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One dominant aspect of cities is transport and massive passenger mobilization which remains a
challenge with the increasing demand on the public as cities grow. In addition, public transport
infrastructure suffers from traffic congestion and deterioration, reducing its efficiency. In this paper,
we study the capacity of transport in 33 worldwide metro systems under the accumulation of damage.
We explore the gradual reduction of functionality in these systems associated with damage that
occurs stochastically. The global transport of each network is modeled as the diffusive movement
of Markovian random walkers on networks considering the capacity of transport of each link, where
these links are susceptible to damage. Monte Carlo simulations of this process in metro networks
show the evolution of the functionality of the system under damage considering all the complexity
in the transportation structure. This information allows us to compare and classify the effect of
damage in metro systems. Our findings provide a general framework for the characterization of the
capacity to maintain the transport under failure in different systems described by networks.

I. INTRODUCTION

Metro systems represent an important component of
the infrastructure of modern urban areas [1]. These mass
transportation systems contribute to solving the problem
of connecting people with different parts of a city, espe-
cially in densely populated urban areas, allowing them to
carry out the diverse activities that keep a city function-
ing [2–4]. Under optimal conditions, metro systems can
move large numbers of people in a fast and efficient way,
with lower transportation costs and coping with traffic-
related air pollution [5–7]. Thereby metro systems have
become a crucial element in the development of cities not
only in terms of economical benefits but also in terms of
social and environmental impact.

Unfortunately, metro systems are exposed to a consider-
able number of factors that can compromise their oper-
ation. Lack of maintenance, technical disruptions, nat-
ural events, are some of the issues that affect their cor-
rect functioning, and in some cases, they can pose a risk
for passengers [8, 9]. Therefore it is of crucial impor-
tance understanding these systems and their response
to damage. Several works have been developed around
metro systems, particularly as they represent real net-
works, many of them focused on network science [4, 10].
In this representation, the components of metro systems
are described as nodes of a graph and their relationships
as edges connecting them. Under this approach, it has
been observed that metro systems can exhibit proper-
ties like scale-free and small-world features [4, 10]. The
response of these systems to damage has been studied
in this context too, principally using topological aspects
of networks. For instance, it has been investigated the
behavior of transportation networks to the dysfunction

or removal of sets of stations or links (rails, roads, etc.)
[11–13] and the cases when the links do not suffer com-
plete failures but their service capacity has been reduced
[14, 15]. In the same way, the performance of some metro
systems has been assessed using robustness metrics based
on the count of alternative paths to connect two nodes or
the effects of building new ones in the networks [16, 17].

On the other hand, the understanding of different dynam-
ical processes on networks has had a significant impact
[18]. In particular, the diffusive transport described by
a random walker that visits the nodes on networks fol-
lowing different rules is a challenging theoretical problem
where one of the main goals is to understand the relation
between network topology and its capacity to communi-
cate all the nodes in the network [19–22]. Different devel-
opments in the understanding of random walkers on net-
works have led to valuable tools in searching processes on
the internet [23, 24], algorithms for data mining [25, 26],
human mobility in cities [27–29], epidemic spreading [30],
among many others.

In this contribution, we explore the effect of damage im-
pact in metro systems considering that the main func-
tion of these systems is to maintain the capacity that an
agent can efficiently reach any node from any initial con-
dition. In this manner, it is reasonable to describe the
transport in the structure in terms of random walkers
defined using local information of the links connecting
two nodes. For such dynamical processes, a global time
defined in terms of mean first passages between nodes
is a useful quantity to describe the functionality of the
system in terms of eigenvalues and eigenvectors of the
transition matrix that defines the dynamics. In addi-
tion, at a different scale of time, we consider that the
transportation network may suffer damage in the links,
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FIG. 1. Networks of 33 metro systems worldwide. The adjacency matrices of the networks were obtained from Ref. [4, 31] and
plotted using the networkx (2.6.3) python package [32].

where this degradation in the link capacity is modeled
by a stochastic process with preferential attachment in
such a way that links with more failures are susceptible
to new deficiencies with greater probability. We study
the evolution of the functionality of metro systems under
this particular mechanism for accumulation of damage.
This approach allows us to characterize the response to
link deterioration and classify their structures from vul-
nerable to robust under failure. This classification also
relates the topology of the network with its capacity to
tolerate damage. The application explored in this pa-
per occurs in the context of the analysis of infrastructure
in urban transportation systems; however, the methods
presented are general and can be implemented to analyze
the vulnerability of different ‘complex’ systems.

II. DATASET DESCRIPTION

The metro system is one of the mass transportation
systems used in several urban areas worldwide. Its infras-
tructure constitutes a rail system with exclusive right-
of-way whose tracks can be underground, at grade, or
elevated. It works based on previously designed routes
or lines connecting several parts of the city and, usually,
it is integrated to other transportation modes; neverthe-
less, its operation is independent of them [1].

There are several ways to represent a transportation sys-

tem as a network that can provide different information
about its structure [33]. For instance, the L-space repre-
sentation considers each station as a node of the graph,
and two of them are linked only if there is a route that
connects them directly [33]. In another representation,
the B-space, the routes are considered nodes, the edges
are drawn between the routes and the stations that be-
long to their path, thus the stations appear connected
through routes only [33]. In this work, we use a repre-
sentation proposed by Derrible [4]. In this depiction of a
metro system, the vertices correspond only to the termi-
nal stations which are the stations at the end of a line and
the transfer stations that allow people to change from one
line to another. Other stations are ruled out since they
do not provide relevant information. To draw the edges,
Derrible considers two particular types: in the first group
of edges are the simple ones defined by the connections
that establish a single line without overlapping. The sec-
ond group considers multiple edges representing the fact
that there is more than a line linking the stations. In
the following, we dismiss the effects of overlapping lines,
thereby the metro systems are represented by networks
of terminal and transfer stations connected by directed
edges.

We study 33 metro systems using the information and
database compiled by Derrible [4, 31] and depicted in
Fig. 1. The systems analyzed belong to different parts of
the world (North and Latin America, Eastern and West-
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ern Europe, Africa and Asia) and have diverse topologies.
Regarding the number of lines, they range from 2 lines
in the Cairo system to 14 lines found in the metro of
Paris [4]. For the number of nodes, using the represen-
tations of terminals and transfer stations, we can find
small graphs as the Rome metro (N = 5) or Cairo and
Marseille systems (N = 6) and large ones as the case of
New York (N = 77) or London (N = 83). Referring to
the structure, the data set contains systems represented
by connected networks with a tree structure, for instance,
the case of Cairo, Delhi, or Toronto. Other systems show
a few cycles in their structures as in Prague or Bucharest
and some of them display more complex structures such
as the systems in London or Paris.

III. TRANSPORTATION NETWORKS UNDER

CUMULATIVE DAMAGE

This section summarizes the methods introduced in
Refs. [34, 35] to the study of random walks on systems
that evolve with accumulation of damage. For the ini-
tial configuration, we consider undirected connected net-
works with N nodes i = 1, . . . , N described by an adja-
cency matrix A with elements Aij = Aji = 1 if there is
an edge between the nodes i and j and Aij = 0 otherwise;
in particular, Aii = 0 to avoid edges connecting a node
with itself. In this structure, we denote the set of nodes
as V and the set of directed edges as E with elements
(i, j), |E| is the total number of different directed edges
in the network.

Additionally to the network structure, the global state of
the system at time T = 0, 1, 2, . . . is characterized by a
N×N matrix of weights Ω(T ) with elements Ωij(T ) ≥ 0
and Ωii(T ) = 0 which describe weighted connections be-
tween the nodes. The matrix Ω(T ) contains information
of the state of the edges and in general is not symmetric.
In order to capture in the model the damage impact af-
fecting the complex system, we use the variable T as the
measure of the total number of damage hits in the links
of the network. We introduce for each link (i, j) ∈ E a
stochastic integer variable hij(T ) where hij(T )−1 counts
the number of random faults that exist in this link at time
T . The values hij(T ) for all the edges are numbers that
evolve randomly, and a new fault in the link (i, j) appears
at time T with a probability πij(T ) which is given by

πij(T ) =
hij(T − 1)

∑

(l,m)∈E hlm(T − 1)
(i, j) ∈ E , (1)

for T = 1, 2, . . . with the initial condition hij(0) = 1,
i.e. no faults exist for all the edges at T = 0. For the
sake of an undamaged reference edge during the damage
evolution we choose randomly an edge E⋆ which does not
evolve according to Eq. (1) and maintains hE⋆(T ) = 1,
i.e. remains without damage for all T ≥ 0.

Equation (1) indicates the probability for the event that

at time T the number of faults hij(T ) = hij(T − 1) + 1
are increased by one. In our analysis, the damage is dis-
tributed without maintaining the symmetry of the ini-
tially undirected network, i.e. damage in the edge (i, j)
evolves independently of the damage in edge (j, i) thus in
the general case hij(T ) is independent of the value hji(T )
and also πij(T ) from πji(T ) which is generating a biased
network. With Eq. (1) at T = 1 the first hit (fault) is
randomly generated for any selected link (i, j) with equal
probability πij(1) =

1
|E|−1 for (i, j) ∈ E \E⋆ (where E \E⋆

denotes the set of edges minus the particular edge E⋆).
The occurrence of the second fault at T = 2 depends on
the previous configuration and so on.

An essential feature of the probabilities in Eq. (1) is
that they produce preferential damage if a link has al-
ready suffered damage in the past. A link has a higher
probability to get a fault with respect to a link never be-
ing damaged. Such preferential random processes have
been explored in different contexts in science (see Ref.
[36]), being a key element in our model that generates
complexity in the distribution of damage reflected by
asymptotically emerging power-law and fractal features.
An asymptotic analysis of the time-evolution of the fault
number distribution resulting from Eq. (1) shows that
a power-law scaling with features of a stochastic fractal
emerge (See Ref. [34]). Such a preferential damage accu-
mulation mechanism can be observed in several adaptive
complex systems such as living beings and was suggested
as a model for aging [37–39].

Now, we aim to describe how the structure reacts to the
damage hits occurring stochastically to the edges. We
describe the effects of the damage by using the infor-
mation in the matrix of weights Ω(T ). In terms of the
values hij(T ), the matrix Ω(T ) defines the global state
of the network containing the complete information on
the network topology at time T . Its matrix elements

Ωij(T ) = (hij(T ))
−αAij (2)

contain the local information on the damaged state of
edge (i, j) and α ≥ 0 is a real-valued parameter that
quantifies the effect of the damage in each link. The pa-
rameter α describes the reaction of the system to the
damage in the links and can be conceived as a ‘main-
tenance parameter’. It quantifies activities of mainte-
nance and reparation, for instance small α corresponds
to well maintained and therefore robust metro networks
and large α reflect metro systems which are fragile due
to bad maintenance (see Refs. [37–39] for a discussion
of the analogue so-called ‘misrepair’ mechanism in living
beings). In the limit α → 0 we have Ωij(T ) → Aij as in a
perfect undamaged structure (perfect maintenance), and
the effect of the stochastically generated faults is null. In
contrast, in the limit α → ∞, a hit in a link is equivalent
to its removal from the network (no maintenance).

In addition to the damage accumulation of the structure,
at a completely different scale of times (significantly less
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than the characteristic times of damage evolution) takes
place the movement of a random walker in the network
with discrete steps ∆t at times t = 0,∆t, 2∆t, . . .. This
time scale can be identified with the characteristic opera-
tional time of a metro train, for instance the time between
two stations which may be in the order of magnitude of
minutes to hours whereas the degradation of a metro line
may take weeks or even years. In a determined configu-
ration at time T , the transition probability matrix W(T )
describing the random walker is defined by the elements
wi→j(T ) with the probability to pass from node i to node
j

wi→j(T ) =
Ωij(T )

∑N

ℓ=1 Ωiℓ(T )
. (3)

We assume a Markovian time-discrete random walker
that performs at any time increment ∆t a random step
from one node to another. This process is defined by the
master equation [19, 40, 41]

Pij(t+∆t, T ) =

N
∑

ℓ=1

Piℓ(t, T )wℓ→j(T ) (4)

valid for t ≪ ∆T = 1. In this master equation Pij(t, T )
indicates the probability that the walker that starts its
walk at node i at t = 0 occupies node j at the n-th time
step t = n∆t (in the following we assume ∆t = 1).

We study the capacity of the network to perform a spe-
cific function and how this property evolves with the ac-
cumulation of damage. In the context of transport on
networks, we use a ‘functionality’ F(T ) that quantifies
the global transport capacity at time T as [34]

F(T ) ≡
τ(0)

τ(T )
(5)

with

τ(T ) =
1

N

N
∑

j=1

τj(T ), (6)

where

τj(T ) =

N
∑

l=2

1

1− λl(T )

〈j|φl(T )〉
〈

φ̄l(T )|j
〉

〈j|φ1(T )〉
〈

φ̄1(T )|j
〉 . (7)

Here, we use Dirac’s notation, |φm(T )〉, 〈φ̄m(T )| denote,
respectively, the right and left eigenvectors of the tran-
sition matrix W(T ) with the respective eigenvalues 0 ≤
|λm(T )| ≤ 1. The walk which we assume to take place on
a (strongly connected) directed weighted and finite net-
work is ergodic with the unique eigenvalue λ1(T ) = 1∀T .

The stationary distribution P
(∞)
j (T ), that gives the prob-

ability to find the random walker at the node j in the

limit t → ∞, is given by P
(∞)
j (T ) = 〈i|φ1(T )〉〈φ̄1(T )|j〉

[20–22, 42]. The global time τ(T ) expressed in terms of

mean first passage time 〈Tij(T )〉 to start in i and reach
for the first time the node j is given by [35]

τ(T ) =
1

N

N
∑

j=1

∑

i6=j

P
(∞)
i 〈Tij(T )〉 . (8)

In this result, we see that τ(T ) is a global time that gives
the weighted average of the number of steps to reach any
node of the network. In this way, the definition F(T ) in
Eq. (5) characterizes globally the effect of the damage
suffered by the whole structure and how evolves the ca-
pacity of a random walker to explore the network. For
α > 0, the smaller τ(T ) (i.e. the higher the transport
capacity), the higher the functionality. For large times
T ≫ 1, the value τ(T ) ≥ τ(0), therefore F(T ) ≤ 1
(equality holds only in the undamaged state) [34]. Here,
it is important to mention that additionally to the dam-
age evolution Eq. (1), we have introduced the condition
that hE⋆(T ) = 1 is kept constant for a randomly cho-
sen edge E⋆. This particular restriction is necessary to
maintain the link E⋆ without damage as a reference of
the complete functionality of a link and to avoid sudden
“revival” of the system described by the matrix W(T )
which may randomly occur if all the links have suffered
at least one fault, see Ref. [34] for a detailed discussion.

IV. METRO SYSTEMS UNDER DAMAGE

Once we have defined the algorithm for the accumu-
lation of damage in transportation networks, in this sec-
tion we apply this approach to understand and classify
the metro systems presented in Sec. II. To this end,
we implement Monte Carlo simulations to generate ran-
dom distributions of damage hij(T ) in the links at times
T = 1, 2, . . . , T ⋆ by using Eq. (1). For each network and
a distribution of damage at time T , we build a transition
matrix W(T ) using Eqs. (2)-(3) describing a random
walker in the structure with damage. The eigenvalues
and eigenvectors of this matrix allow to characterize the
capacity of transport in terms of τ(T ) in Eq. (6) and the
functionality F(T ) in Eq. (5). Although we are working
with an idealization of how accumulated damage occurs
in these structures, all this formalism in the context of
random walkers allows us to quantify the resistance of
a network dedicated to transport, its ability to tolerate
damage as well as the relationship between the network
topology and its robustness. The importance of the net-
work topology can be seen by the simple observation that
if an edge between two nodes is strongly damaged or dis-
connected, then the functionality of the structure is not
much reduced if redundant short paths connecting these
two nodes exist.

In Fig. 2 we illustrate the results for the functionality
F(T ) as a function of T (in the interval T ∈ [1, 1000])
for two particular metro systems in New York [Fig. 2(a)]
and Paris [Fig. 2(b)] using α = 1 in Eq. (2). In the dif-
ferent curves, we depict 100 realizations where we can see
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FIG. 2. Evolution of F(T ) for two metro systems in: (a)
New York and (b) Paris. The results for 100 Monte Carlo
realizations of the cumulative damage algorithm with α = 1
are presented with thick lines and dashed lines depict the en-
semble average 〈F(T )〉. In each panel we include the network
analyzed.

how F(T ) changes as the systems receive more damage.
The values 〈F(T )〉 in dashed lines represent the ensem-
ble average. The systems explored present two different
topologies as we can see in the insets. For the case of
New York, the network explored contains N = 77 nodes
and |E| = 218 edges. In the transportation network in
Paris we have N = 78 and |E| = 250.

In Fig. 2, it is worth mentioning that by definition we
have F(0) = 1. The ensemble average 〈F(T )〉 decreases
monotonically in the interval explored showing that in
the transportation networks the common effect produced
by the damage is the increasing of the times to explore
the network, i.e. τ(T ) > τ(0), in other words a dam-
aged metro system increases the travelling time of the
passengers.

Although this is the most common behavior, in some
Monte Carlo realizations it can be seen how the action
of the damage improves the transport capacity with re-
spect to the previous configuration; for example, cre-
ating a local bias that is more effective (see Ref. [43]
for a discussion on the effect of bias in ergodic ran-
dom walks). In these cases τ(T + 1) < τ(T ), therefore
F(T + 1) > F(T ). However, in the ensemble average
we see that 〈F(T + 1)〉 < 〈F(T )〉. On the other hand,
the simulations show that the damage affects the New
York network more quickly than the Paris network. In

general, in New York 〈F(T )〉 decays faster with T . This
effect may be due to the existence of fewer links in the
New York network. Nevertheless, as we will see in the
following part, the number of links is only one of the fac-
tors that modify the capacity of the structure to tolerate
damage.

Let us now apply the same method implemented for New
York and Paris in Fig. 2 to the 33 metro systems in Fig.
1. In Fig. 3 we present the results for the ensemble av-
erage 〈F(T )〉 as a function of T for values in the interval
1 ≤ T ≤ 104 considering 1000 Monte Carlo simulations
of the process with cumulative damage with α = 1. The
results show how 〈F(T )〉 evolves with the damage in the
different systems. Each curve 〈F(T )〉 is a characteriza-
tion of the system that includes its capacity to transport
and the response of the whole structure under damage.
In some networks, we see a fast decay of 〈F(T )〉 (see for
example the cases of Toronto and Stockholm) revealing
that a few hits in the edges reduce significantly the com-
municability of the system. In contrast, other networks
have a redundant structure (Paris, Tokyo) and can tol-
erate the damage, a fact that is described with the slow
decay of the values 〈F(T )〉.

V. NORMALIZED CUMULATIVE DAMAGE

In addition to our discussion about the evolution of the
ensemble average 〈F(T )〉, the gradual reduction of this
quantity can be associated with the ability of a system to
operate under damage and with its robustness. We are
interested in comparing the metro systems to determine
which network structure is the most robust under ac-
cumulation of damage. However, here it is important to
notice as a consequence of damage occurring in the edges,
more links can generate apparently greater resistance by
the existence of redundant short paths connecting some
pairs of nodes. Furthermore, all the infrastructures as-
sociated to a link also mean a cost in the initial configu-
ration of the system. Therefore, it is more pertinent to
normalize 〈F(T )〉 using the quantity [35]

ρE =
|E|

N(N − 1)
, (9)

where |E| =
∑N

l,m=1 Alm is the total number of edges (in-

cluding the direction of each line) and N(N − 1) is the
total number of connections on a fully connected graph
without loops and we have ρE ≤ 1. Networks with ρE ≈ 1
are densely connected whereas ρE ≪ 1 are typical for net-
works with few lines, this is the case of trees and rings.

In Fig. 4(a) we present the values of 〈F(T ⋆)〉 at time
T ⋆ = 104 and 1000 realizations. The results were ob-
tained from the numerical results reported in Fig. 3. In
Fig. 4(b) we present the normalized values 〈F(T ⋆)〉/ρE .
In both cases, the networks are sorted using the values
〈F(T ⋆)〉/ρE , systems are numbered from 1 to 33 and pre-
sented at the bottom of panel (b).
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FIG. 3. Evolution of the ensemble average 〈F(T )〉 for 33 metro systems worldwide. Each curve is obtained with the average of
1000 Monte Carlo realizations of the cumulative damage algorithm with α = 1 for 1 ≤ T ≤ 104.

FIG. 4. Ensemble average of the functionality at T ⋆ = 104 for the transport on different network metro systems with cumulative
damage generated with α = 1 and 1000 realizations. We present (a) 〈F(T ⋆)〉 and (b) the normalized value 〈F(T ⋆)〉/ρE .

The networks as sorted in Fig. 4 give us a numerical
and graphical representation of the existing connection
between the robustness of the network and its topology.

We observe that systems with low 〈F(T ⋆)〉/ρE ≤ 2.54 are
extremely fragile and just one hit can reduce abruptly
the functionality; networks with this characteristic have
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System N |E| k̄ C△ C� τ (0) 〈F〉/ρE

1. Rome 5 8 1.6 0.0 0.0 5.3 1.57

2. Cairo 6 10 1.67 0.0 0.0 8.2 1.69

3. Marseille 6 10 1.67 0.0 0.0 8.2 1.69

4. Delhi 8 14 1.75 0.0 0.0 12.9 2.52

5. Toronto 10 18 1.8 0.0 0.0 23.1 2.54

6. Athens 9 18 2.0 0.09 0.0 17.1 2.97

7. Brussels 9 18 2.0 0.09 0.0 16.8 3.15

8. Prague 9 18 2.0 0.06 0.0 15.0 3.47

9. Lyon 10 20 2.0 0.0 0.04 17.3 3.89

10. Montreal 10 20 2.0 0.0 0.04 17.3 3.93

11. Lisbon 11 22 2.0 0.0 0.03 19.9 4.42

12. Singapore 12 26 2.17 0.06 0.02 25.7 4.72

13. Bucharest 11 24 2.18 0.06 0.0 19.8 4.79

14. Milan 14 30 2.14 0.07 0.01 34.5 5.26

15. Buenos Aires 12 26 2.17 0.07 0.01 23.0 5.4

16. Stockholm 20 38 1.9 0.0 0.0 72.7 5.4

17. Hong Kong 17 36 2.12 0.04 0.0 48.3 6.52

18. St Petersburg 14 32 2.29 0.07 0.01 29.1 6.61

19. Washington 17 36 2.12 0.04 0.02 45.5 6.65

20. Boston 21 44 2.1 0.03 0.01 65.5 7.7

21. Chicago 25 60 2.4 0.07 0.02 75.7 12.14

22. Shanghai 22 56 2.55 0.05 0.05 54.8 12.46

23. Barcelona 29 84 2.9 0.17 0.03 85.3 18.37

24. Berlin 32 86 2.69 0.08 0.02 84.0 21.25

25. Osaka 36 102 2.83 0.08 0.03 94.4 25.61

26. Mexico City 35 104 2.97 0.1 0.04 84.3 25.86

27. Moscow 41 124 3.02 0.09 0.04 113.1 30.63

28. Madrid 48 158 3.29 0.13 0.05 126.9 38.93

29. Tokyo 62 214 3.45 0.15 0.03 167.0 52.85

30. Seoul 71 222 3.13 0.09 0.04 234.3 57.5

31. New York 77 218 2.83 0.05 0.02 280.0 59.12

32. London 83 242 2.92 0.1 0.02 329.1 64.26

33. Paris 78 250 3.21 0.13 0.02 239.2 65.95

TABLE I. Characterization of the 33 metro systems in Fig.
4. For each network we present the number nodes N , the
total number of edges |E|, the average degree k̄, the mean
triangle clustering C△, the mean clustering C� associated to
squares, the global time τ (0) and the normalized functionality
〈F〉/ρE with 〈F〉 = 〈F(T ⋆)〉 evaluated at T ⋆ = 104 using the
ensemble average with 103 realizations and α = 1.

a tree structure and few nodes (systems 1 to 5), the incor-
poration of one cycle with three nodes (systems 6 to 8)
or four nodes (as in systems 9 to 11) increases the toler-
ance to damage. More robust systems (systems 12 to 22)
have diverse proportions of cycles with different lengths.
In this manner, the degradation of the functionality of a
link can be compensated with the existence of multiple
paths connecting two nodes maintaining operational con-
ditions for the global transport. In this classification of
the metro structures, systems 23 to 33 have the strongest

topologies with 〈F(T ⋆)〉/ρE > 15.

We complement the characterization of metro systems
with the numerical values in Table I. In this table we re-
port different types of quantities for the systems as shown
in Fig. 4. We include the number of nodes N , the num-

ber of edges |E|, and the average degree k̄ = 1
N

∑N

i=1 ki

(with ki =
∑N

l=1 Ail), these quantities give us a first de-
scription of the network. However, in our analysis it is
necessary to delve into the connectivity of the network;
in particular, the proportion of cycles with three (trian-
gles) and four nodes (squares). To this end we explore
the clustering coefficient C3(i) of the node i that quan-
tifies the fraction of connected neighbors △i (triangles)
of the node i with respect to the maximum number of
these connections given by ki(ki − 1)/2. In terms of the
adjacency matrix we have for ki ≥ 2 [44]

C3(i) =
(A3)ii

ki(ki − 1)
, (10)

otherwise C3(i) = 0. The global average coefficient is
given by

C△ =
1

N

N
∑

i=1

C3(i). (11)

In a similar way, we can evaluate the fraction of squares
that exists at the node i by using

C4(i) =

∑ki

l=1

∑ki

m=l+1 qi(l,m)
∑ki

l=1

∑ki

m=l+1[ai(l,m) + qi(l,m)]
, (12)

where qi(l,m) are the number of common neighbors of l
and m other than i (i.e. squares), and ai(l,m) = (kl −
(1 + qi(l,m) + θlm)) + (km − (1 + qi(l,m) + θlm)), where
θlm = 1 if l and m are connected and 0 otherwise (see
Ref. [45] for a detailed discussion of these quantities). In
terms of C4(i), we define

C� =
1

N

N
∑

i=1

C4(i). (13)

The numerical values C△ and C� reported in Table I were
calculated using the networkx (2.6.3) package [32, 46]. In
addition, we include the global times τ(0) in Eq. (6) for
the random walk dynamics on the networks without dam-
age, this value gives an estimate of the number of steps
necessary to reach any node from any initial condition.
We also include the values 〈F(T ⋆)〉/ρE depicted in Fig.
4(b).

The values presented in Table I are sorted with the values
〈F(T ⋆)〉/ρE and reveal different aspects of the networks
and their response under cumulative damage measured
by this normalized functionality. First, we see that in
many cases, a higher number of N or |E| does not imply
a better response to damage. One example is the case
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of the metro in Stockholm (system 16), with a higher
number of nodes and edges than the metro in Buenos
Aires (system 15). Both systems have the same response
to damage; however, system 16 has a tree structure and
system 15 is smaller but includes a triangle that increases
its robustness.

In this respect, the fraction of triangles and squares in
each network is given by C△, C�. Using these values we
can identify all the networks with a tree-like structure (in
the networks analyzed C△ = 0, C� = 0), networks with
only one triangle (systems 6-8) or only one square (sys-
tems 9-11). The systems with the strongest tolerance to
damage 〈F(T ⋆)〉/ρE > 10 (systems 21-33) include a ma-
jor proportion of squares and triangles. In particular, the
two most robust systems are the metro networks in Lon-
don and Paris with similar values of 〈F(T ⋆)〉/ρE . Here
it is worth noticing that, in comparison with the metro
in London, the metro in Paris has the highest robustness
with a lower number of nodes and edges due to a higher
proportion of triangles. In this manner, the proportion
of triangles and squares is an important feature that may
increase the tolerance to damage. However, it is impor-
tant to notice that the value 〈F(T ⋆)〉/ρE also includes
information of cycles with other sizes. For example, we
have Hong Kong with one triangle and a cycle with five
nodes.

Finally, the time τ(0) provides additional information
about the network topology characterizing the transport
in the network without damage considering all the pos-
sible paths that connect two nodes through mean first
passage times [see Eq. (8)]. Although this global time
helps us to define F(T ), it does not characterize the net-
work’s resistance to damage. We can see this in Paris and
London for which τ(0) times differ significantly but hav-
ing similar 〈F(T ⋆)〉/ρE . All the results in Table I show
that the normalized value 〈F(T ⋆)〉/ρE is a good measure
that characterizes the complexity of the structure and
the global response of a network to accumulated damage
and allows us to classify networks whose sole purpose is
to communicate to all nodes. The application explored
in this paper occurs in the context of the analysis of in-
frastructure in urban transportation systems. However,
a similar framework can be implemented to analyze the
vulnerability of different systems such as energy trans-
port infrastructure, information networks, the transport
of nutrients and oxygen in tissues, among many others.

VI. CONCLUSIONS

In this research, we implement a model to evaluate the
reduction of transport on a network due to the accumu-

lation of damage in each of its edges. We analyzed 33
metro systems worldwide in which each link represents
a group of stations in the same line of the metro. The
nodes represent stations where users can change between
lines or the end stations of a line. The studied networks
present varied topologies that range from tree structures
to networks with a higher fraction of cycles with three
and four nodes.

We evaluate the evolution of transport through the en-
semble average 〈F(T )〉, its value decreases with T that
quantifies the total number of damage hits in a structure.
We see that 〈F(T )〉 describes the evolution of cumula-
tive damage and is unique to each metro system. By
using this information, we compare the metro systems
considering the normalized functionality 〈F(T ⋆)〉/ρE in
a particular time T ⋆, this value considers the average
effect of damage per line and allows characterizing the
network topology along with its response under cumu-
lative damage. Our findings using Monte Carlo simula-
tions show how the robustness of the networks increases
when multiple paths can connect two nodes. We have
demonstrated in the present paper that the robustness
of a transportation network is a complex interplay of its
topology (redundant paths between nodes) and its ca-
pacity to endure damage in a link (due to maintenance
and reparation) which we described with the parameter
α.

The methods explored in this research are general and
can be implemented to analyze different systems whose
exclusive function is transport. These systems can de-
scribe other transportation modes in cities, information
networks, energy transport, transport of nutrients in a
tissue or extended to the analysis of other dynamical pro-
cesses in complex systems, for example, synchronization.

It would be interesting to seek a general principle able
to predict the effect of damage directly from the struc-
ture of the network without implementing Monte Carlo
simulations; a generalization of this type would require
combining techniques of random matrix theory and spec-
tral graph theory.
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