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Abstract

The aim of this paper is to study the existence of a �nite stopping time for solutions in the form
of variational inequality to �uid �ows following a power law (or Ostwald-DeWaele law) in dimension
N ∈ {2, 3}. We �rst establish the existence of solutions for generalized Newtonian �ows, valid for viscous
stress tensors associated with the usual laws such as Ostwald-DeWaele, Carreau-Yasuda, Herschel-Bulkley
and Bingham, but also for cases where the viscosity coe�cient satis�es a more atypical (logarithmic) form.
To demonstrate the existence of such solutions, we proceed by applying a nonlinear Galerkin method with
a double regularization on the viscosity coe�cient. We then establish the existence of a �nite stopping
time for threshold �uids or shear-thinning power-law �uids, i.e. formally such that the viscous stress
tensor is represented by a p-Laplacian for the symmetrized gradient for p ∈ [1, 2).

1 Introduction

The aim of this paper is to establish the existence of a �nite stopping time for variational inequality solutions
of a �ow following an Ostwald-DeWaele, Bingham, or Herschel-Bulkley law in a di�usive setting. Such �ows
can be formally represented by the following system:


∂tu+ (u · ∇)u+∇π −∆u− div (F (|D(u)|)D(u)) = f in (0,+∞)× Ω

div(u) = 0 in (0,+∞)× Ω

u = 0 on [0,+∞)× ∂Ω

u = u0 on {0} × Ω,

(1.1)

where Ω is an open bounded subset of RN , for N ∈ {2, 3} with a regular enough boundary ∂Ω. Such
nonlinear systems describe the �ow of incompressible generalized Newtonian �uids and give rise to several
relevant models. Several types of �uids are described by (1.1). Firstly, if F (t) = C, the system (1.1) is the

Navier-Stokes equations for a viscous incompressible �uid. Also, by choosing F (t) = (1+t2)
p−2
2 , system (1.1)

describes a Carreau �ow. Another relevant example is obtained by choosing, for p ∈ (1, 2) by F (t) = tp−2

for t > 0 which leads to an Ostwald-DeWaele (power-law) �ow. In the particular case of Bingham arising for
p = 1 which describes a plastic behavior, we get F (0) ∈ [0, 1]. In the latter case, the function is multivalued
at the origin (note that a physical consequence of this phenomenon is the nonexistence of a reference viscosity
for threshold �uids, see for example [5]). It is now established that this problem can be circumvented by
considering the function outside the origin by a regularization process and by giving a meaning to its limit,
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in sense of sub-di�erential. This approach has been successfully carried out in the case of a two-dimensional
Bingham �ow (see, for instance, [19]).

In the present paper, we focus on the mathematical analysis of shear-thinning �ows: a �ow is said to be
shear-thinning when its viscosity decreases as a function of the stresses applied to it, namely, in the �ows
we consider, that the function decreases as the shear rate increases. We mainly refer to [12, 8, 25] for the
physical motivations of such models. Throughout the present article, we will consider simple �uid �ows,
that is we will make the assumption that the shear rate is the second invariant of the strain-rate tensor, and
moreover it is a scalar quantity given by |D(u)|.

In the non-di�usive case (i.e. without Laplacian) the existence and the regularity of distributional solutions
for p > 2N

N+2 , which corresponds to the limiting case of the compact Sobolev embedding W 1,p(Ω) ↪→ L2(Ω)
is known for the various boundary conditions, both in the stationary and evolutionary cases. We refer for
example to [3, 6, 7, 13, 17, 18, 20, 22, 23, 31, 32, 37, 38] and the references therein for more details, as well as
to the monograph [11] for a complete and modern presentation of this type of problem. In this non-di�usive
case, it is possible to show (see [10]) that the problem can be ill-posed in the sense of distributional solutions
in the case 2N

N+2 ≥ p. One can avoid such hypotheses on p ≥ 1 by using dissipative solutions, whose existence
has been proved in [1] in the three-dimensional setting. For the above reasons, we consider in the present
paper variational inequality solutions in a di�usive setting, which we believe particularly interesting in view
of numerical simulations perspective (see for example [26, Chapter 4] or [35]) as for controllability (see for
example [24, 27]).

Secondly, we focus on a remarkable property of shear-thinning power-law type �uids: the existence of a �nite
stopping time. Such a property has been established, for example, in the case of a two-dimensional Bingham
�ow in [15], in the case of some electrorheological �uids in [2], as well as for the parabolic p-Laplacian
operator (see [16]).

Roughly speaking, this property translates into the existence of a time Ts > 0 from which the �uid is at a
standstill, i.e. such that the velocity �eld solution to the equation veri�es u(t) = 0 for almost all t ≥ Ts.
Intuitively, the existence of such a stopping time for the �uid is speci�c to the shear-thinning character for
the Ostwald-DeWaele �uid (as well as for a plastic �uid): the viscosity coe�cient given by F (t) = tp−2 is
decreasing in such a case, which is formally characterized by 1 ≤ p < 2, and amounts to saying that the
�uid's viscosity is all the greater the lower the stresses applied to it. It is therefore to be expected that, with
no external force adding energy to the system, the time decay of the �uid's energy implies that its viscosity
will increase until it stops. Note that in the di�usive case, which we consider here through the system (1.1),
we are able to establish the �nite stopping time of the kinetic energy associated with the solution of (1.1),
i.e. the stopping of its L2-norm.

Having established the existence of weak solutions in the form of a parabolic variational inequality (see
Theorem 3.1 and De�nition 2.1) for tensors τ of the form:

τ(D(u)) = F (|D(u)|)D(u),

similar to those established, for example, in [19], we will establish the existence of such a stopping time for
the kinetic energy of solutions via a di�erential inequality method (see Theorem 3.2).

Assumptions over the viscosity coe�cient F

Throughout this article, we will assume that the viscosity coe�cient F satis�es the following assumptions:

(C1) F : (0,+∞) → (0,+∞);

(C2) F ∈W 1,∞
loc ((0,+∞));

(C3) t 7→ tF (t) is non-decreasing on (0,+∞);

(C4) there exist p ∈ [1, 2], t0 > 0 and K > 0 such that for every t ≥ t0, F (t) ≤ Ktp−2.
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Some examples of functions verifying the above assumptions are given in Appendix A. We emphasize in
particular that this takes into account many physical models, such as the Carreau, Bingham, Herschel-
Bulkley, Cross, or power law �ows.

Remark 1. Assumption (C3) is equivalent to the fact that for all ε ≥ 0, the function t 7→ tF
(√

ε+ t2
)
is

non-decreasing. Indeed, we can write:

∀t ∈ (0,+∞), tF
(√

ε+ t2
)
=

(
t√
ε+ t2

)√
ε+ t2F

(√
ε+ t2

)
.

Hence, t 7→ tF
(√

ε+ t2
)
is the product of two non-negative and non-decreasing functions, so it is a non-

decreasing function. The opposite implication being obvious by setting ε = 0.

Remark 2. Since the main objective of this article is not to study the existence of solutions, we have
established Galerkin method by considering the assumption (C2) in order to make use of Picard-Lindelöf
theory, but note that it is possible to weaken this hypothesis by making use of Cauchy-Peano or Carathéodory
theory. Then, the assumption (C2) can be replace by F ∈ Cloc((0,+∞)) without changing the proof of
Theorem 3.1.

The existence of a �nite stopping time for the kinetic energy associated to variational inequality weak
solutions following from Theorem 3.1 is proved in Section 5, while considering a viscosity coe�cient F
verifying (C1)-(C4) and such that it describes a power-type law, namely it satis�es for 1 ≤ p < 2 the
additional assumption

F (t) ≥ Ctp−2. (1.2)

Let us conclude with the observation that many �uids are described or approximated by such a law, and are
used in a wide range of practical applications. Furthermore, many thixotropic �ows (such as blood) also fall
into this category, depending on the circumstances of the �ow studied (see [33]).

Notations: Throughout the paper, we denote in a generic way the constants by the letter C, and omit
their dependence on the parameters in the notations while irrelevant for our study. The functional spaces
are de�ned as follow. We denote by C∞

0,σ(Ω) the space of divergence-free functions belonging to the space of
smooth and compactly supported functions C∞

0 (Ω), and by L2
σ(Ω) the closure of C∞

0,σ(Ω) in L
2(Ω). Then,

recalling that H1
0 (Ω) is the closure of C∞

0 (Ω) into H1(Ω) (which is endowed with the norm u 7→ ∥∇u∥L2),
we consider the Sobolev space H1

0,σ(Ω) de�ned as

H1
0,σ(Ω) :=

{
w ∈ L2

σ(Ω)/ w = ∇v, v ∈ H1
0 (Ω)

}
,

which is composed of functions whose trace and divergence are null. We denote H−1
σ (Ω) its dual and ⟨·, ·⟩ is

the duality product between H−1
σ (Ω) and H1

0,σ(Ω). Finally, the space Cw(R+, L
2
σ(Ω) is the functional space

whose elements are continuous in the time variable and belonging to L2
σ(Ω) endowed with its weak topology

in the space variable. We should add when necessary the index �loc� to underline that we consider local in
time solutions.

2 Weak characterization of solutions by a parabolic variational inequality

In this section we introduce a weak formulation of system (1.1) using a parabolic variational inequality
(see De�nition 2.1). First, we point out that in the system (1.1), we consider a non-slip boundary condition
on ∂Ω.It is thus natural to assume that the initial velocity �eld u0 is of null trace on ∂Ω, namely u0 belongs to
H1

0,σ(Ω). Following the ideas employed for showing the existence of solution to Bingham equations in [19, 28],
we de�ne a functional j making appear the viscous non-linear term in (1.1) in its derivative.
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We �x for the moment 0 ≤ ε ≤ δ and we de�ne a function Gε : (0,+∞) → (0,+∞) and a functional
jε : H

1
0,σ(Ω) → R by

Gε(t) =

� t

0
sF (

√
ε+ s2) ds for every t ∈ (0,+∞) (2.1)

and

jε(v) =

�
Ω
Gε(|D(v)|) dx, (v ∈ H1

0,σ(Ω)), (2.2)

respectively. We also denote j = j0 and G = G0. One can check that Gε is a convex functional for ε small
enough. Indeed,

G′
ε(t) = tF (

√
ε+ t2), for every t ∈ (0,+∞),

and applying the hypothesis (C3) the convexity of G follows immediately. Moreover, we point out that the
functional jε de�ned by (2.2) is convex and veri�es

⟨j′ε(v), w⟩−1,1 =

�
Ω
F
(√

ε+ |D(v)|2
)
(D(v) : D(w)) dx (v, w ∈ H1

0,σ(Ω)). (2.3)

Remark 3. We point out that j′ is well de�ned. Firstly, by our assumptions (C2) and (C3), we can deduce
that for all β ∈

(
0, 12
)
, there exists δ0 such that:

F (t) ≤ t−(1+β) for every t ∈ (0, δ0).

Indeed, assume that this last inequality does not hold, then for every δ0 > 0, there exists t0 ∈ (0, δ0) such
that:

F (t0) > t
−(1+β)
0 .

We can consider without loss of generality that δ0 < min
(
1, F (1)

− 1
β

)
, which implies, using our assump-

tion (C3):

δ−β
0 < t−β

0 < t0F (t0) ≤ F (1).

This contradiction shows the result. We recall Korn's L2 equality for divergence free vector �elds:

�
Ω
|D(φ)|2 dx =

1

2
∥φ∥2H1

0
, (φ ∈ H1

0,σ(Ω)).

Using these last results and applying Cauchy Schwarz's and Hölder's inequalities, we get:

|⟨j′(u), φ⟩−1,1| =
∣∣∣∣�

Ω
F (|D(u)|)D(u) : D(φ) dx

∣∣∣∣
≤ 1√

2

(�
Ω
F (|D(u)|)2|D(u)|2 dx

) 1
2

∥φ∥H1
0

=
1√
2

(�
{|D(u)|≤δ0}

F (|D(u)|)2|D(u)|2 dx+

�
{|D(u)|>δ0}

F (|D(u)|)2|D(u)|2 dx

) 1
2

∥φ∥H1
0

≤ 1√
2

(�
{|D(u)|≤δ0}

|D(u)|−2β dx+

�
{|D(u)|>δ0}

F (|D(u)|)2|D(u)|2 dx

) 1
2

∥φ∥H1
0

=
1√
2

(
1

1− 2β

�
{|D(u)|≤δ0}

� |D(u)|

0
s1−2β ds dx+

�
{|D(u)|>δ0}

F (|D(u)|)2|D(u)|2 dx

) 1
2

∥φ∥H1
0
.

This implies that j′ is well-de�ned.
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We now establish the de�nition of solutions in the form of variational inequality, which we will consider in
the rest of the article.

De�nition 2.1 (Weak solution of (1.1)). We say that a function u ∈ L2
loc

(
R+, H

1
0,σ(Ω)

)
∩Cw,loc(R+, L

2
σ(Ω))

such that ∂tu ∈ L
4
N
loc

(
R+, H

−1
σ (Ω)

)
is a weak solution of (1.1) if and only if u veri�es u|t=0 = u0 ∈ H1

0,σ(Ω),
and for every �xed T > 0 and all φ ∈ C∞((0, T )× Ω) we have:

� T

0
⟨∂tu(t), φ(t)⟩ dt+

1

2

(
∥u0∥2L2(Ω) − ∥u(T )∥2L2(Ω)

)
+

� T

0

�
Ω
D(u(t)) : D(φ(t)− u(t)) dx

−
� T

0

�
Ω
(u(t) · ∇u(t)) · φ(t) dx dt+

� T

0

�
Ω
G (|D(φ(t))|)−G (|D(u(t))|) dx dt

≥
� T

0
⟨f(t), φ(t)− u(t)⟩ dt. (2.4)

Let us quickly motivate this de�nition with some formal computations. First, we point out that since u
belongs to Cw,loc(R+, L

2
σ(Ω)), De�nition 2.1 makes sense. Then, if we consider for some �xed T > 0 that the

Lebesgue measure of the set
{(t, x) ∈ (0, T )× Ω | |D(u)(t, x)| ≤ δ}

is equal to zero for a small δ > 0, we have that:
� T

0
⟨j′(u), φ⟩ dt =

� T

0

�
Ω
F (|D(u)|) (D(u) : D(φ)) dx dt.

Now, if we replace φ by u+ sφ, with s > 0, in the variational inequality (2.4), we obtain after dividing by s:

� T

0

�
Ω
D(u) : D(φ) dx dt+

� T

0

�
Ω

G (|D(u+ sφ)|)−G (|D(u)|)
s

dx dt

≥
� T

0

�
Ω
⟨f − ∂tu, φ⟩ dt−

� T

0

�
Ω
(u · ∇u) · φ dx dt.

Since j admits a Fréchet-derivative, it also admits a Gâteaux-derivative and both are the same. Hence,
taking the limit as s→ 0:

� T

0

�
Ω
D(u) : D(φ) dx dt+

� T

0

�
Ω
F (|D(u)|) (D(u) : D(φ)) dx dt

≥
� T

0

�
Ω
⟨f − ∂tu, φ⟩ dt−

� T

0

�
Ω
(u · ∇u) · φ dx dt.

Repeating once again the previous reasoning but writing u − sφ instead of u + sφ, we get the following
equality:

� T

0

�
Ω
D(u) : D(φ) dx dt+

� T

0

�
Ω
F (|D(u)|) (D(u) : D(φ)) dx dt

=

� T

0

�
Ω
⟨f − ∂tu, φ⟩ dt−

� T

0

�
Ω
(u · ∇u) · φ dx dt.

Therefore, assuming that u is regular enough, we obtain

− 1

2

� T

0

�
Ω
∆u · φ dx dt−

� T

0

�
Ω
div (F (|D(u)|)D(u))φ dx dt

=

� T

0

�
Ω
(f − ∂tu− u · ∇u) · φ dx dt.
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Furthermore De Rham's theorem for a domain with Lipschitz boundary states that there exists a pressure
term p such that f = ∇p into some well chosen space (see [18, section 2] for details). Considering such a
function and also the two previous observations, we can write:

� T

0

�
Ω

(
∂tu+ u.∇u− 1

2
∆u+∇p− div (F (|D(u)|)D(u))− f

)
φ dx dt = 0, (φ ∈ C∞((0, T )× Ω)) ,

which is almost everywhere equivalent to the equation (1.1) up to the multiplicative dynamic viscosity con-
stant 1

2 . We have omitted this constant in De�nition 2.1 for convenience, and note that it is enough to add

the constant 2 in front of the term
� T
0

�
ΩD(u) : D(u− φ) dx dt in order to �nd exactly (1.1).

Finding a solution to the parabolic variational inequality thus amounts to giving meaning to the integral of
the nonlinear viscosity coe�cient term inherent in the problem, which can be a singular integral in the case
of a Bingham �uid.

3 Main results

As announced in the introduction, the main result of this paper is the existence of a �nite stopping time
for the kinetic energy of solutions of the system (1.1). To this end, we present a proof of the existence of
solutions in the form of a variational inequality for this system. The study of the existence of such solutions
has initially been developed in [28]. Then, this method was successfully applied for some nonlinear parabolic
problems, as the two dimensional Bingham equations in [19], or some power law systems in [30]. Following
a similar approach, we get the following existence theorem.

Theorem 3.1. Assume that the function F satis�es the hypotheses (C1)-(C4) and that Ω ⊂ RN , N ∈ {2, 3},
is a bounded domain with a Lipschitz boundary, and consider an initial datum u0 ∈ H1

0,σ(Ω) and a force term

f ∈ L2((0, T ), H−1
σ (Ω)). Then, there exists a weak solution u of (1.1) having the following regularity

u ∈ Cw,loc

(
R+, L

2
σ(Ω)

)
∩ L2

loc

(
R+, H

1
0,σ(Ω)

)
and ∂tu ∈ L

4
N
loc(R+, H

−1
σ (Ω)).

This result thus ensures the existence of suitable solutions in the two-dimensional and three-dimensional
cases. It follows from classical arguments that the solutions are Hölder continuous in time, for a well-chosen
Hölder coe�cient.

The nonlinear term in the Bingham equations allows us to obtain the rest of the �uid in �nite time in the
two-dimensional case. This has been demonstrated in [15], using the following approach: it is assumed that
the force term will compensate the initial kinetic energy of the �uid, which amounts to establishing a relation
between the norm ∥u0∥L2 and an integral of ∥f(t)∥L2 . This argument is based on the use of the following
two-dimensional Nirenberg-Strauss inequality:

∃γ > 0, ∀u ∈ H1
0 (Ω), ∥u∥L2 ≤ γ

�
Ω
|D(u)| dx.

We note that such an inequality cannot be true in dimension greater than two, because it would contradict
the optimality of Sobolev embedding. We therefore propose to slightly adapt this approach to show the
existence of a stopping �nite time in both the two and the three-dimensional cases. Firstly, let us formalize
the de�nition.

De�nition 3.1 (Finite stopping time). Let u be a weak solution in the sense of De�nition 2.1 of the sys-
tem (1.1). We say that T0 ∈ R+ is a �nite stopping time for u if:

∥u(T0)∥L2(Ω) = 0.
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In order to prove the existence of a �nite stopping time for the solution u provided by Theorem 3.1, we do
not make any assumption on the initial velocity �eld, but we assume that after a certain time the �uid is no
longer subjected to any external force. More exactly we make some more assumption on F as stated by the
following theorem.

Theorem 3.2 (Existence of a �nite stopping time). Assume that the hypotheses of Theorem 3.1 are veri�ed
and that p ∈ [1, 2). Moreover, we assume that there exists two positive constants κ and T1 such that

F (t) ≥ κtp−2 for every t ∈ (0,+∞) and f = 0 almost everywhere on (T1,+∞). (3.1)

Then, there exists a �nite stopping time T0 ∈ R+ for u in the sense of De�nition 3.1. Moreover, there exists
a constant C > 0 such that

T0 ≤ T1 +
C

1− s(p)

(
∥u0∥L2(Ω) + ∥f∥L2((0,T1),H

−1
σ (Ω))

)1−s(p)
, (3.2)

with

s(p) =
5p− 4

4 + p
. (3.3)

Thus, this result suggests that if no energy is added to the system, then the kinetic energy associated with
an Ostwald-DeWaele or Bingham-type �ow should become null in a �nite time.

Remark 4. Estimate (3.2) in Theorem 3.2 degenerates when p → 2. More exactly, the upper bound on the
stopping time goes to +∞ when p→ 2. This is related to the loss of the �nite stopping time property of the
solution in the limit case p = 2.

4 Proof of Theorem 3.1

In this section, we establish the proof of Theorem 3.1 in the two-dimensional and three-dimensional settings.
In order to prove this result, we begin by establishing an energy estimate for solutions obtained by the
Galerkin method in order to obtain uniform bounds with respect to the parameters. We note here that we
will have two parameters: a �rst parameter due to Galerkin's approximation, and a second one due to the
regularization proper to the viscosity coe�cient F .

First, we brie�y establish the Galerkin solutions for the regularized system, with the regularization usually
used in numerical methods. Next, we carry out energy estimates to derive, in a third step, weak convergence
properties. Finally, we demonstrate the result by making use of properties speci�c to variational inequalities.

First step: Galerkin scheme

We apply here the usual Galerkin method using the Stokes operator in homogeneous Dirichlet setting, and
we use its eigenfunctions (wi)i∈N as an orthogonal basis of H1

0,σ(Ω) and orthonormal basis of L2
σ(Ω) (see [21]

for details about this property, and [34, Section 2.3] for details concerning the Stokes operator).

For every positive integer m, we denote by Pm the projection of L2
σ(Ω) onto Span ((wi)1≤i≤m). We would

like to formally de�ne our Galerkin system as follows.
∂tum + Pm(um · ∇um) +∇Pm(π) −∆um − Pm (div (F (|D(um)|)D(um))) = Pmf
div(um) = 0 on R+ × Ω
um = 0 on R+ × ∂Ω
um = Pm(u0) on {0} × Ω.

(4.1)

In order to avoid the issue posed by the nonlinear term in domains for which the �uid is not deformed we
consider the following regularized Galerkin system:
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∂tum,ε − Pm

(
div
(
F
(√

ε+ |D(um,ε)|2
)
D(um,ε)

))
+ Pm(um,ε · ∇um,ε) +∇Pm(π)−∆um,ε = Pmf in R+ × Ω

div(um,ε) = 0 in R+ × Ω

um,ε = 0 on R+ × ∂Ω

um,ε|t=0 = Pm(u0) in Ω,

(4.2)

with 0 < ε < 1. Applying a Galerkin method, we can see that, writing um,ε(t) =
∑m

i=1 d
i
m(t)wi, we obtain

the ordinary di�erential system for all 1 ≤ i ≤ m:

dim
′
(t) = ⟨f, wi⟩ −

�
Ω

1

2
∥wi∥2H1

0
dim(t) dx−

�
Ω
D(u0) : D(wi) dx

−
�
Ω

1

2
∥wi∥2H1

0
F

√√√√ε+
m∑
j=1

1

2
∥wj∥2H1

0
(djm(t))2 + 2(D(wj) : D(u0))d

j
m(t) +

1

2
∥u0∥2H1

0

 dim(t) dx

−
�
Ω
F

√√√√ε+
m∑
j=1

1

2
∥wj∥2H1

0
(djm(t))2 + 2(D(wj) : D(u0))d

j
m(t) +

1

2
∥u0∥2H1

0

 (D(u0) : D(wi)) dx

−
m∑
j=1

�
Ω
wj · ∇wid

i
m(t)djm(t) dx, (4.3)

completed with initial condition dim(0) = (u0, wi)H1
0
. This system is described by a locally Lipschitz contin-

uous function with respect to dm. Indeed, applying the hypothesis (C2), the function ψ : Rm → R de�ned
by

ψ(x) = F

√√√√ε2 +
m∑
j=1

1

2
∥wj∥2H1

0
x2j + 2(D(wj) : D(u0))xj +

1

2
∥u0∥2H1

0

 ∀x ∈ Rm

is locally Lipschitz. The Picard-Lindelöf theorem shows the existence of a solution for system (4.2) de�ned
on R+.

Second step : Energy estimates and weak convergence

We recall that the solution um,ε of (4.2) belongs to Span ((wi)1≤i≤m), for (wi)i∈N the basis of H1
0,σ(Ω) which

are the eigenfunctions of the Stokes operator in the homogeneous Dirichlet setting.

In order to clarify our presentation, we specify that we consider the following notion of solution.

De�nition 4.1 (Solution of (4.2)). We say that um,ε ∈ L2((0, T ), H1
0,σ(Ω)), ∂tum,ε ∈ L2((0, T ), H−1(Ω)) is

a weak solution of (4.2) if for every φ ∈ C∞((0, T )× Ω) and for a.e. t ∈ (0, T ) it satis�es

⟨∂tum,ε, φ⟩+
�
Ω
D(um,ε) : D(φ) dx+ ⟨j′ε(um,ε), φ⟩ −

�
Ω
(um,ε · ∇um,ε) · φ dx = ⟨f, φ⟩. (4.4)

We point out that this de�nition makes sense since we are studying smooth �nite dimensional Galerkin
solutions. Then, in order to obtain weak limits into the Galerkin formulation, we establish usual energy
estimates, proved in Appendix B.

Proposition 4.1. Assume that um,ε is a solution of (4.2) in the sense of De�nition 4.1. Then, there exists a
positive constant C depending on p, Ω, N , ∥u0∥L2(Ω) and ∥f∥L2

loc(R+,H−1(Ω)) such that the following estimates
hold:

1. ∥um,ε∥2L∞
loc(R+,L2

σ)
+ 1

2∥um,ε∥2L2
loc(R+,H1

0,σ)
≤ C

(
∥f∥2

L2
loc(R+,H−1)

+ ∥u0∥2L2

)
;
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2. ∥j′ε(um,ε)∥
L

4
N
loc(R+,H−1)

≤ C
(
1 + ∥f∥L2

loc(R+,H−1) + ∥u0∥L2

)p−1
;

3. ∥∂tum,ε∥
L

4
N
loc(R+,H−1)

≤ C
(
∥f∥2

L2
loc(R+,H−1)

+ ∥u0∥2L2

)
+ C

(
∥f∥2

L2
loc(R+,H−1)

+ ∥u0∥2L2

)2
+C

(
1 + ∥f∥L2

loc(R+,H−1) + ∥u0∥L2

)p−1
.

We then focus in the weak convergence with respect to the above estimates. Here, get suitable convergences
by taking the limit with respect to the parameter ε in a �rst time, then by taking the limit with respect to the
Galerkin parameter m. Thus, before proving Theorem 3.1, we show suitable weak convergence properties.

Lemma 4.1. With the hypotheses of Proposition 4.1 there exists vm ∈ L2
loc

(
R+, H

1
0,σ(Ω)

)
∩L∞

loc

(
R+, L

2
σ(Ω)

)
with ∂tvm ∈ L

4
N
loc

(
R+, H

−1
σ (Ω)

)
such that, up to subsequences:

1. ∂tum,ε ⇀ ∂tvm in L
4
N
loc

(
R+, H

−1
σ (Ω)

)
;

2. um,ε ⇀ vm in L2
loc

(
R+, H

1
0,σ(Ω)

)
;

3. um,ε → vm in L2
loc(R+, L

2
σ(Ω));

4. um,ε
∗
⇀ vm in L∞

loc

(
R+, L

2
σ(Ω)

)
.

Moreover, vm satis�es, for every �xed T > 0 and all ψ ∈ C∞((0, T )× Ω):

1

2

(
∥vm(T )∥2L2 −

1

2
∥u0∥2L2

)
−
� T

0
⟨∂tvm, ψ⟩ dt+

� T

0

�
Ω
D(vm) : D(vm − ψ) dx dt

+

� T

0
j(vm)− j(ψ) dt−

� T

0

�
Ω
(vm · ∇vm) · ψ dx dt ≤

� T

0
⟨f, vm − ψ⟩ dt. (4.5)

Proof. The �rst and second points follow from the re�exivity of L
4
N
loc

(
R+, H

−1
σ (Ω)

)
and L2

loc(R+, H
1
0,σ(Ω))

respectively, the third one from Aubin-Lions' Lemma, and the last one by Banach-Alaoglu-Bourbaki's theo-
rem.

Then, since um,ε is a solution of (4.2), it satis�es (4.4). Testing against φ = um,ε − ψ in (4.4) for a test
function ψ, we have:

⟨∂tum,ε, um,ε − ψ⟩+
�
Ω
D(um,ε) : D(um,ε − ψ) dx+ ⟨j′ε(um,ε), um,ε − ψ⟩

−
�
Ω
(um,ε · ∇um,ε) · ψ dx = ⟨f, um,ε − ψ⟩. (4.6)

Using (2.3) leads to the well-known convexity inequality:

jε(um,ε)− jε(ψ) ≤ ⟨j′ε(um,ε), um,ε − ψ⟩. (4.7)

Using now Lemma B.2 for um,ε in (4.7), we get:

j(um,ε)− C(ε, um,ε)− jε(ψ) ≤ ⟨j′ε(um,ε), um,ε − ψ⟩

and then, by (C3) applied to um,ε for the convergence toward vm, we get:
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j(um,ε)− C(ε, um,ε)− jε(ψ) ≤ ⟨j′ε(um,ε), um,ε − ψ⟩.

Then, we can write (see [21] part 5.9. for details):

∀φ ∈ H1
0,σ(Ω),

�
Ω
um,ε(T )φ dx = ⟨um,ε(T ), φ⟩ =

� T

0
⟨∂tum,ε(t), φ⟩ dt+ ⟨u0, φ⟩ . (4.8)

Now, we also have, using Proposition 4.1:

� T

0
⟨∂tum,ε(t), φ⟩ dt+ ⟨u0, φ⟩ ≤ ∥∂tum,ε∥

L
4
N ((0,T ),H−1)

(� T

0
∥φ∥

4
4−N

H1
0

dt

) 4−N
4

+ C∥u0∥L2∥φ∥H1
0

≤ C
(
T

4−N
4 + ∥u0∥L2

)
∥φ∥H1

0
.

In the above inequality we considered φ as a function in L∞((0, T ), H1
0 (Ω)), so it belongs to L

4
4−N ((0, T ), H1

0 (Ω))

and its left-hand side de�nes a linear form over L
4
N ((0, T ), H−1(Ω)).

Also, the weak convergence leads to:

� T

0
⟨∂tum,ε(t), φ⟩ dt −→

ε→0

� T

0
⟨∂tvm(t), φ⟩ dt. (4.9)

Finally, (4.8) and (4.9) imply, up to apply a dominated convergence theorem, to:

um,ε(T ) ⇀
ε→0

vm(T ) in L2(Ω). (4.10)

Then, (4.10) implies:

lim
ε→0

1

2

(
∥um,ε(T )∥2L2 − ∥Pm(u0)∥2L2

)
≥ 1

2

(
∥vm(T )∥2L2 − ∥Pm(u0)∥2L2

)
(4.11)

Also, from usual estimates (see [34, Chapter 4]), since um,ε ⇀
ε→0

vm in L2((0, T ), H1
0,σ(Ω)), we have up to

extract:

� T

0

�
Ω
|D(um,ε)|2 dx dt −→

ε→0

� T

0

�
Ω
|D(vm)|2 dx dt (4.12)

and

� T

0

�
Ω
(um,ε · ∇um,ε) · ψ dx dt −→

ε→0

� T

0

�
Ω
(vm · ∇vm) · ψ dx dt. (4.13)

Integrating in time (4.6), and passing to the limit over ε, combining with (4.12), (4.13), (4.11) and Lemma B.3
leads to (4.5).

Arguing in the same way, we obtain the following result.

Lemma 4.2. Under the assumptions of Proposition 4.1, there exists u ∈ L2
loc

(
R+, H

1
0,σ(Ω)

)
∩L∞

loc

(
R+, L

2
σ(Ω)

)
with ∂tu ∈ L

4
N
loc

(
R+, H

−1
σ (Ω)

)
such that the function vm given by Lemma 4.1 veri�es.
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1. ∂tvm ⇀ ∂tu in L
4
N
loc

(
R+, H

−1
σ (Ω)

)
;

2. vm → u in L2
loc

(
R+, L

2
σ(Ω)

)
;

3. vm ⇀ u in L2
loc(R+, H

1
0,σ(Ω));

4. vm
∗
⇀ u in L∞

loc

(
R+, L

2
σ(Ω)

)
.

Moreover, we point out that u ∈ Cw,loc(R+, L
2
σ(Ω)) from the above estimates (see [9, Proposition V.1.7.

p.363] for details). We can now give the proof of Theorem 3.1.

Proof of Theorem 3.1. We take up again the method previously used, that is we write :

∀φ ∈ H1
0,σ(Ω),

�
Ω
vm(T )φ dx = ⟨vm(T ), φ⟩ =

� T

0
⟨∂tvm(t), φ⟩ dt+ ⟨Pm(u0), φ⟩ . (4.14)

Using Proposition 4.1 then leads to:

� T

0
⟨∂tvm(t), φ⟩ dt+ ⟨u0, φ⟩ ≤ ∥∂tvm∥

L
4
N ((0,T ),H−1)

(� T

0
∥φ∥

4
4−N

H1
0

dt

) 4−N
4

+ C∥u0∥L2∥φ∥H1
0

≤ C
(
T

4−N
4 + ∥u0∥L2

)
∥φ∥H1

0
. (4.15)

Then, the weak convergence leads to:

� T

0
⟨∂tvm(t), φ⟩ dt −→

m→+∞

� T

0
⟨∂tu(t), φ⟩ dt. (4.16)

Finally, (4.14) and (4.16) imply:

vm(T ) ⇀
m→+∞

u(T ) in L2(Ω). (4.17)

Then, (4.10) implies:

lim
m→+∞

1

2

(
∥vm(T )∥2L2 − ∥Pm(u0)∥2L2

)
≥ 1

2

(
∥u(T )∥2L2 − ∥u0∥2L2

)
(4.18)

Using once again usual estimates for Navier-Stokes equation, since vm −→
m→+∞

u in L2((0, T ), H1
0,σ(Ω)), we

have:

� T

0

�
Ω
|D(vm)|2 dx dt −→

m→+∞

� T

0

�
Ω
|D(u)|2 dx dt (4.19)

and

� T

0

�
Ω
(vm · ∇vm) · ψ dx dt −→

m→+∞

� T

0

�
Ω
(u · ∇u) · ψ dx dt. (4.20)

Applying lemma B.3 with our assumption (C3) and passing to the limit over m, we get:
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lim
m→+∞

� T

0
j(vm) dt ≥ j(u). (4.21)

Passing to the limit over m in (4.15), combining with (4.19), (4.20), (4.21) and (4.18) leads to:

1

2

(
∥u(T )∥2L2(Ω) − ∥u0∥2L2(Ω)

)
−
� T

0
⟨∂tu, ψ⟩ dt+

� T

0

�
Ω
D(u) : D(u− ψ) dx dt+

� T

0
j(u)− j(ψ) dt

−
� T

0

�
Ω
(u · ∇u) · ψ dx dt ≤

� T

0
⟨f, u− ψ⟩ dt (4.22)

which is the desired result, that is u is a weak solution of (1.1).

5 Existence of a �nite stopping time for shear-thinning �ows

In this part, we assume that hypotheses of the Theorem 3.2 are ful�lled. We are interested to show the
existence of a �nite stopping time of weak solutions of (1.1) for a viscosity coe�cient F which behaves at
least as a power-law model.

The �nite stopping time pro�le of a �ow is speci�c to the shear-thinning setting, and is a naturally occurring
property in many applications. An illustrative example is paints, whose viscosity is expected to decrease as
the applied stresses increase, enabling them to spread well, but which are also expected to avoid dripping
once the application is complete. To this end, it is expected that the �ow will stop rapidly when the �uid is
no longer under stress.

From a mathematical point of view, one can observe that nonlinearities proper to Ostwald-DeWaele or
Bingham �ows in some special cases imply the existence of such a �nite stopping time, as it has already been
proved for the two-dimensional Bingham equation under some assumptions in [15]. Moreover, the study of
such a pro�le has been proved in the case of the parabolic p-Laplacian, see [16, section VII.2] for a bounded
initial datum or [4, Theorem 4.6] for the case p = 1 and with initial datum belonging to L2(Ω).

To prove such a result, we proceed to a proof by contradiction. More exactly we show that the regularized
Galerkin solutions introduced in the previous section are controlled by a constant C(ε) tending to zero as the
regularization parameter ε → 0. Then, thanks to the energy estimates used previously, we deduce that the
solution necessarily stops in �nite time, for viscosity coe�cients having a form similar to that of F (t) = tp−2,
1 ≤ p < 2.

In this section, we will moreover assume for convenience that the force term belongs to L2
loc(R+, L

2(Ω)) or,
if necessary, we will identify the duality bracket ⟨·, ·⟩ with the L2 inner product. Note that this assumption
is not necessary, the results remain valid for f ∈ L2

loc(R+, H
−1
σ (Ω)).

Before proving the Theorem 3.2, we need to prove the following useful interpolation lemma, which is a
quanti�ed version of J.-L.-Lions' Lemma (see, for instance [29, Lemme 5.1.]).

Lemma 5.1. Assume that u ∈ L6(Ω). Then, for all r ∈ (0, 3), the following inequality holds:

∥u∥2rL2(Ω) ≤
3− r

3
∥u∥

4r
3−r

L
3
2 (Ω)

+
r

3
∥u∥2L6(Ω). (5.1)

Proof of Lemma 5.1. First, by de�nition of the L2-norm, we have, for all r > 0:

∥u∥2rL2(Ω) =
( �

Ω
|u|

4
3 |u|

2
3 dx

)r
.

The Hölder's inequality in the latter relation leads to
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∥u∥2rL2(Ω) ≤ ∥u∥
4r
3

L
3
2 (Ω)

∥u∥
2r
3

L6(Ω)
,

and the usual Young's inequality

xy ≤ 3− r

3
x

3
3−r +

r

3
y

3
r ,

holds for all x, y > 0 and r ∈ (0, 3) directly implies the inequality (5.1).

Moreover, we recall the Nirenberg-Strauss inequality:

Lemma 5.2 ([36, Theorem 1]). Let Ω be an open bounded subset of RN with Lipschitz boundary, then there

exists a constant C > 0 which depends of N and Ω such that for all u ∈W
1, N

N−1

0 (Ω) the following inequality
holds:

∥u∥
L

N
N−1 (Ω)

≤ C∥D(u)∥L1(Ω). (5.2)

We are now able to prove Theorem 3.2. We point out that the proof being well-known in the two-dimensional
case (see [15]) and can be in that last case a direct application of the Korn's inequality and Sobolev's
embedding theorem. For this reason, we only give a proof in the three-dimensional setting.

Proof of Theorem 3.2. Let um,ϵ be the solution of (4.2). Choosing φ = um,ε in (4.4) we get:

⟨u′m,ε, um,ε⟩+
�
Ω
|D(um,ε)|2 dx+ ⟨j′ε(um,ε), um,ε⟩ −

�
Ω
(um,ε∇um,ε)um,ε dx︸ ︷︷ ︸

=0

= ⟨f, um,ε⟩. (5.3)

Combining (2.3) and (3.1), we obtain

⟨j′ε(um,ε), um,ε⟩ ≥ κp−2

�
Ω
|D(um,ε)|2

(
ε+ |D(um,ε)|2

) p−2
2 dx.

Using |D(um,ε)|2 = (ε+ |D(um,ε)|2)− ε we write

⟨j′ε(um,ε), um,ε⟩ ≥ κp−2

�
Ω

(
ε+ |D(um,ε)|2

) p
2 dx− κp−2

�
Ω
ε
(
ε+ |D(um,ε)|2

) p−2
2 dx.

Since 1 ≤ p < 2, we deduce

⟨j′ε(um,ε), um,ε⟩ ≥ κp−2

�
Ω
|D(um,ε)|p dx− κp−2ε

�
Ω
ε

p−2
2 dx

≥ κp−2∥D(um,ε)∥pLp(Ω) − κp−2ε
p
2 |Ω|. (5.4)

From (5.3) and (5.4), we get:

1

2

d

dt

(
∥um,ε(t)∥2L2(Ω)

)
+ ∥D(um,ε)∥2L2(Ω) + κp−2∥D(um,ε)∥pLp(Ω) ≤ ⟨f, um,ε⟩+ κp−2|Ω|ε

p
2 . (5.5)

Then, using successively the embedding Lp(Ω) ↪→ L1(Ω), assumption (3.1) and the Lemma 5.2, we get from
(5.5), for t ≥ T1:

1

2

d

dt

(
∥um,ε(t)∥2L2(Ω)

)
+ ∥D(um,ε)∥2L2(Ω) + C∥um,ε∥p

L
3
2 (Ω)

≤ κp−2|Ω|ε
p
2 . (5.6)
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Now, from the embedding
{
u ∈ H1

0 (Ω)/∥D(u)∥L2(Ω) < +∞
}
↪→ L6(Ω) which can be obtained using Korn's

L2 equality and Sobolev embedding H1
0 (Ω) ↪→ L6(Ω) we get from (5.6):

1

2

d

dt

(
∥um,ε(t)∥2L2(Ω)

)
+ C∥um,ε∥2L6(Ω) + C∥um,ε∥p

L
3
2 (Ω)

≤ κp−2|Ω|ε
p
2 . (5.7)

Applying Lemma 5.1 with r = 3p
4+p (which satis�es 3

5 ≤ r < 1 since 1 ≤ p < 2), we have

∥um,ε∥
1+ 5p−4

4+p

L2(Ω)
≤ 4

4 + p
∥um,ε∥p

L
3
2 (Ω)

+
p

4 + p
∥um,ε∥2L6(Ω)

≤ ∥um,ε∥p
L

3
2 (Ω)

+ ∥um,ε∥2L6(Ω). (5.8)

Note that the exponent s(p) := 5p−4
4+p in the left-hand side is positive since we have chosen p ≥ 1. Combin-

ing (5.8) with (5.7) we deduce that there exists a constant C0 > 0 (which does not depend on ε) such that,
for t ≥ T1:

1

2

d

dt

(
∥um,ε(t)∥2L2(Ω)

)
+ C0∥um,ε∥1+s(p)

L2(Ω)
≤ κp−2|Ω|ε

p
2 . (5.9)

Assume that for all t ≥ T1 we have C0∥um,ε(t)∥1+s(p)
L2(Ω)

≥ 2κp−2|Ω|ε
p
2 . Then, we can write from (5.9):

1

2

d

dt

(
∥um,ε(t)∥2L2(Ω)

)
≤ −C0

2
∥um,ε∥1+s(p)

L2(Ω)
. (5.10)

Then dividing by ∥um,ε(t)∥1+s(p)
L2(Ω)

both sides of (5.10), we obtain for all t ≥ T1:

d

dt

(
∥um,ε(t)∥1−s(p)

L2(Ω)

)
≤ −C0

2
(1− s(p)). (5.11)

Note that s(p) < 1 since p < 2. Integrating (5.11) with respect to the time leads to ∥um,ε(t)∥1−s(p)
L2(Ω)

<

0 for t large enough. This is a contradiction. Consequently, there exists a time T0,ε ≥ T1 such that

C0∥um,ε(T0,ε)∥1+s(p)
L2(Ω)

≤ 2κp−2|Ω|ε
p
2 , thus the decay of kinetic energy for smooth Galerkin solutions implies

that C0∥um,ε(t)∥1+s(p)
L2(Ω)

≤ 2κp−2|Ω|ε
p
2 for all t ≥ T0,ε. Moreover, considering T0,ε as being the smallest time

satisfying such an inequality, we get that for t ∈ [T1, T0,ε], we have that C0∥um,ε(t)∥1+s(p)
L2(Ω)

≥ 2κp−2|Ω|ε
p
2 ,

which means that ∥um,ε(t)∥−(1+s(p))
L2(Ω)

≤ C0

2κp−2|Ω|ε
p
2
. Dividing (5.9) by ∥um,ε(t)∥1+s(p)

L2(Ω)
for t ∈ [T1, T0,ε] then

leads once again to

d

dt

(
∥um,ε(t)∥1−s(p)

L2

)
≤ −C0

2
(1− s(p)),

which in turn leads, after integrating over [T1, T0,ε], to

∥um,ε(T0,ε)∥1−s(p)
L2 − ∥um,ε(T1)∥1−s(p)

L2 ≤ −C0

2
(1− s(p))(T0,ε − T1)

so that it implies

T0,ε ≤ T1 +
2∥um,ε(T1)∥1−s(p)

L2

C0(1− s(p))
≤ T1 +

2
(
∥u0∥L2 + ∥f∥L2((0,T1),H

−1
σ )

)1−s(p)

C0(1− s(p))
. (5.12)
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Namely, the sequence (T0,ε)ε>0 is uniformly bounded following the parameter ε > 0. Thus, letting ε → 0
leads to the existence of T0 (which may depends of m) such that ∥vm(t)∥L2(Ω) = 0 for almost all t ∈ [T0,+∞)
and then ∥vm∥L2([T0,+∞),L2(Ω)) = 0. The same line of arguments shows the existence of a �nite stopping time
for u in the sense of De�nition 3.1. This concludes the proof.

A Some examples of viscosity coe�cients

In this section, we give some examples of functions F satisfying the conditions (C1)-(C4), most of which
correspond to models of non-Newtonian coherent �ows in the physical sense. This is the case for quasi-
Newtonian �uids such as blood, threshold �uids such as mayonnaise, or more generally in the case of polymeric
liquids.

1. Firstly, in order to describe power-law �uids (also known as Ostwald-DeWaele �ows), we can consider
functions (Fp)1<p<2 given by:

(0,+∞) → (0,+∞)
Fp :

t 7−→ tp−2.

2. Considering functions (Fµ,p)µ>0,p∈[1,2) of the form

(0,+∞) → (0,+∞)
Fµ,p :

t 7−→ (µ+ t2)
p−2
2

leads to Carreau �ows.

3. Cross �uids are obtained by choosing function (Fγ,p)γ>0,p∈[1,2) given by:

(0,+∞) → (0,+∞)
Fγ,p :

t 7−→ (γ + t2−p)−1.

4. Another possible choice is to take functions (Fp,β,γ) given

(0,+∞) → (0,+∞)
Fp,β,γ :

t 7−→


tp−2log(1 + t)−β if t ∈ (0, γ]

log(1 + γ)−βtp−2 if t ∈ (γ,+∞)

for 1 < p < 2 and some β, γ > 0 with γ small enough.

B Useful lemmas and energy estimates

For the sake of clarity, in this appendix, we state and prove some useful results employed for the proof of
Theorem 3.1. We begin this appendix with some technical lemmas and, in its second part, we give a proof
for Proposition 4.1.
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B.1 Technical lemmas

Lemma B.1. Let X be a Banach space, and γ ≥ 1
2 . Then, the following inequality holds:

∀(u, v) ∈ X2, ∥u+ v∥γX ≤ 2(γ−
1
2)
(
∥u∥γX + ∥v∥γX

)
.

Proof. Using the convexity of t 7→ t2(2−p) and triangle's inequality of the norm, we get:

∥u+ v∥2γX = 22γ
∥∥∥∥u+ v

2

∥∥∥∥2γ
X

≤ 22γ−1
(
∥u∥2γX + ∥v∥2γX

)
.

Applying now the well-known inequality: ∀(a, b) ∈ [0,+∞)2,
√
a+ b ≤

√
a+

√
b, we get the result.

Lemma B.2. Consider that φ ∈ L2
loc(R+, H

1
0 (Ω)), then there exists a constant C(ε, φ) > 0 which goes to

zero as ε does, such that the following inequality holds:

jε(φ) + C(ε, φ) ≥ j(φ), (B.1)

where jε and j are de�ned by (2.2).

Proof. Recalling that the assumption (C3) states that t 7→ tF (t) is increasing, we get:

j(φ) :=

�
Ω

� |D(φ)|

0
sF (s) ds dx

≤
�
Ω

� √
ε

0
sF (s) ds dx+

�
Ω

� √
ε+|D(φ)|

√
ε

sF (s) ds dx

≤ ε
√
εF (ε)|Ω|+

�
Ω

� √
2|D(φ)|

√
ε+|D(φ)|2

0
sF (

√
ε+ s2) ds dx

≤ ε
√
εF (ε)|Ω|+

�
Ω

� 2
1
2 ε

1
4 |D(φ)|

1
2+|D(φ)|

|D(φ)|
sF (

√
ε+ s2) ds dx︸ ︷︷ ︸

:=C(ε,φ)

+jε(φ),

which is the wished result.

Lemma B.3. Consider Ω an open bounded subset of RN with Lipschitz boundary, and a sequence (wn)n∈N
such that there exists a positive constant C > 0 satisfying ∥wn∥L2

loc(R+,H1
0,σ(Ω) ≤ C. Then, for every �xed

T > 0 and for almost all (t, x) ∈ (0, T )× Ω, the following inequality holds:

lim
n→+∞

|D(wn)(t, x)| ≥ |D(w)(t, x)|.

Proof. Firstly, let us recall that Eberlein-�Smulyan theorem leads up to an extraction to wn ⇀ w in
L2
loc(R+, H

1
0 (Ω)) then, for every �xed T > 0 and all Lebesgue points t0 ∈ (0, T ) and x0 ∈ Ω, for all

δ > and R > 0 small enough, we have wn ⇀ w in L2((t0 − δ, t0 + δ), H1(B(x0, R)). Indeed, we have for all
test function φ :

� T

0

�
Ω
∇wn · ∇φ dt dx −→

n→+∞

� T

0

�
Ω
∇w · ∇φ dt dx.

Hence, we can take φ, which belongs to C∞
0 ((t0− δ, t0+ δ)×B(x0, R)) (up to arguing by density thereafter),

satisfying:
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∇φ =

{
∇ψ on (t0 − δ, t0 + δ)×B(x0, R)
0 on (0, T )× Ω\(t0 − δ, t0 + δ)×B(x0, R)

and so this leads to:

� t0+δ

t0−δ

�
B(x0,R)

∇wn · ∇ψ dt dx −→
n→+∞

� t0+δ

t0−δ

�
B(x0,R)

∇w · ∇ψ dt dx.

That is wn ⇀ w in L2((t0 − δ, t0 + δ), H1(B(x0, R))). Also, from Korn's L2 equality and Lebesgue's
di�erentiation theorem over (δ,R) after dividing by 2δ|B(x0, R)|, one gets that for every Lebesgue point
(t0, x0) ∈ (0, T )× Ω:

|D(wn(t0, x0))|2 ≤ C

Following the same line of arguments, we �nd that:

lim
n→+∞

� t0+δ

t0−δ

�
B(x0,R)

|D(wn)|2 dx dt ≥
� t0+δ

t0−δ

�
B(x0,R)

|D(w)|2 dx dt.

Dividing each side by 2δ|B(x0, R)|, we get:

lim
n→+∞

 t0+δ

t0−δ

 
B(x0,R)

|D(wn)|2 dx dt ≥
 t0+δ

t0−δ

 
B(x0,R)

|D(w)|2 dx dt

then letting (δ,R) → (0, 0) leads to the result, after applying a dominated convergence theorem.

B.2 Proof of Proposition 4.1

We now prove the energy estimates used for the convergence of the nonlinear Galerkin method appearing in
the proof of Theorem 3.1.

Proof of Proposition 4.1.

1. Setting φ = um,ε in the weak formulation, we get:

1

2

d

dt
∥um,ε∥2L2 +

�
Ω
|D(um,ε)|2 dx+ ⟨j′ε(um,ε), um,ε⟩︸ ︷︷ ︸

≥0

−
�
Ω
(um,ε · ∇um,ε) · um,ε dx︸ ︷︷ ︸

=0

= ⟨f, um,ε⟩.

Using the Korn's L2 equality for divergence free vectors �elds, we get

d

dt
∥um,ε(t)∥2L2 + ∥um,ε(t)∥2H1

0
≤ 2 ⟨f(t), um,ε(t)⟩ ≤ 2∥f(t)∥2H−1 +

1

2
∥um,ε(t)∥2H1

0
.

Then, integrating on (0, t) we get

∥um,ε(t)∥2L2 +
1

2

� t

0
∥um,ε∥2H1

0
dt ≤ 2

� t

0
∥f∥2H−1 dt+ ∥u0∥2L2 . (B.2)

Indeed, we recall that (Pm(u0), wi)L2 = (u0, Pmwi)L2 = (u0, wi)L2 , and the conclusion follows. From
now on, we will omit to detail this last part which is usual.
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2. We have, using Cauchy-Schwarz's inequality and Korn's equality in the divergence free L2 setting:〈
j′ε(um,ε), φ

〉
=

�
Ω
F

(√
ε+ |D(um,ε)|2

)
D(um,ε) : D(φ) dx

≤ 1√
2

(�
Ω
F

(√
ε+ |D(um,ε)|2

)2

|D(um,ε)|2 dx

) 1
2

∥φ∥H1
0
. (B.3)

From hypothesis (C4), setting A = Ω ∩ {|D(um,ε)| ≤ t0} and B its complement in Ω, we obtain

�
Ω
F

(√
ε+ |D(um,ε)|2

)2

|D(um,ε)|2 dx =

�
A
F

(√
ε+ |D(um,ε)|2

)2

|D(um,ε)|2 dx

+

�
B
F

(√
ε+ |D(um,ε)|2

)2

|D(um,ε)|2 dx.

Let's estimate these two integrals independently. By assumption (C3), we have that the application

t 7→ t2F
(√

ε+ t2
)2

is non-decreasing, and we obtain directly:

�
A
F

(√
ε+ |D(um,ε)|2

)2

|D(um,ε)|2 dx ≤ F
(√

ε+ t02
)2
t0

2|A|

≤ F
(√

ε+ t02
)2
t0

2|Ω|

≤ F
(√

1 + t02
)2√

1 + t02|Ω|

≤ C.

Then we have, using again (C4):

�
B
F

(√
ε+ |D(um,ε)|2

)2

|D(um,ε)|2 dx ≤ K

�
B

|D(um,ε)|2

(ε+ |D(um,ε)|2)2−p dx

≤ K

�
B
|D(um,ε)|2(p−1) dx

≤ K

�
B
|∇um,ε|2(p−1) dx

≤ C∥um,ε∥2(p−1)

H1
0

,

where we used Jensen's inequality in the concave setting with t 7→ tp−1 in the last line. So, we obtain:

(�
Ω
F

(√
ε+ |D(um,ε)|2

)2

|D(um,ε)|2 dx

) 1
2

≤
(
C + C∥um,ε∥2(p−1)

H1
0

) 1
2
. (B.4)

Thus, combining the inequality (B.3)-(B.4), using Lemma B.1 with γ = 2
N , and integrating in time

leads to:

∥j′ε(um,ε)∥
4
N

L
4
N ((0,T ),H−1)

≤ C + C∥um,ε∥
4(p−1)

N

L
4(p−1)

N ((0,T ),H1
0 )
.

Then, since 0 < 4(p−1)
N ≤ 2, we get, using the embedding L2 ↪→ L

4(p−1)
N and Lemma B.1 with X := H1

0 ,

q = 4(p−1)
N and p = 2 on ∥um,ε∥

L
4(p−1)

N ((0,T ),H1
0 )
:
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∥j′ε(um,ε)∥
4
N

L
4
N ((0,T ),H−1)

≤ C + C∥um,ε∥
4(p−1)

N

L2((0,T ),H1
0 )
.

Using the �rst point of the proposition for t = T , and since 4(p−1)
N ≥ 0, we get:

∥j′ε(um,ε)∥
4
N

L
4
N ((0,T ),H−1)

≤ C + C(∥f∥L2((0,T ),H−1) + ∥u0∥L2)
4(p−1)

N .

Then, using the exponent N
4 on both sides and applying once again Lemma B.1 with γ = N

4 on the
right-hand side in the inequality above leads us to:

∥j′ε(um,ε)∥
L

4
N ((0,T ),H−1)

≤ C + C(∥f∥L2((0,T ),H−1) + ∥u0∥L2)p−1.

This is the wished result.

3. From the weak formulation (4.4) we get

⟨∂tum,ε, φ⟩ = −
�
Ω
D(um,ε) : D(φ) dx− ⟨j′ε(um,ε), φ⟩+

�
Ω
(um,ε · ∇um,ε) · φ dx+ ⟨f, φ⟩. (B.5)

Let us point out that

�
Ω
D(um,ε) : D(φ) dx =

1

2

�
Ω
∇um,ε · ∇φ dx ≤ 1

2
∥um,ε∥H1

0
∥φ∥H1

0
. (B.6)

Also, from Gagliardo-Nirenberg's inequality, we get the existence of a positive constant C which only
depends on N and Ω such that:

∥u∥2L4 ≤ C∥∇u∥
N
2

L2∥u∥
4−N

2

L2 . (B.7)

The latter leads, as for the Navier-Stokes equations:∣∣∣∣�
Ω
(um,ε.∇um,ε).φ dx

∣∣∣∣ ≤ C∥um,ε∥
4−N

2

L2 ∥um,ε∥
N
2

H1
0
∥φ∥H1

0
.

So, putting (B.6)�(3) and the second estimate of the Proposition 4.1 in (B.5), we obtain

⟨∂tum,ε, φ⟩ ≤
1

2
∥um,ε∥H1

0
∥φ∥H1

0
+ ∥j′ε(um,ε)∥H−1∥φ∥H1

0
+ C∥um,ε∥

4−N
2

L2 ∥um,ε∥
N
2

H1
0
∥φ∥H1

0

+ ∥f∥H−1∥φ∥H1
0
,

and therefore

∥∂tum,ε(t)∥H−1 ≤ 1

2
∥um,ε∥H1

0
+ ∥j′ε(um,ε)∥H−1 + C∥um,ε∥

4−N
2

L2 ∥um,ε∥
N
2

H1
0
+ ∥f∥H−1 .

Now, using the following convexity inequality

∀k ∈ N, ∀(xi)1≤i≤k ∈ (0,+∞)k, ∃C > 0,

(
k∑

i=1

xi

) 4
N

≤ C
k∑

i=1

x
4
N
i

we get, after integrating in time an using the the embedding L2(Ω) ↪→ L
4
N (Ω) (which is valid since

N ∈ {2, 3}, so that we have 4
N ≤ 2):
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∥∂tum,ε∥
4
N

L
4
N ((0,T ),H−1)

≤ C

(
∥um,ε∥

4
N

L2((0,T ),H1
0 )

+ ∥j′ε(um,ε)∥
4
N

L
4
N ((0,T ),H−1)

)
+ C∥um,ε∥

8−2N
N

L∞((0,T ),L2)
∥um,ε∥

4
N

L2((0,T ),H1
0 )

+ C∥f∥
4
N

L2((0,T ),H−1)
.

Using the previously given convexity inequality and the �rst and second points of the proposition we
obtain the desired result.
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