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Abstract— To ensure the economic viability and the reliability 

of microgrid operation, an adapted energy management system 

(EMS) has to be designed. Most of the studies have discussed 

optimization-based approaches, for example with a mixed-integer 

linear programming (MILP) problem, to get the best operating 

profiles for each microgrid device allowing economic, technical 

or environmental objectives to be met. However, this kind of 

EMS requires a forecasting ability of the power generation and of 

the demand, and the management of the uncertainties. In some 

microgrids, especially in industrial areas, the power generation 

and the load demand cannot be accurately forecasted. In such 

cases, only a rule-based algorithm can be considered for the real-

time energy management. In this paper, a rule-based algorithm is 

proposed for the management of a seaport multi-energy 

microgrid, using electricity and hydrogen as energy vectors. The 

rules are designed on the basis of the results obtained with MILP 

problem solving with the aim being to maximize income and use 

the energy generated by the local energy sources as well as 

possible by taking dynamic pricing into account. Moreover, 

specific strategies are designed for the management of the 

electrolyzer and hydrogen tank to avoid premature ageing. The 

results show that the proposed real-time algorithm and rules 

enable the economic and energetic criteria to reach values close 

to those obtained with MILP problem solving, with an increase of 

the payback period less than 2%. 

Keywords—Microgrid, energy management, rule-based 

algorithm, storage management 

I. INTRODUCTION 

The development of multi-energy microgrids faces 
constraints related to reliability, emission of pollutants, 
economic viability, etc. [1]. Thus, specific energy management 
systems (EMS) have to be designed to take goals and 
constraints into account. Several kinds of approaches can be 
found in the literature for the design of EMS [2]. Some of them 
are based on optimization problems involving linear or non-
linear programming, whereas others consider rule-based (RB) 
algorithms. Most of the time, the EMS based on optimization 

involves the ability to forecast the future (power generation, 
power demand, electricity purchasing and selling prices, etc.) 
to minimize an objective function. Such optimization problems 
ensure that an optimal solution can be found, but the 
uncertainties management and the computation time can be 
problematic [2], [3]. For real-time management and when data 
forecasting is not really possible, the RB algorithms are more 
suitable to take operating decisions according to the state of the 
system [4], [5]. Several studies have compared the results 
obtained by optimization and RB approaches [6]–[10]. Those 
based on optimization lead to better economic results but 
require greater computation time in comparison with RB 
approaches. To obtain results as close as possible to those 
obtained with optimization, some authors have proposed rules-
based methods to control the microgrid devices, such as using 
binary variables in [4] or fuzzy rules in [11]. The management 
of storage solutions and dynamic pricing appear to be key 
points [12].  

However, the literature survey shows that the design of RB 
algorithms for industrial multi-energy microgrids where 
multiple ways of valorisation exist has not been deeply 
investigated. Thus, the aim of this paper is to propose a RB 
algorithm for a multi-energy microgrid considering electricity 
and hydrogen energy vectors. The algorithm’s design was 
based on results obtained through solving a MILP problem. 
The idea is to define the operating decisions solely on the basis 
of the current situation of the system, without taking the power 
generation and demand expected in the incoming hours into 
account. The case study used is related to a seaport area, in 
which generation and demand forecasting is difficult. The 
strategies are designed to get economic results as close as 
possible to those obtained with MILP problem solving. This 
paper is organized as follows: the modelling of the studied 
microgrid is presented in Section II. Then, the proposed RB 
algorithm is described in Section III. The obtained results and a 
comparison with MILP problem results are given in Section 
IV. Section V consists of a conclusion and some perspectives. 



II. SYSTEM DESCRIPTION 

A scheme of the studied industrial microgrid is proposed in 
Fig. 1. Power flow modelling was considered for this study. 
The electrical power generation (Pgen, in W) is carried out 
thanks to solar photovoltaic panels and energy harvesting from 
engines testing. This generated power can be either fed into an 
electrolyzer (Pelz) to be converted into hydrogen, used for the 
supply of electrical loads (the total load power is denoted by 
Pdem), fed into the main grid (Pgr-s), used for the charge of the 
batteries (Pbat-c) or fed into a dump load (Pdp). In the case of 
low generated power, the electrical load demand can be 
supplied by the batteries discharge (Pbat-d), the fuel cell (Pfc) or 
thanks to electricity purchased to the main grid (Pgr-p). It should 
be noted that the power Pgr-p can be separated in two variables, 
one for the supply of electrical loads (Pgr-p/el) and the other one 
for the hydrogen production (Pgr-p/H2). The hydrogen produced 
can be used for the supply of local needs (LH2-dem, in Nm

3
/h, 

normal cubic meter per hour) including hydrogen mobility and 
industrial requirements and can also be fed into the urban gas 
network (LH2-g). Moreover, the hydrogen produced can be 
stored in hydrogen tank for a later use. Each of these powers is 
constrained by a maximum value related to the sizing and/or 
the operation of each subsystem. This limit is denoted with the 
subscript max, such as for example the power limit Pelz max for 
the electrolyzer. The minimum value of these powers is zero, 
except for the batteries discharge power (Pbat-d min) considered 
negative. 

 
Fig. 1. Overview of the considered microgrid 

The power balance of this system must be achieved at each 
time sample tk to ensure the whole demand can be supplied: 

 Pgen(tk) + Pgr-p(tk) + Pfc(tk) − Pbat-d(tk)
Pdem(tk) + Pgr-s(tk) + Pelz(tk) + Pbat-c(tk) + Pdp(tk) 

The modelling of the storage solutions and a summary of 
the management considered in the MILP optimization problem 
are described in the following subsections.  

A. Batteries modelling 

The model considered for the batteries is based on the state 
of charge (SoC) calculation, defined at each time sample tk by: 

 SoC(tk)αbat SoC(tk-1) + (ηbat-c Pbat-c(tk-1) + Pbat-d(tk-1)/ηbat-d) 
∆t/Cbat-ref  

where Cbat-ref is the nominal capacity of the batteries [Wh], ηbat-c 
and ηbat-d the efficiencies in charge and discharge, αbat the 
coefficient related to the batteries self-discharge rate between 
two consecutive time samples and ∆t the time step. It should be 
noted that the charging power Pbat-c is considered positive and 
the discharging power Pbat-d negative. The SoC is constrained 
by a lower limit SoCmin and an upper limit SoCmax, so that at 
each time sample the inequalities SoCmin ≤ SoC(tk) ≤ SoCmax are 
met. 

B. Hydrogen production and storage modelling 

The modelling of the hydrogen system is based on the 
calculation of the level of hydrogen LoH stored in the hydrogen 
tank [13]. At each time sample tk, LoH is calculated thanks to: 

LoH(tk)αH2 LoH(tk-1) + (Pelz(tk-1)ηelz − Pfc(tk-1)/ηfc − (LH2-g(tk-1) 
+ LH2-dem(tk-1))γH2) ∆t/CH2-ref  

where CH2-ref is the nominal capacity of the hydrogen tank 
[Wh], ηelz and ηfc the efficiencies of the electrolyzer and the 
fuel cell, αH2 the coefficient representing the self-discharge rate 
of the hydrogen tank between two consecutive time samples 
and γH2 the conversion factor between hydrogen volume and 
hydrogen energy. 

C. Energy management based on the MILP problem 

The energy generated can be valorised in different ways 
using this multi-energy microgrid. To obtain the operating 
decisions allowing the profits to be maximized over a given 
period of several hours, an optimization problem was 
formulated according to a MILP approach, as described in [14]. 
The main ideas underpinning this optimization problem are as 
follows: 

 Decision variables: operating powers of the microgrid 
devices (Pelz, Pfc, Pbat-c, Pbat-d, Pdp), power exchanged 
with the main grid (Pgr-s and Pgr-p) and hydrogen fed 
into gas network (LH2-g). 

 Objective function: to maximize income including:  
o the sale of electricity, remunerated according to c’s-el 

dynamic price depending on the hour of the day; 
o the sale of hydrogen fed into the gas network, 

remunerated according to c’s-H2g constant price; 
o the sale of hydrogen used for mobility, remunerated 

according to c’s-H2dem constant price; 

 and minimize expenses including:  
o the operating costs of batteries (c’op-bat), electrolyzer 

(c’op-elz) and fuel cell (c’op-fc); 
o the purchase of electricity based on a dynamic tariff 

c’p-el depending on the hour (night/day) and the 
season (winter/summer). 

 Constraints: power balance (electrical and hydrogen 
demand have to be met, thus no load shaving), power 
limits, hydrogen flow limits, SoC and LoH limits, 
hydrogen tank filled at the beginning of each day. 

This optimization problem was solved for a period of K 
time samples. Moreover, a rolling horizon simulation was 
considered to limit the number of decision variables, related to 
the period length, thus the computation time. In our case, the 
optimization problem was solved for a data period of two days 
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and the update time step was one day, while the simulation 
time step was set to 15 min. 

Several trends can be highlighted by observing the results 
obtained through solving this optimization problem (see Fig. 
5): 

 The power dispatch shows that at each moment in time 
the generated energy was fed into the most profitable 
solutions in a hierarchical way: hydrogen production 
for the supply of hydrogen loads in priority, then 
supply of electrical loads (electricity purchase savings), 
then hydrogen production for injection into urban gas 
network, and finally injection into the main grid. This 
of course depends on the price assumptions. 

 As the self-discharge was taken into account, the 
storage solutions were charged as late as possible and 
discharged as soon as possible to limit the energy 
losses. Moreover, the batteries were charged after the 
hydrogen tank, as the batteries self-discharge rate is 
higher than for hydrogen tank. The batteries were 
discharged before the hydrogen tank because of the 
self-discharge and bearing in mind using this 
discharged energy for the most profitable solution. 

 The fuel cell was never used, as it is not profitable to 
convert hydrogen into electricity, in comparison to the 
sale of hydrogen both for hydrogen demand supply and 
injection into the gas network. Moreover, the 
efficiency of the fuel cell (ηfc = 0.5) also explains this 
trend. 

 If the energy generated by the local energy sources is 
not sufficient to fill the hydrogen tank during the day, 
the charge can be ensured thanks to electricity 
purchase during the nightly low-price period (from 
10 p.m. to 6 a.m.), to obtain a fully charged hydrogen 
tank each morning. 

Moreover, the operating profiles obtained with this 
approach show that the ability to forecast some data is 
necessary (power generation, demand and energy costs). The 
storage solutions were managed with a non-causal way, in the 
aim to maximize the net profit while taking the storage self-
discharge and the dynamic tariffs (electricity purchasing and 
sale) into account. 

III. PROPOSED RULE-BASED ALGORITHM 

From the results obtained from solving the MILP 
optimization problem, a RB algorithm was designed. The aim 
of this algorithm is to define the operating rules (values of Pelz, 
Pfc, Pbat-c, Pbat-d, Pdp, Pgr-s, Pgr-p and LH2-g) at each time sample tk 
in a causal way. Thus, the decisions must only be defined 
according to the state of the system and the costs at this time 
sample, characterized by the following input data: Pgen, Pdem, 
LH2-dem, SoC, LoH, c’s-el, c’s-H2g, c’s-H2dem and c’p-el. The 
constraints related to the power balance and the operating 
limits must also be dealt with. 

The flowchart related to the main algorithm is shown in 
Fig. 2 which corresponds to the steps executed at a time sample 
tk. The algorithm starts with an assessment of the storage 
systems (step 1). If hydrogen is already available, the discharge 

of the hydrogen tank is considered first for the supply of 
hydrogen loads (step 2), before considering the use of 
electrolyzer in the next steps. Step 3 aims to share the 
generated power among the devices thanks to the algorithm 
described in the section III-A. Once the power generated has 
been dispatched, the step 4 determines if and in which solution 
the batteries can be discharged, according to the algorithm 
presented in the section III-B. This 4

th
 step aims also to 

determine if fuel cell has to be used. As the power generated 
and the discharge of storage solutions can be not sufficient to 
supply the electrical demand and hydrogen demand, the needed 
power drawn from the main grid is calculated in the step 5. 
Moreover, at this step, if the time tk belongs to a low-price 
period for electricity purchase (from 10 p.m. to 6 a.m.), 
electricity is purchased to the main grid to fill as much as 
possible the hydrogen tank. 

  
Fig. 2. Flowchart of the main algorithm applied at each time sample tk 

A. Algorithm considered for the energy valorisation 

The algorithm designed for the dispatch of the power 
generated at a time sample tk is presented in Fig. 3. As 
explained previously, the power generated is shared in a 
hierarchical way according to the valorisation costs, ranked 
from the most profitable to the less profitable (step 1). The 
costs are compared on the electrical bus side, thus the 
electrolyzer efficiency must be considered in the costs ranking 
to take the losses into account. If certain costs are identical, the 
order of priorities is as follows: use for electrical loads supply 
then hydrogen production and finally injection into the main 
grid. Then, the steps 2.a to 2.f are computed according to the 
while loop iteration, by defining at each step the power related 
to the considered device. The idea of these steps is to use the 
power generated as much as possible, taking into account the 
limits (device limits, available generated power and load 
power) and the powers which have been calculated in the 
previous steps. The power generated remaining to be used 
(P’gen) is updated at each of these steps, according to the 
calculated use. It should be noted that a power threshold is 
considered for the filling of the hydrogen tank with the power 
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generated. To avoid frequent use of the electrolyzer which 
would lead to a fast ageing, the hydrogen tank is filled with the 
power generated only if the remaining generated power P’gen is 
greater than a power threshold Pelz th (steps 2.b and 2.d). This 
rule means the number of operating hours can be reduced by 
only turning on the electrolyzer for high power values. Then, if 
a surplus of generated power remains after the sharing between 
the four valuing solutions, the energy is stored as much as 
possible into the batteries. Finally, if a surplus still exists after 
considering batteries charging, the rest of generated power is 
fed into a dump load. 

 
Fig. 3. Flowchart of the algorithm related to the power generated sharing 

B. Algorithm considered for the use of the stored energy  

The flowchart of the algorithm related to the storage 
discharge at each time tk is presented in Fig. 3. The rule 

considered involves using the stored energy for the most 
profitable solution from the following: hydrogen production 
(for hydrogen load supply or injection into the urban gas 
network), electrical load supply and injection into the main 
grid. It should be noted that the batteries are discharged before 
considering using the hydrogen tank and the fuel cell, to 
minimize energy lost due to the self-discharge of the batteries. 
The maximum operating power of the chosen valorisation 
method and the possible uses calculated during the previous 
steps are taken into account to define the discharge of the 
batteries and the hydrogen tank. 

 
Fig. 4. Flowchart of the algorithm related to the discharge of the storage 

solutions 

IV. SIMULATION RESULTS 

The RB algorithm proposed in this article was validated 
with a simulation computed on MATLAB software. The case 
study was the industrial microgrid of the seaport of Saint-
Nazaire (France). The considered theoretical sizing was: 
Cbat ref = 1 MWh, CH2 ref = 12.5 MWh, Pelz max = 2.3 MW, 
Pfc max = 0.5 MW. The electrical power was generated thanks to 
a 4 MW installed power of PV panels and an engine testing 
process with a maximum power of 26 MW. The electrical load 
demand considered is related to industrial buildings and seaport 
basin pumps, leading to a maximum demanded power of 
3 MW. The hydrogen demand involves three kinds of mobility 
use (cars, bus and boats) with a total daily demand of 
600 kgH2. The following economic assumptions were made for 
electricity: the selling cost c’s-el varies during the day between 
2.91 c€/kWh and 5.66 c€/kWh, while the purchasing cost c’p-el 
depends on the hour of the day and the season, with values 
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between 6.69 c€/kWh and 11.75 c€/kWh. The hydrogen selling 
prices were c’s-H2g = 10 c€/kWh and c’s-H2dem = 20 c€/kWh. The 
time step ∆t was set at 15 min and the simulation was carried 
out for a one-year data period (real power demand and 
generated power data recorded in 2019). The power threshold 
Pelz th was set at 1 MW (a sensitivity analysis is proposed at the 
end of this section).  

The operating profiles obtained in the simulation are shown 
in Fig. 5, for a one-day time window (February 6

th
 2019). The 

results obtained by solving the MILP optimization problem are 
also presented to compare them with the results of the RB 
algorithm. Several trends can be highlighted from these results. 
With the RB algorithm, the batteries are charged as soon as an 
excess of generated energy exists rather than as late as possible 
as is the case with MILP. Moreover, the batteries are only 
discharged when the most profitable way of valorisation is 
available (hydrogen production) rather than as possible as with 
MILP. It can be seen that the hydrogen tank starts to fill a little 
earlier with the MILP approach to achieve a fully filled tank at 
6:00 while with the RB algorithm the filling occurs at 22:00 
only, when the low-price period starts. Moreover, the hydrogen 
tank was only allowed to be filled with the power generated 
when the available generated power overpasses the triggering 
power Pelz th of 1 MW (for example at 10:15). This filling of the 
tank shows that less generated power is used for the supply of 
the electrical loads during the morning, thus more power has to 
be purchased from the main grid (Pgr-p/el) in comparison with 
the result obtained through solving the MILP problem. Also, 
the algorithm proposed for the sharing of the power generated 
involves a slight increase of the power fed into the main grid 
(Pgr-s) in comparison with MILP results. In fact, it has been 
considered that the generated energy should be used as much as 
possible when the generation occurs, following a hierarchical 
order based on the valorisation costs. It should also be noted 
that the fuel cell is never used in both simulations, as more 
profitable ways exists for the energy valorisation. 

A comparison of the values of the technical and economic 
criteria obtained through solving the MILP problem and using 
the RB algorithm is presented in Table 1. These results show 
that slight differences in the results obtained by the two 
approaches. Using the RB algorithm was found to lead to a 
lower level of valorisation of the energy generated, which can 
be explained by a higher amount of energy converted into 
hydrogen meaning there were more losses due to the 
electrolyzer efficiency. Also, the electrolyzer is used more 
often and thus needs to be replaced earlier which means the 
related annualized replacement cost is higher. The differences 
observed for energy sharing and the broader use of devices was 
found to lead to a lower annual net profit with the RB approach 
and thus a five months longer payback period. The annual net 
profit is the difference between the incomes and the expenses, 
including electricity purchase, operation and maintenance costs 
and annualized replacement costs. However, the gap is small as 
the annual net profit is decreased by 2% only. It can be 
highlighted that the computation time is strongly diminished 
with the RB algorithm (3.3 s vs. 53.9 s for MILP). This can be 
an advantage in more complex studies in which the 
computation time has to be as low as possible, such as sizing 
optimization, sensitivity analysis and real-time management. 

 
Fig. 5. Operating profiles for a one-day time window, obtained for MILP 

problem solving (blue curves) and rule-based algorithm (black curves) 

The designed RB algorithm involves the parameter Pelz th 
for the filling of the hydrogen tank with the power generated by 
the local sources, to avoid frequent turn on for small power 
values. The influence of Pelz th value on the annual net profit 
and the valorised energy rate is shown in Fig 6. These results 
show that the value of 1 MW allows the annual net profit to be 

Time



maximized. If this threshold is decreased, the incomes obtained 
by the hydrogen production will increase but the number of 
operating hours of the electrolyser will also increase, leading to 
an annualized replacement cost higher than profits obtained by 
hydrogen selling. If the threshold value is set at a higher value, 
the electrolyzer will be used less which lowers replacement 
cost but the energy will be valorised in a less profitable way 
(electricity fed into the main grid or used for electrical load 
supply). However, less energy will be lost in comparison to 
using the electrolyzer. Thus, the rules must be designed with 
the right parameters to obtain a compromise between energy 
valorisation (from energetic and economic points of view) and 
operating costs related to the use of devices. 

TABLE I.  COMPARISON OF OBTAINED RESULTS FOR ONE YEAR 

Criterion 
Results 

MILP problem RB algorithm 

Valorised energy (% of Egen) 7.13 GWh (83.7%) 6,83 GWh (80.1%) 

Generated energy used for 

electrical loads supply [GWh] 
2.59 1.535 

Generated energy used for 
hydrogen production [GWh] 

2.146 2.828 

Generated energy used for 

injection into main grid [GWh] 
2.395 2.465 

Annual net profit [k€/y] 632.3 620.4 

Payback period [years] 20.86 21.26 

 

 
Fig. 6. Impact of electrolyzer power threshold Pelz th on the annual net profit 

(+ marker) and the valorised energy rate (o marker) 

V. CONCLUSION 

In this article, a RB algorithm was designed to manage a 
multi-energy microgrid based on the results obtained through 
solving a MILP problem. The proposed approach was based on 
a prioritization of profits and on the choice of a power 
threshold to limit the electrolyzer ageing. The results presented 
in this article show that the economic benefits and the energy 
valorisation rate are close to those obtained with MILP 
problem solving. Thus, economic viability can be ensured for 
this microgrid without complex forecasting assumptions. 
However, the RB strategies must be designed carefully 
according to the sizing of the system devices and the 
considered input data (generated power, electrical and 
hydrogen load demand, energy costs, etc.). The storage devices 
must be managed to avoid too frequent use, which would lead 
to a premature ageing and thus high replacement costs. Several 
other potentially interesting avenues could be studied in the 
future, such as the integration of market mechanisms into the 
RB algorithm and a comparison with machine learning 
algorithms. 
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