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ABSTRACT

Context. In space and astrophysical plasmas, turbulence leads to the development of coherent structures characterized by a strong
current density and important magnetic shears.
Aims. Using hybrid-kinetic simulations of turbulence (3D with different energy injection scales), we investigate the development of
these coherent structures and characterize their shape.
Methods. First, we present different methods to estimate the overall shape of the 3D structure using local measurements, foreseeing
an application on satellite data. Then we study the local magnetic configuration inside and outside current peak regions, comparing
the statistics in the two cases. Last, we compare the statistical properties of the local configuration obtained in simulations with the
ones obtained analyzing an MMS (Magnetospheric MultiScale mission) dataset having similar plasma parameters.
Results. Thanks to our analysis, (1) we validate the possibility of studying the overall shape of 3D structures using local methods,
(2) we provide an overview of a local magnetic configuration emerging in different turbulent regimes, (3) we show that our 3D-3V
simulations can reproduce the structures that emerge in MMS data for the periods considered.

Key words. methods: data analysis – methods: statistical – methods: numerical – turbulence

1. Introduction

Turbulent, magnetized plasmas permeate a wide range of space
and astrophysical environments, and plasma turbulence nat-
urally develops coherent structures characterized by a high
current density and strong magnetic shear. These features
are indeed present in practically any turbulence simulation
employing the most disparate plasma models and regimes
(Zhdankin et al. 2013, 2017; Passot et al. 2014; Navarro et al.
2016; Cerri et al. 2019; Comisso & Sironi 2019, and references
therein), as well as routinely observed via in situ measurements
in space plasmas such as the solar wind and the near-Earth
environment (Podesta 2017; Greco et al. 2018; Fadanelli et al.
2019; Pecora et al. 2019; Gingell et al. 2020; Khabarova et al.
2021, and references therein). The characterization of cur-
rent structures in turbulent plasmas is of particular inter-
est not only because magnetic reconnection and/or different
dissipation processes can occur inside (or close to) these
regions, thus enabling energy conversion and plasma heating
(Gosling & Phan 2013; TenBarge & Howes 2013; Osman et al.
2014; Zhdankin et al. 2014; Navarro et al. 2016; Grošelj et al.
2017; Matthaeus et al. 2020; Agudelo Rueda et al. 2021, and
references therein), but also because reconnection processes
occurring within such structures can in turn feed back onto
turbulence itself by playing a major role in the scale-to-scale
energy transfer (Carbone et al. 1990; Cerri & Califano 2017;
Loureiro & Boldyrev 2017; Franci et al. 2017; Mallet et al.
2017; Camporeale et al. 2018; Dong et al. 2018; Vech et al.
2018; Papini et al. 2019).

In order to determine the physical behavior of coherent cur-
rent structures, it is of foremost importance to understand how

they manifest within the (turbulent) magnetic-field dynamics.
This task can be separated into two main inquiries. (1) On the
one hand, one must determine the current structure geometry by
defining the three characteristic scale lengths of such structures,
usually called thickness (the smallest), width (the medium one),
and length (the biggest). Such a definition of characteristic
lengths was employed, for instance, by Zhdankin et al. (2013) to
characterize the current structures emerging in “reduced-MHD”
(magnetohydrodynamics) simulations of plasma turbulence.
While in a simulation we can always precisely define the geom-
etry of a current structure, this is less obvious when it comes to
in situ satellite data. A spacecraft can indeed cross a coherent
current structure during its path, but it has no information about
the overall geometry of it, and even a multi-spacecraft fleet
can only measure the spatial variation of physical fields on
scales which are in general much smaller than those of any
coherent current structure. (2) On the other hand, it is also of
key importance to understand how (and if) local magnetic-
field configurations within the abovementioned current
structures are systematically different from the magnetic config-
uration that belongs to the rest of the (turbulent) environment.
While such a characterization can be achieved by a number of
procedures, from now on we focus on the magnetic configuration
analysis (MCA) method proposed by Fadanelli et al. (2019).
The MCA method consists of modifying existing techniques
that have been previously employed to investigate the local
configuration of the magnetic field (namely, the magnetic direc-
tional derivative by Shi et al. 2005 and the magnetic rotational
analysis by Shen et al. 2007; see Shi et al. 2019 for a review
of these different techniques). Contrary to measures of current
structure geometry, the analysis of magnetic configurations can
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be performed on data from plasma simulations as well as on
data coming from multi-spacecraft missions. For instance, in
Fadanelli et al. (2019), the authors applied the MCA technique
on long intervals of data collected by the Magnetospheric
Multiscale (MMS) mission (see Burch et al. 2016) determining
that it is possible to obtain statistics of local configurations
developing in the outer magnetosphere, in the magnetosheath,
and in the near-Earth solar wind.

In the first part of this work, we develop and describe three
methods by which it is possible to estimate some aspects of a
current structure geometry starting from local measurements.
We test these methods on the structures emerging in 3D-3V
Hybrid-Vlasov-Maxwell (HVM) simulations of plasma turbu-
lence (three spatial dimensions plus three-dimensional velocity
space, with kinetic ions and fluid electrons). By comparing the
results obtained from these three local methods with those result-
ing from a nonlocal approach, we show that it is indeed possible
to estimate the overall shape of a current structure by employing
only local measurements.

The second part of this work investigates the physical charac-
teristics of current peak regions forming in three different three-
dimensional Hybrid-Vlasov (3D-3V HVM) simulations. In
particular, we analyze the different features of magnetic configu-
rations in the three different simulations and we make a compar-
ison between them and those obtained by analyzing the MMS
observational data of plasma turbulence measured on Decem-
ber 9, 2016 (Phan et al. 2018; Stawarz et al. 2019). Indeed, one
simulation setup that we include in this work is a 3D equivalent
of the two-dimensional (2D) setup employed by Califano et al.
(2020), which proved capable of qualitatively reproducing the
turbulent and reconnection regime observed during that period.

This paper is organized as follows. In Sects. 2 and 3 we
present the main features of the HVM simulations of plasma tur-
bulence that are employed here, including an overview of the tur-
bulent spectra that we obtain in the different cases. In Sect. 4.1
we give a precise definition of “current structure” in our simu-
lations and define two nonlocal and overall shape factors called
planarity P and elongation E to better highlight the 3D shape
of a current structure. In the same section, we clarify what we
mean by “magnetic configuration” and how MCA defines the
two shape factors planarity P and elongation E to character-
ize any such configuration. Then, in Sect. 4.2 we present three
different methods by which it is possible to convert purely local
measures into an estimate of E and P of current structures, and
we show their effectiveness. In Sect. 5 we investigate the physi-
cal features of the current regions forming in the 3D simulations
we make use of here and perform, using our simulations, the
analysis proposed by Fadanelli et al. (2019). By performing this
analysis we can show that magnetic configurations inside the
coherent current regions behave differently with respect to those
in the rest of plasma. Moreover, we show how the statistical
distributions of these quantities obtained by numerical simula-
tions well reproduce the ones obtained by analyzing MMS data
of December 9, 2016 (Phan et al. 2018; Stawarz et al. 2019).
Finally, we summarize the results obtained and their importance
in Sect. 6.

2. Simulations

In this paper, to investigate the emergence of (coherent) current
structures and characterize their nature, we make use of kinetic
numerical simulations of plasma turbulence performed with
the HVM model with kinetic ions and fluid neutralizing elec-
trons with mass (Valentini et al. 2007). The corresponding set of

equations is normalized using the ion mass mi, the ion cyclotron
frequency Ωci, the Alfvén velocity vA, and the ion skin depth
di = vAΩ−1

ci . As a result, the dimensionless electron skin depth is
given by the electron-to-ion mass ratio, de =

√
me/mi.

The ion distribution function fi = fi(x, u, t) evolves following
the Vlasov equation that in dimensionless units reads as

∂ fi
∂t

+ u · ∇ fi + (E + u × B) ·
∂ fi
∂u

= 0, (1)

giving the number density n and the ion fluid velocity ui as
moments of fi. Then, the electron fluid response is given by a
generalized Ohm’s law for the electric field E including the Hall,
diamagnetic and electron-inertia effects:

(
1 − d2

e∇
2
)

E = −ui×B+
J × B

n
−
∇Pe

n
+

d2
e

n
∇·

(
ui J + Jui −

J J
n

)
·

(2)

In the electron inertia term, we approximate 1/n = 1, in
normalized units, for the sake of computational simplicity. Fur-
thermore, J = ∇ × B is the current density (neglecting the dis-
placement current in the low-frequency regime). In Eq. (2) we
assume an isothermal equation of state for the electron pressure,
Pe = nT0e, with a given initial electron-to-ion temperature ratio
of T0e/T0i = 1. The initial ion distribution function is given by
a Maxwellian distribution with a corresponding uniform temper-
ature. Finally, the evolution of the magnetic field B is given by
the following Faraday equation:

∂B
∂t

= −∇ × E. (3)

We take an initial magnetic field given by a uniform back-
ground field, B0ez where B0 = 1, with a superimposed small-
amplitude 3D perturbation, δB = δBxex + δByey + δBzez,
computed as the curl of the vector potential, δB = ∇ × δA.
In particular, δA is given by a sum of sinusoidal modes with
a random phase in a limited wave-vector interval correspond-
ing to the largest wavelengths admitted by the numerical box. In
Table 1 we list the simulation parameters of four different simu-
lations as follows: the box spatial size, the corresponding num-
ber of grid points, the wave vector range of the initial perturba-
tion, the root mean square (rms) amplitude of each component
of the perturbed magnetic field, and the ratio between the rms
of the magnetic perturbation and the equilibrium field. For all
simulations, we sampled the velocity space using 513 uniformly
distributed grid points spanning [−5vth,i, 5vth,i] in each direction,
where vth,i =

√
βi/2 vA is the initial ion thermal velocity and

βi = 1. We set a reduced mass ratio of mi/me = 100.
In the following we refer to the 3D-3V simulations (the first

three listed in Table 1) using the following names: “SIM A”,
“SIM B-wf” (weak forcing scenario), and “SIM B-sf” (strong
forcing scenario). We also make use as a reference for com-
parison of a 2D-3V hybrid Vlasov-Maxwell simulation, namely
“SIM 2D” (last one in Table 1).

The reasons behind the choice of simulation parameters
are discussed in the following section, also providing a brief
overview of turbulence evolution and properties.

3. Context: Turbulent evolution and spectra

The simulations considered in this work are meant to reproduce
the behavior of a β ≈ 1 turbulent plasma, typical of near-Earth’s
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Table 1. Simulation parameters.

SIM A SIM B-wf SIM B-sf SIM 2D

Cubic box (10 ∗ 10 ∗ 10)2πdi (3 ∗ 3 ∗ 3)2πdi (3 ∗ 3 ∗ 3)2πdi (50 ∗ 50 ∗ 1)2πdi
Grid points 352 ∗ 352 ∗ 198 256 ∗ 256 ∗ 256 256 ∗ 256 ∗ 256 3072 ∗ 3072 ∗ 1
k⊥di range [0.1, 17.6] [0.33, 42.7] [0.33, 42.7] [0.02, 30.7]
kzdi range [0.1, 9.9] [0.33, 42.7] [0.33, 42.7] {0}
Energy injection scale 0.1 ≤ kdi < 0.33 0.33 ≤ kdi < 1 0.33 ≤ kdi < 1 0.02 ≤ kdi < 0.12
(δB(rms)/B0)t=0 0.28 0.20 0.50 0.28
(δB(rms)

z /δB(rms)
⊥ )t=0 0.7 0.75 0.75 0.95

environment and of the solar wind at about 1 AU (see for exam-
ple, Chen 2016; Sahraoui et al. 2020 and references therein). As
summarized in Table 1, each simulation initially injects fluctu-
ations’ energy in a different wavenumber range, with different
rms values of the initial magnetic fluctuations exploring a dif-
ferent number of sub-ion-gyroradius scales. In particular, SIM
B-wf and SIM B-sf inject energy only slightly above the ion
characteristic scales, and they are able to excite a wide range
of kinetic scales before reaching their dissipation scale (that
is, resolving about a decade of clean sub-ion range turbulence
before entering the dissipation-dominated scales). In fact, as
done in Califano et al. (2020) for the 2D-3V case, the aim of
both SIM B-wf and SIM-sf is to mimic the conditions pos-
sibly encountered in the Earth’s magnetosheath, past the bow
shock, where the occurrence of electron-only reconnection has
been observed (Phan et al. 2018; Stawarz et al. 2019). For com-
pleteness, we include a simulation (SIM A) where energy is
injected at larger scales including part of the final MHD turbulent
range and a simplified 2D one (SIM 2D) covering an even larger
range.

We recognize three phases in the temporal evolution of all
simulated systems: (1) an initial phase, (2) a transition phase,
and (3) a fully developed turbulence. At the beginning (1), the
energy injected at large scales starts to cascade toward smaller
and smaller scales. In the transition phase, (2) coherent struc-
tures, that is regions where the current density peaks (it usually
happens at about one eddy-turnover time) start to form. At the
end, a fully developed turbulent state (3) is reached, with com-
plex nonlinear dynamics with coherent structures continuously
forming, merging, and/or being destroyed. We indicate the times
at which the 3D simulations reach saturation (maximum of the
rms of the current density) as tsatA (SIM A), tsatB−wf (SIM B-wf),
and tsatB−sf (SIM B-sf); at these times, turbulence is fully devel-
oped (roughly speaking saturation times correspond to about 3
eddy-turnover times). From now on, unless explicitly stated oth-
erwise, the entire analysis will be carried out at saturation times.

In Fig. 1 we show the reduced one-dimensional (1D), k‖-
averaged, magnetic energy spectra versus k⊥ for the simulations
listed in Table 1. The spectra, for visual purposes, have been
normalized so that they overlap at k⊥di ≈ 2. The power laws
k−5/3
⊥ and k−8/3

⊥ are displayed as references for the MHD and
kinetic range, respectively. At “fluid” perpendicular scales, in
the range 0.1 ≤ k⊥di ≤ 2, a power law close to (but slightly
steeper than) −5/3 is visible in both SIM A and SIM 2D. The
spectral slope evaluated at k⊥di . 1 for these two simulations
(excluding the first modes, which are affected by the initial con-
dition) is indeed in the range −1.9 . α . −1.8; the actual value
slightly depends on the exact wavenumber range on which we
perform the fit. On the other hand, SIM B-wf and SIM B-sf do
not include enough MHD scales to draw any conclusion regard-
ing the emerging spectral slope for k⊥di < 2. While a difference

Fig. 1. For our four simulations, 1D k‖-averaged magnetic energy spec-
tra versus k⊥, normalized so that they overlap at k⊥di ≈ 2.

between the observed slope in SIM 2D and the expected −5/3
power law may be related to the reduced dimension that prevents
from properly establishing critical balance (Schekochihin et al.
2009), this discrepancy is also observed in the spectrum emerg-
ing from the 3D case (SIM A, whose magnetic-field spec-
trum seems to agree very well with the corresponding spec-
trum of SIM 2D). As also noticed in previous 3D-3V simula-
tions (Cerri et al. 2019), whether or not this feature in SIM A
is due to the limited extent of the MHD range is unclear and it
will have to await further investigation by means of even larger
3D simulations. At “kinetic” scales in the range k⊥di > 2, a
power law fairly consistent with −8/3 clearly emerges only in
SIM B-sf; a hint of such a power law is also visible in SIM
A, but the limited extent of the sub-ion range does not allow
it to develop over a broad range of scales before the numer-
ical dissipation takes over. Such a slope would be consistent
with an “intermittency corrected” kinetic-Alfvén-wave cascade
occurring at sub-ion scales (Boldyrev & Perez 2012), and previ-
ously reported via 3D-3V hybrid-Vlasov simulations (Cerri et al.
2017a, 2018). The other two simulations, SIM 2D and SIM B-
wf, exhibit a power law steeper than −8/3. A magnetic-field
spectrum close to k−3

⊥ in the kinetic range was already observed
in previous 2D hybrid-kinetic simulations (see for example,
Cerri et al. 2017b and references therein), sometimes attributed
to the effect of a reconnection-mediated 2D cascade at sub-
ion scales (Cerri & Califano 2017; Franci et al. 2017), which,
however, may continue to hold in three spatial dimensions as
well (Loureiro & Boldyrev 2017; Mallet et al. 2017), although
definitive evidence of such a regime has been elusive in 3D
kinetic simulations performed thus far (Cerri et al. 2019) (see
also Agudelo Rueda et al. 2021 for a more recent attempt). For
what concerns SIM B-wf, on the other hand, a steeper spectrum
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Fig. 2. 3D rendering of regions with J ≥
Jth in blue for (a) SIM A and (b) SIM B-st.
In gray, shadow color plots of the current
density are shown.

may be attributed to a weaker cascade associated with the lower
amplitude (with respect to SIM B-sf) of the injected fluctuations,
rather than to dissipation effects associated with ion-heating
and/or fluctuations’ damping mechanisms in the β ≈ 1 regime
considered here (see for example, Told et al. 2015; Sulem et al.
2016; Arzamasskiy et al. 2019 and references therein). In fact,
in SIM B-wf, there is no evidence of a clear cascade developing

along the direction parallel to B0 (not shown here). However,
a detailed analysis of fluctuations’ spectral properties and asso-
ciated ion-heating mechanisms (and how they change between
different simulations) is beyond the scope of this work and will
be reported elsewhere.

In Fig. 2 we show for (a) SIM A and (b) SIM B-st,
the 3D rendering of the current density magnitude in shaded
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isocontours; we would like to remind the reader that SIM B-st
employs a simulation box size that, compared to the domain of
SIM A, is about one-third in each direction. In blue, the regions
of grid points which overcome a specific threshold for the cur-
rent density Jth, defined in the next section, are shown.

4. Current structures and magnetic configuration
analysis

4.1. Definitions

In order to analyze the physics of current structures, we first
define the procedure aimed at identifying a current structure as
well as the parameters to be adopted in order to characterize their
shape. Alongside such definitions, we also discuss the concept of
“magnetic configuration” and the meaning of its shape, a concept
which is thoroughly applied in the following sections.

Similarly to what was done in Uritsky et al. (2010) and
Zhdankin et al. (2013), we adopt the formal definition of “cur-
rent structure” as any connected region where the current-density
magnitude, J ≡ |J |, is above a threshold value for all internal
points, and the boundaries do not touch any other zone such as
this. In particular, we stress that the specific definition of such a
threshold may be somewhat arbitrary. In this work, consistently
with Uritsky et al. (2010) and Zhdankin et al. (2013), we choose
a current threshold defined by Jth =

√
〈J2〉 + 3σ(J2), where

σ(J2) =
√
〈J4〉 − (〈J2〉)2 and 〈. . .〉 denotes the spatial average

over the whole simulation box. We want to remark that, by this
procedure, any isolated point with an above-threshold current
density is not recognized as a current structure on its own, but
it can be identified as part of some other current structure if the
two are within a minimum distance of one grid-point from each
other. We call the “center” of a structure the point within the
structure domain for which J is maximum.

To characterize the spatial extension (or “geometry”) of a
current structure, we introduce three characteristic lengths `max,
`med, and `min. In particular, the “length” `max indicates the
longest among the structure’s dimensions (this goes to infinity
in 2D systems), the “thickness” `min is the smallest dimension,
and we call “width” `med the intermediate characteristic length.

To determine these quantities, we first compute the eigen-
vectors of the Hessian matrix of the current density at the
center of each structure. Then, we consider the plane perpen-
dicular to the direction of least variation (which is the one asso-
ciated with `max). In this particular plane, we have a direction of
strongest variation for the current density (associated with `min)
and a direction of weakest variation (associated with `med). We
define the thickness `min as the maximum distance between two
points with J ≥ Jth along the direction of strongest variation. On
the contrary, the width `med is the maximum distance between
two points with J ≥ Jth on the plane. Finally, the length `max is
defined as the maximal distance between two points belonging to
the same structure without being restricted to special planes. We
note here that the definition of the thickness `min is different from
that of Zhdankin et al. (2013) where the use of the full width at
half maximum of the interpolated profile of J is preferred. Here
we decide to define the thickness using the maximum distance
between two points with J ≥ Jth along the direction of strongest
variation in order to remain coherent with the definition of width
and length. In the 2D case, we have only thickness and width,
computed as above. In Appendix A we clarify what the impact
is of slightly different definitions of `min on our analysis.

Once the “geometry” has been clarified, it is necessary to
define the “shape” of the current structures as well. In a current

Fig. 3. Schematic representation of a current structure with its charac-
teristic lengths: `min, `med, and `max.

structure, we call “shape” the quantity determined by two “struc-
ture shape factors” defined as follows:

elongation (current str.) E = 1 − `med/`max (4)
planarity (current str.) P = 1 − `min/`med. (5)

These two parameters measure the tendency of the current struc-
ture to squeeze toward some elongated form (E → 1) or to
flatten (P → 1). In this way, we can represent each structure’s
shape in the plane E−P, and eventually classify shapes into cat-
egories. In particular, we adopt the following nomenclature for
certain characteristic shapes: (i) “pseudo spheres” (low E, low
P), (ii) “cigars” (high E, low P), (iii) “pancakes” (low E, high
P), and (iv) “knife blades” (high E, high P). In Fig. 3 we show
a schematic representation of a current structure with its charac-
teristic lengths: `min, `med, and `max. We note that the three quan-
tities of thickness, width, and length presented here are enough
to define the shape of compact structures in 3D. In the case in
which the holes would appear in current structures, new parame-
ters should be added as a filling fraction or the hole dimensions.
Such an upgrade will be investigated in future work.

By “magnetic configuration” we mean the local characteriza-
tion of the B field that can be inferred at any point in our system,
even far from a current structure or its peak, by inspection of the
(symmetric) tensor N ≡ [∇B] · [∇B]T /B2 (Fadanelli et al. 2019).
Because of its symmetric nature, N can be defined in terms of
its orthogonal eigenvectors and corresponding eigenvalues: we
denote these eigenvalues by σmax, σmed, and σmin. The quan-
tities 1/

√
σmin, 1/

√
σmed, and 1/

√
σmax can be understood as

proportional to the three characteristic variation lengths. Here
and elsewhere, when considering the eigenvalues, it is important
to stress that they are only proportional to the characteristic vari-
ation lengths, and not directly comparable, due to the presence
of normalization factors. What is really significant is the ratio
between eigenvalues, as we see in the next section. Indeed, by
taking the ratio between eigenvalues, the normalization factors
cancel each other out.

As with current structures, a “shape” can be defined for
magnetic configurations. The idea is to deal with 1/

√
σmin,

1/
√
σmed, and 1/

√
σmax in the exact same way we did with char-

acteristic lengths and to define two “configuration shape factors”
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as follows:

elongation (magnetic conf.) E = 1 −
√
σmin/σmed (6)

planarity (magnetic conf.) P = 1 −
√
σmed/σmax. (7)

We note here that the “configuration shape factors” are local
quantities, which can be computed at any spatial location,
including points owing to a current structure. On the contrary, the
“structure shape factors” provide an overall and nonlocal picture
of a current structure. As E andP do for current structures, E and
P do measure the tendency of magnetic configurations toward
elongation (if E → 1) or squashing into sheets (if P → 1). Sim-
ilarly, the position of a configuration in the E−P plane allows
one to recognize the local shape of B in one of the following
four categories: (i) “pseudo sphere”, (ii) “cigar”, (iii) “pancake”,
or (iv) “knife blade”.

We remind the reader that the work by Fadanelli et al. (2019)
is only focused on satellite data and thus on local measurements,
providing a point-by-point value for E and P along spacecrafts’
trajectories. On the contrary here, taking advantage of the 3D
data of a simulation, we can also give an overall and nonlocal
picture of current structures (via E and P).

4.2. The shape of current structures

The first goal of this paper is to determine whether it is possible
to estimate the “nonlocal” overall shape of a current structure by
local measurements, that is if there is some procedure to convert
purely local measurements of certain quantities into a reliable
estimate of the “actual” elongation and planarity of a given struc-
ture. We point out here that we consider the estimate of E and P
as given by our “nonlocal” overall method in Eqs. (4) and (5) to
be used as “reference values” for the estimates obtained via the
following local methods. Firstly, “HJ” method. This approach
is based on the Hessian matrix of J calculated at the center of
each current structure. If we suppose that ratios of the eigenval-
ues of this matrix, hmax, hmed, and hmin, can reproduce the ratios
between `max, `med, and `min, then the shape factors of the struc-
ture can be estimated as follows:

EHJ =
[
1 −

√
hmin/hmed

]
cen

PHJ =
[
1 −

√
hmed/hmax

]
cen

, (8)

where the subscript “cen” indicates that the values are calculated
at the structure’s center. We note that this method closely resem-
bles the one adopted by Servidio et al. (2009). Secondly, “NB”
method. This approach aims at inferring the “structure shape fac-
tors”, E and P, from the “magnetic-configuration shape factors”,
E and P , evaluated through the matrix N at the center of a given
current structure:

ENB =
[
1 −

√
σmin/σmed

]
cen

= Ecen

PNB =
[
1 −

√
σmed/σmax

]
cen

= Pcen

, (9)

where the subscript “cen” indicates that the values are calcu-
lated at the structure’s center only, and σmax, σmed, and σmin are
eigenvalues of the tensor N which evaluates the magnetic con-
figuration. It is worth noticing that, while the N tensor is well
defined everywhere, for the sake of comparison with the other
methods, we consider here only the value at the center assuming
it is representative for the whole structure. However, to easily
make a comparison with data for satellites and/or to increase the
dataset analyzed, one can apply this method even to points dif-
ferent from the central one. Since the magnetic field and current

Fig. 4. Occurrence distributions of elongation E versus planarity P (as
computed using the “nonlocal” overall method discussed in Sect. 4.1)
for SIM A.

density are strongly related (in our model, the current density
is the curl of the magnetic field), we also expect ENB and PNB

to resemble EHJ and PHJ. Finally, “AV” method. This approach
considers an average of the magnetic configurations occurring
inside each structures, that is to say shape parameters are esti-
mated as follows:

EAV =
〈
1 −

√
σmin/σmed

〉
str

= 〈E 〉str

PAV =
〈
1 −

√
σmed/σmax

〉
str

= 〈P 〉str

, (10)

where 〈. . .〉str is the average over all points belonging to a single
current structure. We note that this procedure resembles the NB
method, but it can be carried out without knowing where the
center of a current structure is located.

4.3. Method comparison

Our goal here is to verify the accuracy of the different methods
HJ, NB, and AV at estimating E and P, which are obtained by
looking at the overall and nonlocal shape of the current struc-
ture and are thus considered our reference values. To establish
how accurate the different methods detailed in Sect. 4.2 are,
in this section we apply them to SIM A, which employs the
largest physical domain (and thus is the simulation developing
the largest number of current structures to test). To this end, we
compute elongation and planarity of every current structure, then
compare them with their estimates obtained by the HJ method,
NB method, and AV method.

In Fig. 4 we show how E and P are distributed when defined
through `max, `med, and `min (Eqs. (4) and (5)), while in Fig. 5
we report the results of the estimates from the HJ, NB, and AV
methods (that is, distributions for EHJ andPHJ, ENB andPNB, and
EAV and PAV, respectively, alongside their ratios to the reference
“nonlocal” overall E and P values for each structure).

The physical picture that emerges from Fig. 4 is consistent
with highly elongated current structures. Most of the occurrences
are concentrated at elongation in the interval 0.8−0.95 and
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Fig. 5. Occurrence distributions of elongation versus planarity, for SIM A. Top row panels: (a) HJ method, (b) NB method, and (c) AV method.
Bottom row panels: (d) E/EHJ versus P/PHJ, (e) E/ENB versus P/PNB, and (f) E/EAV versus P/PAV, thus the comparison between our local
methods and our overall nonlocal reference values E and P. The x and y ranges in panels d–f have been adapted in order to produce a better
visualization. In doing so, some cases have been excluded including the following: 21 out of the total 1043 current structures (CSs) examined in
panel d, 23 out of 1043 in panel e, and two out of 1043 in panel f.

planarity between 0.5 and 0.8 (in particular, for the mean,
median, and standard deviation, see the first two rows of
Table 2), suggesting “knife-blade” 3D configurations. The
results from HJ and AV methods are in very good agreement
with the overall occurrence distribution of E and P, as shown
in the top row panels of Fig. 5. For what concerns method NB,
it gives the same physical picture of the other local and nonlo-
cal methods, with highly elongated and mostly planar current
structures (this is particularly clear from panel e), but from panel
b, we also note a tendency to return higher values of planarity
and elongation (indeed the distribution is a bit shifted toward the
upper-right corner). The near equivalence of the three methods
in evaluating the characteristic shape of the current structures is
further confirmed in the bottom row of Fig. 5. More specifically,
Fig. 5d shows that the distribution of E/EHJ is peaked around
0.9, and that P/PHJ is peaked around ∼1, meaning that for the
majority of current structures the true elongation and planarity
are almost the same of the ones obtained using the HJ method
(for the mean, median, and standard deviation see the third and
fourth rows in Table 2). The same agreement is shown in Fig. 5e
between the control values and the NB method estimates, as
shown by the mean, median, and standard deviation reported in
Table 2 (fifth and sixth rows). Finally, Fig. 5f shows that the
AV method performs even better as compared to other local
methods and this is confirmed by the mean, median, and stan-
dard deviation values reported in the seventh and eighth row of
Table 2.

Table 2. Mean, median, and standard deviation for method comparison.

Quantity Mean Median σ

E 0.8 0.9 0.4
P 0.7 0.8 0.2
E/EHJ 0.9 0.9 0.2
P/PHJ 1.3 1.2 0.4
E/ENB 0.9 0.9 0.3
P/PNB 1.1 1.0 0.4
E/EAV 1.0 1.0 0.2
P/PAV 1.1 1.0 0.3

Despite the overall picture providing a very good agreement
between reference and local methods, we note the presence of a
slightly, yet persistent, underestimation of the planarity using the
local methods with respect to the reference one, underlined by
the mean values reported in Table 2. Despite this general effect,
we deduce that by using local methods, and in particular those
employing the N tensor, it is possible to correctly estimate the
actual shape of current structures. The main advantage of using
the N tensor is that it can be applied to any point and not neces-
sarily on the center of current structures. Even more importantly,
the AV method, which is also the one which performs the best,
can be applied with slight modifications to satellite data once a
proper current threshold is defined.
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Fig. 6. Occurrence distribution of elongation E versus planarity P for the three different simulations (three columns), in the top row for generic
points and in the bottom row for the points which belong to current structures.

5. Investigating physical characteristics of current
structures

In this section we investigate the physical features of the struc-
tures forming in the three different 3D simulations. We inves-
tigate the magnetic configuration shape factors (planarity and
elongation), the characteristic eigenvalues (proportional to the
characteristic scale lengths), and the orientation of the magnetic
field and current density. We use the N tensor and its eigenval-
ues, but without restricting our analysis to points owing to the
current structures, as for NB and AV methods, thus we essen-
tially apply the MCA method as first described in Fadanelli et al.
(2019). The aim is to determine what are the statistical charac-
teristics of magnetic configurations that emerge in our simula-
tions and whether there is any appreciable difference between
the configurations found inside and outside current structures.
Thus, we consider separately (1) all points belonging to cur-
rent structures and (2) the same number of points as in the first
case, but belonging to an uniform sampling of the simulation
box. These last points are called “generic”. This type of analysis
further expands the methodology employed by Fadanelli et al.
(2019) on satellite data, where, however, the statistical proper-
ties of magnetic configurations have been investigated without
distinguishing current structures from the rest of the plasma. In
particular, the analysis of “generic points” can be considered the
equivalent of a continuous sampling of satellite data, as done by
Fadanelli et al. (2019). We expect that the uniformly picked set
would reproduce data collected by a satellite along 1D trajecto-

ries. Indeed, in the uniform sampling we picked one point for
every three in each direction. Because the typical dimensions of
a current structure are, on average, big enough to include more
than three grid points in at least two directions, for each struc-
ture several points are collected, as is the case for a continuous
satellite sampling. Investigating the possible difference between
a uniform sampling and synthetic 1D satellite trajectories is out
of the scope of the present manuscript.

Furthermore, we compare the above analysis performed on
our 3D-3V simulations with an analogous analysis applied to
two intervals of high-resolution (burst) data which have been
collected as the MMS spacecraft encountered a turbulent mag-
netosheath region just downstream the bow shock. These same
intervals were previously considered by Stawarz et al. (2019) for
a complete analysis of turbulence. In order to be directly compa-
rable with our simulations, a three-step selection on the above-
mentioned MMS data has been applied so that the magnetic
configuration analysis has been performed on only those data
points for which (i) the computation of N is precise enough that
at least two eigenvalues are well determined, (ii) β ∈ [0.3, 3], and
(iii) the resolution attained by MMS data is comparable with that
of the numerical simulations (after these selections, roughly 20%
of the original data are kept; for details, see Appendix B).

5.1. Analysis of shape factors for magnetic configurations

In Fig. 6 we show the occurrence distribution of E versus P in
our set of 3D simulations, namely SIM A, SIM B-wf, and SIM
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B-sf (left, center, and right column, respectively). This can be
seen in the top row for generic simulation points (which can be
considered as the equivalent of the continuous sampling in the
methodology developed by Fadanelli et al. 2019) and in the bot-
tom row only for points belonging to what is identified as a “cur-
rent structure” (that is, those regions where the current density is
above Jth).

Occurrence distributions which consider only points belong-
ing to current structures (bottom row) or considering generic
points (top row) look very different. In particular, if we con-
sider generic points, we get a distribution spread in planarity
between ∼0.2 and ∼0.9 with a peak around ∼0.6−0.7. Instead, if
we consider only points which belong to current structures, we
get an increase in planarity with the distribution peaking around
∼0.8−0.9 in the y axes. The fact that the distributions of magnetic
configurations obtained via generic simulation points does not
provide a reliable estimate is even more evident when compar-
ing the results for SIM A presented in Fig. 6 with those obtained
in Sect. 4.3 for the same simulation (that is, see Figs. 4 and 5a–
c). We further point out that for SIM B-wf, this discrepancy
between the two distributions (viz., generic points versus only
points belonging to current over-densities) seems to be particu-
larly emphasized. In the following we give the mean, median,
and standard deviation for the corresponding 1D-distributions of
planarity and elongation.

The statistical features of the magnetic configurations can be
appreciated in Fig. 7 where we show the 1D normalized occur-
rence distribution of E and P for the three simulations SIM
A, SIM B-wf, and SIM B-sf for generic points (magenta line)
and for points belonging to current structures (black line). We
have superposed these distributions obtained from simulations
to the ones obtained using MMS satellite data (dotted blue line)
from the two high-resolution magnetosheath intervals analyzed
in Stawarz et al. (2019) (see Appendix B for details).

As in the color-maps of Fig. 6, the histograms in Fig. 7 shows
an appreciable statistical difference in planarity between generic
points (magenta lines) and those located inside current structures
(black lines). Indeed, if we consider generic points, we obtain
P distributions less skewed toward P ≈ 1, with a peak around
0.6−0.8 (it is important to note the log scale for the y axis). On
the contrary, the normalized histogram of P for points owing
to current structures peaks around 0.8−1.0. For all three simula-
tions, the values for the mean, median, and standard deviation are
reported in Table 3 (first row for generic points and second row
for current structures) and turn out to be the same. For the elon-
gation, the behavior changes less significantly when consider-
ing generic points or current structures. Indeed, the peaks of the
occurrence distributions are always close to 1. Also in this case
we report the mean, median, and standard deviation in Table 3
(third row for generic points and fourth row for current struc-
tures). In summary, the emerging picture indicates a majority of
“blade-like” magnetic configurations. Commenting on the differ-
ent behavior between generic points and those located in current
structures, this is not surprising since the points located in cur-
rent structures belong to regions which tend to have a specific
shape and a common behavior. In particular, we note that they
have a high planarity confirming the intuitive picture of nearly
2D current sheets. On the contrary, for generic points which
are picked up from almost everywhere, including from regions
where the current density is low, the magnetic configuration has
a different behavior.

Finally, a major result is the behavior of the distributions
for satellite data in agreement with the results of our simula-
tions for generic points. In particular, the agreement is the most

evident for SIM B-sf. This agreement is a very good result, but
not surprising for the following two reasons. First, since there
is no selection on the values of J for the analysis performed
on MMS time series, it was expected that any agreement with
such analysis would have involved the subset of “generic points”
from our simulations. Second, simulation SIM B-sf has a setup
which is the 3D equivalent of the one employed in Califano et al.
(2020), which has already been proven capable of qualitatively
reproducing the turbulent and reconnection regime observed dur-
ing that period. Thus we expected to find similar features in the
configuration shape factors comparing SIM B-sf and these par-
ticular MMS intervals.

5.2. Analysis of eigenvalues’ occurrence distribution and
characteristic scale lengths in simulations and satellite
data

In Fig. 8 we show the normalized occurrence distribution of N’s
eigenvalues: (a) σmin, (b) σmed, and (c) σmax for SIM A, SIM B-
wf, and SIM B-sf, respectively. We recall that these eigenvalues
are interpreted as proportional to the squared inverse of the local
variation length (see Sect. 4.1). We superpose these distributions,
obtained from simulations, to the ones obtained using satel-
lites data (dotted blue line) from the two high-resolution mag-
netosheath intervals analyzed in Stawarz et al. (2019) (with the
additional selection discussed at the beginning of this section;
see Appendix B for details). In the following, we note that the
MMS eigenvalues are normalized using the local value of di.

Let us first consider the occurrence distribution of the small-
est eigenvalue, which is related to the largest characteristic
length of the magnetic configuration. This is shown in Col. a
of Fig. 8. For all three simulations there is almost no differ-
ence between the distributions for generic points (magenta line)
and for points belonging to current peaks (black line) related to
this eigenvalue. Indeed the two lines are almost superposed. This
means that the typical largest scale length of a “generic” region
does not significantly differ from that of a structure where the
current peaks. Now let us instead consider the occurrence dis-
tributions for the other two eigenvalues (related to the median
and shortest variation length of the local magnetic configura-
tions, shown in Cols. b and c of Fig. 8, respectively). In all
the simulations, the occurrence distributions of these eigenval-
ues evaluated at generic points significantly differ from the cor-
responding distributions that are obtained considering only those
points belonging to current structures. In particular, the differ-
ence is more pronounced for the smallest length scale, that is
the one associated with the largest eigenvalue. In all cases, when
compared to those obtained using generic points, the distribu-
tions obtained using only the points belonging to current struc-
tures shift toward larger σ. This means that where the current
attains values higher that Jth, the typical scale length of varia-
tion of the magnetic field are smaller (as it is somewhat expected
since the current is the curl of the magnetic field). Comparing
SIM B-wf and SIM B-sf, which we remind the reader are iden-
tical except for the amplitude of the injected perturbation, one
finds that the peak of the occurrence distributions is located at
larger values of logσmed and logσmax for simulation SIM B-sf,
rather than for SIM B-wf. Thus, simulation SIM B-sf develops
current structures with a typical scale length smaller than those
of the other simulations. This is also true for generic points, even
if less pronounced. This type of feature is likely a consequence
of the fact that the two simulations develop different turbulent
regimes (see discussion in Sect. 3). In fact, by injecting larger-
amplitude magnetic fluctuations in SIM B-sf than in SIM B-wf, a
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Fig. 7. Normalized occurrence distributions of P and E for the three simulations SIM A, SIM B-wf, and SIM B-sf, distinguishing between
statistics on generic points (magenta line) and points which belong to current structures (black line). We superpose these distributions, obtained
from simulations, to the ones obtained using satellite data (dotted blue line) from the two high-resolution magnetosheath intervals analyzed in
Stawarz et al. (2019), see Appendix B for details.

shallower sub-ion-scale spectrum develops and, consequently, a
larger amount of turbulent power reaches the smallest scales (cf.
the magnetic-field spectrum in Fig. 1). Whether this is actually
due to a weak-like versus strong-like turbulent regime (that is,
if it could be a consequence of whether critical balance and/or
dynamic alignment establishes or not) or to other effects (for
example, development of a significant amount of electron-only
reconnection events) is beyond the scope of this work and will

have to await further investigation, as well as additional simu-
lations. For current structures, we report the mean, median, and
standard deviation values in the fifth and eighth rows in Table 3,
comparing SIM B-wf and SIM B-sf quantitatively.

Concerning the comparison with the distributions extracted
from MMS data (Stawarz et al. 2019), we note a very good
agreement with the distributions for generic points for SIM
B-st. As for the previous Sect. 5.1, this very good agreement
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Table 3. Mean, median, and standard deviation for configuration analysis.

Quantity SIM Mean Median Standard deviation

Pgen SIM A, SIM B-wf, SIM B-sf 0.6 0.6 0.2
PCSs SIM A, SIM B-wf, SIM B-sf 0.7 0.8 0.2
Egen SIM A, SIM B-wf, SIM B-sf 0.8 0.8 0.2
ECSs SIM A, SIM B-wf, SIM B-sf 0.8 0.9 0.2
log(σmed,CSs) SIM B-wf −2.7 −2.7 0.5
log(σmed,CSs) SIM B-sf −1.7 −1.7 0.5
log(σmax,CSs) SIM B-wf −1.3 −1.3 0.2
log(σmax,CSs) SIM B-sf −0.3 −0.3 0.3
Egen,without CSs SIM A 0.8 0.8 0.2
Egen SIM A 0.8 0.8 0.2
Pgen,without CSs SIM A 0.6 0.6 0.2
Pgen SIM A 0.6 0.6 0.2

with SIM B-sf was somewhat expected since a similar sim-
ulation setup in the 2D case has already been proven capa-
ble of qualitatively reproducing the turbulent and reconnection
regime observed in these intervals (Califano et al. 2020). Thus,
we proved once again that a relatively large-amplitude injection
close to the ion-kinetic scale is able to reproduce several features
that are observed by MMS in the turbulent magnetosheath past
the bow shock – in particular, the development of similar 3D
structures. Although such a setup constitutes a quite interesting
hint, the actual mechanism that could be behind such a peculiar
injection (for example, the bow shock itself or the subsequent
occurrence of micro-instabilities) is still unclear and requires
further investigations, especially from the observational point of
view.

5.3. Analysis of the orientation of the magnetic field and
current density

We analyze the orientation of the direction emin along which we
measure the smallest eigenvalue with respect to the direction of
the local magnetic field and current density by computing |b·emin|

and | j · emin|, respectively. Here b and j are the unit vectors of
the local magnetic field and current density. As it was done in
previous sections, this calculation is performed both on generic
simulation points and also by restricting analysis to only points
which belong to current structures.

In Fig. 9 we show the normalized occurrence distribution of
|b · emin| (left column) and | j · emin| (right column) for all three
simulations for generic points (magenta) and for points belong-
ing to current structures (black). We superpose these distribu-
tions to those obtained by using satellites data (dotted blue line)
from the two high-resolution magnetosheath intervals analyzed
in Stawarz et al. (2019) (see Appendix B for details).

Both the local magnetic field and j are well aligned to emin
for all three simulations. In particular, we note that the align-
ment is stronger for points which belong to current peaks, which
means that for these configurations the alignment between the
magnetic field and emin (and the same for j) is the best one. The
strong alignment between j and emin is expected since by defini-
tion the derivatives of B perpendicular to emin are the strongest
ones. Instead, the alignment between the magnetic field and emin
is less obvious and could depend on the specific environment that
is being considered and/or on the initial parameters of our sim-
ulations. In general, we expect that the local magnetic field and
the current density tend to align only when there is a significant

component of “guide field” in the structure (opposed to those
configurations where B vanishes within the current structure, as,
for instance, in the typical setup that is employed to study mag-
netic reconnection without a guide field). Moreover, the good
alignment between emin and B could also be due to Beltramiza-
tion of the flow, namely the alignment between the current and
magnetic field, which is typical of small-scale turbulent struc-
tures (see for example, De Giorgio et al. 2017).

Also, in this case, the comparison with the observative data
from MMS (Stawarz et al. 2019) is very good. In particular, we
note that for the alignment |b · emin|, the best agreement between
MMS data and simulations “generic points” is found with SIM
B-wf rather than with SIM B-sf. This is probably due to the fact
that |b · emin| is strongly affected by the presence of a guide field
within the current structure. In fact, if δB/B0 is small enough
as it is for SIM B-wf, the guide field is less distorted by the
turbulent dynamics, and also the direction of weakest variation
of the emerging current structures will align better with b. On
the other hand, when large δB/B0 fluctuations are injected, there
is a significant distortion of the background magnetic field. As
a result, the emerging structures can be embedded in magnetic
shears where, with respect to the plane perpendicular to emin,
there is a weak (or vanishing) guide field.

We note, as in the discussion of Figs. 7 and 8, that the agree-
ment of the MMS distribution with the “generic points” rather
than with the dataset of points belonging to current structures
was to be expected. Indeed, there is no selection on the values of
J for the analysis performed on MMS time series.

5.4. Generic points or “background”

We briefly explain what it implies to perform a statistical anal-
ysis on “generic” points of simulations or, equivalently, on
long continuous sampling in observation data, referring to the
methodology proposed in Fadanelli et al. (2019). First of all, we
want to make sure that the ensemble of “generic” points picked
in our analysis constitute a somewhat statistically representa-
tive sub-group of the whole grid points of the simulation, while
simultaneously being comparable to the total number of points
that belong to the current structures in such a simulation (which
is instead the subset used when restricting the analysis to these
structures). Let us consider, for instance, SIM A, in which the
total number of grid points is 352 ∗ 352 ∗ 198 ∼ 2.5× 107. In this
case, the subset of “generic” points has been created by consider-
ing one point for every 27 (corresponding to a collection of ∼106
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Fig. 8. Normalized occurrence distribution of N’s eigenvalues: (a) σmin, (b) σmed, and (c) σmax for SIM A, SIM B-wf, and SIM B-sf, respectively.
In magenta distributions are shown for generic points, and in black they are shown for points belonging to current structures. We superposed these
distributions, obtained from simulations, to the ones obtained using satellites data (dotted blue line) from the two high-resolution magnetosheath
intervals analyzed in Stawarz et al. (2019), see Appendix B for details. We note the logarithmic scale on the x axis.

points), that is around ∼4% of the original set. Analogously, the
total number of points which overcome the threshold on current
density at time tsatA are ∼1.1 × 106 (that is, roughly 4% of the
total). Moreover, in our subset of “generic” points those which
overcome the threshold on current density are 4.8 × 104, again
roughly 4% of the subset. Thus, the subset of “generic” points
that is being considered should adequately represent the ensem-
ble of points of our simulation box. As recently discussed, the
points which constitute the current structures are always a small
percentage of the total number of points in a set or subset (that is,
the filling factor of the current structures in a volume is usually
very small). Therefore, we might wonder if the behavior of such
a small subgroup can emerge when we consider histograms and
plots which refer to “generic” points (or, equivalently, when we

consider a long continuous sample in observation data). Based
on our analysis, the answer to this question is no. This can be
seen in Fig. 10, which shows the occurrence distribution of elon-
gation E versus planarity P for (a) only those “generic” points
that do not belong to current structures (roughly 4%) and (b)
the whole subset of “generic” points (that is, including those
belonging to current structures). In fact, there is no noticeable
difference between the two distributions. In particular, for both
cases, the elongation and planarity have the same mean, median,
and standard deviation (see Table 3, rows 9 to 12).

The behavior of the current structures cannot emerge if we
consider “generic” points, which are the equivalent of a long
continuous sample in satellite data, without introducing any
additional selection on the turbulent time series. Therefore, in
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Fig. 9. Normalized occurrence distribution of |b · emin| (left column) and | j · emin| (right column) for all three simulations. Magenta is used to
show the distribution for generic points, and black corresponds to points belonging to current structures. The distribution refers to times at fully
developed turbulence, in particular tsatA for SIM A, tsatB−wf for SIM B-wf, and tsatB−sf for SIM B-sf. The distribution refers to times at fully
developed turbulence, in particular tsatA for SIM A, tsatB−wf for SIM B-wf, and tsatB−sf for SIM B-sf. We superposed these distributions, obtained
from simulations, to the ones obtained using satellite data (dotted blue line) from the two high-resolution magnetosheath intervals analyzed in
Stawarz et al. (2019), see Appendix B for details.

order to systematically study the statistical behavior of the shape
of current structures in satellites data, we suggest fixing a thresh-
old on the current density and only performing analysis on those
regions that overcome this threshold. This procedure is similar
to what has been done when applying the AV method discussed
in Sect. 4.2 to our numerical simulations. A similar kind of sug-
gestion (to use a threshold to identify strong current points) has
also been proposed in other works such as Bruno et al. (2001),
Greco et al. (2009), Osman et al. (2012) and Sorriso-Valvo et al.
(2018).

6. Conclusions

In this work we have conducted a wide-spanning analysis of
overall nonlocal current structures and local magnetic config-
urations emerging in plasma turbulence. The analysis is based
on three 3D-3V HVM simulations with different box sizes, res-
olution, and energy injection scales. We first focused on the
characterization of the shape of current structures. Our “refer-
ence method” defines two parameters, elongation E and pla-
narity P, which can be calculated in a simulation from the three
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Fig. 10. For tsatA SIM A, the occurrence distribution of elongation versus planarity for (a) “generic” points excluding the ones which belong to
current structures (roughly 4%) and (b) “generic” points.

characteristic dimensions of any structure (`max, `med, and `min).
We have shown how it is possible to reliably estimate the shape
of a current structure by also employing three different local
methods, namely HJ, NB, and AV (see Sect. 4.2 for details on
the methods). The rigorous computation of E and P via the
“reference” nonlocal method can only be performed on simu-
lation data. The HJ and NB methods can also only be performed
on simulation data since they require being applied on the cen-
ter of a current structure (whose precise position can be known
only on simulation data). These two “local” methods are faster
than the other two (that is, the “nonlocal” and the AV meth-
ods), since they require being computed on a restricted number
of points (namely, only on the local maxima of the current den-
sity). Finally, the AV method, the one in best agreement with the
results of the “reference” method, can also be applied with minor
modifications on spacecraft data once a threshold on the current
density has been properly defined on the time series under con-
sideration. Based on these four methods (that is, “reference and
nonlocal”, HJ, NB, and AV), we have analyzed the distribution
of shape factors (that is, planarity and elongation) for the emerg-
ing current structures, with the result that all methods coher-
ently find that they are composed of mainly “knife-blade”-like
structures. This picture is different from the one that emerges
in Meyrand & Galtier (2013) where they claim that there is a
presence of mostly cigar-like structures (they use the expres-
sion “filament-like”) through visual inspection of their 3D Hall-
MHD simulations of turbulence. This suggests that ion-kinetic
effects (that is, beyond just the Hall term) and/or electron-inertia
terms could significantly affect (and likely be required to cor-
rectly describe) the development of a current structure in plasma
turbulence across the transition range and at sub-ion scales.

Additionally, we studied the local magnetic configurations
by performing an analysis on the simulation data similar to
the one proposed by Fadanelli et al. (2019) for satellite data. In
particular, we have investigated the magnetic configurations by
analyzing the distribution of their planarity and elongation, of
their three characteristic scale lengths, and of their orientation
with respect to the magnetic-field and current-density directions.

Such analysis has been performed both on all points belonging
to current structures as well as for “generic” points belonging
to a uniform sampling of the simulation box (the aim of this
latter set being to mimic long and continuous time series from
satellite data). In general, we found different results when we
apply the analysis only to those points belonging to current struc-
tures or to “generic” points in the simulation domain (that is,
including, but not limited to, structures). In particular, the main
statistical difference between generic points and those located
inside a current structure is in the results obtained for the dis-
tribution of planarity P: “knife-blade” shapes are more likely
present when considering only those points where the current
density is above a certain threshold Jth, while the abundance of
“thicker” sheets (or “ellipsoids”) is enhanced when points below
Jth are included. The behavior of the distributions for generic
points for planarity P and elongation E is coherent with the
distribution we obtain if we apply the same kind of analysis to
high-resolution (burst) MMS data collected from the two turbu-
lence crossings in the magnetosheath and analyzed previously
by Stawarz et al. (2019), and selected in order to fit simulations’
characteristics (see Appendix B for details).

In the analysis of variation scale lengths, we found a sensible
difference in the distributions for the largest eigenvalue between
generic points and points within structures, suggesting that the
smallest characteristic length scale `min is significantly shorter
for current structures. We noted a difference in this context also
between SIM B-wf and SIM B-sf, for which all the three char-
acteristic length scales are shorter in the strong-forcing scenario
(SIM B-sf) than they are when lower-amplitude fluctuations are
injected (SIM B-wf). We remind the reader that in both simula-
tions SIM B-wf and SIM B-sf, the energy is injected only slightly
above the ion characteristic scales, as done in Califano et al.
(2020), which was able to reproduce, in a simplified 2D-3V
configuration, the electron-only turbulent regime observed by
MMS past the bow shock (Phan et al. 2018; Stawarz et al. 2019).
Concerning the comparison with the distributions extracted from
these precise MMS data (Phan et al. 2018; Stawarz et al. 2019),
we found a very good agreement only with the distributions
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for generic points from SIM B-sf, thus suggesting that similar,
small-scale current structures require a high level of forcing act-
ing close to the ion-kinetic scales.

Finally, from the analysis of the local orientation of the mag-
netic field and the current density with the minimum variance
direction emin, we found strong alignments for both fields, more
pronounced for points which belong to current structures. Also
in this case, the comparison with the observative data from the
MMS of Phan et al. (2018) and Stawarz et al. (2019) are very
good. In particular, we note a good agreement with the distribu-
tions for generic points in SIM B-wf.

The entire analysis presented in this work clearly highlights
how magnetic configurations inside a current structure exhibit
peculiar features that can only be retrieved by solely consider-
ing those points where J attains values above a certain thresh-
old. Indeed, we have shown in Sect. 5.4 that the behavior of
the current structures cannot emerge if we consider “generic”
points, which is analogous to consider a long continuous time
series in satellite data without any further selection based on
the values of J, since for such a sample the number of points
belonging to current structures is only a small percentage of the
total. Therefore, in order to systematically study the shape of
current structures in satellites data, we suggest fixing a proper
threshold on the current density and consequently considering
only regions that overcome this threshold for the subsequent
analysis. Even better, one could apply the AV method that we
have described in Sect. 4.2 in order to isolate different structures
(after applying straightforward modifications in order to adapt
the method to simple 1D time series rather than to complex 3D
spatial domains).

In conclusion, the results reported in this paper would not
only be useful for the analysis of turbulence simulations, but
also for observative studies. Indeed, (1) we have validated the
possibility of applying local methods, which are the only ones
applicable on satellite data, to infer the overall nonlocal shape of
current structures; (2) we conjecture that imposing a proper
threshold on the current density would be beneficial for the sta-
tistically study of current structures in satellite data; (3) we have
provided an overview of local magnetic configurations emerg-
ing in different turbulence regimes, also stressing the differ-
ent behavior that is found when exclusively considering points
within current structures with respect to what emerges from the
points belonging to the rest of the turbulent environment; and (4)
we have shown via such a magnetic configuration analysis that,
when there is a mechanism that injects relatively high-level fluc-
tuations close to the ion-kinetic scales, our 3D-3V simulation
can reproduce the structures that emerge in MMS data for the
periods studied by Phan et al. (2018) and Stawarz et al. (2019).
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Appendix A: Alternative definitions for structure’s
dimensions

In our work, we define the thickness `min as the maximum dis-
tance between two points with J ≥ Jth along the direction
of strongest variation of the current density, as given by the
eigenvectors of the Hessian matrix. Here, we present an alter-
native definition for thickness, as proposed by Zhdankin et al.
(2013), and we show how some of our results change when
using this different definition. In particular, we can alternatively
define thickness considering the interpolated profile of J along
the direction of strongest variation given by the Hessian matrix
and computing it as the width at half maximum of this profile.
The two methods can produce different estimations for thickness
depending on the value of the current density peak. In Figure A.1
we show the scatter plot thickness versus current density for SIM
2D at teddy−turnover2D : in red the estimations given by the method
used in the main text are shown (maximum distance between two
points with J ≥ Jth, for brevity, called “mask method”), while
in blue the ones given by the method used in this appendix are
shown (full width at half maximum of the current density pro-
file, called “FWHM method”). We chose the 2D simulations for
this comparison and the eddy-turnover time rather than the satu-
ration time just because in this simulation, at this time, there are
not many current structures, thus it is easier to interpret the scat-

ter plot. The current density was computed at the center of each
current structure considered. We can see that the two estimations
turn out to be different, especially at low values for the current
density. In the sub-panel, we show a schematic representation
to explain the difference in estimations between the “FWHM
method” and the “mask method”. In particular, when the current
density at the center of the specific structure is greater than 2Jth,
the thickness estimated using the “FWHM” method is generally
bigger than the one estimated using the “mask method”. On the
contrary, when the current density is less than 2Jth, the thickness
obtained with the “mask method” is the biggest one. The two
values are almost equal when J ∼ 2Jth. If we use this alterna-
tive definition of thickness for computing the structure’s shape
factor planarity, some features change (we note that the estima-
tion of elongation does not change since we haven’t changed the
definitions of width and length). In particular, in Figure A.2 we
show the new distribution for E and P which emerges, which is
a bit different from the one of Figure 4. In particular, to quan-
tify, now we have the following: the elongation mean ∼ 0.8, the
median ∼ 0.9, and the standard deviation ∼ 0.2, and instead the
planarity mean ∼ 0.4, the median ∼ 0.4, and the standard devi-
ation ∼ 0.2. The distribution is in less agreement with the ones
for the HJ, NB, and AV methods shown in Figure 5, and most of
the structures have a planarity in between 0.2-0.6, thus they are
more filament-like.

Fig. A.1. Scatter plot thickness versus current density for SIM 2D at teddy−turnover2D to show the differences between the two methods in estimating
the thickness. The current density was computed at the center of each current structure. By “mask method”, we mean the method to find thickness
explained in Section 4.1, which uses the maximum distance between points satisfying J ≥ Jth. On the contrary, by “FWHM method”, we refer to
the alternative method explained in Appendix A which computes the thickness using full width at half maximum of the interpolated profile of J. In
the sub-panel we show a schematic representation to explain the difference in estimations between the “FWHM method” and the “mask method”.
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Fig. A.2. Occurrence distributions of elongation E versus planarity P at t = tsatA for SIM A. Planarity here was computed using the thickness given
by the alternative method explained into Appendix A.

The width (the intermediate length) is defined as the
maximum distance between points having J > Jth in the plane
perpendicular to emin and passing from the current peak of
the structure. For the sake of coherence, we prefer the “mask
method” for defining the thickness. In such a way, a cylindrical
structure would have, as it is, coherent values for both width and
thickness, independently from the intensity of the current.

Appendix B: Selection and processing of MMS data

In a number of passages in the main text, we referred to the two
burst-resolution MMS data intervals analyzed in Stawarz et al.
(2019), which have been chosen here for comparison with the
results of numerical experiments detailed in Section 2. The
choice of these MMS data intervals is motivated by the fact that
our simulation setup (in particular for SIM B-wt and SIM B-st)
is similar to that used in Califano et al. (2020), which was able to
reproduce the turbulent and reconnection regime observed dur-
ing that period.

Throughout our analyses, MMS data relative to the magnetic
field have been taken from the FluxGate Magnetometer (FGM -
see Russell et al. 2015), while the Fast Plasma Investigation (FPI
- Pollock et al. 2016) has provided the density and pressure mea-
sures which contributed to determining the ion plasma beta and
ion inertial lengths. All these aforementioned fields have been
interpolated onto the MMS2 magnetic field data and averaged
over the four spacecraft fleets. The J value has been obtained
by applying the curlometer technique by Dunlop et al. (1988)
and the N tensor was derived as in Fadanelli et al. (2019), that
is by performing a linear estimation of the magnetic field gradi-
ent, then combining the resulting values with the four-spacecraft
averaged magnetic field data.

In order to compare results from MCA applied over simu-
lation and MMS data, we needed to apply three different levels
of selection to the latter. In particular, (1) we selected points for
which at least two of the eigenvalues of the N matrix are well-
determined by MMS measurements; (2) we selected data with
β ∈ [0.3, 3]; and (3) we selected data with a resolution compara-
ble with the one of our simulations.

Furthermore, the first selection was performed exactly as in
Fadanelli et al. (2019), that is by calculating the average inter-
spacecraft distance `S C at each instant and then at ( δB

`S C B )2 setting
a minimal resolution threshold for the eigenvalues of N, being
understood that any eigenvalue below such a threshold is not
well-resolved. Requiring that at least two of the eigenvalues are
well-resolved signifies that, on the one hand, we accept uncer-
tainty on the least eigenvalue and elongation measures but, on
the other hand, we are still able to determine the direction of
minimum variation correctly (this is because the corresponding
eigenvector is, by construction, perpendicular to the other two,
which are well determined). The requirement that two eigenval-
ues are well resolved is generally a good compromise between
the need for precision and the difficulty of determining the small-
est eigenvalue correctly, which is generally extremely small
and therefore easily falls below the MMS resolution thresh-
old. Choosing the two well-determined eigenvalue selection cri-
terion for the two turbulence intervals that we consider here
implies that over 99% of original data are retained by this first
procedure.

The second selection just described was performed over the
ion plasma beta obtained by the ratio of spacecraft-averaged
kinetic and magnetic pressures at each datapoint. For the tur-
bulence intervals we consider in this work, this is the pro-
cedure which leads to the largest reduction in the available
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dataset, which gets reduced to about 20% of its original size
through it.

With the third and last filtering of MMS data, we intend
to eliminate all those points for which simulation and satel-
lite data have different resolutions. To compare the precision
of MMS data and of simulations, we introduce two quantities
that we call “resolution factors” and they are defined as fol-
lows. For the MMS (satellite) measurements, the resolution fac-
tor is the inter-spacecraft separation divided by the ion inertial
length (we note that the only possible derivative calculation in
this case follows from a linear interpolation of satellite mea-
sures). For the simulations, on the other hand, the resolution
factor is max( 3dx

di
, 3dy

di
, 3dz

di
) and by this definition we intend to

acknowledge that the effective minimal distance over which a
HVM numerical simulation can well represent plasma physics
should be several times (here we have chosen three) the dis-
tance between neighboring data points. When considering MMS

data analyzed in Stawarz et al. (2019), the resolution factor is
almost always below 0.3. This resolution factor is thus compa-
rable with the one we obtain for our simulations, in particular
for SIM B-wf and SIM B-sf, for which it is 0.22 in all directions
(instead, we obtain 0.9 for simulation run SIM A, corresponding
to the z direction which is the less resolved, while for the x and
y direction we obtain 0.5). Given these values, we have decided
to accept all the previously selected data into a MCA procedure
which is to be compared to that performed over HVM simulation
results.

By the whole procedure just detailed, a dataset containing
about 200000 points has been selected. Given these data, it
is possible to obtain a valid statistic only for what we called
“generic” points since any further selection aiming to retain only
samples retrieved inside current structures would leave us with
no more than few thousand points, which are not sufficient for
statistics in our case.
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