Pedro H C Martins 
  
Marcial Gonzalez 
email: marcial-gonzalez@purdue.edu
  
A process-based pore network model construction for granular packings under large plastic deformations

We propose a process-based method for constructing a pore network model of granular packings under large deformations. The method uses the radical Voronoi tessellation and constructive solid geometry (CSG) operations on meshes of deformed particles, to construct a threedimensional solid of the pore network and estimate its geometric characteristics, CTS-model parameters and flow transport properties, and it uses the particle mechanics approach to model consolidation of powders under large deformations. This process-based method thus explicitly simulates not only a packing of grains but also its corresponding consolidation process, which in this work is restricted to powder die compaction up to a relative density close to one (i.e., to die filling, compaction to low porosity, unloading, and ejection). The efficacy of the proposed method is borne out by studying granular packings with the same composition, namely a 50-50 binary mixture of two monodisperse systems comprised by elasto-plastic spheres with bonding strength, but with microstructures which are topologically different, namely a random packing, a bilayer, and core-shell structures. These simulations reveal that topological differences affect the formation and evolution of the pore space statistical signature during consolidation and, therefore, showcase that process-based approaches for constructing PNM are of paramount relevance to understanding architectured granular material systems.

Introduction

The quality and performance of many granular products are often related to the transport properties and, in turn, to their interconnected microstructure and pore space. However, the pore space is typically not created by design but rather it is the by-product of the consolidation process imparted by the manufacturing process [START_REF] Markl | Characterisation of pore structures of pharmaceutical tablets: A review[END_REF]. A number of consolidation processes are available at industrial scale. In this paper, we restrict attention to powder compaction processes and thus to granular systems under large plastic deformations. It is worth noting that granular pore space does not only evolve during manufacturing but it also evolves during product performance, such as swelling, disintegration and dissolution, which naturally hinders the study and modeling of transport phenomena in granular products [START_REF] Xiong | Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport[END_REF].

A pore-network model (PNM) is an idealized decomposition of the otherwise geometrically complex granular pore space. It aims to preserve the the connectivity, shape and size of the interconnected network. The decomposition procedure identifies individual pores and throats, which are in turn mapped to nodes and edges of the network, respectively. Nodes and throats are then endowed with geometric information relevant to transport phenomena. It bears emphasis that accurate predictions of multiphase flow are entirely dependent on how the local morphology of throats and pores is described, and on how this information is used to estimate transport properties, since pores control imbibition and throats control drainage kinetics [START_REF] Martin | Multiphase flow in permeable media: A pore-scale perspective[END_REF]. Furthermore, in general, PNM simulations consist of two significant steps, namely construction and flow simulation [START_REF] Xiong | Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport[END_REF][START_REF] Martin | Multiphase flow in permeable media: A pore-scale perspective[END_REF].

The construction of a pore-network model (PNM) can be classified into three methodologies, namely, statistical reconstruction models, direct mapping models, and grain-based or process-based models [START_REF] Xiong | Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport[END_REF]. The first two methods rely on pore-space imaging techniques, such as (i) x-ray computed micro-tomography (micro-CT) [START_REF] Cnudde | High-resolution x-ray computed tomography in geosciences: A review of the current technology and applications[END_REF][START_REF] Wildenschild | X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[END_REF][START_REF] Schlüter | Image processing of multiphase images obtained via x-ray microtomography: a review[END_REF], (ii) focused ion beams (FIB) [START_REF] Mark Erman | Structural characterization of gas shales on the micro-and nano-scales[END_REF][START_REF] Lemmens | Fib/sem and automated mineralogy for core and cuttings analysis[END_REF][START_REF] Tomutsa | Analysis of chalk petrophysical properties by means of submicron-scale pore imaging and modeling[END_REF] and scanning electron microscopy (SEM) [START_REF] Robert M Sok | Pore scale characterization of carbonates at multiple scales: Integration of micro-ct, bsem, and fibsem[END_REF], and (iii) nuclear magnetic resonance (NMR) [START_REF] Blümich | Nmr at low magnetic fields[END_REF][START_REF] Paul | Principles of nuclear magnetic resonance microscopy[END_REF]. The fundamental difference between the two image-based methods is that the former is an equivalent pore-network in a statistical sense, whereas the latter is a one-to-one spatial correlation between the porous material and the equivalent pore-network structure [START_REF] Xiong | Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport[END_REF][START_REF] Martin | Multiphase flow in permeable media: A pore-scale perspective[END_REF]. Process-based models explicitly simulate a packing of grains and the consolidation process, such powder compaction, and they are the focus of this paper.

Statistical reconstruction methods directly use two-dimensional microstructural images to create a statistically equivalent three-dimensional network using probability distributions of morphologic parameters retrieved from images [START_REF] Xiong | Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport[END_REF]. These geometrical properties typically are porosity distribution, i.e., a one-point correlation function, and the probability of finding two points separated by a certain distance within the same phase, i.e., a two-point correlation function, [START_REF] Adler | Real porous media: Local geometry and macroscopic properties[END_REF][START_REF] Adler | Porous media: geometry and transports[END_REF]. However, pore-space long-range connectivity is poorly preserved when these low-order correlation functions are derived from two-dimensional images [START_REF] Martin | Multiphase flow in permeable media: A pore-scale perspective[END_REF]. Notwithstanding, any information can be introduced into an objectbased statistical method to improve the reconstruction and preservation of essential morphological properties of the granular material [START_REF] Yeong | Reconstructing random media[END_REF][START_REF] Cly Yeong | Reconstructing random media. ii. three-dimensional media from two-dimensional cuts[END_REF]. A case in point is the use of multi-point statistical methods [START_REF] Hilfer | Geometric and dielectric characterization of porous media[END_REF][START_REF] David A Coker | Morphology and physical properties of fontainebleau sandstone via a tomographic analysis[END_REF][START_REF] Hazlett | Statistical characterization and stochastic modeling of pore networks in relation to fluid flow[END_REF][START_REF] Manwart | Stochastic reconstruction of sandstones[END_REF][START_REF] Okabe | Prediction of permeability for porous media reconstructed using multiple-point statistics[END_REF][START_REF] Okabe | Pore space reconstruction using multiple-point statistics[END_REF].

Direct mapping methods construct a one-to-one mapping between three-dimensional images of real samples and the network model. Three-dimensional images are comprised of a collection of voxels and existing algorithms operate a subset of voxels. For example, the medial axis algorithm, or medial axis skeletonization, iteratively converts any pore-voxel adjacent to a solid into a solid-voxel until a one-voxel wide skeleton of the pore-space is obtained [START_REF] Lindquist | Medial axis analysis of void structure in three-dimensional tomographic images of porous media[END_REF][START_REF] Lindquist | Pore and throat size distributions measured from synchrotron x-ray tomographic images of fontainebleau sandstones[END_REF][START_REF] Al-Raoush | Comparison of network generation techniques for unconsolidated porous media[END_REF][START_REF] Al | Extraction of physically realistic pore network properties from three-dimensional synchrotron x-ray microtomography images of unconsolidated porous media systems[END_REF]. This skeleton is then a topologically equivalent graph of the three-dimensional pore-space [START_REF] Martin | Multiphase flow in permeable media: A pore-scale perspective[END_REF]. These algorithms possess several drawbacks. The resultant network is dependent on the order the pore-space is reduced. It may have excessive dead-ends due to roughness and irregularities, an unrealistic number of branches that are nearby each other [START_REF] Silin | Pore space morphology analysis using maximal inscribed spheres[END_REF]. Similarly, the maximum ball algorithm identifies pores and throats, instead of computing an equivalent skeleton, by finding large spheres that touch solid surfaces and smaller spheres that connect them. This method also has limitations, and the arbitrary partition of pore-space complicates the identification of pore and throat [START_REF] Xiong | Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport[END_REF][START_REF] Martin | Multiphase flow in permeable media: A pore-scale perspective[END_REF]. It is worth noting that it is also possible to combine both methods, where the maximal ball is used to define pores, and the medial axis is used to define throats [START_REF] Al | Extraction of physically realistic pore network properties from three-dimensional synchrotron x-ray microtomography images of unconsolidated porous media systems[END_REF]. Despite of this and other improvements in the algorithm, direct mapping yields an irregular lattice [START_REF] Piri | Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media. i. model description[END_REF].

Process-based methods explicitly simulate a packing of grains and the consolidation process. These methods have been used by the geoscience and energy-research communities to mimic the sedimentation, compaction, and diagenesis processes by which rocks are formed [START_REF] Mourzenko | Geometrical and transport properties of random packings of polydisperse spheres[END_REF][START_REF] Steven L Bryant | Physically representative network models of transport in porous media[END_REF][START_REF] Steven L Bryant | Network model evaluation of permeability and spatial correlation in a real random sphere packing[END_REF][START_REF] Bakke | 3-d pore-scale modelling of sandstones and flow simulations in the pore networks[END_REF][START_REF] Øren | Process based reconstruction of sandstones and prediction of transport properties[END_REF]. Diagenesis is modeled by uniformly swelling particles; however, particle's position and deformation do not stem from a force equilibrium configuration. Furthermore, these models are typically based on random close packings of spheres [START_REF] Steven L Bryant | Physically representative network models of transport in porous media[END_REF][START_REF] Steven L Bryant | Network model evaluation of permeability and spatial correlation in a real random sphere packing[END_REF], which limits the range of particle's morphology to spheroids. The resulting particulate system is then tessellated to obtain pore-space properties and carry out pore-network fluid flow simulations. Despite these limitations, experiments and images obtained from micro-tomography using Fon-tainebleau sandstone [START_REF] Biswal | Quantitative analysis of experimental and synthetic microstructures for sedimentary rock[END_REF][START_REF] Øren | Process based reconstruction of sandstones and prediction of transport properties[END_REF] and carbonate rock [START_REF] Biswal | Towards precise prediction of transport properties from synthetic computer tomography of reconstructed porous media[END_REF], demonstrate that the process-based method is superior in predicting transport properties relative to stochastic models based on one-or two-point correlations functions.

The Delaunay triangulation and its dual graph, the Voronoi tessellation, are the optimal decomposition methods for a monodisperse packing of undeformed spheres, often termed loose spherical packing. The former method divides the envelope volume of porous media into tetrahedra, where each particle's center of mass is a vertex. The latter method divides the pore-space into Voronoi cells, where edges and vertices correspond to throats and pores, respectively. Hence, pore-network features emerge naturally from the tessellation [START_REF] Chareyre | Pore-scale modeling of viscous flow and induced forces in dense sphere packings[END_REF].

The regular Delaunay triangulation, also known as weighted Delaunay triangulation, and its dual graph, the radical Voronoi tessellation (also referred to as the Laguerre tessellation), are the optimal decomposition methods for polydisperse spherical packings [START_REF] Edelsbrunner | Incremental topological flipping works for regular triangulations[END_REF][START_REF] Chareyre | Pore-scale modeling of viscous flow and induced forces in dense sphere packings[END_REF]. Figure 1 demonstrates the effectivity of this decomposition in a two-dimensional polydisperse packing of circular particles with and without overlapping. The method, however, constrains the three-dimensional pore connectivity to four throats only and creates too many unnecessary pores [START_REF] Al-Raoush | Comparison of network generation techniques for unconsolidated porous media[END_REF][START_REF] Sheppard | Analysis of rock microstructure using high-resolution x-ray tomography[END_REF]. These limitations are overcome by using merging algorithms [START_REF] Newman | Networks: an introduction[END_REF][START_REF] Joost | A computational geometry approach to pore network construction for granular packings[END_REF]. Naturally, these tessellation techniques loose accuracy for non-spherical particles, but algorithms for three-dimensional set Voronoi diagrams of packings of arbitrarily shaped particles exist [START_REF] Fabian | Set voronoi diagrams of 3d assemblies of aspherical particles[END_REF][START_REF] Weis | Pomelo, a tool for computing generic set voronoi diagrams of aspherical particles of arbitrary shape[END_REF]. [START_REF] Burtseva | Using mathematical tessellation to model spherical particle packing structures[END_REF][START_REF] Poupon | Voronoi and voronoi-related tessellations in studies of protein structure and interaction[END_REF].

This work presents a process-based method for constructing a pore network model that is applicable to granular packings under large deformations, thus addressing a gap in the literature. It uses the radical Voronoi tessellation [START_REF] Edelsbrunner | Incremental topological flipping works for regular triangulations[END_REF][START_REF] Rycroft | Voro++: A three-dimensional voronoi cell library in c++[END_REF] and constructive solid geometry (CSG) operations on meshes of deformed particles to construct a three-dimensional solid of the pore network and estimate its geometric characteristics and flow transport properties. The method also uses the particle mechanics approach for modeling the consolidation of powders under large deformations [START_REF] Gonzalez | A nonlocal contact formulation for confined granular systems[END_REF][START_REF] Gonzalez | Microstructure evolution of compressible granular systems under large deformations[END_REF][START_REF] Yohannes | Evolution of the microstructure during the process of consolidation and bonding in soft granular solids[END_REF][START_REF] Yohannes | Discrete particle modeling and micromechanical characterization of bilayer tablet compaction[END_REF][START_REF] Gonzalez | Generalized loading-unloading contact laws for elasto-plastic spheres with bonding strength[END_REF]. Figure 2 illustrates the proposed method and its different components. The literature on CSG is vast and the state-of-the-art techniques are classified in incremental [START_REF] Campen | Exact and robust (self-)intersections for polygonal meshes[END_REF][START_REF] F R Feito | Fast and accurate evaluation of regularized boolean operations on triangulated solids[END_REF][START_REF] Hachenberger | 3D Boolean operations on Nef polyhedra[END_REF] and non-incremental [START_REF] Douze | QuickCSG: Arbitrary and Faster Boolean Combinations of n Solids[END_REF][START_REF] Zhou | Mesh arrangements for solid geometry[END_REF][START_REF] Sheng | Efficient non-incremental constructive solid geometry evaluation for triangular meshes[END_REF] methods. A thorough presentation that encompasses efficiency, computational complexity, memory requirements, topology simplicity, and robustness of several CSG libraries can be found in [START_REF] Zhou | Mesh arrangements for solid geometry[END_REF][START_REF] Sheng | Efficient non-incremental constructive solid geometry evaluation for triangular meshes[END_REF]. Here, we adopt the robust non-incremental method [START_REF] Zhou | Mesh arrangements for solid geometry[END_REF]. Flow transport properties are obtained by assuming that the pore network is solely composed of either throats [START_REF] Panfilov | Phenomenological meniscus model for two-phase flows in porous media[END_REF][START_REF] Aker | A two-dimensional network simulator for two-phase flow in porous media[END_REF][START_REF] Helge | A dynamic network model for two-phase immiscible flow[END_REF] or pores [START_REF] Hannaoui | Pore-network modeling of trickle bed reactors: Pressure drop analysis[END_REF] -hybrid models also exist [START_REF] Koplik | Two-phase flow in random network models of porous media[END_REF][START_REF] Blunt | Dynamic network modeling of two-phase drainage in porous media[END_REF]. The shape of each element is next characterized to determine effective capillary pressure, conductance, shape factor, and surface area. Shapes are characterized using (i) simple convex shaped elements, such as the circle-triangle-square (CTS) model [START_REF] Tw Patzek | Shape factor and hydraulic conductance in noncircular capillaries: I. one-phase creeping flow[END_REF], (ii) regular star-shaped elements [START_REF] Av Ryazanov | Two-phase porenetwork modelling: existence of oil layers during water invasion[END_REF][START_REF] Hoogland | Drainage mechanisms in porous media: From piston-like invasion to formation of corner flow networks[END_REF], (iii) irregular hyperbolic polygons [START_REF] Hn Man | Pore network modelling of electrical resistivity and capillary pressure characteristics[END_REF][START_REF] Joekar-Niasar | Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media[END_REF], (iv) nirregular polygons [START_REF] Lago | Threshold pressure in capillaries with polygonal cross section[END_REF], and (v) half-throat corners [START_REF] Ali Q Raeini | Generalized network modeling of capillarydominated two-phase flow[END_REF]. Here, we use the CTS mode to characterize throat elements.

Figure 2: The process-based pore network model construction for granular packings under large plastic deformations is comprised of four key elements: (i) a particle mechanics approach to attain packings consolidated at large deformations, (ii) a tessellation algorithm to build the pore-network topology, (iii) CGS evaluations to generate pore geometry, and (iv) a CTS-model to assign transport properties to the pore network model.

The paper is organized as follows. In Section 2, we briefly introduce the consolidation process of granular packings under large deformations and discuss how contact mechanics can be used as a reversible upscaling method. In Section 3, we propose a process-based pore network model of granular packings under large deformations, and we verify its accuracy at different levels of deformation. In section 4, we map the resultant pore-space geometry to a generalized CTS model and we conduct a statistical characterization of pore space evolution during consolidation of granular packings under large deformations. Next, in Section 5, we study granular packings with the same composition, namely a 50-50 binary mixture of two monodisperse systems comprised by elasto-plastic spheres with bonding strength, but with microstructures which are topologically different, namely a random packing, a bilayer, and core-shell structures. Finally, concluding remarks are collected in Section 6.

Consolidation of granular packings under large deformations

Process-based or grain-based methods explicitly simulate not only a packing of grains but also its corresponding consolidation process. In this paper, we restrict attention to powder compaction processes and, in this section, we present the particle mechanics approach used for modeling the consolidation of powders under large deformations. Specifically, powder die compaction encompasses four stages, namely die filling, compaction, unloading, and ejection, as exemplified in Figure 3. At the particle scale, this consolidation process typically consists of several steps, that is of filling the cavity formed by two punches and a die, packing rearrangement, particle elastic deformation, brittle fracture or plastic deformation, or both, and formation of inter-particle solid bridges [START_REF] Nyström | Bonding surface area and bonding mechanism-two important factors fir the understanding of powder comparability[END_REF][START_REF] Alderborn | Pharmaceutical Powder ComPattion Technology[END_REF][START_REF] Gonzalez | Generalized loading-unloading contact laws for elasto-plastic spheres with bonding strength[END_REF]. It is indeed these dissipative and irreversible processes that ultimately give rise to compact formation inside the die and, in this work, we focus on elasto-plastic behavior, with formation of solid bridges, and do not consider brittle fracture-which is relevant to many industries, manufacturing processes and materials systems, such as the manufacturing of pharmaceutical solid tablets and the use of ductile, amorphous polymers for excipients (see [START_REF] Gonzalez | Generalized loading-unloading contact laws for elasto-plastic spheres with bonding strength[END_REF] and references therein). We carry out three-dimensional particle mechanics static calculations to predict microstructure formation and evolution during compaction, unloading, and ejection (see Figure 3). For simplicity, powder morphology and size distribution are simplified to monodispersed packings of spherical particles. Generalized loading-unloading contact laws for elasto-plastic spheres with bonding strength are employed to describe inter-particle interactions [START_REF] Gonzalez | Generalized loading-unloading contact laws for elasto-plastic spheres with bonding strength[END_REF]. Hence, a sequence of static equilibrium configurations are used to simulate consolidation of granular packings under large deformations [START_REF] Gonzalez | Microstructure evolution of compressible granular systems under large deformations[END_REF], and these deformed packings will be used to evaluate pore-network formation and evolution during compaction. Specifically, we simulate a granular system comprised of 39,914 weightless spherical particles with radius R = 125 µm, inside a rigid cylindrical die of diameter D = 10 mm and between two flat rigid punches, as shown in Figure 4.

The granular bed is created using a random particle sequential addition method. This method consists of dropping particles one by one in a gravitational field and, using kinematics laws only for interparticle interactions, that is dropping and rolling rules, finding a stable position in contact with three other previously packed particles [START_REF] Zhou | Numerical simulation of random packing of spherical particles for powder-based additive manufacturing[END_REF]. It is worth noting that the initial particle arrangement plays a role in defining the jamming point and compaction response at small forces or deformations. The description of the die filling process can be improved by, for example, adopting dynamic laws, rather than kinematic rules [START_REF] Liu | Dynamic simulation of the centripetal packing of mono-sized spheres[END_REF][START_REF] Cheng | Dynamic simulation of random packing of spherical particles[END_REF]. However, the investigation of these effects is beyond the scope of this work. 

Contact mechanics as a reversible upscaling method

Mechanistic contact laws are built as an analytical upscaling of continuum contact mechanics, that is, under the kinematic constraint of no material interpenetration, displacement, strain and stress fields are upscaled to a relative position between the deformable bodies, a pressure distribution at the contact interface, and an effective contact force. Hertz contact law and the nonlocal contact formulation developed by Gonzalez and co-workers [START_REF] Gonzalez | A nonlocal contact formulation for confined granular systems[END_REF][START_REF] Agarwal | Contact radius and curvature corrections to the nonlocal contact formulation accounting for multi-particle interactions in elastic confined granular systems[END_REF] are examples of a local and a nonlocal contact law for spherical elastic particles. Similarly, local plastic contact laws for spherical particles with [START_REF] Gonzalez | Generalized loading-unloading contact laws for elasto-plastic spheres with bonding strength[END_REF] and without [START_REF] Storåkers | Similarity analysis of inelastic contact[END_REF] result from an analytical upscaling of continuum contact mechanics and the assumption of rigid-plastic power law hardening behavior. If the interacting particles have different plastic properties, it is worth noting that contact surface is not flat and that sinking-in or piling-up regimes may dominate the free surface in the vicinity of the contact interface-see, for example, [START_REF] Storåkers | Similarity analysis of inelastic contact[END_REF] for the interaction between a plastic sphere and a rigid plane. Regardless of these features in the plastically deformed bodies, the deformation field fulfills the classical assumption of incompressibility for bodies with no internal porosity. The particle mechanics approach described above allows to determine relative position between particles and interparticle contact forces, without having to solve for diplacement, strain and stress fields from the continuum contact mechanics problem. However, under the assumption of flat and circular contact interfaces and, thus, for pair of spherical particles whose radii and plastic properties are not significantly different, the position of the contact plane can be approximated from geometric considerations and material interpenetration constraints. Furthermore, the displacement field of the spherical surface can be estimated from these contact planes and the incompressibility constraint. Therefore, we propose an algorithm to reverse the upscaling intrinsic to any mechanistic contact law and, hence, estimate the deformed configuration of a solid spherical particle from the relative position with its neighbors and the incompressibility constraint of plastic deformations. This algorithm in shown in 1 and it uses (i) a mesh PM i to discretize the i-th particle, (ii) a simple projection of all mesh nodes outside the contact plane back onto the contact interface to prevent material interpenetration, and (iii) a bisection procedure to enforce volume preservation. For a loose packing in equilibrium, interparticle contact points lie on the face of the Voronoi face shared by neighbor particles. For flat contact interfaces, i.e., for interfaces between particles of equal size and properties [START_REF] Olsson | On force-displacement relations at contact between elasticplastic adhesive bodies[END_REF], the face of the Voronoi cell shared by neighbor particles is accurately located at the contact interface, i.e., at the intersection of the undeformed particle-particle pair or undeformed particle-wall pair. For non-flat contact interfaces, the location of the Voronoi face only serves as a first-order approximation of the location of the contact interface, which can be further improved by adapting the projection procedure to accommodate for the resulting curved contact interface [START_REF] Olsson | On force-displacement relations at contact between elasticplastic adhesive bodies[END_REF]. Furthermore, a corollary of this algorithm is that all surfaces outside the contact interface have the same curvature. These observations are evidence that the algorithm gives a first-order approximation of the deformed configuration, and the implementation of the suggested improvements is beyond the scope of this paper. Lastly, the surface area and volume are readily available from the resultant mesh and, as it is illustrated in the next section, the pore network can be estimated. Figure 5 illustrates the deformed configuration of an arbitrarily selected particle, as the granular bed is deformed at different in-die relative densities, or solid fractions.

Algorithm 1 Algorithm for generating deformed particles for i = 1 : N do loop over particles 3:

V i ← (4/3) πR 3 i reference particle volume 4:
R a ← 0.5R i and R c ← 5.0R i radii bounds of bisection interval 5:

PM a ← sphereMesh(x i , R a )
scale mesh of particles a and c 6:

PM c ← sphereMesh(x i , R c ) 7:
for j = N i do loop over neighbors 8:

[n,

x n ] ← contactPlane (x i , x j , R i , R j ) find contact plane [n, x n ] 9:
PM a ← projectPoints (PM a , n, x n ) project points back onto plane 10:

PM c ← projectPoints (PM c , n, x n ) 11:
end for 12:

V a ← volume (PM a ) and V c ← volume (PM c ) volume of deformed particles 13:

S ← 1 for j = N i do loop over neighbors 18:

[n,

x n ] ← contactPlane (x i , x j , R i , R j ) find contact planes [n, x n ] 19:
PM b ← projectPoints (PM b , n, x n ) project points back onto plane 20:

end for 21:

V b ← volume (PM b ) deformed particle volume 22: if V b /V i -1 ≤ TOL then Break while bisection algorithm 23: else if sgn(V b -V i ) = sgn(V a -V i ) then R a ← R b and V a ← V b 24: else R c ← R b and V c ← V b 25:
end if end for 30: end procedure 3 Process-based pore network model of granular packings under large deformations

A pore-network model (PNM) is an idealized decomposition of the otherwise geometrically complex granular pore space. It aims to preserve the topology, shape and size of the interconnected network [START_REF] Martin | Multiphase flow in permeable media: A pore-scale perspective[END_REF], which is typically discretized into pores (i.e., the regions of pore space furthest from the solid domain) and throats (i.e., the more constricted regions of the pore space that connect the pores). Since the former control imbibition and the latter control drainage kinetics, an accurate description of pores, throats, and their interconnectivity are needed.

Radical Voronoi tessellation of the granular pore space

The weighted Delaunay triangulation (wDT) and its dual graph, the radical Voronoi tessellation (rVRT), are the optimal decomposition methods for polydisperse spherical packings. For example, by using the square of the particle radius as the weight [START_REF] Okabe | Spatial tessellations: concepts and applications of Voronoi diagrams[END_REF], Figures 1(b) and 1(c) are obtained for two-dimensional packings. In this work, we use the open-source tessellation code Voro++ (v. 0.4.6) [START_REF] Rycroft | Voro++: A three-dimensional voronoi cell library in c++[END_REF]. It carries out cell-based calculations to compute the Voronoi cell complex for each particle individually, rather than a global network of vertices and edges. A cell complex X i is a collection of vertices (0-cells), edges (1-cells), faces (2-cells), and volumes (3-cells), i.e., the collection of sets

E 0 (X i ), E 1 (X i ), E 2 (X i
) and E 3 (X i ), respectively. Voro++ locally generates regular cell complexes, i.e., for each particle i characterized by a 0-simplex B i in the wDT, it generates a finite collection of disjoint open cells that fit together conformingly and whose union is X i , such that the 0-simplex B i is the dual of the one single 3-cell in E 3 (X i )-i.e., such that

B i = Dual(E 3 (X i )).
In the context of a PNM, vertices of the rVT are pores, and edges are throats. The set of all E 3 (X i ) is globally labeled by Voro++, since particles or 0-simplices B i of the wDT are globally labeled. Pores and throats, or 0-cells and 1-cells, however, have as many labels in Voro++ as particles surrounding them. This multiplicity has to be removed before building a PNM. We remove the multiplicity of vertices and edges to generate the PNM's set of unique pores and throats, respectively, by utilizing topological operators [START_REF] Hatcher | Algebraic Topology[END_REF] readily available in Voro++. Specifically, we use the following dual operation between the rVT and the wDT

Dual(δ j ) → {B k , B q } (1)
where δ j is a 2-cell in the rVT and set {B k , B q } represents a 1-simplex in the wDT, and we construct

Dual(υ j ) → {B k , B q , B r , B s } = δm∈I 2 (υ j ) Dual(δ m ) (2) 
where υ j is a 0-cell in the rVT and the quadruplet {B k , B q , B r , B s } represents a 3-simplex in the wDT. In the above equation I 2 (υ j ) is the set of 2-cells incident to the 0-cell υ j , which is readily but locally available in the one single cell complex X i υ j generated by Voro++. The union operation eliminates duplicates and the cardinality of the resulting set is 4, for any primal-dual pair (wDT , rVT). Next, we eliminate any multiplicity of vertices υ j which have the same quadruplet as dual and, thus, relabel the 0-cells throughout the rVT to identify the set P of unique pores, and corresponding neighbors PN = Dual(P), in the PNM . Similarly, the set T of unique throats, or 1-cells {υ m , υ n }, is identified by eliminating any multiplicity of duplets, and the corresponding neigbors is obtained as

TN = I 3 (T)
, where the set of 3-cells incident to the 1-cell {υ m , υ n } is given by

I 3 ({υ m , υ n }) → {B k , B q , B r } = Dual(υ m ) Dual(υ n ) (3) 
In the above equation, for simplicity, 3-cells are represented by their corresponding dual 0-simplices. The intersection operation results in a set of cardinality 3, for any primal-dual pair (wDT , rVT).

Pore space construction using constructive solid geometry (CSG) methods

A porous media is defined by a solid matrix and its pore space, which may be occupied by a multiphase gas-liquid system. The total volume of a porous material system V is then described by the volume of the solid matrix V s and the volume of the pore space V p which, in turn, can be decomposed into gas-liquid phases. For example, the pore space of a two-phase flow problem is decomposed into a wetting phase of volume V w and a non-wetting phase of volume V nw , such that

V = V s ∪ V p = V s ∪ V w ∪ V nw and V s ∩ V p = V s ∩ V w ∩ V nw = ∅.
The total porosity of a porous media is defined as the fraction V p /V , and the effective porosity is given by the pore-space that is effectively interconnected. A medium is permeable if the effective porosity is larger than zero [START_REF] Martin | Multiphase flow in permeable media: A pore-scale perspective[END_REF] and pore-network fluid flow simulations can only be carried out in permeable porous media.

The effective geometric properties of the elements in a pore-network model can be computed from the following four parameters: the cross-section area of each throat A t , the length of each throat or the distance between two pores L t , the surface area of each throat in contact with the fluid S t , and the volume of each throat V t . Details of the cross-section polygonal shape may be used, but it tends to be extremely irregular. The distance between pores L t is given by the length of the edges of the rVT. We describe next the procedure developed to estimate cross-section area, surface area, and volume using constructive solid geometry (CSG) methods.

A complex solid geometry can be constructed by sequential evaluation of CSG boolean operations between pairs of polygon meshes, such as union, intersection, difference, and symmetric difference. Therefore, the volume, V t and surface areas, S t and A t , of elements of the decomposed pore space are calculated from resultant meshes. Before proceeding with the boolean operations, we define a reference geometry TM for the pore-space element that preserves the porous media total volume and that, after CSG evaluations, it results in a tessellation of the pore space. The natural choice for TM is the set of 3-simplices in the wDT and, specifically, for each pore-element the two 3-simplices or tetrahedra that are dual of the two vertices forming a throat or edge in the rVT. Figure 6 shows this sequential procedure between TM and the mesh of the three surrounding deformed particles characterized by meshes PM 1 , PM 2 and PM 3 . The volume V t is then computed by the resultant mesh, and the cross-section area A t is measured on the plane where the two tetrahedra meet, i.e., the plane defined by the 0-simplices in the wDT associated to the three particles. Similarly, the surface area S t is estimated as half the area of the body given by the intersection between the pore-element mesh and each neighboring particle slightly dilated mesh (see Figure 7). It is worth noting that none of these operations are different for neighbors comprised of die/punch walls or compact free surfaces.

In this work, we use the gptoolbox library [START_REF] Jacobson | gptoolbox: Geometry processing toolbox[END_REF], which is available as a MATLAB toolbox that uses CGAL [START_REF] Hachenberger | 3D Boolean operations on Nef polyhedra[END_REF] and LibiGL [START_REF] Zhou | Mesh arrangements for solid geometry[END_REF], to evaluate all boolean operations. We use the MatGeom toolbox [START_REF] Legland | MatGeom: Matlab geometry toolbox for 2d/3d geometric computing[END_REF] to compute geometric properties of meshes, such as volume, surface area, plane mesh intersection, and normal vectors. It is worth noting that the algorithm described in this section is embarrassingly parallelizable since each pore element is entirely independent from each other. Figure 6: CSG tree for determining throat volume V t and cross-section area A t .

Figure 7: CSG tree for determining throat surface area S t .

Verification of the pore space construction

The pore network construction is solely based on the geometry of the deformed granular packing, and the deformed equilibrium configuration in turn depends on the mechanical properties of the particles and on the consolidation process. Therefore, we verify correctness of the proposed construction algorithm in estimating pore space volume and surface by using unconsolidated or loose spherical packings, since they are amenable of analytical pore space volume and surface calculations by virtue of the undeformed nature of the particles. We also verify correctness in volume estimation throughout the consolidation process, that is at packing plastically deformed at different densities, since plastic flow is assumed isochoric (see Section 2.1). Specifically, we use monodisperse and polydisperese systems comprised of 39, 914 and 51, 693 spherical particles, respectively, in a cylindrical container with diameter D = 5.4 mm and D = 2.84 mm, respectively. Particles in the monodisperse packing have a radius of R = 125 µm. The polydisperse system corresponds to a truncated packing of Lactose monohydrate with mean radius of R = 77.72 µm, and values ranging from 44 µm to 399 µm [START_REF] Sonia M Razavi | Quantification of lubrication and particle size distribution effects on tensile strength and stiffness of tablets[END_REF].

The verification is performed using a mesh size of R/3000 ≈ 40 nm in the algorithms presented in Sections 2.1 and 3.2. Results for loose polydisperse and monodisperse systems, presented in the first two rows of Table 1, indicate that both volume and surface area are conserved. For consolidated packings, it is worth noting that the relative error in volume conservation increases with packing relative density. This behavior is rooted at the lack of a non-local contact formulation for plastic particles (cf. non-local contact formulation for elastic particles [START_REF] Gonzalez | A nonlocal contact formulation for confined granular systems[END_REF][START_REF] Agarwal | Contact radius and curvature corrections to the nonlocal contact formulation accounting for multi-particle interactions in elastic confined granular systems[END_REF]) and, thus, of a good estimation of the deformed configuration at high levels of confinement (i.e., the construction algorithm presented in Section 2.1 becomes increasingly inaccurate at higher levels of confinement). Similarly, the table does not present surface area results for consolidated packings, due to the lack of analytical expressions for the displacement field of a deformed and confined particle. 

Generalized CTS pore network model

A generalized pore network model is based on the partitioning of the pore space into a representative nexus of pores and throat elements that uphold connectivity and on their related flow properties. Pore connectivity is given by the number of throats elements connected to a given pore element, whereas flow properties are related to geometrical information of the pore-space elements. This representation allows in turn to model flow anisotropy in porous media. However, reliable predictions require an accurate description of the local geometry [START_REF] Martin | Multiphase flow in permeable media: A pore-scale perspective[END_REF] and, in particular, of the equivalent cross-section of each pore-space element. For example, the CTS model maps each pore into a channel with either circular, triangular, or squared cross-section. This classification is based an analogy between the shape factor of a pore-space element and of a straight channel. For a straight channel, the shape factor G is defined as the ratio between cross-sectional area and perimeter squared, i.e., as G = A/P 2 . However, for a pore-space element TM, the following shape factor definition is adopted in this work

G(TM) := G(L t , V t , S t ) = L t V t S 2 t :    TM → , if G ≥ 1/4π TM → , if 1/4π < G ≤ √ 3/36 TM → , otherwise (4) 
where L t is the distance between pores, V t is the element volume, and S t is the solid surface area [START_REF] Tw Patzek | Shape factor and hydraulic conductance in noncircular capillaries: I. one-phase creeping flow[END_REF]. The mapping is not unique for scalene triangles and, thus, we adopt an heuristic method that preserves the value of G [START_REF] Øren | Extending predictive capabilities to network models[END_REF][START_REF] Tw Patzek | Shape factor and hydraulic conductance in noncircular capillaries: I. one-phase creeping flow[END_REF]. Figure 8 depicts the pore-space element geometric parameters, the pore space surrounding a particle, and the equivalent CTS model. The equivalent conductance K of a pore-space element also depends on the cross-sectional shape, pore-space dimensions and fluid viscosity µ [START_REF] Martin | Physically-based network modeling of multiphase flow in intermediate-wet porous media[END_REF][START_REF] Øren | Extending predictive capabilities to network models[END_REF][START_REF] Tw Patzek | Shape factor and hydraulic conductance in noncircular capillaries: I. one-phase creeping flow[END_REF]. In this work, we adopt a definition [START_REF] Chareyre | Pore-scale modeling of viscous flow and induced forces in dense sphere packings[END_REF] compatible with the Kozeny-Carman [START_REF] Bear | Dynamics of fluids in porous media[END_REF] derivation of permeability in porous material, that is

K = 1 2 A t V 2 t µ S 2 t K = 0.5623 A t V 2 t µ S 2 t K = 3 5 A t V 2 t µ S 2 t ( 5 
)
which is based on the shape factor defined in equation ( 4). It bears emphasis that different shape factor and conductance models offer different approximations of the pore space and, naturally, the estimation of capillary pressure [START_REF] Martin | Multiphase flow in permeable media: A pore-scale perspective[END_REF]. This geometric approximation is illustrated a rich body of literature on the subject (see, e.g., [START_REF] Av Ryazanov | Two-phase porenetwork modelling: existence of oil layers during water invasion[END_REF][START_REF] Hoogland | Drainage mechanisms in porous media: From piston-like invasion to formation of corner flow networks[END_REF][START_REF] Hn Man | Pore network modelling of electrical resistivity and capillary pressure characteristics[END_REF][START_REF] Joekar-Niasar | Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media[END_REF]) and in Figure 9 for the case study presented in Section 2. It is evident form the figure that the cross-section of a pore-space element may be concave [START_REF] Av Ryazanov | Two-phase porenetwork modelling: existence of oil layers during water invasion[END_REF], while the CTS model only considers three convex geometries, i.e., a circle, a triangle and a square. The adoption of a pore network model that does not have this limitation is beyond the scope of this work. 

Statistical characterization of pore space evolution during consolidation of granular packings under large deformations

The process-based pore network model construction proposed in this paper enables the statistical characterization of pore space evolution during consolidation of granular packings under large deformations. For the monodispersed packings under die-compaction, unloading, and ejection presented in Section 2, that is for a granular bed comprised of 39,914 weightless spherical particles with radius R = 125 µm, Young's modulus E = 5 GPa, Poisson's ratio ν = 0.25, plastic hardening stiffness κ = 150 MPa, hardening exponent m = 2, and fracture toughness K Ic = 1.26 MPa m 1/2 (see Figure 4), it is observed that the number of pores and throats slightly increases with increasing compaction (see Table 2), due to an increase in neighboring particles during consolidation. The number of pores and throats also change upon unloading and ejection, but it constitutes a negligible change. In conclusion, the topology of the pore space is not sensitive to the reduction in porosity at high levels of confinement. In sharp contrast, the shape and size of the interconnected network elements change significantly with increasing compaction. Figure 10 shows that at relative densities close to the jamming point (e.g., 0.741) most pore elements are classified as circles by the CTS model, whereas at relative densities close to full compaction (e.g., 0.939) most pore elements are classified as triangles, while the percentage of squares does not comparatively change during consolidation and remains around 20-25% of the total number of throats. As expected, circular cross-sections are predominant in loose powders, while triangular cross-sections dominate the shape distribution of highly compacted powders. Furthermore, it is observed that the pore-space topology and shape is established during compaction, and it does not significantly change upon unloading and ejection of the compact. Therefore, we study the evolution of pore-space statistical signature during consolidation solely using microstructures that have been ejected from the rigid die after compaction at a given in-die peak relative density ρ in-die max . Figure 11 compiles the evolution of the pore-space statistical signature during consolidation. It shows the probability density function 1 of the pore-elements length, surface area, volume, crosssection area and shape factor, at five different in-die relative densities. The first four values are normalized by equivalent dimensions of the particles, i.e., by Dp = 2R, Sp = 4πR 2 , Vp = 4πR 3 /3, Āp = πR 2 , respectively. It is evident from the figure that as consolidation or relative density increase, (i) the distribution of surface area shape factor become narrower and skewed towards small values, (ii) the distribution of length does not significantly change, (iii) the distribution of cross-sectional area remains wide, spanning two orders of magnitude, and it shifts towards small values, and (iv) the distribution of volume becomes increasingly skewed and shifted towards small values and it spans two orders of magnitude. It is also interesting to observe that the distribution of surface area becomes bimodal as relative density increases, due to the presence of bounded and unbound pore-elements in the microstructure-a pore-element is bounded if all three incident particles are in contact, and it is unbounded otherwise. In contrast, the distribution of shape factor changes from bimodal to single mode as the relative density increase, showing that triangular cross-section dominate the distribution. 1 The bin size k bin is given by the following expression which is suitable for non-normal data

k bin = 1 + log 2 (n) + log 2 1 + γ1 6(n -2)/(n + 1)(n + 3)
where γ1 is the 3 rd -moment-skewness of the distribution, and n is size of the population [START_REF] David P Doane | Aesthetic frequency classifications[END_REF].

(a) TA tablet. (e) Cross-section area. 5 Pore space evolution in topologically different granular mixtures under large plastic deformations

We bear out the efficacy of the proposed process-based pore network model construction using granular packings with the same composition, namely a 50-50 binary mixture of two monodisperse systems, but with microstructures which are topologically different, namely a random packing, a bilayer, and core-shell structures. Bilayer pharmaceutical tablets [START_REF] Yohannes | Discrete particle modeling and micromechanical characterization of bilayer tablet compaction[END_REF], as well as other complex-configuration dosage forms such as core-shell structures, have gained popularity in recent years to address the need of fixed dose combinations for the treatment of type 2 diabetes, hypertension, pain and HIV/AIDS to mention a few (see, e.g., [START_REF] Abebe | Review of bilayer tablet technology[END_REF] and references therein). In this section, we specifically investigate granular systems comprised of 19,957 weightless spherical particles with R = 125 µm and made of material A, and 19,957 particles with R = 125 µm and made of material B. Mechanical properties correspond to lower and upper bounds for many pharmaceutical powders encounter in formulations [START_REF] Gonzalez | Generalized loading-unloading contact laws for elasto-plastic spheres with bonding strength[END_REF][START_REF] Mahmoodi | A comparison between two powder compaction parameters of plasticity: The effective medium a parameter and the heckel 1/k parameter[END_REF][START_REF] Panelli | A study of a new phenomenological compacting equation[END_REF] and they are listed in Table 3, where material A is the same material used in Sections 2 and 4. Pore space formation and evolution during compaction, unloading, and ejection (see Figure 3) is then estimated by carrying out three-dimensional particle mechanics static calculations. Specifically, we first study two monodisperse packings to establish a baseline, namely tablet TA composed of 100% of material A and tablet TB composed of 100% of material B. In addition, we study a 50-50 random mixture (tablet TRAB), a 50-50 bilayer (THAB), a 50-50 core-shell structure with material A as the core (TCASB), and a 50-50 core-shell structure with material B as the core (TCBSA). Table 4 shows all six formulations and depicts their corresponding cross-section at in-die density of ρ in-die max = 0.952. We next investigate the evolution of punch and die-wall pressures, internal distribution of relative density or porosity, statistical features of the pore space, and the resulting effective permeability, of all six tablets during their consolidation process. Applied pressure during consolidation. All six tablets are compacted to six different levels of consolidation given by ρ in-die max = [0.751, 0.805, 0.854, 0.904, 0.952, 0.998], unloaded and ejected from the die. The compaction process is dominated by plastic deformations and formation of solid bridges, while the unloading stage is characterized by elastic recovery and breakage of bonded surfaces. The numerical simulation accounts for these different physical mechanisms and it successfully predicts a residual radial stress after unloading [START_REF] Gonzalez | Generalized loading-unloading contact laws for elasto-plastic spheres with bonding strength[END_REF]. Figure 12 shows predictions of pressure applied by the punches and reaction at the die wall for all six tablets during consolidation-thus the process-based nature of the proposed PNM construction. It is evident from the figure that the applied pressure is not only a function of the material properties and composition, but also of the topology of the microstructure. The elastic recovery during unloading, in contrast, is not significantly affected by material properties, composition and topology. It is interesting to note that the residual radial stress is different for different microstructural arrangements, which suggests that the tensile strength of these compacts is also a function of not only composition but also of the topology of the network of solid bridges.

Internal distribution of relative density or porosity. Pore space is intrinsically linked to packing density. Therefore, we examine the internal distribution of relative density or, its complement, porosity in all six tablet formulations studied in this section. We limit the analysis to one cross-section for each compact, at in-die relative density equal to 0.904. The local relative density is defined as the ratio between volume of a particle and volume of its Voronoi cell. The local porosity is defined as one minus the local relative density. For boundary particles of an unloaded and ejected compact, however, local density is highly dependent on the placement of walls during tesselation. Here, we position top and bottom flat surfaces, and lateral cylindrical surface, at an average position among all elastically recovered contact interfaces between particles and punch or die surfaces -the elastic recovery of each surface particle is different in general. Figure 13 illustrates these results. It is evident from the figure that the internal relative density distribution of tablets TA and TB are identical. However, all four 50-50 mixtures have distinctly different internal distributions of relative density due to different topological arrangements of compliant (i.e., materlal A) and stiff (i.e., material B) particles. These results highlight the importance of accounting for microstructural features in granular assemblies under large plastic deformations and, thus, of accouting for the consolidation process when studying phenomena occurring at the pore scale.

Pore-space statistical signature. The evolution of pore-space features during consolidation was presented in Section 4.1 for tablet TA (see Figure 11). Here, Figures 14,[START_REF] Yeong | Reconstructing random media[END_REF][START_REF] Cly Yeong | Reconstructing random media. ii. three-dimensional media from two-dimensional cuts[END_REF][START_REF] Hilfer | Geometric and dielectric characterization of porous media[END_REF] show the probability density function of the pore-elements length, surface area, volume, cross-section area and shape factor, at five different in-die relative densities and for all four 50-50 mixtures (i.e., for tablets TRAB, THAB, TCASB and TCBSA). It is evident from the figure that (i) the distribution of surface area and shape factor are highly dependent of tablet topology, while following the same trend observed for tablet TA (i.e., they become narrower and skewed towards small values as relative density increases), (ii) the distribution of length is independent of tablet topology and thus it follows the same trend observed for tablet TA (i.e., it does not significantly change during consolidation), (iii) the distribution of cross-sectional area is uniquely different for TCBSA but, otherwise, it follows the same trend observed for TA (i.e., it remains wide, spanning two orders of magnitude, and shifts towards small values as relative density increases), and (iv) the distribution of volume is mostly independent of tablet topology and it becomes increasingly skewed and shifted towards small values, spanning two orders of magnitude, during consolidation. It bears emphasis that the permeability of each pore element depends nonlinearly on L t , S t , V t , A t and G t (see equation ( 9)) which, in turn, not only depend on microstructural composition and effective porosity but, perhaps more importantly, on their spacial distribution within the microstructure, as this work reveals that they depend on topology and span orders of magnitude. Therefore, process-based approaches for constructing PNM are of paramount relevance to understanding architectured granular material systems.

Effective permeability. If pore-scale inertial forces are small compared to viscous forces, i.e., if Re 1, then conservation of mass for the Stokes flow is given by the following system of linear equations {υm,υn}∈I 1 (υm)

K mn (P m -P n ) = 0 for all pores υ m (6) 
where {υ m , υ n } is a throat incident to pore υ m , i.e., a throat in I 1 (υ m ), K mn is the conductance of throat {υ m , υ n }, and P m is the pressure at pore υ m . We calculate pore pressures for a differential pressure ∆P = 101, 325 Pa applied between top and bottom tablet surfaces. We next determine the ratio between effective permeability κ and fluid viscosity µ from [START_REF] Bear | Dynamics of fluids in porous media[END_REF] κ/µ = H tablet A tablet υm∈B outlet {υm,υn}∈I 1 (υm) K mn P m -P n ∆P

where A tablet and H tablet are the compact cross-sectional area and thickness, respectively, and B outlet is the set of pores located at the flow outlet, i.e., at the top surface of the tablet for a positive pressure differential. Figure 18 shows the effective permeability for all the tablets listed in Table 4 after being compacted, unloaded and ejected at different in-die relative densities. It is evident from the figure that there is a decreasing trend with decreasing porosity, or increasing relative density, in agreement with experimental evidence [START_REF] Arns | Virtual permeametry on microtomographic images[END_REF][START_REF] Martin | Multiphase flow in permeable media: A pore-scale perspective[END_REF]. However, the rank order among topologically different 50-50 mixtures can only be estimated from the process-based PNM construction proposed in this work. Specifically, for these packings of spherical particles of equal size, these differences are most evident at relative densities under 0.85, which are values often used in pharmaceutical and pre-sintered ceramic products. Furthermore, it is interesting to observe that tablets TA and TB, i.e., tablets composed of 100% material A and 100% material B, respectively, have different values of effective permeability due to a different elastic recovery of the microstructure during unloading and ejection. The systematic investigation of these trends with the proposed process-based PNM construction and their experimental validation are worthwhile directions of future research. (e) Cross-section area. 

Concluding remarks

We have proposed a process-based method for constructing a pore network model of granular packings under large deformations. The method uses the radical Voronoi tessellation and CSG operations on meshes of deformed particles, to construct a three-dimensional solid of the pore network and estimate its geometric characteristics, CTS-model parameters and flow transport properties, and it uses the particle mechanics approach to model consolidation of powders under large deformations. Therefore, this process-based method explicitly simulates not only a packing of grains but also its corresponding consolidation process. We have specifically restricted attention to powder die compaction processes, i.e., to die filling, compaction to low porosity values, unloading, and ejection.

We have exemplified the efficacy of the proposed process-based PNM construction by studying granular packings with the same composition, namely a 50-50 binary mixture of two monodisperse systems comprised by elasto-plastic spheres with bonding strength, but with microstructures which are topologically different, namely a random packing, a bilayer, and core-shell structures. These simulations reveal the evolution, up to relative densities close to one, of (i) the applied pressure during consolidation, (ii) the internal distribution of relative density, and (iii) the pore space statistical signature, i.e., the probability density function of the pore-elements length, surface area, volume, cross-section area and shape factor. It is evident that the topological differences affect both the microstructural response and the macroscopic behavior. The compaction curves and density internal distributions are different for all four studied formulations, although their composition is the same. Furthermore, the consolidation process leaves a clear signature in the pore space. Specifically, it is observed that (i) the distribution of surface area and shape factor are highly dependent of tablet topology, while following the general trend of becoming narrower and skewed towards small values as relative density increases (i.e., cross-sections transition from circular to triangular), (ii) the distribution of length is independent of tablet topology and it does not significantly change during consolidation, (iii) the distribution of cross-sectional area is uniquely different for one of the core-shell tablets (soft shell and hard core) but, otherwise, it follows the general trend of remaining wide (spanning two orders of magnitude) and shifting towards small values as relative density increases, and (iv) the distribution of volume is mostly independent of tablet topology and it becomes increasingly skewed and shifted towards small values, spanning two orders of magnitude, during consolidation. It bears emphasis that the permeability of each pore element depends nonlinearly on these geometric parameters and, therefore, the effective permeability of the system depends not only on microstructural composition and effective porosity but, perhaps more importantly, on the topological arrangement of their components. Therefore, this work showcases that process-based approaches for constructing PNM are of paramount relevance to understanding architectured granular material systems.

Figure 1 :

 1 Figure 1: Tessellation of two-dimensional packings. (a) Regular Delaunay triangulation and its dual. (b) Radical Voronoi tessellation of a loose packing. (c) Radical Voronoi tessellation of a packing with overlaps. Figures adapted from [43, 44].

Figure 3 :

 3 Figure 3: Consolidation of the granular packing during the stages of die compaction: (A) die filling, (B) compaction, (C) unloading, and (D) tablet ejection. Adapted from [50].

Figure 4 :

 4 Figure 4: Compacted granular bed comprised of 39,914 weightless spherical particles, with Young's modulus E = 5 GPa, Poisson's ratio ν = 0.25, hardening stiffness κ = 150 MPa, hardening exponent m = 2, and fracture toughness K Ic = 1.26 MPa m 1/2 : (a) before compaction at a relative density, or solid fraction, of 0.5219, and (b) after compaction to a relative density of 0.9521.

Figure 5 :

 5 Figure 5: Deformed configuration of an arbitrarily selected particle, as the granular bed is deformed at different in-die relative densities, namely ρ in-die max = [0.522, 0.751, 0.802, 0.850, 0.903, 0.949]. The granular bed and corresponded material properties are shown in Figure 4.

1 :

 1 procedure DEFORMEDPARTICLE(x, R, N , TOL, SMAX) 2:

14 :

 14 while S ≤ SMAX do 15: R b = 0.5(R a + R c ) 16: PM b ← sphereMesh(x i , R b ) mesh of particle i 17:

Figure 8 :

 8 Figure 8: (a) Pore-space element geometric parameters, namely the throat cross-section area A t , length L t , surface area in contact with fluid S t , and volume V t . (b) Pore space (in blue) surrounding a particle (in green), and the equivalent CTS model.

Figure 9 :

 9 Figure 9: Examples of arbitrarily selected cross-sections that illustrate the CTS model mapping and the evolution of pore network properties during consolidation of granular packings under large deformations.

  (a) At peak compaction force. (b) After unloading. (c) After ejection.

Figure 10 :

 10 Figure 10: Evolution of pore-element equivalent shape during consolidation of granular packings under large deformations.

Figure 11 :

 11 Figure 11: Pore-space statistical signature of the TA tablet.

  (a) TA tablet. (b) TB tablet. (c) TRAB tablet. (d) THAB tablet. (e) TCASB tablet. (f) TCBSA tablet.

Figure 12 :

 12 Figure 12: Punch and die-wall pressures as a function of relative density for tablets unloaded at six different levels of consolidation ρ in-die max = [0.751, 0.805, 0.854, 0.904, 0.952, 0.998].

Figure 13 :

 13 Figure 13: Internal distribution of relative density for tablets consolidated at a relative density of 0.904, unloaded and ejected from the die.

Figure 14 :

 14 Figure 14: Pore-space statistical signature of the TRAB tablet.

Figure 15 :

 15 Figure 15: Pore-space statistical signature of the THAB tablet.

Figure 16 :

 16 Figure 16: Pore-space statistical signature of the TCASB tablet.

Figure 17 :

 17 Figure 17: Pore-space statistical signature of the TCBSA tablet.

Figure 18 :

 18 Figure 18: Effective permeability for all tablets listed in Table 4 under a pressure differential of ∆P = 101, 325 Pa between their top and bottom flat surfaces.

  

  

  

Table 1 :

 1 Verification of the pore space construction.

	Packing Information		Relative Error [%]	
		Relative	Solid Matrix	Solid Matrix	Pore-Space	Pore-Space	Tablet
		Density	Volume	Surface Area	Volume	Surface Area	Total Volume
	Polydisperse	0.539	0.029	0.282	-0.090	1.191	-0.035
	Monodisperse	0.520	0.016	0.196	-0.644	0.931	-0.301
		0.751	-0.060	-	-1.217	-	-0.348
	Monodisperse	0.802	-0.077	-	-1.306	-	-0.320
	(consolidated)	0.850	-0.176	-	-0.536	-	-0.230
		0.903	-0.698	-	-6.516	-	0.053
		0.949	-1.849	-	-43.966	-	0.495

Table 2 :

 2 Evolution of pores and throats counts during consolidation of granular packings under large deformations.

	ρ in-die max	After Loading	After Unloading	After Ejection
		Pores	Throats	Pores	Throats	Pores	Throats
	0.751 246,298 492,541 246,588 493,129 246,606 493,150
	0.805 246,391 492,767 246,659 493,254 246,667 493,287
	0.854 246,522 493,009 246,755 493,467 246,809 493,581
	0.904 246,679 493,323 246,983 493,906 246,998 493,946
	0.952 247,153 494,277 247,470 494,892 247,508 494,954
	0.998 247,670 495,284 247,966 495,900 247,953 495,873

Table 3 :

 3 Material properties.

	Elastic Deformation Plastic Deformation Bonding & Fracture
	E [GPa] ν	κ [MPa] m	K Ic [MPa m 1/2 ]
	Material A ( ) 5	0.25	150	2.00	1.26 ω = 150J/m 2
	Material B ( ) 30	0.25	900	2.00	6.19 ω = 600J/m 2

Table 4 :

 4 Cross-section, at ρ in-die max = 0.952, for six different formulations studied.

	Single Material	Random Mixture		Structured Mixture	
	TA	TB	TRAB	THAB	TCASB	TCBSA
	100% A ( ) 100% B ( )	50% A ( )	50% A ( ) 50% A ( ) 50% A ( )
			50% B ( )	50% B ( ) 50% B ( ) 50% B ( )
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