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Abstract—The upcoming video coding standard, Versatile
Video Coding (VVC), has shown great improvement compared to
its predecessor, High Efficiency Video Coding (HEVC), in terms
of bitrate saving. Despite its substantial performance, compressed
videos might still suffer from quality degradation at low bitrates
due to coding artifacts such as blockiness, blurriness and ringing.
In this work, we exploit Convolutional Neural Networks (CNN) to
enhance quality of VVC coded frames after decoding in order to
reduce low bitrate artifacts. The main contribution of this work
is the use of coding information from the compressed bitstream.
More precisely, the prediction information of intra frames is
used for training the network in addition to the reconstruction
information. The proposed method is applied on both luminance
and chrominance components of intra coded frames of VVC.
Experiments on VVC Test Model (VTM) show that, both in low
and high bitrates, the use of coding information can improve the
BD-rate performance by about 1% and 6% for luma and chroma
components, respectively.

Keywords—CNN, Intra VVC, quality enhancement

I. INTRODUCTION

Video streaming applications have gained more popularity in
the past few years. Therefore, the task of delivering a high
quality video has become essential. From the compression
point of view, the upcoming video coding standards, in partic-
ular VVC, can achieve up to 50% bitrate saving compared
to its predecessor HEVC [1]. Alongside the video coding
progress, receiver devices have also become more powerful
in processing received videos and enhancing their quality.
As a result, video post-processing is nowadays an interesting
option for display manufacturers in order to further improve
the viewing experience of their users.

The promising performance of machine learning methods
has recently encouraged researchers to exploit them in the
video compression domain. Particularly, deep Convolutional
Neural Networks (CNN) have attracted more attention owing
to their significant performance [2], [3]. Despite the interesting
performance of CNN-based methods, they usually impose a
high computational complexity which makes them unsuit-
able for real-time encoding applications. However, the post-
processing approaches which improve the reconstructed video
after the decoding step can be more flexible, since they are not
involved in the encoding and decoding process. In other words,
Such post-processing approaches can serve as an optional step
to be used based on the hardware capacity of the decoder
device.

CNN-based quality enhancement (QE) for VVC has been
sparsely studied in the literature. The existing works target
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Fig. 1: Compressed video quality enhancement framework

both intra and inter frames of coded videos. In [4]–[11], CNN-
based methods have been proposed to the VVC standardization
either as in-loop filter or post-processing step. Considering
the fact that the distortion in compressed video is influenced
by the encoding process and its decision making engine, an
attention based network is proposed in [12], where partition-
ing information of VVC is exploited to further increase the
performance of the QE filter. Finally, in [13], the impact of
network architecture complexity on the performance of the QE
filter has been studied.

In this paper, a CNN-based QE method is proposed, which
follows the objective of the previously presented works with
the use of coding information [4], [12], [14]. The main contri-
bution of this work is that we use the spatial predictor of each
frame as the input to the CNN. This is motivated by the fact
that coding information, such as intra prediction signal, usually
represent a useful information about the type of the distortion
[15]. Fig 1 presents the overall workflow of the proposed
method. The input of the QE neural network is the decoded
frame, the intra prediction information and the Quantization
Parameter (QP). The CNN architecture of this paper is inspired
by the network proposed in [16], which has shown great
performance for the super resolution problem. Moreover, the
three color components of each frame are processed separately.

The rest of this paper is organized as follows. In Section II,
the proposed QE method using intra prediction as coding
information is presented. Experimental results as well as
discussions and comparisons with state of the art solutions
are provided in Section III and finally, Section IV concludes
the paper.

II. PREDICTOR-AWARE QUALITY ENHANCEMENT

In this section, first we will explain the intuition and motivation
for using intra prediction in the proposed CNN-based QE
method. Then, network architecture and training configuration
will be presented.
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Fig. 2: A 16 × 16 block, k, and its two best IPMs (i = 38,
50), with similar costs but different rate-distortion trade-offs
resulting in distinct compression loss patterns (QP 40: λ=301)

A. Intra coding and compression artifacts

In intra coding, each block is predicted based on its neigh-
boring pixels, given some predefined models. In VVC, these
models include a set of 67 Intra Prediction Modes (IPM),
representing 65 angular IPMs, plus DC and planar. Like other
decisions in video coding, the selection of an IPM for a
block consists in optimizing a function of the rate and the
distortion, called the rate-distortion (R-D) cost. Particularly for
intra coding, the the R-D cost of an IPM i, denoted as Ji, is
computed as

Ji = Di + λ×Ri i = 1, ..., 67, (1)

where Di and Ri are the distortion and the rate, obtained
when using i as the IPM of the block, respectively. Moreover,
λ is the Lagrangian multiplier, computed based on the QP
which determines the relative importance of the rate and the
distortion during the decision making process. For instance, in
low bitrates (high QP), the value of λ is higher, which indicates
that minimization of the rate is relatively more important than
minimization of the distortion.

Strict bitrate constraints might cause a situation where the
best IPM minimizing the R-D cost of a block, is not necessarily
the IPM that models the block texture most accurately. Fig. 2
shows an example of such a situation in the first frame of
the BQSquare sequence. In this figure, a 16 × 16 block, k,
is selected and the Prediction (Pk

i ) and Reconstruction (Cki )
blocks corresponding to its two best IPMs in terms of R-D
cost are shown. As can be seen, despite their similar R-D

costs, these two IPMs result in very different reconstruction
signals, with different types of compression loss patterns. This
behavior is due to two different R-D trade offs of the selected
modes.

On one hand, IPM 38 is able to model the block content
more accurately (i.e. smaller distortion D38) with the cost of
a higher IPM and residual coding rate (i.e. R38). On the other
hand, IPM 50 provides a less accurate texture modeling (i.e.
high distortion D50) with a smaller rate residual and IPM
coding rate (i.e. R50). Consequently, these two IPMs result
in very different types of artifacts for the given block, as can
be seen by comparing the corresponding reconstruction blocks
(i.e. Ck38 and Ck50).

The above example proves that the task of QE for a block,
frame or an entire sequence could be significantly impacted
by different choices of coding modes (e.g. IPM) determined
by the encoder. This assumption is the main motivation in our
work to use the intra prediction information for training of the
quality enhancement networks.

B. Proposed CNN-based quality enhancement method

The proposed QE algorithm is applied on intra frames after
decoding. In order to accurately capture the compression loss,
as explained in previous section, the prediction information
is also extracted from the decoder and is used as the input to
the QE network. For each reconstruction frame, this prediction
information is composed of predictors associated to its blocks.
The predictor of each block is the projection of its reference
pixels corresponding to the angle of the used IPM. The
reconstruction and prediction frames are concatenated and fed
to the network as one input image.

Inspired by the architecture of the Enhanced Deep Super
Resolution (EDSR) [16], we have exploited residual training
in our QE network. The architecture of the QE network is
shown in Fig 3. The first convolutional layer receives the
reconstruction and prediction frames as input. In the next step,
after one convolutional layer, 32 identical residual blocks, each
composed of two convolutional layers, and one Relu layer in
between, are used. The convolutional layers in the residual
blocks have the same size as the feature maps and kernel
size of first convolutional layer. In order to normalize the
feature maps, a convolutional layer with batch normalization
is applied after the residual blocks. A skip connection between
the input of the first and the last residual block is used. Two
more convolutional layers after the residual blocks are used.
Finally, the last convolutional layer has one feature map which
constructs the output frame.

Given I = P ⊕ C as the concatenation of the prediction P
and reconstruction C frames as input, producing the enhanced
frame Ô, is formulated as

Ô = F 1
1 (F

2
2 (Bn(F

1
3 (Res

32(F 1
2 (I)))) + I)), (2)

where F1(.) and F2(.) are 3×3×256 convolutional layer, with
and without the Relu activation layer, respectively. Moreover,
F3(.) is a 3 × 3 × 1 convolutional layer with Relu activation
layer. The superscript of each function indicates the number
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Fig. 3: Network architecture of the proposed method using the prediction and the reconstruction signal as the input.

of times they are repeated sequentially in the network archi-
tecture. Finally, Res and Bn are the residual block and batch
normalization layer, respectively.

The task of the training phase is to optimize the parameters
θQE of the above QE function, fQE , expressed as

Ô = fQE(C,P; θQE). (3)

The L2 norm with respect to the original frame O is used
as the cost function of the training phase

L2(O − Ô) = ||O − Ô||22. (4)

In the proposed method, each color component of the
decoded video (i.e. one luminance and two chrominance) is
enhanced separately. For this purpose, one network for each
component in different QPs is trained with the above network
architecture and using the corresponding prediction signal of
that component.

III. EXPERIMENTAL RESULTS

As the proposed post-processing module is designed to en-
hance the quality of intra coded frames, two image datasets
of DIV2K and Fliker2K are used for training. All images in
the datasets are encoded in All-Intra (AI) configuration of the
VVC Test Model version 5.0 (VTM-5.0) [1], using 6 QPs,
between 22 and 47. The prediction information is extracted
during decoding process for all datasets in all QP ranges.

The network was implemented and trained in pyTorch
(1.4.0). For training, 64 × 64 patches of reconstruction and
prediction frames were extracted randomly from the training
dataset, with batch size of 32. The training started with the
learning rate of 10−4 which was then decayed by the scale of
0.1 for each 100 epochs until 500 epochs. At the end of the
training, a total of 3×6 trained models were obtained for 3
components in 6 QPs.

In order to evaluate our method, the test sequences of JVET
CTC (classes A1, A2, B, C, D, E) were encoded with the
VTM-5.0 with each of the 6 QPs with the AI configuration.

To study the effect of QE method in different bit-rates, two QP
ranges were evaluated: 1) the CTC QP: (22, 27, 32, 37), and
2) high QP: (32, 37, 42, 47). The performance of different
benchmark methods were measured using the Bjontegaard
delta (BD) bit-rate saving metric based on the PSNR difference
with respect to VTM-5.0 with no QE as an anchor.

Three state of the art VVC CNN-based QE methods are
used as benchmark. First two methods are JVET contributions
[4], [14] proposing QE methods as post processing. Both of
these methods deploy a slightly simpler network architecture
with the QP map and use the reconstruction signal as the
only input to the network. To assess the benefit of using
IPM as input to the network, we also present the results for
the proposed method with only reconstruction frame as input
(denoted ”proposed - without prediction”)

Table I presents the performance of our proposed method
against the anchor compared with the two benchmark methods.
It can be seen that in the CTC QP range, the proposed method
can achieve an average BD-rate gain of 6.7%, 12.6% and
14.5% on Y, U and V components, respectively. In the same
QP range, it is also observed that the proposed method with
the prediction signal outperforms the proposed method without
the prediction signal by 0.9%, 8.1% and 4.8%, on Y, U and
V components, respectively. Compared to the other two JVET
solutions, the proposed method shows a significant gain, in the
CTC QP range.

At high QP range, where artifacts are significantly stronger,
the only comparison is between the proposed method with and
without the prediction signal. As can be seen in Table I, the
proposed method can achieve an average BD-rate gain of 8.3%,
15.8% and 16.2% on Y, U and V components, respectively.
Same as CTC QP range, the use of the prediction signal in
high QPs also further increases the gain with an average BD-
rate of 1.3%, 7.1% and 3.5% on Y, U and V components,
respectively.

In both QP ranges, the achieved BD-rate gain of using
the prediction signal is relatively higher for the U and V
components than for the Y component. This can be due to



TABLE I: Performance comparison in percentage (%) of the proposed method against the VVC in terms of BD-Rate.

Class Sequence

CTC QP (22-37) High QP (32-47)
JVET-N0254 [4] JVET-N0169 [10] Proposed (VTM 5.0) Proposed (VTM 5.0)

(VTM 4.0) (VTM 4.0) Without prediction With Prediction Without prediction With Prediction
Y U V Y U V Y U V Y U V Y U V Y U V

A1

Tango -0.9 -2.7 -3.3 -3.7 -7.8 -8.1 -4.3 -4.4 -9.1 -5.4 -21.8 -21.1 -6.4 -10.5 -11.9 -7.9 -20.2 -16.9
FoodMarket -1.3 -1.7 -2.3 -3.8 -3.8 -4.1 -9.9 -3.8 -9.7 -11.3 -12.2 -13.3 -7.8 -8.9 -10.9 -8.8 -12.8 -11.0
CampFire -0.6 -0.6 -3.1 -2.5 -9.5 -8.3 -3.3 -3.2 -11.1 -4.0 -8.2 -20.2 -6.4 -8.3 -11.2 -7.6 -10.0 -18.8
Average -1.0 -1.6 -2.9 -3.3 -7.0 -6.8 -5.8 -3.8 -10.0 -6.9 -14.1 -18.2 -6.9 -9.3 -11.3 -8.1 -14.4 -15.6

A2

CatRobot -2.2 -3.7 -3.8 -4.6 -7.3 -10.8 -5.7 -4.7 -11.3 -6.4 -14.0 -18.8 -6.7 -13.1 -14.4 -8.0 -18.0 -17.7
Daylight -1.1 -4.3 -1.2 -3.5 -4.6 -5.9 -2.7 -1.7 -5.3 -3.7 -11.9 -11.5 -7.4 -7.9 -6.8 -8.9 -11.9 -9.2
ParkRunning -1.1 -0.2 -0.4 -3.6 -3.7 -3.4 -3.8 -0.6 -1.6 -4.4 -4.5 -4.4 -4.6 -2.2 -2.3 -5.6 -5.6 -5.3
Average -1.5 -2.7 -1.8 -3.9 -5.2 -6.7 -4.1 -2.3 -6.1 -4.8 -10.1 -11.6 -6.2 -7.8 -7.8 -7.5 -11.8 -10.7

B

MarketPlace -0.9 -2.6 -2.9 -3.6 -3.7 -3.6 -4.2 -3.3 -7.9 -5.2 -13.6 -14.1 -5.2 -10.1 -11.3 -6.5 -17.6 -15.9
RitualDance -2.2 -2.3 -4.5 -6.0 -3.7 -4.5 -8.9 -4.3 -11.4 -10.2 -14.2 -16.9 -7.4 -9.7 -13.8 -8.9 -17.0 -17.4
Cactus -0.7 -2.5 -0.8 -4.0 -4.2 -9.1 -4.2 -2.1 -10.9 -4.9 -10.2 -15.7 -6.9 -9.9 -15.2 -8.0 -15.3 -18.0
BasketballDrive -0.3 -2.3 -3.5 -4.2 -11.8 -14.7 -5.1 -8.2 -16.1 -6.2 -18.9 -21.0 -6.3 -12.8 -17.4 -7.7 -17.9 -19.4
BQTerrace -0.5 -1.2 -3.7 -2.3 -7.2 -6.7 -3.4 -4.3 -8.2 -3.9 -13.6 -12.5 -7.5 -9.9 -9.4 -8.7 -15.3 -13.7
Average -0.9 -2.2 -3.1 -4.0 -6.1 -7.7 -5.2 -4.5 -10.9 -6.1 -14.1 -16.0 -6.7 -10.5 -13.4 -8.0 -16.6 -16.9

C

BasketballDrill -3.0 -3.2 -5.2 -8.1 -14.8 -20.5 -9.1 -11.8 -24.3 -10.3 -23.3 -28.0 -8.7 -19.2 -21.2 -10.2 -21.2 -23.0
BQMall -2.1 -2.5 -4.3 -6.3 -5.9 -7.1 -6.7 -4.5 -7.6 -7.4 -11.7 -11.8 -7.6 -10.4 -11.3 -8.7 -16.9 -15.9
PartyScene -1.8 -1.3 -1.5 -4.2 -4.5 -4.7 -4.4 -3.1 -6.0 -4.8 -8.5 -10.0 -6.6 -9.1 -9.7 -7.5 -14.8 -15.3
RaceHorses -0.7 -2.4 -2.4 -3.6 -5.9 -9.3 -3.3 -3.6 -9.2 -3.8 -8.1 -12.3 -4.8 -14.0 -18.4 -5.7 -20.4 -22.8
Average -1.9 -2.3 -3.3 -5.6 -7.8 -10.4 -5.9 -5.7 -11.8 -6.6 -12.9 -15.5 -6.9 -13.2 -15.2 -8.0 -18.3 -19.2

D

BasketballPass -2.4 -1.0 -3.5 -7.1 -9.2 -13.5 -8.0 -8.7 -15.7 -8.8 -18.5 -18.0 -8.7 -14.5 -18.4 -9.8 -19.6 -22.1
BQSquare -2.0 0.2 -3.7 -5.3 -2.0 -6.0 -6.4 -0.5 -5.3 -6.8 -4.6 -9.5 -8.9 -3.0 -14.5 -9.9 -6.1 -17.1
BlowingBubble -2.0 -0.5 -2.8 -4.9 -5.9 -5.2 -5.3 -4.2 -6.6 -5.9 -11.5 -11.2 -6.3 -9.2 -9.8 -7.4 -14.8 -13.6
RaceHorses -2.5 -2.4 -3.5 -6.1 -8.7 -12.1 -5.9 -6.1 -11.7 -6.4 -12.8 -15.3 -6.6 -11.9 -13.7 -7.6 -17.4 -17.4
Average -2.2 -0.9 -3.4 -5.8 -6.5 -9.2 -6.4 -4.9 -9.8 -7.0 -11.9 -13.5 -7.6 -9.6 -14.1 -8.7 -14.5 -17.5

E

FourPeople -3.1 -1.6 -1.6 -7.2 -5.5 -5.6 -8.3 -4.1 -5.9 -9.3 -9.6 -9.5 -8.0 -10.6 -11.3 -9.6 -14.9 -14.5
Johnny -2.0 -1.7 -3.1 -6.3 -9.4 -8.7 -8.2 -7.0 -10.5 -9.4 -15.0 -13.1 -8.3 -15.6 -15.0 -9.5 -20.3 -16.7
KristenAndSara -2.6 -1.5 -1.7 -6.4 -8.0 -7.3 -7.4 -4.6 -8.6 -8.2 -11.3 -12.0 -7.8 -14.7 -12.6 -9.0 -19.5 -15.3
Average -2.6 -1.6 -2.1 -6.6 -7.7 -7.2 -7.9 -5.2 -8.3 -8.9 -12.0 -11.5 -8.0 -13.6 -13.0 -9.4 -18.2 -15.5

All -1.6 -1.9 -2.9 -4.9 -6.7 -8.2 -5.8 -4.5 -9.7 -6.7 -12.6 -14.5 -7.0 -10.7 -12.7 -8.3 -15.8 -16.2

the fact that in VVC, there are advanced tools for chroma
coding to exploit the redundancies. Examples of such tools are
Luma Mapping with Chroma Scaling (LMCS), Joint Cb-Cr
residual coding (JCCR), Cross-Component Linear Modeling
(CCLM) and a specific chroma IPM called luma Derived
Mode (DM) [1]. The use of coding information such as
intra prediction might enable the CNN-based QE to benefit
from the existing correlations and more efficiently predict the
compression artifacts.

IV. CONCLUSION

In this paper, a CNN-based quality enhancement method
was proposed for VVC coded frames, that benefits from the
coding information in the intra prediction signal of each frame.
The experiments showed that using prediction information
can significantly improve the performance of the CNN-based
enhancement methods, both for luma and chroma compo-
nents of intra frames. The best explanation for the observed
improvements is that exposing the CNN training process to
coding information of the sequences, along with their ground-
truth original signal, helps them is learning the pattern of
compression artifacts. Hence, when the networks are used for
the QE task of actual compressed sequences, they can more
efficiently recover the lost information.
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