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Abstract

Assessing the influence of three-dimensional protein structure on sequence evolution is a difficult task,mainly because of the
assumption of independence between sites required by probabilistic phylogenetic methods. Recently, models that include
an explicit treatment of protein structure and site interdependencies have been developed: a statistical potential (an energy-
like scoring system for sequence–structure compatibility) is used to evaluate the probability of fixation of a given mutation,
assuming a coarse-grained protein structure that is constant through evolution. Yet, due to the novelty of these models
and the small degree of overlap between the fields of structural and evolutionary biology, only simple representations of
protein structure have been used so far. In this work, we present new forms of statistical potentials using a probabilistic
framework recently developed for evolutionary studies. Terms related to pairwise distance interactions, torsion angles, solvent
accessibility, and flexibility of the residues are included in the potentials, so as to study the effects of the main factors known
to influence protein structure. The newpotentials,with amore detailed representationof the protein structure, yield a better
fit than the previously used scoring functions, with pairwise interactions contributing to more than half of this improvement.
In a phylogenetic context, however, the structurally constrainedmodels are still outperformed by some of the available site-
independent models in terms of fit, possibly indicating that alternatives to coarse-grained statistical potentials should be
explored in order to better model structural constraints.

Key words: protein structure, Bayes factor, statistical potentials,maximum likelihood, molecular evolution.
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Introduction
Protein structure has an undeniable role in shaping the
evolution of protein-coding sequences. Not only does
the function of a protein depend primarily on the spatial
arrangement of its atoms, but proper folding is crucial,
since misfolded proteins tend to aggregate and cause
unspecific cellular toxicity (Bucciantini et al. 2002; Dobson
2003). As a result, over evolutionary time, protein structure
changes much more slowly than the associated sequences
(Flores et al. 1993; Russell et al. 1997). Despite this obvious
role in evolution, the selective constraints imposed for
maintaining a certain fold are still poorly characterized.
The relationship between the structural importance of
a residue and the purifying selection operating on that
site is not straightforward, as several complex mecha-
nisms may act simultaneously to accommodate variation.
Natural proteins are more robust to random perturba-
tions than expected by chance (Taverna and Goldstein
2002a, 2002b; Shakhnovich et al. 2005). They can accept
substitutions at a large proportion of positions by small
movements of interacting sites, or subtle shifts in the
main chain conformation of spatially distant residues
(Williams and Lovell 2009), in addition to compensatory
substitutions. Conversely, structural constraints are just
one type of the many selective forces operating on se-
quences, which include maintaining specific function (such
as binding and catalysis), folding kinetics, and regula-
tory constraints at the DNA and RNA level, to name a few.

Disentangling the structural constraints from other con-
straints, from phylogenetic signal, and from stochastic vari-
ation is a problem far from being solved.

One of the main difficulties for modeling evolution
with explicit treatment of structural constraints is the
site interdependencies that the structure implies, which,
for computational reasons, are handled by very few phy-
logenetic methods. Still assuming site independence,
several attempts have been made to include an explicit
treatment of protein structure (Overington et al. 1990;
Wako and Blundell 1994a, 1994b; Koshi and Goldstein
1995; Goldman et al. 1996; Thorne et al. 1996; Lio et al.
1998; Dimmic et al. 2000). In all the cases, in addition to
this important assumption, the evolutionary process is
described as acting directly on amino acids, which has
the shortcoming of confounding mutation and selection.
More sophisticated models have been developed recently
at the codon level (see Anisimova and Kosiol 2009; Delport
et al. 2009 for a review) that permit the modeling of the
interplay of mutation, selection, and drift by making an
explicit distinction between mutational and selective
parameterizations. Among these, the structurally con-
strained models are of particular interest in our context.
A statistical potential (a scoring system for sequence–
structure compatibility) is used to evaluate the probability
of fixation of a given mutation, assuming a coarse-grained
protein structure that is constant through evolution (Parisi
and Echave 2001). Robinson et al. (2003) combined this
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representation with statistical tools to make evolutionary
inferences dealing with site interdependencies (Jensen and
Pedersen 2000; Pedersen and Jensen 2001), establishing a
model-based framework for assessing the effect of protein
tertiary structure on evolution.

Although adding the structural component to a given
evolutionary model produces a substantial improvement
in model fit (Rodrigue et al. 2006, 2009; Choi et al. 2007),
it is not sufficient to outperform state-of-the-art site-
independent models of codon substitution (Rodrigue et al.
2009). The oversimplified structural representation used so
far in the sequence–structure compatibility scoring func-
tions may play a central role in this issue. Due to the com-
putational costs of the inference methods, a coarse grain
representation of the protein is unavoidable; however, sub-
stantial improvement could likely be made regarding the
form of the potentials in order to test more complex struc-
tural hypotheses.

Knowledge-based potentials that yield reliable scoring
functions while restricting the conformational search prob-
lem have improved over the last several years (Sippl 1993;
Miyazawa and Jernigan 1996; Bastolla et al. 2000; Lazaridis
and Karplus 2000; Melo et al. 2002; Buchete et al. 2004;
Boas and Harbury 2007). They allow for variable levels of
detail in describing the specific amino acid interactions
and may account for poorly understood physical phe-
nomena, not exclusively related to protein stability (Boas
and Harbury 2007). However, the many potential func-
tions developed in the context of protein structure pre-
diction (where, given a sequence, a search is performed in
the space of structures) may not be optimal for our pur-
poses because evolutionary studies pose the problem in
terms of a protein design perspective: that is, character-
izing the set of sequences compatible with a given struc-
ture. The several approaches proposed in this direction
are either based on lattice models (Chiu and Goldstein
1998; Seno et al. 1998) or at the atomic level (reviewed
in Boas and Harbury 2007). Besides implying heavier com-
putational times, this latter representation has the problem
of producing sequences too close to the particular native
sequence and implying a level of detail more difficult to rec-
oncile with the assumption of a structure constant through
evolution.

To overcome these limitations, we have recently de-
veloped a maximum likelihood framework for optimizing
the parameters of a coarse grain, residue level statistical
potential, tailored for evolutionary studies (Kleinman et al.
2006; Bonnard et al. 2009). A pseudo-energy score E (s , c)
is defined as a sum of terms related to different structural
descriptors, such as pairwise interactions or solvent accessi-
bility. The probability of observing a database of sequences
S , given their native conformations C , and the potential
parameters θ, P (S |C , θ), is then maximized by gradient
descent methods to obtain an optimal set of parameters.
The method guarantees maximal predictive power for a
given potential and provides objective ways to selecting
models for otherwise seemingly arbitrary definitions of the
potentials.

In previous works (Kleinman et al. 2006; Bonnard et al.
2009; Rodrigue et al. 2009), a simple representation of the
protein structure was used, consisting in a contact map
supplementedwith solvent accessibility information. In the
present study, we aimed to model some of the the main
protein structural features known to affect amino acid
propensity: residue interactions, solvent accessibility, back-
bone conformation, and flexibility of the residues. Residue
interactionswere described by replacing the binary contact
map we previously used by distance-dependent pairwise
interactions, the most widely used representation for fold
recognition and protein structure prediction (Jones et al.
1992a; Sippl 1993; Jones 1997; Xia et al. 2000). For describ-
ing backbone conformation, we focused on modeling tor-
sion angles (Ramachandran et al. 1963; Kocher et al. 1994;
Gilis and Rooman 1997, 2001; Melo et al. 2002; Betancourt
and Skolnick 2004) or, alternatively, secondary structure
conformation. Protein internal flexibility, in turn, critical
for biological functions, such as catalysis, allostery, and in-
teraction with other molecules, is a much more difficult
feature to capture. Some information on protein dynam-
ics is contained in the atomic displacement parameters (B-
factors) of crystal structures, which reflect the fluctuation of
atoms around their average position (Artymiuk et al. 1979;
Frauenfelder et al. 1979; Sternberg et al. 1979). We included
a term based on B-factors into the potentials to assess the
relevance of this measure as a surrogate for flexibility at the
residue level. A cross-validation (CV) procedure, implicitly
penalizing for model dimensionality, is used to evaluate the
alternative combinations of these elements.

We will start by describing the derivation and validation
of these new representations of the protein structure. Next,
we incorporate them into a structurally constrained codon
model of sequence evolution and apply it to three protein
data sets.Wewill discuss the selective constraints associated
to these structural elements and assess the performance of
the newmodels against current site-independentmodels of
sequence evolution.

Methods

Statistical Potentials
Definition and Optimization
Knowledge-based potentials are scoring functions that en-
code statistical patterns present in solved protein struc-
tures. They are inductive in nature, based on the idea that
the propensity of an amino acid in a given site of a protein
can be predicted by the observed frequency of that amino
acid at other similar structural contexts in other proteins.

The probabilistic framework that we summarize below
was used to optimize the parameters of different forms of
statistical potentials by maximum likelihood, using nonre-
dundant subsets of the Protein Data Bank (PDB) for train-
ing (Kleinman et al. 2006; Bonnard et al. 2009). Briefly, for
a set of P unrelated proteins, each with a single associated
structural conformation cp and an amino acid sequence sp

of lengthNp , let spi be the amino acid at position i . Further-
more, assume that a model,M , consists of a set of structural
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contexts parameterizedby θ and that the observed frequen-
cies of amino acids in each context can be modeled accord-
ing to the propensity of each amino acid for that context
using a Boltzmann distribution. The probability of obtain-
ing a particular sequence is then (Kleinman et al. 2006) as
follows:

p(sp |cp , θ,M ) = e−G(s
p |cp ,θ)

Y p
, (1)

where Y p =
∑

s′ e
−G(s′|cp ,θ) is a normalization factor,

taken over all possible sequences s ′ of length Np , and
G (sp |cp , θ) is the statistical potential. Adopting a Bayesian
framework, sampling parameters from their posterior distri-
butions induces substantive computational complications,
as the model leads to so-called doubly intractable distribu-
tions (Rodrigue et al. 2009). Instead, the parameters of the
potential (e.g., the contact energy for a given pair of amino
acids) are estimated by directly maximizing the joint prob-
ability of the database:

p(S |C , θ) =
∏
p

p(sp |cp , θ), (2)

which can be seen as a likelihood. In practice, a leave-one-
out pseudo-likelihood score function (Bonnard et al. 2009)
was used in order to decrease the computational time of
optimizations (for details, see supplementary appendix S1,
SupplementaryMaterial online).

We will now focus on the definition of the statistical po-
tentialG (s , c) (for simplicity, we will omit the superscript p
in the notation hereafter). It consists of two terms:

G (s |c , θ) = E (s |c ,θ) − F (s |θ). (3)

The term F (s |θ) accounts for compositional effects,
unrelated to the protein conformation. It cannot be solved
analytically (Kleinman et al. 2006). Here, we use an ap-
proximation inspired from the random energy model
(Shakhnovich and Gutin 1993; Sun et al. 1995; Seno et al.
1998) and write:

F (s) =
20∑
a=1

naµa , (4)

where na is the number of occurrences of amino acid a
in the sequence s . The unknown parameters µa represent
the average propensities toward each amino acid and are
obtained in the optimization procedure along with all the
other parameters.

E (s |c , θ), in turn, is the energy score. In our previous
works (Kleinman et al. 2006; Bonnard et al. 2009; Rodrigue
et al. 2009), E (s |c , θ) consisted of two terms:

E (s , c , θ) =
N∑
i=1

N∑
j=i

∆ij εsi sj +
N∑
i=1

αvisi . (5)

The first term is a contact energy:∆ij = 1 if residues i and j
are closer in space than a cutoff distance and 0 otherwise,
and εab defines the contact energy between amino acids
a and b . The second term encodes a solvent accessibility
energy: for each residue, αva represents the energy of amino

acid a in the solvent accessibility class v , a = 1, . . . , 20,
and v = 1, . . . ,V , where V is the total number of solvent
accessibility classes considered.

In what follows, alternative definitions of E(s |c ,θ) are ex-
plored, encoding different structural descriptors combined
in a linear way:

E (s , c) =λ1EBfactor(s , c) + λ2Etorsion(s , c) + λ3Esolv(s , c)

+ λ4Edist(s , c) + λ5Ess(s , c), (6)

where λi equals either 0 or 1, depending on whether
the term is included or not in the potential under study.
Although this linear formulation formally assumes inde-
pendence between the terms, interactions between these
elements do exist during the optimization, so that the pa-
rameters must be jointly optimized for each alternative
functional form.

Several elements have to be determined a priori, such
as the division of the parameter space into discrete classes,
thus constituting a part of the model being assessed. The
choice between alternative definitions was made based on
model fit,measured by CV (see below). Given the computa-
tional burden needed to incorporate site interdependencies
into evolutionarymodels, there is a compromise to be con-
sidered in some cases, between the accuracy of the struc-
tural description and the computational cost of E (s |c , θ).
Model Comparison and Nomenclature
Alternative definitions of the structural elements consid-
ered yield different potentials, which can be interpreted as
differentmodels, and evaluated by standard statistical tools
of model assessment.Here, once an optimal value of θ is ob-
tained for each potential, the fit of alternativemodels is as-
sessedbyCV, consisting in training thepotential on onedata
set and calculating the log-likelihood score on a different in-
dependent data set. More precisely, for each model M ,

CVM = − ln p(ST|CT, θL ,M ), (7)

where ST andCT are the sequences and structures of the test
set, and θL are the parameters optimized on the learning set.
The difference with the CV score obtained for a flat poten-
tial (µ, only accounting for compositional effects without
any structural terms, i.e., E (s |c) = 0), normalized by the
number of sites on the testing set NT, is reported:

∆CV =
CVµ − CVM

NT
. (8)

We call the potentials obtained by the maximum like-
lihood framework ML potentials and use the following
abbreviations to refer to the structural terms included: dist,
distance interactions; cont, contacts; solv, solvent accessibil-
ity; Bfactor, flexibility, measured by B-factors; torsion, main
chain torsion angles; and ss, secondary structure.

Main Chain Torsion Angles
Backbone conformation can be described by the angle of ro-
tationaround the bonds of the main chain atoms, called the
torsion angles omega, phi, and psi. To capture the different
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conformation tendencies that different amino acids exhibit,
we focused on modeling propensities for these angles. Tor-
sion classes for angles phi and psi were defined based on
a previously described version of the Ramachandran plot,
which is divided into nine discrete classes (Laskowski et al.
1996, supplementary fig. S1, Supplementary Material on-
line). For omega angles, on the other hand, two conforma-
tions were considered: cis or trans.

In this way, the conformation c of the protein includes
the observed torsion class vectors T and W . The vector
T = (ti ) is the conformation of angles phi and psi asso-
ciated with each site i , ti = 1, . . . , 9 and i = 1, . . . ,N .
The vectorW = (wi ), in turn, is the conformation of the
angle omega at site i , with wi being either cis or trans . The
pseudo-energy associated with the three torsion angles has
the following form:

Etorsion(s , c) =
N∑
i=1

τ tisi +

N∑
i=1

ηwi
si , (9)

where τ ta is the potential energy of amino acid a with an-
gles phi and psi in conformation t , and ηwa represents the
potential energy for amino acid a with the omega angle in
conformationw .

Secondary Structure
As an alternative way of describing local structure, we
derived a secondary structure potential:

Ess(s , c) =
N∑
i=1

ς lisi , (10)

where ς la is the energy parameter for amino acid a asso-
ciated with the secondary structure element l . Secondary
structure calculations were performed according to the
methodof Kabsch and Sanders (1983; Laskowski et al. 1993).
The ten elements considered are the following: residue in
isolated beta-bridge, extended strand, 3/10 helix, alpha-
helix, pi-helix, bend, hydrogen-bonded turn, extension of
beta strand, extensionof 3/10 helix, and extension of alpha-
helix. Alternatively, a simplified definition consisting of only
three classes was also tested: alpha-helix, beta strand, and
turn.

Flexibility of the Residues
In order to capture some information about flexibility at
the residue level, we implemented a potential based on the
B-factor value at each site. B-factors were calculated either
using alpha-carbons or the average for all the atoms of the
residue. Because the experimentally determined B-factor
depends on elements such as the overall resolution of the
structure, crystal contacts, and on the particular refinement
procedures, B-factors from different structures need to be
normalized before any comparison. We applied the follow-
ing normalization:

B norm
i =

Bi − 〈B 〉
σB

, (11)

where Bi is the B-factor recorded for residue i .σB and 〈B 〉, in
turn, are the standard deviation and the mean of B-factors
for the given structure.

The energy score associated with B-factors has the
form

EBfactor(s , c) =
N∑
i=1

γgisi , (12)

where γga represents the potential energy for amino acid a
in the B-factor class g , g = 1, . . . ,G . To determine the num-
ber of classes, G , several potentials were optimized with an
increasing number of classes (from 0 to 50) and their fit was
assessed by CV. The classeswere defined so as to generateG
number of equal-sized subsets of amino acids (i.e., G quan-
tiles) when analyzing 1,000 randomly drawn proteins from
the PDB.

Solvent Accessibility
Solvent accessibility calculations were performed as de-
scribed in Kleinman et al. (2006): the accessible surface of
a residue is defined as the atomic accessible area when a
probe of the radius of a molecule of water is rolled around
the Van der Waal’s surface of the protein.We used the pro-
gram Naccess (Hubbard and Thornton 1993) to perform
this calculation using the percentage relative to the acces-
sibility in Ala-X-Ala fully extended tripeptide. When using
PDB files with multiple chains, solvent accessibility was cal-
culated taking into account all molecules in the structure.
The optimal number of classes (in this case, eq. (14)) was de-
termined by deriving potentials with an increasing number
of classes and evaluating their fit (Kleinman et al. 2006). We
made the assumption that this optimal number of classes
does not change when combining different structural terms
and verified that this was the case for the final form combin-
ing all the terms (data not shown).

Distance-dependent Interactions
The distance potentialwe implemented represents the sep-
aration of a pair of residues (in three-dimensional space)
as a discrete variable. An interval R = [rmin, rmax] is de-
fined, where rmin and rmax are, respectively, the minimum
andmaximum distance between two residues for consider-
ing an interaction. The interval is divided intoD subintervals
(also referred as classes) rd = [r

d
min, r

d
max), d = 1, . . . ,D ,

such that r 1min = rmin , r
D
max = rmax, and r

d−1
max = rdmin.

The distance xij between a pair of residues i and j is mea-
sured using either alpha-carbons, beta-carbons, or the mass
centers of the two side chains. The energy term based on
this distance has the form

Edist(s , c) =
N∑
i=1

N∑
j=i

ε
rij
si sj , (13)

where rij is the distance class such that xij ∈ rij , and ε
rij
ab

defines the interaction energy between amino acids a and
b in the distance class rij .
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In order to define the intervals, that is, to specify D and
the values of the different thresholds rdmin and rdmax, a pre-
liminary analysis of the distribution of interactionsbetween
pairs of amino acids on 1,000 randomly drawn PDB struc-
tures was performed. The region R = [0Å , 25Å ] was parti-
tioned into equal subintervals of 0.25 Å. Let fr(a , b ) be the
frequency of observed interactions between amino acids a
and b in the subinterval r , considered symmetrical, that is,
fr(a , b ) = fr(b , a). Let fR (a , b ), on the other hand, be the
frequency of interactions for the whole region 0–25 Å. To
compare these two distributions, the Kullback–Leibler di-
vergence (KLD) was used:

KLD(fr , fR) =
20∑
a=1

20∑
b=1

fr(a , b ) log
fr(a , b )

fR (a , b )
. (14)

Note that KLD is always positive, and KLD = 0 when
fr(a , b ) = fR(a , b ).

Sequence Sampling: Site-specific Profiles
Sequences compatible with a given conformation, induced
by each one of the potentials, are obtained by Gibbs sam-
pling as described in Kleinman et al. (2006) and displayed
graphically as sequence logos. Profiles of natural sequences
were generated from multiple sequence alignments ob-
tained from the Consurf-HSSP database (Glaser et al. 2005).
Alternatively, sequences were realigned using two pro-
grams, with default settings: MUSCLE (Edgar 2004) and FSA
(Bradley et al. 2009), producing essentially the same results.
All the alignments are available as supplementary material
(SupplementaryMaterial online).

Phylogenetic Methods
Evolutionary Model
Evolution of codon sequences is modeled as a Markov pro-
cess defined in sequence space, fully determined by the ma-
trix of instantaneous rates of change from one sequence (s)
to another (s ′). Mutation and selection are described as two
separate processes by the use of distinct sets of parame-
ters. Following Robinson et al. (2003), selective constraints
acting at the phenotype level are modeled by the statisti-
cal potential: the influence of the protein structure (a single
conformation assumed constant along the entire tree) is
representedby thedifference in potential energy∆G , with a
parameterβ > 0modulating the strength of this influence.
The parameters ofG (s |c) are fixed to the values obtained in
the optimization bymaximum likelihooddescribed in previ-
ous sections. The model also includes an additional parame-
ter ω, modulating nonsynonymous rates without regard to
the amino acids involved.

The mutational specification, in turn, consists of two
sets of parameters: ρ = (ρlm)1�l ,m�4 is a set of
symmetrical nucleotide exchangeability parameters, with∑

1�l<m�4 ρlm = 1, and ϕ = (φm)1�m�4 represents
a set of global nucleotide equilibrium propensities, where∑

1�m�4ϕm = 1.
In the complete model considered here, an off-diagonal

entry of the Markov generator, corresponding to the

instantaneous rate of substitution from s to s ′ , is given
by

Rss′ =

⎧⎪⎨
⎪⎩
�sic s′icϕs

′
ic
, ifA,

ω�sic s′icϕs
′
ic
e−β(G(s

′)−G(s)), if B,
0, otherwise,

(15)
where
A : s and s ′ differ only at the c th codon position of the

i th site and imply a synonymous change; B: s and s ′ differ
only at the c th codon position of the i th site and imply a
nonsynonymous change; and where sic is the nucleotide at
the c th codon position of the i th site of sequence s . Diagonal
entries are given by the negative sum of off-diagonal entries
in a given row. Note that when β = 0, the model is similar
to the type of codon substitutionmodel proposed by Muse
and Gaut (1994).

As described in Rodrigue et al. (2009), the substitution
process has a stationary probability given by

p(so|θ,M ) = 1

Z
e−2βG(s

o)

N∏
i=1

(
3∏

c=1

ϕsoic

)
, (16)

where Z is the normalizing factor:

Z =
∑
s

e−2βG(s)
N∏
i=1

(
3∏

c=1

ϕsic

)
, (17)

with the sum being over all 61N possible sequences.
We used the same priors and nomenclature as described

in Rodrigue et al. (2009). We refer to the simplest model
based on the mutational parameters only as MG because
it is inspired by Muse and Gaut (1994) and write MG-NS to
refer to the model with a global nonsynonymous rate factor
ω. When using the structurally constrainedmodel based on
the statisticalpotentials,we add the suffix SC, givingMG-SC
and MG-NS-SC. Finally, in the model referred as MG-NSDP,
heterogeneity among sites is introduced by using a Dirichlet
process as the law of the ωi across sites (Huelsenbeck et al.
2006).

Bayes Factors
Computational tools have been recently developed for sam-
pling parameters from their posterior distribution under
site-interdependent codon models and for the estimation
of Bayes factors (Rodrigue et al. 2009):

BM =
p(D |c ,M )
p(D |c ,Mref)

, (18)

where D represents the data, that is, an alignment of nu-
cleotide sequences related by a phylogenetic tree with a
known topology,M is the sequence evolution model being
evaluated, andMref represents the site-independentmodel
used as a reference (in the present case, MG).

Bayes factors are computed using thermodynamic inte-
gration or “path sampling,” as described in Rodrigue et al.
(2009). In the case of the SC models, the procedure consists
in sampling parameters using Markov chain Monte Carlo
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along a continuous path betweenM andMref, through a set
of slight changes in the value of β. The result is a curve that
represents a numerical evaluationof the fit of the model BM
as a function of β, the factor modulating the strength of
the structural term in the evolutionary model (eq. 15). The
computations are made in duplicate, with different model-
switch orientations, that is, tracing the path fromM toMref,
and vice versa, and we display both values obtained from
these procedures.

Note that the evolutionary model proposed here im-
poses the same protein structure (c ) to all the sequences in
the data set and that the particular native sequence corre-
sponding to this structure (whichwe call s c) is present in the
alignment. In order to avoid the possible biases introduced
by this presence, we can further decompose the marginal
likelihood into two factors: one corresponding to the prob-
ability of the sequence state s c and another corresponding
to the probability of observing all the other sequences (Dφ),
conditional on s c:

p(D |c ,M ) = p(Dφ|s c, c ,M )p(s c|c ,M ). (19)

We then write

BM =
p(Dφ|s c, c ,M )
p(Dφ|s c, c ,Mref)

p(s c|c ,M )
p(s c|c ,Mref)

(20)

=
(
B φM
) (

B sc

M

)
.

Formulated in this way, we are interested in distinct
evaluations of two factors:

B φM =
p(Dφ|s c, c ,M )
p(Dφ|s c, c ,Mref)

(21)

and

B sc

M =
p(s c|c ,M )
p(s c|c ,Mref)

. (22)

Given the reversibility of the overall substitution model,
the factoring is arbitrary but can be used to contrast con-
tributions to model fit, with, for instance, different leaf se-
quences taken for stationary probability factors.

The stationary probability factor, given in equation (16),
can be computed for any leaf of the tree (Rodrigue et al.
2005), and, in particular, for s c , making the calculation of
the transient factor B φM straightforward.

Data Sets
Learning Databases
We used proteins culled from the entire PDB according to
sequence divergence in order to ensure independence (less
than 25% mutual sequence identity) and to structure qual-
ity (resolution better than 2.0 ) (Wang and Dunbrack 2003).
After discarding very small chains—less than 90 residues—
subsets of 500 randomly drawn proteins were assembled. All
data sets are available as supplementary material (Supple-
mentary Material online).

Phylogenetic Data Sets
Three data sets were used. The first, taken from Yang et al.
(2000), consists of 17 vertebrate nucleotide sequences of the

Table 1. Summary of Class Definitions Used for the Various Elements
of the Optimized Potentials.

Potential Definition

MLBfactor: B-Factor Average for all the atoms in a residue
Normalizedwithin each protein
Five equal-sized classes

MLtorsion : Torsion angles φ,ψ: 9 classes: - A a B b L l p X
(supplementaryfig. S1, Supplementary
Material online)

ω: cis trans
MLsolv : Solvent accessibility 14 equal-sized classes

(Kleinman et al. 2006)
MLdist : Distance Interaction center: side chain center

Range considered: 3–11
Resolution: 3–7 , interval: 0.5
7–10 , interval: 1
13 classes

MLcont: Contact Interaction center: side chain center
Cutoff distance: 6.5

MLss : Secondary structure 10 classes (see Methods)

β-globin gene (144 codons). Structural information was ex-
tracted from the PDB file 4HHB. The second one, also from
Yang et al. (2000), consists of sequences of the alcohol dehy-
drogenase (ADH) taken from 23 species of Drosophila (254
codons) and the associated PDB file 1A4U. For both these
data sets, we worked under the tree topology used by Yang
et al. (2000). The third set consists of 34 calmodulin eu-
karyotic sequences, with a protein structure defined by the
PDB file 1CFD and a tree topology estimated using phyML
(Guindon and Gascuel 2003) under the model JTT + F +Γ
(Jones et al. 1992b; Yang 1993). All data sets are available as
supplementarymaterials (SupplementaryMaterial online).

Results and Discussion

Definition of Statistical Potentials and Refinement of
Structural Descriptors
The probabilistic framework described above was used to
optimize the parameters of several forms of statistical po-
tentials based on different structural descriptors. These can
be grouped in two types: pairwise interaction descriptors
(contact map or distance-based matrix) and a series of
site-independent components such as solvent accessibility,
torsion angles, secondary structure, and flexibility of the
residues (table 1). As described in the Methods, the refine-
ment of the structural descriptors is done by optimizing
the alternative potentials and comparing their model fit
in CV experiments. We first analyze the site-specific
terms, followed by the more complex site-interdependent
descriptors.

Site-independent Descriptors
Aiming to capture flexibility at the residue level, we im-
plemented a potential based on B-factor information. This
measure was recorded either for the alpha-carbon or as the
average for the whole residue and normalized within each
protein. A preliminary analysis on a large number of crys-
tal structures shows that the distribution of B-factors is not
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FIG. 1. (a) Distribution of B-factor for the different amino acids in a nonredundant subset of PDB of 1,000 proteins. B-factorwas calculated averaging
B-factors of all the atoms in the residue and normalized within each protein. (b) Evolution of CV score of the potential as a function of the number
of classes.

identical for the different amino acids (fig. 1a and supple-
mentary fig. S2a , Supplementary Material online), indicat-
ing that this is likely an informative element. Moreover, the
B-factors of particular regions in proteins seem to be con-
served in protein families (Maguid et al. 2006), suggesting
that this measure correlates with a biological property. In
order to define discrete categories for this feature, we ana-
lyzed the evolution of model fit as a function of the number
of classes (fig. 1b ).When thenumberof classes increases, the
fit of the model improves, until the penalization for model
dimensionality starts to dominate the score. Not surpris-
ingly, averaging the B-factor for all the atoms in the residue
produced a markedly improved model fit compared with
the alpha-carbon representation (more than twice the CV
score, fig. 1b and supplementary fig. S2a , Supplementary
Material online).

Backbone conformation, in turn, was described using ei-
ther torsion angles or secondary structure. These two de-
scriptions of the local conformation should in principle be
redundant, with dihedral angles encoding richer informa-
tion than the secondary structure, because they completely
specify the position of the backbone. This is indeed re-
flected in our results. First, the torsion angle potential alone,
MLtorsion , fits the data better (fig. 2). Second, the contribu-
tion of the secondary structure term is less important for
the combined potentialMLtorsion,ss (27% improvement with
respect to MLtorsion in contrast to the 55% expected if the
terms were independent) (supplementary table S1, Supple-
mentaryMaterial online). This reflects an important redun-
dancy on the encoded information: for independent terms,
one would expect approximately additive contributions to
the fit of a combined model; conversely, completely corre-
lated terms would produce a decrease in model fit when
combined due to the penalization for model dimensional-
ity. Considering different definitions of secondary structure
(see Methods) produced only minor changes in the results
(supplementary table S1, SupplementaryMaterial online).

Of all the site-independent descriptors, the solvent po-
tential, based on a discrete measure of the solvent accessi-
ble surface for each site, is the term producing the highest
value of CV score. Theoptimal definition of this elementwas
determined previously (Kleinman et al. 2006), in a similar
way to the other terms described here, by optimizing the

alternative potentials and evaluating their fit. The good
performance of this potential is not surprising, given the
importance of hydrophobic interactions for stability and
folding.

Pairwise Interaction Descriptors
The critical elements defining a distance-based potential
are the choice of interacting centers, the range of dis-
tances considered, and the clustering of distance into dis-
crete classes. In order to define these elements, we first
performed an analysis of the distribution of pairwise inter-
actions in known protein structures. Three interaction cen-
ter definitions were successively considered: alpha-carbon,

FIG. 2. CV scores for some of the different potentials obtained. The
average gain (relative to the CV score obtained with a flat poten-
tial, see Methods) for the 2-fold CV experiment is reported. Black
bars: site-independent potentials. Dark grey bars: potentials contain-
ing distance-based terms. Light grey bars: potentials containing con-
tact terms. The potentials were named according to the structural
terms included in thedefinition: Bfactor, flexibility; ss, secondary struc-
ture; torsion, torsion angles; solv, solvent accessibility; cont, contact
interactions; and dist, distance interactions.
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FIG. 3. Distance-based pairwise interactions. (a) The interval 0–25 Åwas divided in windows of 0.25 Å, and the distribution of observed pairwise
interactions in each window was compared with the average distribution in the whole region 0–25 Å using the KLD. The total number of interac-
tions, using side chain centers, for each window is shown (dashed grey line). (b) CV score of distance-based potentials as a function of the distance
range considered using side chain centers. Distance intervals were partitioned in bins of 1 Å. (c) Graphical representation of the distance classes
used in (d). The three interaction centers studied are marked with colored circles: black for side chain center, grey for beta-carbon, and white
for alpha-carbon. Windows were defined as follows. The range 3–11 Å was divided in windows of 1 Å(named I1; 9 classes) or 0.5 Å (named I0.5;
17 classes). Alternatively, the resolution was increased only for the interval 3–7 Å, which was divided in windows of 0.5 Å (I0.5−1; 13 classes) or in
windows of 0.25 Å (I0.25−1; 21 classes). (d) CV scores of distance-based potentials as a function of the resolution and the interaction center used.

beta-carbon, and the center of mass of side chains. Ideally,
in order to maximize the discriminatory power of the po-
tential, distance classes should be defined in such a way
that the distribution of interactions for each class is suffi-
ciently different from the average distribution. In order to
spot the areas where these distributions are distinctive, we
partitioned the interval 0–25 Å into small windows of 0.25
Å and compared the 210 frequency vector of observed pair-
wise interactions in eachwindow to the average distribution
of interactions in the whole range, using the KLD (fig. 3a),
for 1,000 randomly drawn PDB structures. Note that this is
not meant as an optimization procedure but as an heuristic
method.

First, note the similarities in the overall shape of the plot
for the three interaction centers studied. Windows corre-
sponding to the shortest distances show the highest val-
ues of KLD, mainly due to sparse data and not because of a
high amount of information in these regions. There is a peak
at midrange distances (around 6–7 Å) and a small shoul-
der at longer distances (around 9–10 Å). Not surprisingly,
the value of KLD (which can be interpreted as the amount
of relevant information) at these peaks correlates well with
the level of detail of the corresponding structural repre-
sentation. For the alpha-carbon representation, which en-
codes only information regarding the main chain, KLD is the
lowest of the three. Using beta-carbon incorporates, more

information about the orientation of the side chains, and
consequently, KLD slightly increases. Finally, the highest
peaks are found when using side chain centers for defining
interactions.

Next, the KLD plot suggests an upper bound for the dis-
tances being considered: beyond 12 Å, the distribution in
each bin is indistinguishable from the general distribution,
until around 21 Å, where the distributions slowly start to di-
verge again. Not only is this divergence subtle but also in-
cluding this region would imply an important increase in
the cost of the calculation of E (s , c), which is proportional
to the number of contacts, approximately scaling with the
volume of the sphere considered. It is known that for long
distances, interactions are not residue specific and are de-
termined simply by solvation effects and the geometry of
the molecule (Jones et al. 1992a), factors that will proba-
bly be modeled by other terms of the potential. Given the
computational cost of incorporating site interdependencies
into evolutionarymodels, we have a special interest in find-
ing a range with few contacts considered while remaining
sufficiently accurate.

To further confirm the effect of the cutoff distance on
the resulting potential, we derived several potentials by only
varying their range anddividing the resulting interval in bins
of 1 Å. The number of classes thus varies in each case, but
the resolution and the interaction center are kept constant.
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The results obtained using side chain centers are shown in
figure 3b . The CV score increases markedly when including
distances corresponding to the high peak in the KLD plot
(6–7 Å). Adding the small peak at 9–10 Å, however, has only
a minor effect, indicative of some redundancies in these ar-
eas. A cutoff value of 11 Å was used for subsequent analysis:
increasing the range beyond such value does not produce a
major improvement in the potential performance but has
the negative effect of drastically increasing the computa-
tional cost to calculate the energy.

Finally, we analyzed the effect of the resolution on the
performance of the potentials. A scheme of the bins used
is shown in figure 3c . The region 0–11 Å was considered.
The interval 0–3 was not subdivided, given the small num-
ber of interactions it contains. The interval 3–11 Å, in turn,
was divided in bins of 1 Å(named I1) or 0.5 Å(I0.5). Alterna-
tively, the resolution was increased only for the interval 3–7
Å, divided in bins of 0.5 Å(I0.5−1) or 0.25 Å(I0.25−1). Increas-
ing the resolution in the short-distance interval (I0.5−1) pro-
duces a better fit for all the interaction centers considered
(fig. 3d ). For the potentials that use alpha-carbons or beta-
carbons to describe an interaction, this is the optimal res-
olution obtained. This is not unexpected: potentials using a
coarser description of proteins require a lower resolution for
optimal performance because overparameterization penal-
ties appear sooner. For all the interactioncenters, increasing
the resolution in the longer distance interval (7–11 Å, I0.5)
was also detrimental (with respect to I0.5−1, fig. 3d , proba-
bly due to overparameterization.

In principle, distance classes should be defined by max-
imizing differences not only with the general distribution
of interactions, as we checked before, but also between
different classes. We thus tested alternative discrete ver-
sions of the interval, not in a linear way, but based on the
pairwise comparison of the KLD for all the different bins
(supplementaryfig. S3, SupplementaryMaterial online). The
performance of the potentials defined in this way was simi-
lar to the linear definition, suggesting that for this level of
structural representation, the resolution is already nearly
optimal. No further work was thus done in this direction.

Combining the Potentials
Figure 2 shows the CV scores for the potentials resulting
from a linear combination of the terms described so far
(table 1). As discussed before, the linear formulation of the
combined potential E (s , c) does not imply independence
between the terms. Rather, it allows one to test for poten-
tial redundancies in the encoded information by checking
whether combined model configurations lead to interac-
tions in terms of model fit.

It is worth noting that when considering the potentials
separately, the main improvement in model fit is brought
about by the distance-based potential. It adds a consider-
able amount of information to the combination of all the
site-independent descriptors and performs better than the
contact potential, solvent accessibility, or the combination
of both that has been previously used (Kleinman et al. 2006;
Rodrigue et al. 2009).

Solvent and pairwise interaction terms are highly corre-
lated, and so the combined potential MLdist,solv has a score
merely 5% higher than the distance-based potential MLdist
(fig. 2). On the other hand, this score is almost three times
higher than the solvent potential alone MLsolv, suggesting
thatmost of the information contained in the combinedpo-
tential comes from the description of pairwise interactions.

Torsion angles, on the other hand, seem to encode or-
thogonal information to these two terms (fig. 2 and sup-
plementary table S1, Supplementary Material online). This
is consistent with the interpretation that they contain im-
plicit information on the local conformation, independent
of amino acid interactions, eitherwithother residues orwith
the solvent.

As for the flexibility information encoded in the B-factor
potential, although its inclusion produces a better fit than
using a flat potential, this improvement is diluted when
combining all the terms (fig. 2 and supplementary table S1,
Supplementary Material online). The most plausible cause
is a redundancy in the information encoded by the solvent
accessibility and the flexibility terms; it is well known that
residues in the core of proteins show less flexibility than
those located on the surface, and the two measures are
somewhat correlated (supplementary fig. S2c , Supplemen-
tary Material online). A similar behavior is observed for the
secondary structure terms; the redundancies in this case are
found with the torsion terms (as discussed above) and to a
lesser degree with distance and B-factor terms (supplemen-
tary table S1, SupplementaryMaterial online).

The aim of this study being to incorporate the main
factors affecting the protein structure, we restricted the
analysis to a handful of terms whose importance is well es-
tablished in the structural biology field. The model compar-
ison and analysis of redundancies performed here, on the
other hand, is general enough to be easily extended to other
structural terms or to terms not explicitly related to struc-
tural considerations.

Comparison of Natural and Designed Sequences
Once the parameters of the potentials are optimized, we
can perform an analysis in a protein design perspective
by generating sequences from p(s |c , θ,M ) by Gibbs sam-
pling (Kleinman et al. 2006). The graphical display of these
sampled sequences allows for a qualitative analysis of the
properties induced by the different potentials. An illus-
trative example is shown in figure 4, where the sam-
pled sequences for a thioredoxin protein are contrasted to
naturally occurring sequences.

Note that the comparison performed here is not meant
as a rigorous test of the performance of the potentials. De-
signed and naturally occurring sequences are conceptually
different: although the former are free to explore the whole
space of sequences compatiblewith the structure, the latter
are constrained by their underlying phylogenetic structure.
Moreover, because the evolutionary relationship among the
sequences is not accounted forwhen constructing sequence
logos, the conservation observed in the natural profile is
somewhat distorted by phylogenetic redundancy. Finally,
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FIG. 4. Sequence logos of site-specific profiles induced on a thiorredoxin (PDB: 2TRX, chainA), using the potentials (a)Mlsolv, (b)MLdist, (c)MLdist,solv,
(d) Mldist,solv,torsion, and (e) MLdist,solv,Bfactor,torsion. (f) Profile obtained from a multiple sequence alignment of 162 eukaryotic sequences. (g) Native
sequence of the reference protein. Secondary structure representation from PDBsum (Laskowski 2009). A color version of this figure is available
as supplementary material, Supplementary Material online.

natural sequences are highly diverged, and so the existence
of many potential alignment errors cannot be dismissed.

Globally, designed sequences show a low degree of
similarity to natural sequences. Residues that owe their con-
servation to known specific functional constraints are not
predicted at all, as expected, simply because the proper-
ties conferring their importance are not being included in
the protein structural description. Ligand-binding sites (po-
sitions 10, 37, 38, 70–75, 89, 91, 93, 94), or residues in the
catalytic site (positions 32–35), fall in this category. Apart
from sites with known functional roles, the method fails to
predict a number of conserved sites, particularly aromatic
residues (positions 12, 27, 28, 31, 49, 81, 102) and specific
polar interactions (e.g., Asp26-Lys82, Lys57-Asp61).

Nevertheless, a few general trends are apparent. Regard-
ing the individual structural terms, distance-based poten-
tialsMLdist predict very strongly disulfide bonds and tend to
predict mainly residue hydrophobicity (supplementary fig.
S4, Supplementary Material online). The high redundancy
between distance and solvent accessibility potentials sug-
gested by the CV experiments is also apparent here as the
sequence logos remain almost unchanged when adding the
solvent terms. Several recent studies trying to link evolution-
ary rate to structural properties point to the solventaccessi-
bility component as one of the main constraints (Goldman
et al. 1998; Bustamante et al. 2000; Choi et al. 2006; Conant
and Stadler 2009; Franzosa and Xia 2009; Gong et al. 2009).

In all the cases, site independence is assumed. However, we
can see that a rich description of pairwise interactions like
the one presented here suffices to capture most of the in-
formation contained in the solvent accessibility terms, sug-
gesting that the solvent exposure would not be in fact the
main structural constraint.

A similar effect is observed for the B-factor information: it
does not add any qualitatively different information, but it
seems instead to modulate the strength of very few predic-
tions (e.g., position 87). Torsion terms, on the other hand,
provide new information, changing the predictions for a
few key amino acids such as prolines or glycines. In this
particular example, thioredoxin has two prolines with very
important structural roles. Pro76 is found in cis conforma-
tion, conserved through evolution and correctly predicted
by the potentials including torsion terms. Pro40, on the
other hand, produces a bending in a long alpha-helix; the
latter feature is not currently modeled by the potentials be-
cause the identity and conformation of neighboring sites
are not considered when calculating the conformation of a
residue, although it is known to affect the Ramachandran
basin populations (Zaman et al. 2003). We are considering
the inclusion of this feature in future work. As for glycines,
potentials with torsion terms predict four of them very
strongly; two of which (Gly84 and Gly92) are conserved
in the profile of natural sequences, whereas the other two
(Gly21 and Gly51) are not. However, this discrepancy is
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Table 2. Natural Logarithm of the Bayes Factor and Optimal β for the Models Considered. ω Was Included in the Models Either as a Global
Parameter (noted as G) or with a Dirichlet Distribution (noted as DP). Shaded Cells Show Site-independent Models of Sequence Evolution: MG-
NS Corresponds to Row 5, and MG-NSDP Corresponds to Row 10. MGWas Used as a Reference Model for the Calculation of Bayes Factors.

ADH β-globin
ω Potential Log BM β Log BM β

— MLdist [145.90:146.01] [0.383 : 0.390] [81.99 : 82.16] [0.312 :0.316]
— MLdist,solv [162.35:162.82] [0.390 : 0.392] [90.00 : 90.03] [0.325 : 0.327]
— MLdist,solv,torsion [213.41:214.89] [0.418:0.419] [104.88 : 105.69] [0.327 : 0.328]
— MLdist,solv,Bfactor,torsion [222.37:222.76] [0.414 : 0.419] [114.47 : 114.64] [0.331 : 0.333]
G — [316.3: 319.1] — [90.64 : 93.88] —
G MLdist [409.14 : 412.75] [0.372 : 0.376] [149.55 : 153.37] [0.302 : 0.306]
G MLdist,solv [417.96 : 421.10] [0.370 : 0.381] [155.69 : 159.04] [0.297 : 0.317]
G MLdist,solv,torsion [453.55 : 457.28] [0.401 : 0.408] [168.36 : 172.30] [0.319 : 0.323]
G MLdist,solv,Bfactor,torsion [458.32 : 461.92] [0.397 : 0.399] [174.73 : 178.90] [0.325 : 0.326]
DP — [413.10 : 419.40] — [192.84 : 198.08] —

easily understood when looking at the actual alignment of
natural sequences: both glycines are in fact present in more
than one-third of the sequences, but the alignment pro-
grams fail to position them properly because they are lo-
cated in very divergent loops of the protein, where a high
number of insertions and deletions are found.

Despite the limitations discussed above, a detailed
analysis of the profiles of a particular protein like the one
presented here allows for an intuitive visualization of the
properties of the different statistical potentials. It spans a
broad portion of the sequence space, using a large num-
ber of highly diverged sequences, which is more difficult to
achieve within a phylogenetic framework.

Assessment in a Phylogenetic Context
Once the parameters of the potentials have been optimized,
they can be inserted into a structurally constrained model
of sequence evolution and assessed in a Bayesian frame-
work. The log-Bayes factors for two data sets of globular
proteins, ADH andβ-globin, are shown in table 2. The ther-
modynamic integration produces a curve representing the
log-Bayes factor of each model as a function of β, the fac-
tor modulating the strength of the structural term in the
evolutionary model (eq. (15)). This allows us, in addition
to performing comparisons, to detect the optimal values
of β for each model. We will first focus on this measure
(table 2). Following the trend we observed using simpler SC
models (Rodrigue et al. 2009), we find the optimal β to be
positive, consistent with the case where sequences are se-
lected for their compatibility to the structure. Note that the
potentials were conceived to maximize a probability simi-
lar to the stationary distribution of the site interdependent
codon model given in equation (16), although ignoring the
contribution of the mutation bias, and with β = 1/2 (see
Rodrigue et al. 2009 for details). The optimal value of β ob-
tained is slightlybelow this expectedvalue of 1/2maybedue
to the fact that we are ignoring mutational pressure in the
optimization procedure. Note that β-globin shows globally
lower values of optimal β. This is probably due to the im-
portant structural features of this protein that are not de-
scribed by the ML potentials considered here: the β-globin
structure is greatly influenced by the prosthetic group and

by interactions with the other subunits of this oligomeric
protein. In any case, for both proteins, models with richer
structural description show a progressively higher optimal
β: the better the structural representation, the stronger role
this term plays in the evolutionarymodel.

The progression of the Bayes factor values when adding
the structural terms one by one, similar to the trend
observed before whenmeasuring the fit of native sequence–
structure pairs (fig. 2), indicates that the sequence–
structure patterns captured by the potentials are also
meaningful in an evolutionary context.Once again, pairwise
interactionsare themost important single component con-
tributing to model fit.

Although improving the description of the evolution-
ary process when contrasted to the MG model, the
performance of the SC models remains altogether weak.
MG-NS, a site-independent model with only one global
parameter modeling selection (ω), has a comparable per-
formance (better in one case, worse in the other). Com-
bining the structural specifications with the MG-NS model
increases the model fit, though in a less importantway than
when adding them to a pure MG model. This is similar to
what had been observed before (Rodrigue et al. 2009), which
we interpret as a consequence of the overlap in the two
approaches—ω and the SC settings—of modeling the pu-
rifying selection. Note, however, that despite this overlap,
the combined MG-NS-SC model displays a fit that is in the
order of MG-NSDP (a site-independentmodel allowing het-
erogeneity of ω across sites), which the simpler SC models
failed to attain before (Rodrigue et al. 2009). This suggests
that the structural components of the model are explain-
ing, if not the average nonsynonymous rate of substitution,
a part of the heterogeneity of nonsynonymous rates across
sites.

Themechanistic formulation of this approachallows for a
simple interpretation of certain model violations. As an ex-
ample, we analyzed a third protein, calmodulin, for which
simple general rules of protein structure may not apply.
Calmodulin acts as an intermediary protein that reacts to
calcium levels and relays signals to numerous proteins. For
this purpose, calmodulin undergoes major conformational
changes (Hoeflich and Ikura 2002). As such, this type of
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Table 3. Natural Logarithm of the Bayes Factor and Optimal β for the Models Considered, Considering Separately the Native Sequence (s c)
and All the Other Sequences in the Alignment (Dφ). See Methods for Details. MG Was Used as a Reference Model for the Calculation of Bayes
Factors.

Data set
Potential Bs

c

M BφM βsc βφ

ADH
MLdist [76.84:76.86] [69.85 : 69.92] [0.413 : 0.417] [0.356 : 0.360]
MLdist, solv [85.27:85.40] [77.33 : 77.86] [0.410 : 0.414] [0.372 : 0.373]
MLdist,solv,torsion [106.92:107.28] [106.49 : 107.61] [0.416 : 0.418] [0.420 : 0.420]
MLdist,solv,Bfactor,torsion [110.83:110.99] [111.40 : 111.92] [0.418 : 0.419] [0.412 : 0.419]

β-globin
MLdist [47.03 : 47.04] [39.36 : 39.51] [0.410 : 0.432] [0.261 : 0.266]
MLdist,solv [50.01 : 50.07] [43.54 : 43.62] [0.411 : 0.412] [0.276 : 0.276]
MLdist,solv,torsion [54.72 : 54.76] [52.70 : 53.69] [0.393 : 0.402] [0.288 : 0.298]
MLdist,solv,Bfactor,torsion [59.48 : 59.55] [58.19 : 57.89] [0.408 : 0.415] [0.292 : 0.292]

protein may not be well represented in the PDB. When ap-
plying the SC models, we observe a progressive increase
in model fit (supplementary fig. S5, Supplementary Mate-
rial online). However, this improvement is almost negligi-
ble compared with the fit of MG-NS, which is five times
higher. Consistently, neither layering the SC settings with
the parameter ω, nor modeling heterogeneous ω parame-
ters across sites with the MG-NSDP model improve signif-
icantly the fit (less than 10% improvement). Because the
global selective pressure in the present case is known to be
unrelated to maintaining a single rigid native structure, the
detailed description of the amino acid interactions is not
surprisingly meaningless in an evolutionary perspective.

Transient Properties of the SC Models
We also explored one additional aspect regarding the
assessment of the SC models in this framework. Given our
supervised learning procedure for optimizing the potentials,
there is a risk of a bias toward the native sequence, that is,
the sequence that was used to obtain the crystallographic
structure, a risk that increases with the level of detail in the
structural description (Kuhlman and Baker 2000). However,
we are looking for a scoring function that predicts not only
this native sequence s c but also more general sequence fea-
tures that could be accepted by evolution under the partic-
ular structural constraints of c .

We can probably be confident that the coarse-grained
modeling adopted here prevents such an overfitting, but
this can be addressed quantitativelybased on the following
argument.We can decompose the Bayes factor into two fac-
tors (eqs. (20–22)):

BM = (B
φ
M )(B

sc

M ).

The factor B φM , which we call the “transient” factor, mea-
sures the ability of the model to generalize beyond the na-
tive sequence and predict new sequences related to the
native one by their evolutionary history. The “stationary”
factor B sc

M , in turn, corresponds to the fit of the model
on the native sequence itself. The results are reported in
table 3. Note that both factors progress in the same order

for the different potentials and that the transient factor B φM
increases faster when enriching the SC model. This implies
that the structural specification is modeling meaningful se-
lective constraints and not merely describing too faithfully
the relation between the native sequence and its structure.

Finally, note that the stationary factor represents an im-
portant contribution to the total Bayes factor, which may
indicate that much of the model fit is obtained by explain-
ing the native sequence. Although it is true that, given that
the model is time reversible, the marginal likelihood is in-
variant to the choice of s c, the transient and stationary fac-
tors individually are not. In order to assess the role of the
native sequence in this contribution,we repeated the exper-
iment but considering all the sequences of the alignment,
one at a time, as s c (fig. 5). We can see that the actual na-
tive sequence is not the one displaying the best stationary
fit, indicating once again that the SC models are not merely
predicting the native sequence. Changing s c for other

FIG. 5. Trace plots representing the stationary factor B sc
M as a func-

tion of β , the factor modulating the strength of the structural term
in the evolutionary model. The computation was performed on the
ADH data set, using the potential combining torsion angles, solvent
accessibility, pairwise interactions, and B-factors (MLdist,solv,Bfactor,torsion).
In each curve, a different sequence from the alignment is taken as s c.
The dashed line corresponds to the case where the native sequence is
taken as s c.
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sequences produces relatively minor changes in the over-
all behavior of the plots for the two proteins tested (sup-
plementary figs. S6 and S7, SupplementaryMaterial online),
suggesting that what is at stake here is a transient–
stationary distinction rather than a native–non native one.
The potentials have been optimized in a stationary state,
without considerations related to the transient aspects of
the evolutionarymodel; model violationsmay thus be more
evident in the description of transientpropertiesof the evo-
lutionary process. A wide range of codon substitutionmod-
els, presenting the same associated stationary distribution
to the one used here, but different transient forms, could be
explored to further investigate this question (Thorne et al.
2007).

Conclusion and Perspectives
The main motivation behind this work is to incorporate
explicit protein structure information in an evolutionary
context using a unified model-based statistical framework
to assess the relevance of this information. To what ex-
tent are the factors known to affect protein structure—in
vitro, in isolation and controlled laboratory conditions—
shaping the evolution of protein sequences? Can we dis-
entangle structural constraints from other selective forces?
To address these questions, we derived statistical potentials
with rich structural descriptions, optimized for evolution-
ary studies. We incorporated them into a structurally con-
strained model of sequence evolution and evaluated them
in a Bayesian framework.

We found that including detailed information on the
protein structure improves the description of the evo-
lutionary process. However, the performance of the po-
tentials remains relatively weak compared with the most
sophisticated site-independent models of evolution. Fur-
ther improvements could be made regarding the specific
form of the energy function, including terms related to
interactions in torsion angles among successive positions
along the chain (Betancourt and Skolnick 2004), side chain–
backbone interactions (Buchete et al. 2004), or considering
sequence separation ranges for distance interactions (Sippl
1993). The modeling of flexibility, in particular, needs sig-
nificant improvement. Even though B-factors have been
previously used as an approximation of protein flexibility
(Schlessinger and Rost 2005; Yuan et al. 2005), our results
do not support this role. The coarse-grained representation
of the structure provides an indirect way of allowingflexibil-
ity, but given its importance for protein function, an explicit
modeling of this feature would be desirable.Othermeasures
of protein dynamics could be explored, for example, consid-
ering several conformations for each sequence in the learn-
ing database, each one representingdifferent protein states,
or homologous structures. In a different direction, refine-
ments of the optimization procedure, which has not been
modified here, should be considered, such as elements of
negative design (Bolon et al. 2005), by the use of explicit de-
coy structures or better approximations than the random
energy model.

In any case, structural constraints represent only a frac-
tion of the total selective constraintoperatingon sequences
(Drummond et al. 2006; Pal et al. 2006; Drummond and
Wilke 2008). As shownby the logos of natural sequences, rel-
atively few positionsare strongly conserved, suggesting that
the critical interactions formaintaining the overall structure
may be relatively sparse. This has also been proven exper-
imentally: a statistical function capturing coevolution in a
sequence alignment, specifying very few key positions, suf-
fices to produce correctly folded proteins in vitro (Suel et al.
2002; Socolich et al. 2005). Because Bayes factors are a global
measure of how well all aspects of the data are explained
by the model, if there are only a handful of positions con-
strained by the structure, the improvement inmodel fit will
be minor.

More importantly, there is an intrinsic limitation of the
modeling approach used here. Statistical potentials are de-
signed to capture general trends of amino acid propensities
for average proteins, well represented in the learning data
set. However, as illustrated by the example of calmodulin,
and to a lesser extent byβ-globin, eachprotein structure has
features critical for its function, folding, and stability, which
may be too particular to be accessible by estimating propen-
sities over a large number of cases. Estimating the parame-
ters for specificprotein families, or, better yet, inferring them
directly within the phylogenetic framework, along with the
other parameters of the evolutionary model, may serve to
overcome this limitation. In a more ambitious direction,
more physically based representationsand energy functions
could be used to model protein structure instead of rely-
ing on statistical potentials. This approach will certainly be
computationally demanding, thus limiting the amount of
data that can be analyzed, but it may prove to be a more
direct and robust way to characterize structural constraints.

All in all, the quantitative analysis performed in this
study, combining a mechanistic approach tomodeling evo-
lution with model-based statistical inference, may now be
applied to study less well-characterized particular proteins
to answer more specific biological questions. In a differ-
ent perspective, this framework can be extended naturally
to handle other aspects of protein structure affecting se-
quence evolution, such as folding constraints, interactions
with other proteins, or yet other phenotypic features, not
exclusively related to the native conformation.

Supplementary Material
Supplementary figures S1–S7 and Table S1 are
available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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