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We address the issue of inter-particle dipolar interactions in the context of magnetic hyperthermia.

More precisely, the main question dealt with here is concerned with the conditions under which the

specific absorption rate is enhanced or reduced by dipolar interactions. For this purpose, we pro-

pose a theory for the calculation of the AC susceptibility, and thereby the specific absorption rate,

for a monodisperse two-dimensional assembly of nanoparticles with oriented anisotropy, in the

presence of a DC magnetic field, in addition to the AC magnetic field. We also study the competi-

tion between the dipolar interactions and the DC field, both in the transverse and longitudinal con-

figurations. In both cases, we find that the specific absorption rate has a maximum at some critical

DC field that depends on the inter-particle separation. In the longitudinal setup, this critical field

falls well within the range of experiments. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4984013]

I. INTRODUCTION

Today magnetic hyperthermia is one of the most promis-

ing applications of magnetic nanoparticles. This is an experi-

mental medical treatment of cancer that has recently attracted

numerous investigations from the physics perspective.1–8 It

consists in injecting in tumor cells magnetic nanoparticles

whose magnetization is then excited by an external AC mag-

netic field into a fast switching motion. As a consequence,

there is an elevation of temperature of several Kelvins inside

the cells that eventually leads to their destruction. One of the

most relevant quantities to the efficiency of this process is

what is called the specific absorption rate (SAR), which is

defined as the power absorbed by a magnetic sample sub-

jected to an external AC field

SAR ¼ Re
l0x
2p

þ
cycle

M � dHac

 !
: (1)

The integration here is performed over one cycle of the

magnetic field and gives the energy dissipation per cycle. M

is the sample’s magnetization and x the angular frequency

of the AC magnetic field HAC ¼ H0 exp ðixtÞex. By integra-

tion of Eq. (1), it can be shown within the framework of

linear-response theory that the SAR is directly proportional

to the imaginary component of the AC susceptibility

v00ðxÞ.9,10 More precisely, we have

SAR ¼ l0x
2p

H2
0v
00 xð Þ: (2)

See also Ref. 11 for a detailed derivation of the related volu-

metric power dissipation.

Hence, computing the SAR for an assembly of nanopar-

ticles can be achieved upon obtaining its AC susceptibility.

If we denote by veq the equilibrium susceptibility and by

C the relaxation rate (the inverse longitudinal relaxation time

s¼C�1), the AC susceptibility may be computed according

to the Debye model12,13

v xð Þ ¼ veq

1þ ixC�1
: (3)

Therefore, upon computing the equilibrium susceptibil-

ity veq and the relaxation rate C of the assembly, in the pres-

ence of dipolar interactions (DI) and a DC magnetic field,

we can investigate the effects of the latter two contributions

on the SAR. This is the main task of the present work.

Accordingly, we will study the effects of dipolar interactions

and DC magnetic field on the SAR of a mono-disperse

assembly of magnetic nanoparticles arranged in a regular

super-lattice. Our main objective here is to investigate the

conditions regarding DI and DC field under which the SAR

may be enhanced. Magnetic hyperthermia makes use of a

kind of ferrofluid, i.e., an ensemble of (ferro) magnetic nano-

particles floating in a fluid. In this work, we consider instead

a solid matrix in which the nanoparticles are embedded and

spatially arranged. However, in order to investigate the qual-

itative features of the SAR as a function of the assembly con-

centration and magnetic DC field, we resort to a simple

analytical formalism which still captures the main behavior

with respect to these two parameters.

The article is organized as follows: in Sec. II, we present

our model and hypotheses. Section III is devoted to the

calculation of the AC susceptibility within the framework

of the Debye model. This requires the calculation of the
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equilibrium susceptibility as well as the relaxation rate. We

finally obtain an expression of the SAR as a function of the

assembly concentration Cv and applied DC field. The article

ends with our conclusion and perspectives.

II. MODEL AND HYPOTHESES

We consider a monodisperse assembly of N single-

domain nanoparticles with oriented (effective) uniaxial

anisotropy, each having a magnetic moment mi ¼ misi;
i ¼ 1;…;N of magnitude m and direction si, with jsij ¼ 1.

For the sake of simplicity, and without loss of generality, we

focus on a simple geometry: the assembly is organized into a

simple cubic two-dimensional super-lattice of parameter a.

Indeed, the approach adopted here can easily be extended to

more general situations upon computing the super-lattice

sums of the corresponding geometry and spatial configura-

tion. This method is general, and the standard sums involved

in such calculations have already been introduced in similar

contexts where the dipolar interactions have to be taken into

account.14,15 Setting up the assembly in the xy plane, each

nanoparticle of volume V is attributed an (effective) uniaxial

anisotropy constant Keff with an easy-axis in the z direction.

Indeed, even if the nanoparticles are modeled here as

spheres, we assume that asperities on their outer shell and

related surface effects may induce an effective easy axis for

their resultant magnetic moment. Furthermore, we assume

that these easy axes are all pointing in the z direction. The

present calculations can, of course, be extended so as to

include volume and anisotropy-easy axis distributions using

a fully numerical approach. However, as stated earlier, in

this work, we would like to focus on the qualitative behavior

of the SAR in the presence of DI and a DC magnetic field

and derive simple formulae for practical use.

For later use, we introduce the (dimensionless) anisotropy-

energy barrier r¼Keff V/kBT. Keff is considered to be the larg-

est energy scale of our model (i.e., r� 1), meaning that the

anisotropy barrier is the dominant term in the expression of the

energy. This limit applies to most hyperthermia experiments

(at temperature T’ 318 K) on iron-cobalt nanoparticles of

volume V� 5.23� 10�25 m3 (i.e., spheres of radius R¼ 5 nm)

with an effective anisotropy constant Keff � 4.5� 104 J m�3.

Indeed, in this case one has r’ 5.4. These assumptions also

apply to the various systems investigated in the literature.16–19

The energy of a magnetic moment mi interacting with

the other moments of the assembly and subjected to an exter-

nal DC magnetic field Hex ¼ HDCez reads (after multiplying

by �b��1/kBT)

Ei ¼ Eð0Þi þ EDI
i ; (4)

where

Eð0Þi ¼ x si � ez þ rðsi � ezÞ2 (5)

is the energy of a single (noninteracting) nanoparticle located

at site i. This includes the Zeeman and anisotropy terms,

with x¼bmHDC. The second term in Eq. (4) is the contribu-

tion from the long-range DI

EDI
i ¼ n

X
j<i

si � Dij � sj; (6)

with the usual tensor

Dij �
1

r3
ij

3eijeij � 1ð Þ; (7)

where rij ¼ ri � rj; rij ¼ jrijj and eij ¼ rij=rij a unit vector

along the link i ! j. In dimensionless units, the DI coeffi-

cient n reads

n ¼ l0

4p

� �
m2=a3

kBT

� �
: (8)

Alternatively, the DI can be expressed as the result of

the DI field Ni acting on mi with

Ni ¼ n
X
j 6¼i

Dij � sj: (9)

The main purpose of our investigation is to derive (semi)-

analytical formulae that account for the effect of DI and DC

field on the SAR. Accordingly, we limit the present study to

low particle concentrations (i.e., n� 1) since then we can

use perturbation theory to investigate the behavior of the

SAR upon varying n and x.

Now, a word is in order regarding Debye’s formula (3).

In Ref. 20, the contribution of DI to the relaxation rate C was

obtained in the adiabatic approximation. More precisely, for

an ensemble of weakly coupled magnetic moments, one

assumes that there are mainly two time scales:

(1) The “single-particle” time scale ss� 1/cHK, where c is

the gyromagnetic factor and HK the anisotropy field of

the particle. ss is the (intrinsic) characteristic time of the

dynamics of an individual magnetic moment.

(2) The “collective” time scale s ¼ C�1 that corresponds to

the dynamics of the “soft” collective state induced by

(weak) DI in the whole assembly.

Thus, in the adiabatic approximation, one assumes that

s� ss, which means that because of the weak DI, what is hap-

pening at the level of individual moments is conveyed with

delay to the other moments and eventually to the whole assem-

bly. Equivalently, this implies that when the dynamics of an

individual magnetic moment is probed and the relaxation rate

is being measured, one assumes that the other moments are

“frozen in time” and exert only a static “molecular” field on

the moment considered. Hence, the latter is subject to a static

effective field due to DI, in addition of course to the anisotropy

and Zeeman fields. In conclusion, in the present approach, it is

understood that the collective dynamics of the system is

assumed to be dominated by a “slow” mode corresponding to

one (longitudinal) relaxation time. This comes out as a correc-

tion to the Debye formula and which is taken into account in

the present work by a DI correction of the equilibrium suscep-

tibility and the longitudinal relaxation time. This is done in

analogy with various works on the extensions of Debye’s

model in the context of dielectric relaxation. Indeed, the sim-

plest model of orientational relaxation is that of rotational

203903-2 D�ejardin et al. J. Appl. Phys. 121, 203903 (2017)



diffusion first proposed by Debye21 in which rigid molecules

diffuse independently. Zwanzig22 (see also Ref. 23) later inves-

tigated how DI affects this model on a rigid cubic lattice. It

was shown that, to first-order in concentration (or DI coeffi-

cient n), one obtains only one (longitudinal) relaxation time

shifted from the molecular relaxation time by some correction

factor that depends on the density of the lattice, with a very

good agreement with Debye’s formula. The correction factor

vanishes at vanishing density. The high-order corrections to

the Debye formula are responsible for new relaxation times

that become relevant at much higher frequencies, e.g., in FMR

measurements.

III. AC SUSCEPTIBILITY

AC susceptibility can be written as vðx;r;n;xÞ ¼ v0 � iv00

with its real and imaginary components given by

v0 ¼ veq 1

1þ g2
; v00 ¼ veq g

1þ g2
; (10)

with veq being the equilibrium susceptibility, i.e., the response

of the magnetic system to the static magnetic DC field Hex.

On the other hand, the AC susceptibility is the response of

the system to HAC, the AC magnetic field. In the present

work, we remain within the linear-response regime since H0

is assumed to be too small to change the energy states of the

magnetic system. For this reason, HAC does not need to be

included in the Hamiltonian that is used for determining the

equilibrium states of the system. The parameter g in Eq. (10)

is given by g¼xC�1, where C is the relaxation rate associ-

ated with the magnetization switching between its minimal-

energy orientations.

In the presence of (weak) DI, in Refs. 15 and 24, veq

was shown to be given by

veq ’ veq
free þ ~nveq

int; (11)

where ~n � nCð0;0Þ, with Cð0;0Þ being a lattice sum that can be

expressed in terms of the assembly demagnetizing factor along

z (see Sec. V B). For instance, for the specific case of a square

sample, as shown in Fig. 1, the lattice sum is given by (in the

thermodynamic limit) Cð0;0Þ ’ �9, whereas it is positive for a

prolate sample of the form L�L� 2 L for which Cð0;0Þ ’ 1:7.

veq
free and veq

int represent the contributions to the linear

equilibrium susceptibility without DI and with DI, respec-

tively. Their explicit derivation can be found in Refs. 14

and 24. Here, we only report the main result for the longitu-

dinal DC field case

veq
free ¼

l0m2

kBT
1� 1

r
� 1� 2

r

� �
x2

� �
; (12)

veq
int ¼

l0m2

kBT
1� 2

r
� 4 1� 3

r

� �
x2

� �
: (13)

Note that these two expressions are valid for x � 0.5. For

larger values of x, we must use the expressions given in

Eqs. (3.85) and (3.39) of Ref. 12, with h¼ x/2r. In the pre-

sent notations, these are rewritten as follows:

veq
free;GP ’

l0m2

kBT

1

coshx� hsinhxð Þ2
1� h2ð Þ � 1

r
þ 1

8r2
1� 1þ 6h2 þ h4ð Þcosh 2xð Þ � 4h 1þ h2ð Þsinh 2xð Þ

1� h2ð Þ2

" #( )
; (14)

veq
int;GP ’

l0m2

kBT

1

2

@2

@x2
tanhx 1� 1

2r
1þ 2x

sinh 2xð Þ

� �
� 1

8r2
4� x

sinh 2xð Þ � 2x

cosh2x

� �" #( )2

: (15)

The difference between veq in Eqs. (12) and (13) and Eqs.

(14) and (15) is shown in Fig. 2. Their comparison allows us

to establish the validity of the approximate expressions in

Eqs. (12) and (13). Note in passing that all these expressions

are only valid in the limit r� 1, which is relevant for the

specific case of hyperthermia. More general expressions can

be obtained if one rederives the equilibrium susceptibility

from exact expressions of the magnetization as given in

Refs. 25 and 26. We have checked that the 1
r-series expansion

of the latter gives the same expressions as used here. The

main feature that appears in the presence of DI is clearly

shown by the black curves in Fig. 2: the competition between

on one hand, the DI that tend to maintain the magnetization

within the xy-plane and, on the other, the external DC field

together with anisotropy that tend to align the magnetic

moments along the z-direction lead to a nonmonotonic

behavior of veq with a maximum at an external DC field

xm� 0.9. In the limit of high anisotropy-energy barrier,

namely, r� 1, this maximum can be analytically obtained;

it only depends on the DI parameter ~n as follows:

FIG. 1. 2D assembly of nano-spheres on a square super-lattice of parameter

a. The external DC field is applied along the z-axis, and the AC field lies

within the xy-plane. We assume the assembly to be monodisperse with all

anisotropy easy axes oriented in the z direction.
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xm ¼ Arcsech
1ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2~n

s2
4

3
5: (16)

For the present case, with n¼ 0.131 and lattice sum Cð0;0Þ ¼�9

(i.e., ~n¼�0:972), we obtain xm’0.875, which is in agreement

with the result in Fig. 2.

The remaining task in the calculation of the AC suscepti-

bility (10) is to compute the relaxation rate, or the (dimension-

less) relaxation time g. For a single (noninteracting) particle

the relaxation rate C0, in a longitudinal DC field, is given by

the N�eel-Brown formula.27 The longitudinal relaxation rate

given by N�eel-Brown formula is valid for any r as long as the

two-well character of the energy potential is preserved.

Indeed, the relaxation rate computed within Brown’s or

Langer’s approach is based on the notion of escape rate (or

first-passage time) from a metastable minimum to a more sta-

ble minimum, through a saddle point. Hence, the existence of

the saddle point and of the minima has to be well defined in

the energy landscape. Therefore, the N�eel-Brown expression

for the relaxation rate is valid for r ranging from a few units

to a few tens, which is the case for the magnetic systems used

in hyperthermia applications. The N�eel-Brown formula reads

sDC0 ¼
r1=2 1� h2ð Þffiffiffi

p
p 1þ hð Þe�r 1þhð Þ2 þ 1� hð Þe�r 1�hð Þ2

h i
;

(17)

where h¼ x/2r and sD � 2� 10�10 – 2� 10�12 s is the free-

diffusion time.

In the presence of (weak) DI, J€onsson and Garcia-

Palacios20 showed that the relaxation rate depends on the

damping factor k and is expressed as a quadratic function

of the longitudinal and transverse components of the DI

field Ni. Accordingly, the explicit expression of g depends

on the lattice through sums such as R ¼ 2
P

j6¼i r�6
ij ;

T ¼
P

j 6¼i ðe � DijeÞ2.20,28 More precisely, we have

g ¼ x
C
¼ x

C0

1� n2

6
S kð Þ

� �
; (18)

with SðkÞ ¼ ð1þ FðkÞÞR þ ð3T � RÞð1� FðkÞ=2ÞS2. The

function F(a) is given by29

F að Þ ¼ 1þ 2 2a2eð Þ1= 2a2ð Þ
c 1þ 1

2a2
;

1

2a2

� �
; (19)

where cða; zÞ ¼
Ð z

0
dt ta�1e�t and a ¼ k

ffiffiffi
r
p

.

Finally, substituting in Eq. (10) the expressions (12) and

(13) or (14) and (15) for veq and (17) and (18) for C renders

an expression of the AC susceptibility for the assembly

in the presence of DI. Therefore, the DI contributes to v00

through the relaxation rate as well as the equilibrium suscep-

tibility. However, it can easily be seen that for low concen-

trations, the DI correction is mostly brought in by the

equilibrium susceptibility. Hence, to the first order in n, we

can write (g0 ¼ xC�1
0 )28

v00 ’ g0

1þ g2
0

veq
free þ ~nveq

int

h i
: (20)

Note that this result agrees with Eq. (34) of Ref. 1 for

n¼ 0. Indeed, the expression of veq
free given in Eq. (12)

provides a clear basis for the phenomenological formula

of Eq. (38) given by Carrey et al. In fact, the factor
1
3
ð3� 2

1þðr=3:4Þ1:47Þ with ad-hoc exponents and coefficients is

extracted from a fitting of the ratio veq
free=vLangevin, supposedly

with the aim to obtain an interpolation between the two

regimes r� 1 and r� 1. However, as we have already

mentioned, for applications to hyperthermia, we have the

typical values of r’ 5–30. In this case, analytical calcula-

tions show that it is a good approximation to replace the ratio

veq
free=vLangevin by (1� 1/r), as can be seen in the square

brackets in Eq. (12). This is clearly illustrated by the results

in Fig. 3.

The DI parameter n defined in (8) can be rewritten in

terms of the particles’ concentration Cv as24

n ¼ l0

4p
m2

kBT

Cv

V
: (21)

FIG. 3. veq
free=vLangevin as a function of the anisotropy parameter r. The

numerical data are extracted from Ref. 1 and are compared to the phenome-

nological expression ð3� 2

1þðr=3:4Þ1:47Þ and to the analytical expression

3(1� 1/r).

FIG. 2. Linear susceptibility veq as a function of the (reduced) longitudinal

DC field x in the absence of DI (dashed lines n¼ 0) and in the presence of

DI (continuous lines n¼ 0.131, i.e., with super-lattice parameter a¼ 40 nm).

The curves in black are plots of Eqs. (14) and (15), of Ref. 12 (GP stands

for Garcia-Palacios), while the curves in red are plots of the expressions in

Eqs. (12) and (13).
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IV. SPECIFIC ABSORPTION RATE—EFFECT OF DC
FIELD AND CONCENTRATION

A. SAR for “noninteracting assemblies”

Let us first examine the behavior of the SAR as a func-

tion of the applied DC field for noninteracting (i.e., free) par-

ticles. Within this approximation, the SAR can be written as

SAR ¼ l0

2p

� �
C0g2

0

1þ g2
0

H2
0v

eq
free: (22)

In the case of a longitudinal (k) DC field, the expres-

sions of C0 and veq
free are given in Eqs. (17) and (12) or (14),

respectively. For a transverse (?) DC field, the general

expression of Eq. (22) still holds, one should simply replace

the expression of the relaxation rate C0 and that of the free

susceptibility by the appropriate expressions,12,30 namely,

sDC?0 ¼
½1� 2hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k�2hð1� hÞ

q
	
ffiffiffiffiffiffiffiffiffiffiffi
1þ h
p

2p
ffiffiffi
h
p e�r 1�hð Þ2 ;

veq;?
free ¼

l0m2

kBT

� �
1

2r
1þ h2ð Þcoshx� 2hsinhx

1� h2ð Þ coshx� hsinhxð Þ : (23)

Using these expressions, one can see that the transverse

susceptibility veq;?
free only weakly depends on the DC field x;

only 3% of change over the range x¼ 0–2. On the contrary,

veq;k
free changes by an order of magnitude over the same range,

as shown by the black dashed curve in Fig. 2. This explains

why the effect of the DC field on the SAR is more pro-

nounced in the longitudinal case. The effect of a transverse

DC field on the SAR of non-interacting assemblies is shown

in Fig. 4. Notice the scale on the vertical axis.

The results are presented for external DC fields below

25 mT. Indeed, we have to restrict ourselves to H?dc < HK ¼
2Keff

Ms
’ 77 mT in order to preserve the picture of a two-well

potential energy on which the over-barrier escape rate the-

ory31,32 is based.

In the sequel, we will focus on the longitudinal geome-

try where more pronounced effects are observed. This will

be done in the presence of DI.

B. SAR for (weakly) interacting assemblies

In the absence of a DC magnetic field (i.e., x¼ 0),

we can use Eqs. (21) and (20) together with Eq. (2) to

write a relatively simple expression for the SAR of a

(weakly) interacting assembly in terms of the particles

concentration Cv

SAR ¼ l0

2p

� �
C0g2

0

1þ g2
0

l0m2

kBT

� �
H2

0

� 1� 1

r

� �
þ C 0;0ð Þn Cvð Þ 1� 2

r

� �� �
: (24)

In particular, this expression shows that, to the 1st order,

the SAR is linear in the concentration of the assembly with a

strong dependence on its shape via the coefficient Cð0;0Þ (see

discussion in Sec. V B).

We now consider the evolution of the SAR as a function

of the DI parameter ~n, in a variable external DC magnetic

field for which we introduce the new parameter h¼ x/2r. For

numerical estimates, we have used the physical parameters

of FeCo, the magnetic material studied in Ref. 16, namely,

Ms¼ 1.162� 106 A/m, Keff ¼ 4.5� 104 J/m3 with a density

q’ 8300 kg m�3. In SI units, the SAR is expressed in Watt

per particle, but it is more commonly measured in W/g. We

have also assumed that each nanoparticle is a sphere of

radius R¼ 5 nm. For such a size but elongated shape, which

leads to a strong effective anisotropy, the blocking tempera-

ture of an individual particle is �60 K. However, the work-

ing temperature relevant to hyperthermia applications is

T¼ 318 K, leading to the reduced anisotropy-energy barrier

r ’ 5.4. This implies that the individual nanoparticles are in

the superparamagnetic state. This is an additional reason for

which the SAR behavior is mostly dictated by the equilib-

rium susceptibility, as stressed earlier.

Regarding the AC magnetic field, we have set it at a

small amplitude H0¼ 7.3 mT so as to remain in the linear

regime and to preserve the validity of the approach leading

to Eq. (2) for the SAR. Indeed, we note that this amplitude is

smaller than the usual experimental value, e.g., 23 mT, as in

Ref. 17. As a consequence, since the SAR scales like H2
0, the

computed value in this paper should be at least one order of

magnitude lower than that observed in experiments. In fact,

as stressed earlier, our aim here is not to achieve a quantita-

tive agreement with experiments regarding the SAR but

rather to explain the role of DI and its possible competition

with an external DC magnetic field. An extension of the pre-

sent approach beyond the linear regime should be possible

on the basis of the developments in Refs. 22, 23, and 33.

Then, using Eqs. (14) and (15), we obtain the expression

for the SAR of the now (weakly) interacting assembly

SAR ¼ x2C0 hð Þ
x2 þ C2

0 hð Þ
l0H2

0

2p
veq

free;GP þ ~nveq
int;GP

h i
; (25)

where the relaxation rate depends on the external DC field

according to Eq. (17). Expression (25) is plotted in Fig. 5

against the variable X¼ 10�21/a3, where a is expressed in

meters.
FIG. 4. SAR as a function of the transverse DC magnetic field HDC for

H0¼ 7.3 mT, x¼ 35.18� 104 rad/s.
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An interesting behavior is observed for oblate samples,

as can be seen in the upper panel in Fig. 5, in the specific

case of a two-dimensional square sample (depicted in Fig.

1). Here, the nano-spheres are placed on the vertices of a

square lattice lying in the xy-plane, with their effective

anisotropy axes parallel to the z-axis and the DC field applied

parallel to the latter. In the present setup, there is a competi-

tion between the DI and the DC field. Consequently, the

results in Figs. 5 and 6 show that there are two ways to

enhance the SAR, namely, by tuning either the concentration

or the magnitude of the DC field.

The curve crossing seen in the upper panel in Fig. 5 can

be understood upon analyzing the behavior of veq in the pres-

ence of DI, as shown in Fig. 2. Indeed, one clearly sees that

for an inter-particle distance of 40 nm, i.e., X � 15, the equi-

librium susceptibility reaches a maximum for a DC field of

about Hmax
DC ¼ kBT

m xmax ¼ kBT
m 0:8 ’ 6 mT. According to Eq.

(25), this means that the SAR should exhibit a maximum

around this field. However, this interpretation should take into

account the fact that the SAR in Eq. (25) depends on h not

only through the equilibrium susceptibility but also through

the relaxation rate C0(h). In order to clarify the effect of the

dynamics, let us now further focus on the effect of the DC

field on the SAR. For this purpose, in Fig. 6, we plot the SAR

as a function of the field, as rendered by Eq. (25). In Fig. 6(a),

we plot Eq. (25) where we have used the relaxation rate in

zero field, i.e., C0(h¼ 0), which means that we simply adopt

the Arrhenius law for the relaxation rate C0. On the other

hand, in Fig. 6(b), we plot the full expression (25), where

C0(h) is given by Eq. (17). The idea here is to assess the con-

tribution to the SAR of the DC magnetic field through the

dynamics, or more precisely through the relaxation rate, and

to compare it with that brought in by the equilibrium suscepti-

bility. Accordingly, we see that the DC field hmax, at which

the SAR reaches its maximum, is slightly shifted to higher

values as the concentration increases. However, the qualitative

overall behavior remains the same. This result implies that

for the typical assemblies studied here, the overall behavior of

the SAR is mainly governed by the equilibrium susceptibility

veq. There is a further remark in order regarding the curves

in Fig. 6(b). At some particular value of the DC applied field

(hc’ 0.07), the SAR turns out to be independent of the con-

centration. In fact, this occurs when the DI contribution to the

susceptibility (veq
int) vanishes and thereby Eq. (25) becomes

independent of ~n (or the concentration). Hence, the exact

expression of hc can be obtained by solving veq
int;GPðxcÞ ¼ 0, or

an approximation thereof at low field obtained from Eq. (13),

leading to hc � 1
4r 1þ 1

2r

� �
’ 0:05.

V. DISCUSSION

Now we discuss the main issue of the present work,

namely, the contributions of DI and DC magnetic field to the

FIG. 5. SAR as a function of X (see text) for various values of the longitudi-

nal field HDC with H0¼ 7.3 mT, x¼ 35.18� 104 rad/s.

FIG. 6. The SAR as a function of the longitudinal DC field for various val-

ues of the concentration X. (a) SAR obtained by setting h¼ 0 in C0 in Eq.

(25); (b) the SAR obtained from Eq. (25) for nonzero field.
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SAR of an array of magnetic nanoparticles. In particular, we

discuss the role of the underlying super-lattice, emphasizing

its geometry and structure.

A. Effect of the DC magnetic field on the SAR

Both in the transverse and longitudinal static (DC) mag-

netic field, we find that the SAR exhibits a bell-like shape.

However, in the transverse setup, the ascending part of the

curve is rather abrupt and thus occurs over a narrow range of

low field values (see Fig. 4). This is probably the reason why

only the descending part is observed in experiments. For

instance, in Ref. 19, the authors studied the possibility to

increase heating with the help of a DC magnetic field in the

transverse configuration. They measured a SAR that is

decreasing with increasing DC field, as can be seen in their

Fig. 4. Again, in Ref. 17, the authors studied the effect of a

transverse DC magnetic field on the SAR of FeCo nanoparti-

cle assemblies. The results in their Fig. 3(b) show that the

hysteresis area (or the SAR divided by the AC field fre-

quency) is a decreasing function of the DC field. However, if

one examines their results more closely in the low-field

regime, it turns out that a nonmonotonic behavior of the

SAR is observed: close to 3 mT, it seems that the area of the

hysteresis grows before decreasing continuously. This is in

agreement with the predictions of the present theoretical

developments. However, further experimental investigations

are required to clarify this behavior of the SAR.

On the other hand, the longitudinal setup renders a

clearly nonmonotonic behavior of the SAR with a maximum

at a DC field that falls well within the experimental range.

The SAR can also be obtained by computing the area of the

dynamic hysteresis loop obtained by cycling over the AC

magnetic field, see Ref. 1 and references therein. In the case

of an oblate geometry, the DI lead to an effective magnetic

moment in the plane of the assembly. Then, in the low-field

regime, as we increase the DC field, the projection of this

magnetic moment (on the field direction) increases, because

the net magnetic moment tilts out of the assembly plane,

leading to a widening of the hysteresis cycle M(HAC) and

thereby to an increase of the SAR. As the critical value of

the DC field is reached (see discussion above), the DC field

wins against the DI and the magnetization saturates.

Consequently, the equilibrium susceptibility and thereby v00

goes down to zero.

In Ref. 34, the authors used the matrix-continued-frac-

tion method to study the effect of a DC magnetic field on the

AC susceptibility of a nanoparticle in the macrospin approxi-

mation. In particular, the results in their Fig. 1 show that, in

the low-frequency regime, which is relevant to the present

work, the imaginary component of the AC susceptibility

decreases as the DC field (denoted there by n0) is increased

beyond unity. This is of course in agreement with the behav-

ior we observe here in the high-field regime, i.e., h> hc, or

x> 1 as can be seen in Fig. 2 in the behavior of the equilib-

rium susceptibility. In fact, the latter imposes its bell-like

shape to the out-of-phase component of the AC susceptibility

and thereby to the SAR.

B. Effects of the assembly super-lattice shape and
structure

In Eq. (11) enters the lattice sum Cð0;0Þ leading to the

effective DI parameter ~n � nCð0;0Þ. For the 2D array of

N particles considered here, Cð0;0Þ is defined by15

C 0;0ð Þ ¼ 1

N

XN

i¼1

X
j 6¼i

3 ez
ij

� �2 � 1

r3
ij

;

where ez
ij represents the z-component of eij, the unit vector

introduced in Sec. II. These lattice sums can easily be com-

puted on the simple cubic lattice for samples with different

shapes, with Lx¼L; Ly¼ L; Lz¼ nL, by varying n. Namely,

n¼ 0 corresponds to a square sample, n¼ 1 to a cubic sam-

ple, and if n� 1 the sample assumes the shape of a needle.

The results of the evaluation of Cð0;0Þ at the thermodynamic

limit are given in Fig. 7 and are summarized in Table I.

In order to highlight the competition between the

applied field and the DI, we mainly focus on oblate samples.

This implies that Cð0;0Þ < 0 and as it can be seen in Eq. (11),

the sample aspect ratio plays a key role in the behavior of

veq: while the role of the interactions is irrelevant for cubic

samples since Cð0;0Þ ¼ 0, it gets more and more enhanced as

one goes to planar samples as observed in Fig. 8.

As a consequence, the SAR changes from a bell-like

curve (with a maximum) into a monotonously decreasing

function of the applied DC field, as the sample passes from a

pure 2D array into a thick slab and finally a “needle-like”

sample. This means that the assembly shape plays a crucial

FIG. 7. Systematic evaluation of the lattice sum Cð0;0Þ as a function of n for

N-particle samples with N¼L�L� nL, note that n¼ 0 means a 2D square

sample.

TABLE I. Cð0;0Þ at the thermodynamic limit for samples of different shapes.

N Cð0;0Þ 
 n Cð0;0Þ 


0 –9.1 6 3.25

1/4 –3.98 8 3.47

1/2 –2.04 10 3.61

1 0 12 3.70

2 1.69 14 3.77

3 2.42 16 3.82

4 2.82 18 3.86

5 3.08 20 3.89
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role in the present approach. For the case of prolate samples,

with Cð0;0Þ > 0, the DC field does not compete with the DI,

and both have the same effect on the anisotropy barrier;

this translates into a decrease of the SAR as the DC field

increases. In contrast, for the well-controlled organized 2D
arrays of nano-elements in vogue today (with Cð0;0Þ < 0),

there is a competition between the DI and the DC field, such

that the SAR should exhibit the bell-like shape.

VI. CONCLUSION AND PERSPECTIVES

We have proposed a theoretical model and a practical tool

for studying the qualitative behavior of the specific absorption

rate of a monodisperse assembly of magnetic nanoparticles

with oriented effective anisotropy, in the presence of dipolar

interactions and a DC magnetic field, in addition of course to

the AC field. We have dealt with both a longitudinal and trans-

verse setup of the DC field with respect to the anisotropy axis.

We have shown that, depending on the sample geometry, one

can observe competing effects between the external DC field

and the sample’s concentration (or equivalently the dipolar

interaction). More precisely, in the case of oblate samples and

for a given concentration, there is an optimal field magnitude

that maximizes the specific absorption rate.

In the present work, we have modeled the magnetic state

of the nanoparticles with the help of a macroscopic magnetic

moment, thus ignoring their internal structure and intrinsic

features, such as surface effects. In Ref. 35, the effect of sur-

face anisotropy on the (static) hysteresis loop was investi-

gated in the atomic approach with the help of numerical

methods. The same approach could be used to compute the

dynamic hysteresis loops and thereby investigate the effect

of surface and finite size on the specific absorption rate. The

corresponding results could also be compared with the

approach used here that uses the AC susceptibility upon

extending it to the effective one-spin problem along the lines

adopted in Ref. 28.

As mentioned earlier, the nonlinear regime with respect

to the AC magnetic field should be studied upon generalizing

the Debye model for AC susceptibility. An increase in the

AC field affects the magnitude of the SAR explicitly through

the prefactor and implicitly through the relaxation rate and

the additional contributions from high frequency modes.
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