as in Lemma 45. Then we have c1(α,β) = c2(α,β) =
· · · = ck−1(α,β) = 0 and r(β) ≤ bk2 c + 1 which proves the theorem by using Lemma 44 with
M = k + 1.

A.6 Proof of Proposition 13

Proposition 13 is an immediate corollary of the following variation of its statement:

Proposition 46 Consider any π, π′ ∈ P(Rd) having densities f, g with respect to the Lebesgue
measure, i.e. π = fdx, π′ = gdx. Denote Vd = πd/2/Γ(d/2+1) the volume of the unit d -dimensional
unit sphere.

(i) Consider 1 ≤ p < r. If Mr[π],Mr[π
′] are finite then

Wp(π, π
′) ≤ cd,p,r(Mr

r[π] + Mr
r[π
′])

d+2p
p(d+2r)

(∫
Rd
|f(x)− g(x)|2dx

) r−p
(d+2r)p

,

where 0 < cd,p,r ≤ 2(max{Vd, 1})
1
2p .

(ii) Consider 1 ≤ p < r. If max{Mr[π],Mr[π
′]} ≤M where M > 0 then

Wp(π, π
′) ≤ 2cd,p,rM

r(d+2p)
p(d+2r)

(∫
Rd
|f(x)− g(x)|2dx

) r−p
(d+2r)p

,

(iii) If π, π′ are supported in some Euclidean ball centered at 0 of radius M > 0 then, for any
p ∈ [1,+∞),

Wp(π, π
′) ≤ 2

p−1
p V

1
2p

d M
2p+d
2p

(∫
Rd
|f(x)− g(x)|2dx

) 1
2p

(59)

Proof As a preliminary observe that by Villani (2008, Theorem 6.15) the Wasserstein distance is
bounded by a weighted Total Variation distance:

Wp
p(π, π

′) ≤ 2p−1

∫
Rd
‖x‖p2 d|π − π′|(x) = 2p−1

∫
Rd
‖x‖p2 |f(x)− g(x)| dx .

Given anyR > 0, write
∫
Rd ‖x‖

p
2 |f(x)−g(x)| dx =

∫
‖x‖2≤R ‖x‖

p
2 |f(x)−g(x)| dx+

∫
‖x‖2>R ‖x‖

p
2 |f(x)−

g(x)| dx. By Cauchy-Schwarz inequality the first term of this decomposition is bounded as∫
‖x‖2≤R

‖x‖p2 |f(x)− g(x)| dx ≤
√∫
‖x‖2≤R

‖x‖2p2 dx

√∫
‖x‖2≤R

|f(x)− g(x)|2 dx ≤ C‖f − g‖L2(Rd)

where

C :=

√∫
‖x‖2≤R

‖x‖2p2 dx =

√∫
‖u‖2≤1

‖Ru‖2p2 Rddu =

√
R2p+d

∫
‖u‖2≤1

‖u‖2p2 du ≤ R
2p+d

2

√
Vd .
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The second term is bounded as∫
‖x‖2>R

‖x‖p2 |f(x)− g(x)| dx =

∫
‖x‖2>R

‖x‖p−r2 ‖x‖r2 |f(x)− g(x)| dx

r>p

≤ Rp−r
∫
‖x‖2>R

‖x‖r2 |f(x)− g(x)| dx ≤ Rp−r(Mr
r[π] + Mr

r[π
′])

hence

∀p ∈ [1, r), Wp
p(π, π

′) ≤ 2p−1
(
V

1/2
d ‖f − g‖L2(Rd)R

2p+d
2 + (Mr

r[π] + Mr
r[π
′])Rp−r

)
. (60)

We now have the ingredients to prove the three points.

For the first point, with R :=

(
Mr
r[π]+Mr

r[π′]

V
1/2
d

) 2
d+2r

‖f−g‖−
2

d+2r

L2(Rd)
we have V

1/2
d ‖f−g‖L2(Rd)R

2p+d
2 =

(Mr
r[π] + Mr

r[π
′])Rp−r hence by (60) we have for each p ∈ [1, r)

Wp
p(π, π

′) ≤ 2p(Mr
r[π] + Mr

r[π
′])Rp−r = 2p(Mr

r[π] + Mr
r[π
′])

(
Mr[π] + Mr[π

′]

V
1/2
d

) 2(p−r)
d+2r

‖f − g‖
2(r−p)
d+2r

L2(Rd)
.

Taking the p-th root yields the first claim once we check that 2p(Mr
r[π]+Mr

r[π
′])

(
Mr[π]+Mr[π′]

V
1/2
d

) 2(p−r)
d+2r

≤

cpd,p,r(M
r
r[π] + Mr

r[π
′])(d+2p)/(d+2r) where 0 < cd,p,r ≤ 2(max{Vd, 1})

1
2p . Since

2p(Mr
r[π] + Mr

r[π
′])

(
Mr[π] + Mr[π

′]

V
1/2
d

) 2(p−r)
d+2r

= 2pV
r−p
d+2r

d (Mr
r[π] + Mr

r[π
′])

d+2p
d+2r

it is enough to bound cd,p,r := 2V
r−p

p(d+2r)

d .

Indeed, since the function r 7→ r−p
d+2r = 1

2 −
d+2p

2(d+2r) is monotonically increasing and p < r < ∞,

we have 0 < r−p
d+2r < limr′→+∞

r′−p
d+2r′ = 1

2 , hence we have as claimed

cd,p,r = 2V
r−p

p(d+2r)

d ≤ 2(max{Vd, 1})
r−p

p(d+2r) ≤ 2(max{Vd, 1})
1
2p .

The second point is an immediate consequence of the first one. Since 1 ≤ p < r we have
d+2p
p(d+2r) ≤

1
p ≤ 1, hence using that max{Mr[π],Mr[π

′]} ≤M we get

(Mr
r[π] + Mr

r[π
′])

d+2p
p(d+2r) ≤ 2

d+2p
p(d+2r)M

r(d+2p)
p(d+2r) ≤ 2M

r(d+2p)
p(d+2r) .

For the last point we have ∀r > 1,max{Mr[π],Mr[π
′]} ≤ M and thus (60) gives for any choice

of R > 0:

∀r > 1,∀p ∈ [1, r), Wp
p(π, π

′) ≤ 2p−1
(
V

1/2
d ‖f − g‖L2(Rd)R

2p+d
2 + 2

(M
R

)r
Rp
)
. (61)

Consider any R > M . We can take the limit as r → +∞ in (61) which gives

∀R > M,∀p ∈ [1,+∞), Wp
p(π, π

′) ≤ 2p−1
(
V

1/2
d ‖f − g‖L2(Rd)R

2p+d
2

)
.

since lim
r→+∞

(MR )r = 0. Since this is true for any R > M we can conclude that

∀p ∈ [1,+∞), Wp
p(π, π

′) ≤ 2p−1V
1/2
d M

2p+d
2

(∫
Rd
|f(x)− g(x)|2dx

) 1
2

.

Taking the p-th root yields the conclusion.
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A.7 Proof of Theorem 14 and 15

We first prove the following result:

Theorem 14 Let κ(x,y) = κ0(x−y) be a TI, PSD kernel on Rd such that κ0 ∈ L1(Rd), κ̂0(ω) > 0
for every ω. For B,M, r ≥ 0, denote

SB,M,r,κ :=
{
π ∈ P(Rd) : π = fdx, ‖f‖Hκ ≤ B and Mr[π] ≤M

}
⊂ Pr(Rd) . (14)

If r > 1 then for each 1 ≤ p < r we have

∀π, π′ ∈ SB,M,r,κ, Wp(π, π
′) ≤ C ′‖π − π′‖

r−p
p(d+2r)
κ ,

where C ′ = 8(max{Vd, 1})
1
2pB

r−p
(d+2r)pM

(d+2p)r
(d+2r)p .

Proof Take any π, π′ ∈ SB,M,r,κ and recall that this implies notably that Mr[π] ≤M (and similarly

for π′). By Proposition 46 we have, with C1 := 2cd,p,rM
r(d+2p)
p(d+2r) :

Wp(π, π
′) ≤ C1

(∫
|f(x)− g(x)|2dx

) r−p
p(d+2r)

. (62)

Since κ0 ∈ L1(Rd) it has a Fourier transform κ̂0, which is non-negative by Bochner’s theorem.
Consequently:

Wp(π, π
′)

?
≤ C1

(
(2π)−d

∫
|f̂(ω)− ĝ(ω)|2dω

) r−p
p(d+2r)

= (2π)
−d(r−p)
p(d+2r) C1

(∫
|f̂(ω)− ĝ(ω)|2dω

) r−p
p(d+2r)

= (2π)
−d(r−p)
p(d+2r) C1

(∫
|f̂(ω)− ĝ(ω)|√

κ̂0(ω)

√
κ̂0(ω)|f̂(ω)− ĝ(ω)|dω

) r−p
p(d+2r)

??
≤ (2π)

−d(r−p)
p(d+2r) C1

(∫
|f̂(ω)− ĝ(ω)|2

κ̂0(ω)
dω

) r−p
2p(d+2r) (∫

κ̂0(ω)|f̂(ω)− ĝ(ω)|2dω

) r−p
2p(d+2r)

???
≤ (2π)

−d(r−p)
p(d+2r) C1

(∫
|f̂(ω)− ĝ(ω)|2

κ̂0(ω)
dω

) r−p
2p(d+2r)

(2π)
d(r−p)

2p(d+2r) ‖π − π′‖
r−p

p(d+2r)
κ

= (2π)
−d(r−p)
2p(d+2r)C1

(∫
|f̂(ω)− ĝ(ω)|2

κ̂0(ω)
dω

) r−p
2p(d+2r)

‖π − π′‖
r−p

p(d+2r)
κ

= C1‖f − g‖
r−p

p(d+2r)

Hκ ‖π − π′‖
r−p

p(d+2r)
κ ,

(63)

where in (?) we used the Plancherel formula, in (??) we used the Cauchy–Schwarz inequality and
in (? ? ?) we relied on Lemma 48 whose proof is postponed below. In the last step we used

(
∫ |f̂(ω)−ĝ(ω)|2

κ̂0(ω) dω)1/2 = (2π)d/2‖f − g‖Hκ . We used Theorem 10.12 in Wendland 2004 where we

adapted the conventions on the Fourier transform. We can apply this theorem since κ0 is con-
tinuous (by hypothesis), and its Fourier transform κ̂0 > 0 thus κ0 is positive definite (Wendland,

2004, Corollary 6.9). Finally max{‖f‖Hκ , ‖g‖Hκ} ≤ B by hypothesis. Thus ‖f − g‖
r−p

(d+2r)p

Hκ ≤
(B + B)

r−p
(d+2r)p ≤ 2B

r−p
(d+2r)p since r−p

(d+2r)p ≤ 1. This concludes the proof with C := 2B
r−p

(d+2r)pC1 =

4cd,p,rB
r−p

(d+2r)pM
r(d+2p)
p(d+2r) .
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As a consequence we have the theorem:

Theorem 15 Let κ(x,y) = κ0(x−y) be a TI, PSD kernel on Rd such that κ0 ∈ L1(Rd), κ̂0(ω) > 0
for every ω, and assume there is sκ > 0 such that

1

κ̂0(ω)
= O(‖ω‖sκ2 ) as ‖ω‖2 → +∞ . (15)

For r,B,M, s ≥ 0, denote

SB,M,r,s :=
{
π ∈ P(Rd) : π = fdx, ‖f‖Hs(Rd) ≤ B and Mr[π] ≤M

}
⊂ Pr(Rd) . (16)

If s ≥ sκ/2 and r > 1 then for each 1 ≤ p < r there exists C = C(B,M, r, s, d, κ, p) > 0 such that

∀π, π′ ∈ SB,M,r,s, Wp(π, π
′) ≤ C‖π − π′‖

r−p
p(d+2r)
κ .

Proof This is a direct consequence of Theorem 14 once we establish that, under the assumptions
on κ, we have SB,M,r,s ⊆ SCB,M,r,κ where C = C(d, s, κ) is the constant from Lemma 47 below.
Indeed, consider π = fdx ∈ SB,M,r,s. By hypothesis we have Mr[π] ≤ M and ‖f‖Hs(Rd) ≤ B.
With the hypothesis on the kernel κ we can use Lemma 47 below to prove that there is a constant
C = C(d, s, κ) such that ‖f‖Hκ ≤ C‖f‖Hs(Rd) ≤ CB, which shows that π ∈ SCB,M,r,κ as claimed.
Thus, by Theorem 14, with cd,p,r the constant defined in Proposition 13 we have:

∀π, π′ ∈ SB,M,r,s,Wp(π, π
′) ≤ 4cd,p,r2(C(d, s, κ)B)

r−p
(d+2r)pM

(d+2p)r
(d+2r)p ‖π − π′‖

r−p
p(d+2r)
κ , (64)

which concludes the proof.

Lemma 47 Let κ(x,y) = κ0(x − y) be a TI, PSD kernel on Rd with κ0 ∈ L1(Rd) such that
κ̂0(ω) > 0 for every ω and 1

κ̂0(ω) = O(‖ω‖sκ2 ) as ‖ω‖2 → +∞ for some sκ ∈ R+. For any s ≥ sκ/2,

there exists a constant C = C(d, s, κ) > 0 such that for every f ∈ Hs(Rd) we have

‖f‖Hκ ≤ C‖f‖Hs(Rd) . (65)

Proof Given any R > 0 we write
∫
Rd
|f̂(ω)|2
κ̂0(ω) dω =

∫
‖ω‖2≤R

|f̂(ω)|2
κ̂0(ω) dω +

∫
‖ω‖2>R

|f̂(ω)|2
κ̂0(ω) dω and use

the shorthand I‖ω‖2≤R and I‖ω‖2>R for the two terms. Since κ0 ∈ L1(Rd) the Fourier transform κ̂0

is continuous. It is also positive and thus and the term I‖ω‖2<R can be bounded as

I‖ω‖2≤R ≤

(
sup
‖ω‖2≤R

κ̂0(ω)−1

)∫
‖ω‖2≤R

|f̂(ω)|2dω ≤

(
sup
‖ω‖2≤R

κ̂0(ω)−1

)
‖f‖2Hs(Rd) . (66)

Now consider I‖ω‖2>R and take s ≥ sκ
2 . We have:∫

‖ω‖2>R
|f̂(ω)|2 1

κ̂0(ω)
dω =

∫
‖ω‖2>R

(1 + ‖ω‖22)s|f̂(ω)|2(1 + ‖ω‖22)−s
1

κ̂0(ω)
dω

≤ sup
‖ω‖2>R

(
(1 + ‖ω‖22)−s

κ̂0(ω)

) ∫
‖ω‖2>R

(1 + ‖ω‖22)s|f̂(ω)|2dω

≤ sup
‖ω‖2>R

(
(1 + ‖ω‖22)−s

κ̂0(ω)

)
‖f‖2Hs(Rd)

(67)
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By hypothesis
‖ω‖−2s

2

κ̂0(ω) = O‖ω‖2→+∞( 1

‖ω‖2s−sκ2

). Since s ≥ sκ
2 we have 2s− sκ ≥ 0 thus the quantity

sup
‖ω‖2>R

(
(1+‖ω‖22)−s

κ̂0(ω)

)
is finite. The previous reasoning gives, for any R > 0,

‖f‖2Hκ = (2π)−d
∫
Rd

|f̂(ω)|2

κ̂0(ω)
dω ≤ (2π)−d

(
sup
‖ω‖2≤R

1

κ̂0(ω)
+ sup
‖ω‖2>R

(1 + ‖ω‖22)−s

κ̂0(ω)

)
‖f‖2Hs(Rd) .

(68)
The infimum over R > 0 yields a constant C(d, s, κ) such that ‖f‖Hκ ≤ C(d, s, κ)‖f‖Hs(Rd).

Lemma 48 Let κ(x,y) = κ0(x−y) be a TI, PSD kernel on Rd×Rd where κ0 ∈ L1(Rd). Then for
π, π′ ∈ P(Rd) we have the formula

‖π − π′‖2κ = (2π)−d
∫
κ̂0(ω)|π̂(ω)− π̂′(ω)|2dω . (69)

In particular when π, π′ have densities f, g with respect to the Lebesgue measure we have

‖π − π′‖2κ = (2π)−d
∫
κ̂0(ω)|f̂(ω)− ĝ(ω)|2dω . (70)

Proof This result can be found in Sriperumbudur et al. (2010) but we rewrite the proof for
completeness. Since κ0 is a continuous PSD function and κ0 ∈ L1(Rd) then by Bochner’s theorem
κ̂0 ≥ 0. So κ0 is even (κ is symmetric), integrable, continuous (in particular at 0) and has nonnegative
Fourier transform so κ̂0 ∈ L1(Rd) (Stein and Weiss, 2016). Then by Fourier inversion theorem

∀x ∈ Rd, κ0(x) = (2π)−d
∫
eiω
>xκ̂0(ω)dω . (71)

In the following we define the measure Λ by dΛ(ω) := (2π)−dκ̂0(ω)dω (which is a non-negative
finite measure thanks to Bochner’s theorem). We have:

‖π − π′‖2κ =

∫ ∫
κ0(x− y)d(π − π′)(x)d(π − π′)(y)

?
=

∫ ∫ ∫
eiω
>(x−y)dΛ(ω)d(π − π′)(x)d(π − π′)(y)

=

∫ (∫
eiω
>xd(π − π′)(x)

)(∫
e−iω

>yd(π − π′)(y)

)
dΛ(ω)

=

∫
(π̂(ω)− π̂′(ω))(π̂(ω)− π̂′(ω))dΛ(ω) =

∫
|π̂(ω)− π̂′(ω)|2dΛ(ω)

= (2π)−d
∫
κ̂0(ω)|π̂(ω)− π̂′(ω)|2dω ,

(72)

where in (?) we used (71) and Fubini theorem.

A.8 The Compactly Supported Case

We will prove the following result:
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Lemma 49 Let κ(x,y) = κ0(x − y) be a TI, PSD kernel on Rd with κ0 ∈ L1(Rd) such that
κ̂0(ω) > 0 for every ω and 1

κ̂0(ω) = O(‖ω‖sκ2 ) as ‖ω‖2 → +∞ for some sκ ∈ R+. Consider

0 < M,B < +∞, s ≥ sκ/2 and the following model set

SB,M,s :=
{
π ∈ P(Rd) : π = fdx, ‖f‖Hs(Rd) ≤ B and supp(π) ⊆ B(0,M)

}
, (73)

where B(0,M) is the Euclidean ball centered at zero with radius M . For any p ∈ [1,+∞), there
exists a constant C = C(d, p,M,B, κ, s) > 0 such that

∀π, π′ ∈ SB,M,s,Wp(π, π
′) ≤ C‖π − π′‖

1
2p
κ . (74)

Proof By the third point of Proposition 46 there is a constant C = C(d, p,M) > 0 such that

Wp(π, π
′) ≤ C

(∫
Rd
|f(x)− g(x)|2dx

) 1
2p

(75)

for every π, π′ ∈ SB,M,s. Then, with the same strategy as in the proof of Theorem 15 we have

Wp(π, π
′) ≤ C1

(∫
|f̂(ω)− ĝ(ω)|2

κ̂0(ω)
dω

) 1
4p

‖π − π′‖
1
2p
κ . (76)

for some constant C1 > 0 which depends on d, p,M . By Lemma 47 there exists a constant

C2 = C2(κ, s,B, d) such that
∫ |f̂(ω)−ĝ(ω)|2

κ̂0(ω) dω ≤ C2. This concludes the proof.

A.9 Proof of Lemma 22, Proposition 23 and Theorem 24

Lemma 22 Let α be a regularizer and κ0 := α ∗α. Then κ0 ∈ L1(Rd) is even, bounded, continuous
and has non-negative Fourier transform. Consider the kernel κ(x,y) := κ0(x− y). Then κ defines
a TI, PSD kernel. Moreover, for π, π′ ∈ P(Rd),

‖π − π′‖κ = ‖α ∗ π − α ∗ π′‖L2(Rd) .

Proof We first prove that the kernel in this proposition defines a TI, PSD kernel. It is clearly
translation invariant by definition and symmetric since the convolution of even functions is even
thus κ0 is even. Also κ0 is continuous and bounded since α is continuous and bounded. Since α is
even its Fourier transform is real-valued hence κ̂0 = α̂2 = |α̂|2 ≥ 0 so the Fourier transform of κ0 is
non negative. Finally κ0 ∈ L1(Rd) as the convolution of two integrable functions. Using Bochner’s
theorem (see Theorem 1) shows that the kernel κ is a TI, PSD kernel. Moreover:

‖α ∗ π − α ∗ π‖2L2(Rd) =

∫
|α ∗ π(x)− α ∗ π′(x)|2dx

?
= (2π)−d

∫
|α̂ ∗ π(ω)− α̂ ∗ π′(ω)|2dω , (77)

where in (?) we used Plancherel formula which is possible since α ∗ π ∈ L2(Rd) because α ∈ L2(Rd)
(same for α∗π′). So using that α̂ ∗ π = α̂× π̂ (α is a probability density function and π a probability
distribution):

‖α∗π−α∗π‖2L2(Rd) = (2π)−d
∫
|α̂(ω)π̂(ω)− α̂(ω)π̂′(ω)|2dω = (2π)−d

∫
|α̂(ω)|2|π̂(ω)− π̂′(ω)|2dω.

(78)
Finally, since κ̂0 = |α̂|2 we get

‖α ∗ π − α ∗ π‖2L2(Rd) = (2π)−d
∫
κ̂0(ω)|π̂(ω)− π̂′(ω)|2dω

??
= ‖π − π′‖2κ , (79)
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where in (??) we used Lemma 48. This concludes the proof.

Proposition 23 Let r > 1. Consider a regularizer α with r-finite moments and the kernel κ(x,y) =
κ0(x − y) where κ0 := α ∗ α. It defines a TI, PSD kernel by Lemma 22. Moreover, for any
π, π′ ∈ Pr(Rd) and 1 ≤ p < r, Wp defined with the Euclidean norm on Rd satisfies

Wp(πα, π
′
α) ≤ Cd,r,p

(
Ex∼πα [‖x‖r2] + Ey∼π′α [‖y‖r2]

) 2p+d
(d+2r)p ‖π − π′‖

2(r−p)
(d+2r)p
κ ,

for some constant Cd,r,p > 0.

Proof In order to prove the proposition we will apply the first point of Proposition 46 with πα and
π′α that admit the densities f = α ∗π and g = α ∗π′ and thus the term ‖f − g‖L2(Rd) in Proposition
46 becomes ‖f −g‖L2 = ‖α∗π−α∗π′‖L2(Rd). To apply Proposition 46 we need to show that πα, π

′
α

have r-finite moments which will be true by using that π, π′ and α have r-finite moments. Indeed

Ex∼πα‖x‖r2 =

∫
‖x‖r2(α ∗ π)(x)dx =

∫
‖x‖r2

(∫
α(x− y)dπ(y)

)
dx

?
=

∫ ∫
‖x‖r2α(x− y)dxdπ(y) =

∫ (∫
‖x‖r2α(x− y)dx

)
dπ(y) ,

(80)

where in (?) we used the Fubini theorem (α is non-negative). Moreover, for any y ∈ Rd,∫
‖x‖r2α(x− y)dx =

∫
‖y + z‖r2α(z)dz ≤ 2r−1

(
‖y‖r2

∫
α(z)dz +

∫
‖z‖r2α(z)dz

)
, (81)

where in the last inequality we used ‖z + y‖r2 ≤ 2r−1(‖z‖r2 + ‖y‖r2). Moreover since
∫
α(z)dz = 1 we

have:

Ex∼πα‖x‖r2 ≤ 2r−1

(∫
‖y‖r2dπ(y) +

∫
‖z‖r2α(z)dz

)
< +∞ (82)

So by using the first point of Proposition 46 we have

Wp(πα, π
′
α) ≤ Cd,p,r

(
Ex∼πα‖x‖r2 + Ey∼π′α‖y‖

r
2

) 2p+d
(d+2r)p ‖α ∗ π − α ∗ π′‖

2(r−p)
(d+2r)p

L2(Rd)
, (83)

for some constant Cd,p,r > 0. Finally, to relate the term ‖α ∗ π − α ∗ π′‖L2(Rd) with the MMD we
use the Lemma 22.

Finally we can prove the following theorem:

Theorem 24 Let r > 1. Consider a regularizer α with r-bounded moments. Consider the kernel
κ(x,y) = κ0(x− y) where κ0 := α ∗ α. It defines a TI, PSD kernel by Lemma 22. We consider the
model set

SM := {π ∈ P(Rd) : Mr[π] ≤M} ⊂ Pr(Rd) .

Then for any 1 ≤ p < r there exists a constant C ′ = C ′d,r,p > 0 such that

∀π, π′ ∈ S,Wp(π, π
′) ≤ C ′

(
Mr +

∫
‖z‖r2α(z)dz

) 2p+d
p(d+2r)

‖π − π′‖
2(r−p)
(d+2r)p
κ + 2

(∫
‖z‖p2α(z)dz

)1/p

.
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Proof With the notations of the theorem we have, by Proposition 23,

Wp(πα, π
′
α) ≤ Cd,r,p

(
Ex∼πα [‖x‖r2] + Ey∼π′α [‖y‖r2]

) 2p+d
(d+2r)p ‖π − π′‖

2(r−p)
(d+2r)p
κ , (84)

where Cd,r,p is defined in Proposition 23. We can control both terms Ex∼πα [‖x‖r2],Ey∼π′α [‖y‖r2] as
in the proof of Proposition 23 so that

Ex∼πα [‖x‖r2] ≤ 2r
(∫
‖y‖r2dπ(y) +

∫
‖z‖r2α(z)dz

)
≤ 2r(Mr +

∫
‖z‖r2α(z)dz) , (85)

since π ∈ S (and in the same way for Ey∼π′α [‖y‖r2]). Consequently:

Wp(πα, π
′
α) ≤ Cd,r,p2(r+1)( 2p+d

(d+2r)p
)(Mr +

∫
‖z‖r2α(z)dz)

2p+d
(d+2s)p ‖π − π′‖

2(r−p)
(d+2r)p
κ . (86)

By defining C ′d,r,p = 2(r+1) 2p+d
(d+2r)pCd,r,p and using Lemma 21 we have

Wp(πα, π
′
α) ≤ C ′d,r,p(Mr +

∫
‖z‖r2α(z)dz)

2p+d
(d+2r)p + 2

(∫
‖z‖p2α(z)dz

)1/p

, (87)

which concludes the proof.

Appendix B. Proofs of Section 3

B.1 Proof of Lemma 31

Lemma 31 (Canas and Rosasco, 2012) Let S ⊆ X , p ∈ [1,+∞) and π ∈ Pp(X ). Consider
PS : X → S, measurable, such that D(x, PS(x)) ≤ D(x,y) for all x ∈ X and y ∈ S. Then

Ex∼π[D(x, PS(x))p] = Wp
p(π, PS#π) .

Moreover for any ν ∈ Pp(X ) such that supp(ν) ⊆ S we have Wp(π, PS#π) ≤Wp(π, ν).

Proof The proof in mainly taken from Canas and Rosasco (2012) but we rewrite it in our context.
Considering the admissible coupling γ = (id× PS)#π ∈ Π(π, PS#π), then

Wp
p(π, PS#π) ≤

∫
Dp(x,y)dγ(x,y) =

∫
Dp(x, PS(x))dπ(x) = Ex∼π[D(x, PS(x))p] . (88)

Conversely, if γ∗ is an optimal coupling for Wp(π, PS#π) then for all (x,y) ∈ supp(γ∗) we have
that y ∈ supp(PS#π) by definition of a coupling which means that y ∈ S and so by hypothesis
Dp(x,y) ≥ Dp(x, PS(x)). Therefore,

Wp
p(π, PS#π) =

∫
Dp(x,y)dγ∗(x,y) ≥

∫
Dp(x, PS(x))dγ∗(x,y) =

∫
Dp(x, PS(x))dπ(x) . (89)

Hence Wp
p(π, PS#π) ≥ Ex∼π[D(x, PS(x))p]. The last inequality can be proved in the same way by

considering an optimal coupling γ∗ between π and ν:

Wp
p(π, ν) =

∫
Dp(x,y)dγ∗(x,y)

supp(ν)⊆S
≥

∫
Dp(x, PS(x))dγ∗(x,y)

=

∫
Dp(x, PS(x))dπ(x) = Ex∼π[D(x, PS(x))p] = Wp

p(π, PS#π) .

(90)
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Appendix C. Proofs of Section 4

C.1 Proof of Proposition 36

We recall the result here:

Proposition 36 (Equivalence of Hölder LRIP and IOP) Consider a learning task L(H), an
exponent p ∈ [1,+∞) , and a model set S.

(i) If A satisfies (Hölder-LRIP) with error η ≥ 0 and constant C > 0 then the ”ideal” decoder
defined by

∆[s] ∈ arg min
π∈S

‖A(π)− s‖2 , (24)

satisfies (Hölder-IOP) with constant 2C > 0, error η ≥ 0 and

Bias(π,S) := inf
τ∈S
‖π − τ‖L(H),p + 2C‖A(π)−A(τ)‖δ2 .

(ii) Conversely if the decoder ∆ defined in (24) satisfies (Hölder-IOP) with error η ≥ 0, constant
C > 0 and Bias(π,S) defined above, then A satisfies (Hölder-LRIP) with constant C > 0 and
error 2η.

Proof For the proof we will need that if (a, b) ∈ R+ and δ ∈ [0, 1] then (a+ b)δ ≤ aδ + bδ.
IOP =⇒ LRIP Suppose that ∆ satisfies (Hölder-IOP). Let π, π′ ∈ S. Then by the triangle

inequality:

‖π − π′‖L(H),p ≤ ‖π −∆[A(π)]‖L(H),p + ‖π′ −∆[A(π)]‖L(H),p . (91)

For the first term ‖π − ∆[A(π)]‖L(H),p we can apply the Hölder IOP with e = 0 which gives
‖π−∆[A(π)]‖L(H),p ≤ η since π ∈ S so Bias(π,S) = 0. For the second term see that A(π) = A(π′)+
(A(π)−A(π′)) so we can apply the IOP with e = A(π)−A(π′) which gives ‖π′−∆[A(π)]‖L(H),p =

‖π′ − ∆[A(π′) + e]‖L(H),p ≤ 0 + C‖A(π) − A(π′)‖δ2 + η and finally we have (Hölder-LRIP) with
constant C and error 2η.

LRIP =⇒ IOP Suppose that A satisfies (Hölder-LRIP). Consider the decoder

∆[s] ∈ arg min
π∈S

‖A(π)− s‖2 , (92)

which means that ‖A(∆[s])− s‖2 ≤ ‖A(τ)− s‖2 for any τ ∈ S. We define

Bias(π,S) := inf
τ∈S

(
‖π − τ‖L(H),p + 2C‖A(τ)−A(π)‖δ2

)
.

We show that this decoder satisfies (Hölder-IOP) with this Bias term. Let π ∈ P(X ) and e ∈ Cm.
Consider any τ ∈ S. Then

‖π −∆[A(π) + e]‖L(H),p ≤ ‖π − τ‖L(H),p + ‖τ −∆[A(π) + e]‖L(H),p

∗
≤ ‖π − τ‖L(H),p + C‖A(τ)−A(∆[A(π) + e])‖δ2 + η
∗∗
≤ ‖π − τ‖L(H),p + C‖A(τ)− (A(π) + e)‖δ2
+ C‖(A(π) + e)−A(∆[A(π) + e])‖δ2 + η ,

(93)

where in (*) we use the LRIP since τ and ∆[A(π) + e] are in S. In (**) we use the triangle
inequality and the property (a+ b)δ ≤ aδ + bδ. By the properties of the decoder we have ‖(A(π) +
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e)−A(∆[A(π) + e])‖2 ≤ ‖(A(π) + e)−A(τ)‖2. Consequently:

‖π −∆[A(π) + e]‖L(H),p ≤ ‖π − τ‖L(H),p + 2C‖A(τ)− (A(π) + e)‖δ2 + η

≤ ‖π − τ‖L(H),p + 2C‖A(τ)−A(π)‖δ2 + 2C‖e‖δ2 + η .

‖π −∆[A(π) + e]‖L(H),p

∗
≤ Bias(π,S) + 2C‖e‖δ2 + η ,

(94)

where in (*) we used the definition of Bias(π,S) since the previous was true for any τ ∈ S.

C.2 Proof of Proposition 38

Proposition 38 (Restricted Wasserstein regularity is necessary) Consider X = Rd equipped
with a norm ‖·‖, p ∈ [1,+∞), and a model set S ⊆ Pp(Rd). Consider a sketching operator A defined
by Φ : Rd → Rm with Φ ∈ LipL

(
(Rd, ‖ · ‖), (Rm, ‖ · ‖2)

)
. If A satisfies (Hölder-LRIP) with error

η = 0, constant C > 0 and δ = 1 then

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ CLW1(π, π′) ≤ CLWp(π, π
′) ,

where the Wasserstein distance is computed with the distance D(x,y) = ‖x− y‖.

Proof Under the hypothesis of the proposition we have Φ ∈ Lip(Rd,Rm) and

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ C‖A(π)−A(π′)‖2 , (95)

for some C > 0. As shown in Gribonval et al. (2021a, Appendix D, Proof of Lemma 3.2 and Lemma
3.4) the duality property of the Wasserstein distance implies ‖A(π) − A(π′)‖2 ≤ LW1(π, π′). The
argument is the following: for π, π′ ∈ S,

‖A(π)−A(π′)‖2 = sup
u∈Rm:‖u‖2≤1

|〈u,A(π)−A(π′)〉|

= sup
u∈Rm:‖u‖2≤1

|
∫
〈u,Φ(x)〉dπ(x)−

∫
〈u,Φ(y)〉dπ′(y)|

= sup
u∈Rm:‖u‖2≤1

|
∫

Φu(x)dπ(x)−
∫

Φu(y)dπ′(y)| ,

(96)

where we define Φu(·) = 〈u,Φ(·)〉. Moreover, for any u ∈ Rm with ‖u‖2 ≤ 1 we have Φu ∈
LipL(Rd,R) since Φ ∈ Lip(Rd,Rm). Consequently, using the duality property of the Wasserstein
distance:

‖A(π)−A(π′)‖2 ≤ sup
f∈LipL(Rd,R)

|
∫
f(x)dπ(x)−

∫
f(y)dπ′(y)| = LW1(π, π′) . (97)

Combining with (95) we have

∀π, π′ ∈ S, ‖π − π′‖L(H),p ≤ CLW1(π, π′) . (98)

Finally to conclude we use W1(π, π′) ≤ Wp(π, π
′) since p ∈ [1,+∞) (Santambrogio, 2015, Section

5.1).
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