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Abstract

Heterotachy, the variation of substitution rate at a site across time, is a prevalent phenomenon in nucleotide and amino
acid alignments, which may mislead probabilistic-based phylogenetic inferences. The covarion model is a special case of
heterotachy, in which sites change between the ‘‘ON’’ state (allowing substitutions according to any particular model of
sequence evolution) and the ‘‘OFF’’ state (prohibiting substitutions). In current implementations, the switch rates between
ON and OFF states are homogeneous across sites, a hypothesis that has never been tested. In this study, we developed an
infinite mixture model, called the covarion mixture (CM) model, which allows the covarion parameters to vary across sites,
controlled by a Dirichlet process prior. Moreover, we combine the CM model with other approaches. We use a second
independent Dirichlet process that models the heterogeneities of amino acid equilibrium frequencies across sites, known
as the CAT model, and general rate-across-site heterogeneity is modeled by a gamma distribution. The application of the
CM model to several large alignments demonstrates that the covarion parameters are significantly heterogeneous across
sites. We describe posterior predictive discrepancy tests and use these to demonstrate the importance of these different
elements of the models.
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Introduction
The ability to infer accurate phylogenies is becoming more
and more important as the flow of genomic data produced
increases. Bayesian Markov chain Monte Carlo (MCMC)
methods to address this problem are now popular, as they
more readily allow the development of sophisticated mod-
els of sequence evolution. This is particularly important
because the accuracy of phylogenetic inference heavily de-
pends on the quality of the underlying models (Lanave et al.
1984; Yang 1996; Whelan and Goldman 2001; Phillips et al.
2004; Lartillot et al. 2007). For instance, the long-branch
attraction artifact (Felsenstein 1978) is reduced through
the use of the CAT model (Lartillot et al. 2007; Philippe
et al. 2007; Delsuc et al. 2008). This model allows for a het-
erogeneous substitution process across sites (in addition to
the heterogeneity of rate across sites) using a Dirichlet
process prior (Ferguson 1973; Antoniak 1974; Neal 2000;
Lartillot and Philippe 2004). Dirichlet process priors
are convenient nonparametric devices for modeling site-
specific effects, while relaxing the strict assumptions of
the underlying statistical law implied by more classical
parametric priors (Richardson and Green 1997).

Heterotachy (Philippe and Lopez 2001; Lopez et al.
2002), which describes the fact that substitution rates
vary not only across sites but also across time, has drawn
the attention of many researchers (Lockhart et al.
1996; Tuffley and Steel 1998; Galtier 2001; Huelsenbeck
2002; Kolaczkowski and Thornton 2004; Spencer et al.

2005; Wang et al. 2007; Zhou et al. 2007). Heterotachy
was first characterized by Fitch and coworkers (Fitch
and Markowitz 1970; Fitch 1971; Miyamoto and Fitch
1995) and was then shown to be frequent (e.g., 95% of
the variable cytochrome b positions are heterotachous
in vertebrates [Lopez et al. 2002]). It has been shown that
heterotachy potentially impedes phylogenetic inference
(Lockhart et al. 1996; Lopez et al. 1999, 2002; Philippe
et al. 2000; Inagaki et al. 2004; Kolaczkowski and Thornton
2004). For instance, an uneven distribution of invariant
sites can positively mislead phylogenetic reconstruction
(Lockhart et al. 1996). Based on their observations, Fitch
and Markowitz proposed the covarion model of sequence
evolution (Fitch and Markowitz 1970; Fitch 1971). The co-
varion hypothesis states that, at a given time, due to func-
tional constraints, some sites are free to vary and other sites
are not; and at a later time, due to changes in functional
constraints, some sites that were free to vary earlier no lon-
ger accept substitutions (and vice versa). The covarion hy-
pothesis naturally creates heterotachous patterns of
evolution.

Several models have been proposed to handle hetero-
tachy. Based on the covarion hypothesis, Tuffley and Steel
(1998) proposed a Markov-modulated Markov model, in
which a stochastic process describes the ON/OFF state
changes along the tree, whereas another stochastic process
describes the substitution process when sites are in the ON
state. In a context with m observed states (m 5 4 for nu-
cleotide data, m 5 20 for amino acid data), the overall
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process is defined over 2*m states, because a given position
can be either in the ON or OFF state.

Huelsenbeck implemented an improved variant of this
covarion model that allows for substitution rate variation
across sites (Huelsenbeck 2002). Galtier (2001) relaxed the
constraint of ON and OFF states and proposed another
form of Markov-modulated Markov covarion model: sites
freely transit along the tree among different rate categories
following a discrete gamma distribution. In each discrete
gamma rate category, sites then follow the classical Mar-
kovian substitution process. However, this model does
not allow for the OFF state. Wang et al. (2007) recently
combined Tuffley and Steel’s and Galtier’s models and pro-
posed a triple Markovian process: Sites are not only able to
transit between ON and OFF states, in the ON state, they
are also allowed to transit between different rate categories;
in each rate category, they follow a classical Markov tran-
sition process for substitutions. Likelihood ratio tests dem-
onstrated that this model has a better fit than all other
covarion models (Wang et al. 2007). Nevertheless, the large
size of the transition matrix (2*g* m�2*g* m, g is the num-
ber of rate categories) for this triple Markovian process
implies a heavy computational burden.

On the other hand, because the branch length is the ex-
pected number of substitutions, heterogeneity of substitu-
tion rates across branches and across sites can be modeled
with different sites having different sets of branch lengths.
Accordingly, Kolaczkowski and Thornton (2004, 2008)
proposed a mixture branch length (MBL) model to handle
heterotachy: The MBL model consists of a mixture of com-
ponents with different sets of branch lengths. However,
given a large number of species, the number of parameters
increases rapidly with each new component. Indeed, the
covarion model has been shown to have a better fit than
the MBL and the homotachous models on several large real
data sets (Zhou et al. 2007). One explanation for the poor
performance of the MBL model is that most branches of
the different MBL components are correlated, rendering
them redundant except for a few branches. To address this
issue, Pagel and Meade (2008) proposed to use a reversible-
jump MCMC technique in order to detect which branches
require a set of different lengths; as expected, only the most
heterotachous regions of the tree require extra branch
lengths to adequately describe the data. An alternative
to the MBL model would be a breakpoint model in which
all sites share the same branch lengths except for some
branches in which a fair amount of sites have drastic
changes in substitution rate (Gu 2001; Dorman 2007). Nev-
ertheless, determination of breakpoints along the branches
demands heavy computations and has its own technical
difficulties (Gu 2001; Dorman 2007; Blanquart and Lartillot
2008).

The elegance of the covarion model is that it has only
two parameters that try to recover heterotachous signals
by integrating the history of transitions (or switches) be-
tween ON and OFF states over branches and sites. For in-
stance, sites having less substitutions in one part of the tree
can be assumed to stay longer in the OFF state; sites having

more substitutions in another part of the tree would be
interpreted as spending more time in the ON state. The
current covarion model assumes that the switch rates
between the ON and OFF are homogenous across sites
and stationary along the tree (Tuffley and Steel 1998;
Huelsenbeck 2002). However, due to variations in func-
tional requirements along the sequences, some sites might
stay in the ON state much longer than other sites, or switch
between ON and OFF with frequencies different from other
sites, such that the switch rates between ON and OFF and
the mean time spent in the ON state could be significantly
heterogeneous across sites. Moreover, using large data sets
resulting from the concatenation of genes with divergent
function increases the chance of heterogeneities across
sites in phylogenetic inference (Rodriguez-Ezpeleta et al.
2007). One might therefore question whether applying
a single set of covarion parameters on a heterogeneous
data set might constitute a serious model violation. There-
fore, testing whether the transition rates between ON and
OFF vary among sites is of great interest.

Our aim was to develop a model having different sets of
covarion parameters (i.e., the switch rates between ON and
OFF) for different sites. One possible solution is a mixture
model with a number of components each possessing their
own covarion parameters. Mixture models can be finite or
infinite. For finite mixture models, the number of compo-
nents is given a priori. Several finite mixture models have
recently been proposed in phylogenetic analyses, for exam-
ple, mixtures of substitution matrices (Pagel and Meade
2004) or the MBL model (Kolaczkowski and Thornton
2004; Spencer et al. 2005; Zhou et al. 2007). With finite mix-
ture models, the number of components can be estimated
by model comparison in the maximum likelihood frame-
work (McLachlan and Peel 2000; Steel 2005; Zhou et al.
2007; Kolaczkowski and Thornton 2008) or by a posterior
sampler using reversible-jump MCMC to sample through
different dimensions of model space in the context of
Bayesian methods (Green 1995). However, this estimation
is difficult even under a fixed topology (Zhou et al. 2007),
considering the changing dimensionality of the parameter
space (Kolaczkowski and Thornton 2008). As an alternative
to determining the number of components, an infinite
mixture model can be applied. The most common ap-
proach to an infinite mixture model is using the Dirichlet
process (Ferguson 1973; Neal 2000). The Dirichlet process is
a nonparametric method to group observations that have
similar behaviors and has been shown to successfully han-
dle various heterogeneity problems in phylogenetic analysis
(Lartillot and Philippe 2004; Huelsenbeck et al. 2006;
Huelsenbeck and Andolfatto 2007; Huelsenbeck and
Suchard 2007; Rodrigue, Lartillot, and Philippe 2008).

In this study, we develop the covarion mixture (CM)
model, which is an infinite mixture model utilizing a Dirichlet
process to handle the heterogeneities of the covarion param-
eters across sites in a Bayesian MCMC framework. We first
study the heterogeneities of covarion parameters in real data
sets. We then investigate the impact of the coexistence of
different heterogeneities (rate of ON/OFF switch vs. rate of
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substitution) on the inference of parameters. Finally, we as-
sess the fit of models using posterior predictive discrepancy
tests (Rubin 1984; Gelman et al. 1996).

Materials and Methods

Data Sets
Five amino acid alignments covering a wide range of site
and taxon number were analyzed: 1) an opisthokont nu-
clear data set consisting of 17,912 sites and 63 species;
2) an animal nuclear data set consisting of 13,529 sites
and 36 species; 3) an animal mitochondrial data set con-
sisting of 2,373 sites and 116 species; 4) a vertebrate mito-
chondrial data set consisting of 3,478 sites and 136 species;
and 5) a mammalian mitochondrial data set consisting of
3,559 sites and 53 species. The first two data sets are
subsamples of the alignment of Lartillot and Philippe
(2008) made to reduce the percentage missing data.
The three other data sets are extracted from a large in-
house alignment of complete holozoan proteomes and
the unambiguously aligned regions were detected using
GBlocks (Castresana 2000). Data sets are available at
www.phylobayes.org in the phylobayes CM package. For
all the data sets, constant sites are not included allowing
significant reduction of the computation time for the CAT
part of the model.

Furthermore, to perform posterior predictive discrep-
ancy tests DH (see below), several subgroups have been
defined in four data sets: Arthropoda (36 species), Deuter-
ostomia (45), and non-Bilateria (35) for animal mitochon-
drial data; Eutheria (24) and Metatheria (29) for mammal
mitochondrial data; Teleostei (86), Gymnophiona (7), Cau-
data (26), Archeobratrachia (5), and Neobratrachia (12) for
vertebrate mitochondrial data; Holozoa (33) and Fungi (30)
for opisthokonts nuclear data.

Standard Huelsenbeck Covarion Model
For a given site i, the transition matrix for the Markov-
modulated Markov process is (Tuffley and Steel 1998;
Huelsenbeck 2002):

R5 ½ � S01I S01I
S10I Q � S10I

�; ð1Þ

where I is the m � m identity matrix (m being the number of
states; m5 20 for amino acids), Q is the m�m instantaneous
rate matrix for substitution, S01 is the switch rate from OFF (0)
to ON (1), and S10 is the switch rate from ON (1) to OFF (0).
The stationary probabilities for ON and OFF, respectively, are
pON 5 S01/(S01 þ S01), pOFF 5 S10/(S01 þ S01). The stationary
probability vector for the 2*m states is (pOFFk, pONk), where k
denotes the stationary frequency vector for m states.

When the rates are not uniform across sites and are as-
sumed to follow a C distribution, the Q matrix, instead of
the R matrix, is adjusted multiplicatively with a site-specific
rate (i.e., rate across sites [RAS]) (Huelsenbeck 2002). In this
way, the number of switches between ON and OFF is not
proportional to the substitution rate.

The two parameters (S10 and S01) specific to the cova-
rion process can be transformed into another set of two

parameters: the expected proportion of sites being the
ON state pON (pON 5 S01/[S10 þ S01]) along the tree
and the average switch rate X (X 5 2S10S01/[S10 þ S01]),
which is the total number of switches between ON and
OFF per branch length unit. This alternative set of param-
eters is useful to monitor the behavior of the covarion
model and to make biological interpretations.

Infinite Mixture Model Using a Dirichlet Process
The Dirichlet process is a stochastic process, with which
a number of distributions are dispensed under a Dirichlet
distribution (Antoniak 1974; Escobar and West 1995). Sup-
posing that observation i (i 5 1,. . ., N) is drawn from
a mixture distribution over h, the Dirichlet process can
be realized with the following formula (Blackwell and
MacQueen 1973):

hijh1; . . . :; hi� 1;
1

i � 1 þ a

Xi�1

j51

dðhjÞ þ a
i � 1 þ a

G0;

ð2Þ

where d(h) is the distribution centered at h, a is a hyperpara-
meter that controls the dispersion of the Dirichlet process,
and G0 is the base distribution. One application of the Dirich-
let process is the prior for the infinite mixture model. The mix-
ture model consists of K components that share the same
base distribution G0. By integration, the prior for ci, with which
site i is assigned to one component c, is

Pðci 5 cjc1; . . . ci� 1Þ5
ni;c þ a

K

n � 1 þ a
; ð3Þ

where ni,c is the number of sites in the component c to which
site i is assigned (Neal 2000). The hyperparameter a influences
the number of components. When the hyperparameter a is
large, site i has a high probability of having a new component
of its own; when a is small, site i is likely to be grouped with
others.

CM Model
The CM model is basically a Huelsenbeck covarion model
where the parameters S10 and S01 can vary across sites.
More precisely, one Dirichlet process is defined on the pa-
rameter h5 (S10, S01), and the base distribution G0 is a joint
of two independent exponentials of mean 1. To extensively
explore the nature of the CM model, we define the prior for
the hyperparameter a of the Dirichlet process as uniform in
[0, 1,000]; therefore, the number of components in the CM
model largely depends on the heterogeneities of the data.

Overall Models
The CAT model (Lartillot and Philippe 2004) is a mixture
model allowing site-specific stationary probabilities using
a Dirichlet process. In this paper, all the models are
combined with the CAT model, because this model has
generally a better fit than site-homogeneous models and
is computationally relatively rapid (Lartillot and Philippe
2004, 2008).

We use the abbreviation COV for the standard one-
component Huelsenbeck covarion model; CM for the
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CM model; þC for models with gamma-distributed rates
discretized with four categories. Covarion model generally
refers to both COV and CM models in the framework of the
Huelsenbeck covarion model. Therefore, the CAT þ CM þ C
model actually consists of two Dirichlet processes and han-
dles three different site-specific heterogeneities (amino
acid stationary probabilities, switch rates between ON
and OFF, as well as the substitution rates in the ON state).

We recode states such that all nonobserved amino acids
at a given column are treated as a single state (Lartillot and
Philippe 2004). This recoding does not influence the likeli-
hood calculation, that is, the likelihood is numerically iden-
tical to that obtained without the recoding. A fast
algorithm (Galtier and Jean-Marie 2004) is used for the di-
agonalization of the matrix of a double Markovian process.

Posterior Estimation by MCMC
The parameters’ posterior probability for data y is

Pðz; h; vjyÞ5 Pðyjz; h; vÞPðzÞPðhÞPðvÞR
z;v;h Pðyjz; v; hÞPðzÞPðvÞPðhÞ

; ð4Þ

where z is the allocation vector (c1,c2,. . .,cn) that assigns site
(1,. . . ,n) to covarion components; h is the switch rates S10 and
S01; v is the rest of the parameters, such as branch length, P(z)
and P(h) have been introduced in the CM model setting; other
prior setting can be found in Lartillot and Philippe (2004).

We assume all sites are independent, so that the likeli-
hood of the parameters for data y is the product of the like-
lihood at each site. A site-specific likelihood is conditional
on a covarion component of which a site is assigned to

Pðyjz; h; vÞ5
YN
i51

Pðyijci; h; vÞ: ð5Þ

MCMC is applied to obtain the posterior distribution
over the parameters. In order to obtain a quick conver-
gence, Gibbs sampling is applied with the help of auxiliary
components for the Dirichlet process mixture model
according to algorithm 8 described by Neal (2000).

Two independent chains are run to check the conver-
gence of the chains. The MCMC chains are considered
to reach convergence when the plots for all variables
(e.g., likelihood value and number of covarion components)
from different independent chains show the same posterior
distributions. The posterior estimations of the parameters
are the expectations of these parameters under the poste-
rior distribution. For instance, the posterior estimation of
site-specific S01 and S10 in the CM model is the mean of S01

and S10 for each site in the posterior distribution.

Events Mapping along the Tree
The substitutions and switches between ON and OFF can
be studied using stochastic mapping. We use the data aug-
mentation method for the stochastic mapping described
by Rodrigue, Philippe, and Lartillot (2008). Briefly, applying
uniformization, the Markov process is transformed into
a Poisson process that allows for virtual substitutions (from

one state to itself), and the waiting time for a substitution
event no longer depends on the current state of the pro-
cess. In the case of our study, the ‘‘events’’ for mapping refer
to amino/nucleotide substitutions and switches between
ON and OFF. Therefore, the size of the Markov matrix
on which we apply the uniformization procedure is
2*m � 2*m (for amino acid, m 5 20), and we map events
among 2*m states. After removing the virtual events, we
have the information about the number of substitutions
in ON states, the number of switches between ON and
OFF, and the time spent in ON and OFF states, for each
site and each branch. These mappings are then used for
constructing posterior predictive discrepancy tests.

The Posterior Predictive Distribution
Supposing u is the parameter vector of the model, a series
of posterior predictive data sets ypp are simulated with val-
ues of u drawn from the posterior distribution (i.e., con-
ditional on the observed data set yobs), such that the
marginal probability of the posterior predictive data ypp is

Pðyppjyobs;ModelÞ5
Z
PðyppjuÞPðujyobs;ModelÞdu: ð6Þ

For the double Dirichlet processes model, that is, the
CAT þ CM model, a site would be simulated simulta-
neously with both the CAT component and the CM com-
ponent to which this site belongs in the posterior
distribution. Therefore, the simulation would reflect any
interactions between the two different mixture models,
if such interactions exist.

Multiple replications are generated for each u. Here, 200
data points in the posterior samples are collected for each
MCMC chain, and for each data point 5 replications were
applied to generate the posterior predictive data sets. In
the following, the posterior predictive distribution will
be taken as our null distribution (Rubin 1984; Gelman
et al. 1996).

Posterior Predictive Discrepancies Assessments
The classical P value of a test statistic T for data y is
defined as

pðy;ModelÞ5 PðTðYÞ� TðyÞjModelÞ; ð7Þ

where T is a pivotal statistic, which is not dependent on any
unknown parameters, and the data Y are sampled under the
null distribution.

In the presence of nuisance parameters or in the context
of Bayesian estimation, the parameter u is not known or
‘‘fixed.’’ Therefore the P value is defined as

pðy;Model;uÞ5 PðTðYÞ� TðyÞju;ModelÞ; ð8Þ

where the test statistic T is dependent on the unknown param-
eter u. In this case, the null distribution T(Y)|u is hard to know.

Because ypp are simulated under the posterior distribu-
tion, the distribution of T(ypp) can be taken as a null dis-
tribution (Rubin 1984). More specifically, Gelman et al.
(1996) introduced posterior predictive discrepancy variable
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D(y, u), which is a parameter-dependent statistic to
measure the distance between the data y and the posited
model. The posterior predictive discrepancy variable
D(y, u) is actually a function of both the data and the pa-
rameters of the model. We are interested in the location of
D(yobs, u) in the distribution of D(ypp, u) (null distribu-
tion). Therefore, the P value is defined as the probability
that D(ypp) � D(yobs) in the posterior distribution:

pðyobs;ModelÞ5
Z
PðDðyppÞ� DðyobsÞjuÞ

� Pðujyobs;ModelÞdu: ð9Þ

The P value of the posterior predictive discrepancy based on
MCMC can be obtained in a straightforward way by counting
how many D(yPP) are larger than D(yobs). A low P value indi-
cates a poor fit of the model to the data.

In order to check model fit with different aspects, differ-
ent discrepancy variables can be constructed. In this study,
we construct three discrepancy variables DR, DH, and DO,
based on three different aspects with variables R, H, and O
that are devised to study substitution rate across sites,
within-site substitution rate variation and the proportion
of time for sites spent in the ON state, respectively. All the
posterior predictive discrepancy variables in this study are
constructed according to formula (10). Supposing a dis-
crepancy variable regarding the variable v, Dv is

Dvðy;uÞ5 1

N

XN
i5 1

ðvm
i � ve

i Þ
2

ve
i

; ð10Þ

where the ‘‘observed’’ value (vi
m) of variable v for site i is com-

puted on a mapping, whereas the expected value vi
e is ana-

lytically derived based on the model.

The Discrepancy Variable DR for Rate Heterogeneity.
We construct a discrepancy variable DR based on the dif-
ference between the number of observed substitutions
along the tree and the number of substitutions expected
by the model. Hence,

DRðy;uÞ5 1

N

XN
i5 1

ðRm
i � Re

i Þ
2

Re
i

; ð11Þ

where Ri
m is the total number of substitutions at site i, which

is directly available from a mapping; Ri
e is the number of sub-

stitutions expected by the model for site i, and its value is
equal to pON,i*B*ri, the product of the site-specific proportion
of being ON (pON) (for noncovarion model, pON,i 5 1), the
tree length (B) and site-specific substitution rate ri (for non-
RAS model, ri 5 1).

The Discrepancy Variable DH for Heterotachy. Hetero-
tachy can be revealed as heterogeneity of within-site
substitution rates in different monophyletic groups
(Miyamoto and Fitch 1995; Lopez et al. 1999). We therefore
assess models using the discrepancy statistic DH:

DHðy;uÞ5 1

N

XN
i5 1

Xp
j5 1

ðHm
ij � He

ijÞ
2

He
ij

; ð12Þ

where p is the number of groups; Hij
m is the number of sub-

stitutions mapped in monophyletic group j for site i; Hij
e is the

number of substitutions expected by the model in monophy-
letic group j for site i, and its value is pON,i*Bj*ri, of which Bj is
the tree length of group j.

The Discrepancy Variable DO for the ‘‘ON’’ State
Behavior. To refine the assessment of various covarion
models, we focus on a third statistic, DO, which considers
the relative time a site spent in the ON state:

DOðy;uÞ5 1

N

XN
i51

ðOm
i � Oe

i Þ
2

Oe
i

; ð13Þ

where Oi
m is (time in ON state)/(time in ON state þ time in

OFF state) obtained by the mapping, Oi
e is pON,i, which is

estimated by the model.
The covarion models and the posterior predictive dis-

crepancy tests introduced in this paper are implemented
in PhyloBayes (Lartillot et al. 2009) and are available at
www.phylobayes.org.

Results

CM Model
The CM model was applied on the five real data sets. Vir-
tually identical posterior estimations from two indepen-
dent chains show a good convergence of the MCMC on
the Dirichlet process (supplementary fig. S1, table S1, Sup-
plementary Material online). For instance, the posterior es-
timates of covarion parameters (i.e., S10 and S01) for a given
site are comparable.

Figure 1 shows the histogram of the number of compo-
nents (Kcov) in the posterior distribution for the opistho-
kont nuclear data set. Although Kcov is variable (from 5 to
21), it is never equal to 1 in the posterior distribution. So
the standard covarion model, which is a special case of the
CM model with Kcov 5 1, has a negligible posterior prob-
ability. This is confirmed by all data sets we have analyzed
so far, which have an average number of components from
8 to 28 (table 1).

The posterior distributions of site specific S10 and S01 for
the opisthokont data are shown in figure 2. As expected,
there is a great heterogeneity across sites. S01 varies from
;0.4 to ;1 and S10 varies from ;0.5 to ;2.5. The other
four data sets confirm that the covarion parameters vary
significantly across sites (table 2, supplementary fig. S2,
Supplementary Material online).

Comparisons of Real Data Sets and Their COV
and CM Simulated Counterparts
To further validate the CM model, data sets were simulated
under COV and CM models using the parameters esti-
mated from real data sets (see, posterior predictive distri-
bution in Materials and Methods). The CM model was then
applied on these two types of simulated data sets to com-
pare the results with the original real data sets.

Data sets simulated under CM yield similar posterior dis-
tributions for the number of components of the mixture
with those obtained under the original real data sets (fig. 1
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and supplementary fig. S2, Supplementary Material online).
The average number of components for simulated CM data
and for real data are always much higher than ones for sim-
ulated COV data, of which the values of Kcov are close to 1
and generally less than three (table 1).

The distributions of the CM and the COV simulated
data for site-specific S10 and S01 were also studied (supple-
mentary fig. S3, Supplementary Material online, table 2).
For the simulated CM data set, S01 and S10 varied widely
and their mean and variance are quite similar to the ones
obtained from the original real data sets. In contrast, for the
simulated COV data sets, most sites were concentrated in
a narrow strip around the COV original simulated values,
and variances of covarion parameters are more than 10
times smaller than ones for real data sets. These simulations
demonstrate that the CM model is efficient in detecting
the heterogeneity of the covarion parameters when data
are heterogeneous and does not artificially inflate it when
data are homogeneous.

Biological Meaning of the CM Model
We have observed significant heterogeneities of the cova-
rion parameters across sites in all alignments we have an-
alyzed so far. Because these data sets consist of different
genes, one would be interested to know whether the
covarion parameters are heterogeneous among genes.
Figure 3 displays the mean and variance of the covarion
parameters S10 and S01 for the 12 genes of the mammal

mitochondrial data sets. Although covarion parameters
vary widely within each gene, their mean seems also to vary
among genes. To rigorously determine whether the values
of site-specific covarion parameters S10 and S01 are affected
by the genes, multivariate analysis of variance was per-
formed on the three mitochondrial data sets. All the four
statistics (Wilks’ Lambda, Pillai’s Trace, Hotelling–Lawley
Trace, and Roy’s Greatest Root) strongly reject the null hy-
pothesis that the covarion parameters are not affected by
the genes (P � 0.0001). Interestingly, the S10 (S01) param-
eters are higher (lower) for proteins of complexes III and IV
(cytb, cox1, cox2 and cox3) than for other proteins, which is
not observed for animal and vertebrate mitochondrial data
sets (supplementary figs. S4 and S5, Supplementary Mate-
rial online). This could be related to the well-documented
acceleration of these genes in primates (Schmidt et al.
2001), which has also been detected by mixture of branch
length model (Zhou et al. 2007).

The effect of the CM model and other models on tree
lengths was also studied (table 3). As expected, the most
complex models are better at detecting multiple substitu-
tions; hence they display a greater tree length. In particular,
trees inferred by the CM model are the longest. We spec-
ulate that the CM model, showing longer branches, has
a greater capacity to capture multiple substitutions than
other models via an effective categorization of sites mainly
in the ON state through the use of site-specific switch rates
between ON and OFF. Moreover, as expected, all models

FIG. 1. Histograms of the number of CM components (Kcov) inferred by the Dirichlet process from the posterior distributions of the
Opisthokont alignment and the corresponding data sets simulated with COV and CM models.

Table 1. Number of Components for Covarion Parameters Inferred by the CM Model (Mean ± Standard Deviation [SD]).

Opisthokont
Nuclear

Animal
Nuclear

Animal
Mitochondrial

Vertebrate
Mitochondrial

Mammal
Mitochondrial

Original data 9.6 6 2.8 8.6 6 4.1 14.3 6 5.0 28.7 6 8.3 9.9 6 5.2
CM simulated 11.0 6 4.2 6.7 6 2.4 13.2 6 5.8 24.5 6 11.1 7.5 6 4.1
COV simulated 3.1 6 2.3 3.6 6 2.2 2.50 6 1.71 2.6 6 2.2 2.5 6 1.7
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including the C distribution infer longer branches than
models without it; similarly, all the covarion models have
longer branches than homotachous models by allowing
sites to switch between ON and OFF.

Interactions between the Discrete Gamma Rate
Model and the Huelsenbeck Covarion Models
For the animal nuclear data set, we compared the esti-
mated a value of the discrete gamma distribution for rates

B

A

FIG. 2. Distributions of the posterior estimates of site-specific S01 (A) and S10 (B) for the 15,435 sites of the opisthokont nuclear alignment and
its CM and Covarion simulated counterparts.

Table 2. Covarion Parameter Values (Mean ± SD) for Real and Simulated Data Sets Inferred by the CM Model.

Opisthokont
Nuclear

Animal
Nuclear

Animal
Mitochondrial

Vertebrate
Mitochondrial

Mammal
Mitochondrial

Original data S10 1.34 6 0.89 1.06 6 0.50 0.83 6 0.24 1.46 6 0.42 0.76 6 0.14
S01 0.64 6 0.14 0.67 6 0.14 0.91 6 0.31 1.07 6 0.42 0.78 6 0.12

CM simulated S10 1.72 6 1.31 0.96 6 0.35 0.77 6 0.23 1.26 6 0.32 0.85 6 0.27
S01 0.70 6 0.13 0.65 6 0.13 0.89 6 0.27 1.16 6 0.45 0.76 6 0.08

COV simulated S10 0.60 6 0.01 0.48 6 0.02 0.50 6 0.01 0.65 6 0.01 0.59 6 0.02
S01 0.64 6 0.004 0.57 6 0.01 0.69 6 0.02 0.79 6 0.01 0.77 6 0.02
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across sites under different models (table 4). Interestingly,
when the covarion process is introduced, the discrete
gamma rates become less heterogeneous across sites than
under a noncovarion model: The shape parameter a for the
discrete gamma rates increases from 1.58 to 2.65. When the
heterogeneity of the covarion process across sites is con-
sidered, the estimated heterogeneity of rates becomes even
less pronounced: The value of a increases further to 3.35.
Such interactions are expected because a covarion process
can mimic rate variation across sites by letting each site
spend a longer or shorter time in the ON and OFF state
(e.g., a site with a long time spent in the OFF state can

be assumed to be a very slow evolving site). On the other
hand, taking the heterogeneities of substitution rate across
sites into account influences the inference of the covarion
parameters (table 5).

Because the covarion and RAS modeling approaches in-
teract with each other, one would be interested in 1)
whether covarion signals and/or the heterogeneities of sub-
stitution rates across sites can be recovered under different
models; 2) how the estimations of covarion and/or substi-
tution rates across sites signals are affected under different
models. For simplicity, the results are shown only with the
one-component covarion model for the animal nuclear

FIG. 3. Distributions of the means and 95% confidence interval for the site-specific S01 (A) and S10 (B) covarion parameters across genes. The
names of the 12 genes for the mammalian mitochondrial data set have been indicated.

Table 3. Tree Lengths (±SD) Inferred by Different Models.

Model/Data
Opisthokont
Nuclear

Animal
Nuclear

Animal
Mitochondrial

Vertebrate
Mitochondrial

Mammal
Mitochondrial

CAT 11.11 6 0.03 9.62 6 0.04 19.51 6 0.12 18.78 6 0.08 9.71 6 0.12
CAT 1 C 11.97 6 0.05 10.42 6 0.07 21.46 6 0.17 21.08 6 0.16 10.60 6 0.15
CAT 1 COV 13.68 6 0.07 11.91 6 0.10 24.49 6 0.21 23.19 6 0.21 11.88 6 0.16
CAT 1 COV 1 C 14.52 6 0.10 12.44 6 0.11 25.49 6 0.28 24.98 6 0.28 12.18 6 0.18
CAT 1 CM 13.65 6 0.13 11.73 6 0.19 24.43 6 0.25 23.84 6 0.29 12.38 6 0.24
CAT 1 CM 1 C 15.26 6 0.19 13.24 6 0.19 26.65 6 0.65 26.15 6 0.57 12.64 6 0.32
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alignment. Similar results were obtained with the
CM model. Briefly, data sets were simulated with
parameter values drawn from posterior distributions of
the animal nuclear data for the three models: CAT þ C,
CAT þ COV (the Tuffley and Steel model) and CAT þ
COV þ C (the Huelsenbeck model), respectively. Subse-
quently, each simulated data set was analyzed with all these
three models (table 6).

Simulated CAT þ C Data Set. The CAT þ C model re-
covered the original value of a for the discrete C distribu-
tion. With the CAT þ COV þ C model, the original a value
was also recovered; however, S10 became extremely small,
and pON was close to one. In other words, sites spent most
of the time in the ON state, and no covarion signal was
detected. In the absence of the RAS model, the CAT þ
COV model captured part of the RAS signal (S01: 0.71
and S10: 0.30).

Simulated CATþ COV Data Set. The CAT þ COV model
recovered the original value for the covarion parameters.
With a CAT þ COV þ C model, the covarion model pa-
rameters were also recovered, and as expected, the RAS sig-
nal became very weak with a reaching 25. However, if
a discrete gamma rate model is applied on the data that
only contain covarion signal, the covarion signal would be
considered as a RAS signal by the CAT þ C model: a5 2.0.

Simulated CAT þ COV þ C Data Set. The CAT þ
COV þ C model recovered the value of a for the discrete
gamma-rate distribution as well as the covarion parame-
ters. This suggests that the two types of signals can in prin-
ciple be distinguished. When the CAT þ C model was
applied, a was estimated at 1.48, below the true value
(2.49), suggesting that the discrete C model takes both
RAS and covarion signals as RAS signal. Similarly, when
the CAT þ COV model was applied on the data set,
the estimation of the covarion parameters was influenced
by the RAS signal contained in the data: S10 was increased
from 0.43 to 0.61.

Altogether, these experiments suggest that although in
practice the RAS and heterotachy signals are strongly influ-
enced by each other, in principle they are identifiable.

Posterior Predictive Discrepancy Assessments of
the Rate Heterogeneity across Sites
Posterior predictive discrepancy was used with the DR sta-
tistic, which measures the ability of a model to handle the
heterogeneity of rate across sites (table 7). As expected, the
CAT model, which assumes uniform substitution rate
across sites is rejected (P , 0.01). The CAT þ C model
is not rejected for the animal/opisthokont nuclear and
mammal mitochondrial data sets (P � 0.05) but is slightly
rejected for the other two data sets (animal–vertebrate mi-
tochondrial data sets, 0.01 , P , 0.05). Yet CAT þ C has
a better fit than CAT with the respect of substitution rate
across sites. The CAT þ COV and CAT þ COV þ C models
are rejected for all the data sets (P, 0.01). Interestingly, the
CAT þ CM and CAT þ CM þ C models show a good fit
with all the data sets (P � 0.05). Remarkably, the CAT þ
CM model fully handles an evolutionary property (RAS sig-
nal) for which it has not been designed (i.e., being designed
to handle heterotachy signal). Results of DR tests suggest
that the discrete gamma model is outperformed by the
CM model for handling the heterogeneities of rate across
sites.

Posterior Predictive Discrepancy Assessments of
Heterotachy at the Level of Monophyletic Groups
The DH test indicates how well a model reflects heterotachy
at the level of the monophyletic groups (table 8). As ex-
pected, the noncovarion models (i.e., CAT/CAT þ C)
are rejected for all the data sets (P , 0.01). Surprisingly,
the CAT þ COV model is also unable to deal with hetero-
tachy (P , 0.01). Except for the mammal mitochondrial
data (P 5 0.14), the DH test shows that the CAT þ
COV þ C cannot reflect heterotachous properties ob-
served in the alignments (P, 0.01). However, it shows that
the CM/CM þ C models cannot be rejected for all the real
data sets we analyzed (P� 0.05). This demonstrates that all
the analyzed models in our study, except for the CM and
CM þC models, are unable to reflect heterotachous signals
at the level of monophyletic groups.

Posterior Predictive Discrepancy Assessments of
the ON State Behavior
The CAT þ CM and CAT þ CM þ C models appear in-
distinguishable for the DR and DH tests. However, the C
model seems necessary, otherwise, the estimated a value
of the C distribution for CAT þ CM þ C model, which
is currently only 3.36 (table 4), would be as high as for
the simulated CAT þ COV data, about 25 (table 6). To fur-
ther investigate this point, the discrepancy tests DO were
designed based on the average time a given site spent in the
ON state along the tree (table 9).

Both CAT þ COV and CAT þ CM models with uniform
substitution rate are rejected (P, 0.05). However, the CAT
þ COV þ C model is not rejected (P � 0.05) for all real
data sets except for the vertebrate mitochondrial align-
ment (P , 0.01). Furthermore, CAT þ CM þC model
has a good fit for all the five alignments (P � 0.05), and

Table 4. Posterior Estimation of a Value for the Discrete Gamma
Rates by Various Models for the Animal Nuclear Data Set.

Model
a Value for the Discrete
Gamma Rate (6SD)

CAT 1 C 1.58(60.04)
CAT 1 COV 1 C 2.65(60.11)
CAT 1 CM 1 C 3.36(60.25)

Table 5. Posterior Estimation of S10 and S01 by Various Covarion
Models for the Animal Nuclear Data Set.

Model S10(6SD) S01(6SD)

CAT 1 COV 0.56(60.02) 0.54(60.01)
CAT 1 COV 1 C
(a 5 2.65 6 0.11) 0.45(60.02) 0.57(60.01)
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the P values are always higher than those for CAT þ COV þ
C model. This implies that in contrast to the discrete
gamma rate models, the uniform substitution rate models
show poor fit when assessed with the discrepancy statistic
DO. One possible explanation for the poor fit is that the
covarion with uniform substitution rate models try to deal
with RAS signals in the data with covarion parameters,
and consequently, the covarion parameters are likely to
be misestimated.

Discussion

Posterior Predictive Tests
In classical statistical tests, the test statistics are completely
free of unknown variables. Thus, the null distribution (e.g.,
X2, F distribution) is a well-defined distribution, say without
any uncertainty. However, sometimes, due to the presence
of nuisance parameters, the statistics are dependent on pa-
rameters of unknown value; or due to a small sample size,
the assumed distribution is not valid anymore; or in the
Bayesian framework, estimations are not a single set of op-
timal values but a posterior distribution. Therefore, the cor-
responding statistical tests for assessing models are
conditional on parameters with unknown values. In all
of these cases, their distributions are hard to describe an-
alytically. In these situations, simulations are often used to
obtain the null distribution. For instance, instead of taking
X2 distribution as the null distribution, a null distribution is
simulated for small data sets (Roff and Bentzen 1989).

In the case of our study, the number of substitutions
within different subgroups depends on the branch lengths
of the groups, site-specific substitution rates, stochastic
mapping with the ON and OFF states along the tree,

etc. Posterior predictive data naturally give a solution to
the simulation of the null distribution on the unknown pa-
rameters because the statistic for posterior predictive data
and the observed data share the same distribution of un-
known parameters. The advantage of posterior predictive
discrepancy tests is that they relax the restriction on the
distribution under the null hypothesis for the statistical
tests and allow any parameter-dependent statistics. For in-
stance, Gelman et al. (1996) extended the classic goodness
of fit model to the Bayesian framework and introduced the
posterior predictive discrepancy, which is a parameter-de-
pendent version of the classical statistic, to assess models.
Protassov et al. (2002) suggested posterior predictive likeli-
hood ratio tests to compare nested models.

Like the classical P value, the posterior predictive P value
gives the risk information if we reject the null hypothesis.
Thus, a high P value does not automatically imply the
model is accepted; rather, it implies that there is no evi-
dence to reject the model. Therefore, one should apply
as many discrepancy tests with various aspects as possible
to exclude unfit models. However, the statistic applied
should be critical to reflect the difference between the data
and the model. For instance, the DR statistic, which ac-
counts for the site-specific substitution rate, indicates
the poor fit of the uniform substitution model, whereas
it is unable to indicate the poor model fitness due to
heterotachy.

Compared with other model selection methods in the
Bayesian framework (e.g., cross validation [Aki and Jouko
2002; Lartillot et al. 2007; Blanquart and Lartillot 2008],
Bayes factor using thermodynamic integration [Lartillot
and Philippe 2006]), the posterior predictive test is afford-
able for the current computational system. Yet one cannot

Table 6. Posterior Estimation of a Value for the Discrete Gamma Rate, S10, and S01 for the Three Simulated Data Sets.

Simulated Data Model a of Discrete C(6SD) S01(6SD) S10(6SD)

CAT 1 C CAT 1 C 1.53(60.03) NA NA
CAT 1 COV 1 C 1.53(60.03) 1.14 (60.98) 0.01(60.02)
CAT 1 COV NA 0.71(60.02) 0.30(60.01)

CAT 1 COV CAT 1 COV NA 0.56(60.01) 0.59(60.02)
CAT 1 COV 1 C 25.18(60.08) 0.55(60.01) 0.59(60.02)
CAT 1 C 2.0(60.04) NA NA

CAT 1 COV 1 C CAT 1 COV 1 C 2.7(60.10) 0.58 (60.01) 0.446(0.01)
CAT 1 COV NA 0.57(60.01) 0.61(60.02)
CAT 1 C 1.48(60.03) NA NA

The original value of the parameters for the simulated data sets:

CAT 1 C simulated data set: a 5 1.57.

CAT 1 COV simulated data set: S01: 0.52 and S10: 0.55.

CAT 1 COV 1 C simulated data set: a 5 2.49, S01: 0.55, and S10: 0.43.

Table 7. The P-Value of the Posterior Predictive Discrepancy Test DR Considering the Number of Substitutions along the Entire Tree.

Model/Data
Opisthokont
Nuclear

Animal
Nuclear

Animal
Mitochondrial

Vertebrate
Mitochondrial

Mammal
Mitochondrial

CAT <0.01 <0.01 <0.01 <0.01 <0.01
CAT 1 C 0.11 0.05 0.04 0.04 0.1993
CAT 1 COV <0.01 <0.01 <0.01 <0.01 <0.01
CAT 1 COV 1 C <0.01 <0.01 <0.01 <0.01 <0.01
CAT 1 CM 0.29 0.41 0.40 0.77 0.65
CAT 1 CM 1 C 0.73 0.56 0.32 0.83 0.46
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rank models globally based on posterior predictive discrep-
ancy tests, which actually take a role of analytical tools on
the fitness of the model. Nevertheless, in the case of our
study, because the COV model and the CM model are
nested, the posterior distribution of Kcov, well above
one, allows rejecting the COV model in favor of the CM
model.

Coexistence of Rate Variation across Site and
Heterogeneities of Covarion Parameters
Our studies show that the covarion parameters across sites
are significantly heterogeneous. For instance, contrary to
data sets simulated under the COV model, covarion
parameters vary a lot in real data sets (fig. 2, table 2, sup-
plementary fig. S3, Supplementary Material online). Con-
sidering this heterogeneity, relaxing the homogeneity of
covarion parameters over sites improves the model fit.
The posterior predictive discrepancy tests with respect
to the heterotachy signal (i.e., DH test and DO test) show
that the CM models, which allow for heterogeneities of S10

and S01 across sites, have better fits than COV models.
In real data sets, heterogeneities exist not only in cova-

rion parameters but also in many other parameters, for ex-
ample, substitution rates and stationary probabilities.
Different models have been developed to specifically han-
dle different types of heterogeneities. However, we see that
heterogeneous models also attempt to handle other types
of heterogeneities, which are not their original targets
(table 6). For instance, the CM model can accommodate
rate variation across sites, without RAS being specified,
by allowing various values of pON among sites: Slow sites
would have high pOFF (or high S10), and fast sites would
have high pON (high S01). However, the covarion parame-
ters are not particularly devised for site-specific substitu-
tion rates, and thus they might not be able to recover
such heterogeneities of the substitution rate efficiently.
Figure 4 shows that the pOFF is negatively correlated with

the substitution rate only when substitution rates are small
(,1), but is slightly positively correlated when rates are
high (.1). Moreover, in attempting to address both
RAS and heterotachy signals simultaneously, inferences un-
der the pure CM model may be misleading. The posterior
predictive discrepancy test DO suggested a poor model fit
for the CM with a uniform rate model. In the CM þ G
model, each site is assigned to a substitution rate mainly
aiming at representing the average selective pressure over
the whole tree; the CM part of the model then functions as
an adjustor to distribute the variation of the substitutions
along the tree via two parameters, pON (the proportion of
being in ON) and X (the scattering level of switches along
the tree).

A straightforward way to combine the RAS and covarion
model is using Galtier’s version of the covarion model
(Galtier 2001). However, assuming four categories of rates,
the dimension of the transition matrix in the Markov chain
would be 4*m � 4*m (m5 20 for amino acid data), which
is very difficult to handle currently in terms of computation
time, but might be helpful in the future with the advance of
computer technology.

In phylogenetic analyses, different models have been de-
veloped to handle different types of heterogeneities. In this
paper, we caution that different models handling different
types of heterogeneities might interact with each other and
that these interactions might impair inferences if not
appropriately handled.

Application of the Dirichlet Process
The nonparametric mixture model using a Dirichlet pro-
cess is an efficient method to handle heterogeneities in
the data (Escobar and West 1995; Neal 2000; Lartillot
and Philippe 2004; Huelsenbeck et al. 2006; Huelsenbeck
and Suchard 2007; Rodrigue, Lartillot, and Philippe
2008). We verified that the Dirichlet process is able to
handle both homogeneous and heterogeneous data. For

Table 8. The P Value of the Posterior Predictive Discrepancy Test DH Considering the Number of Substitutions in Different Monophyletic
Groups.

Model/Data
Opisthokonts

Nuclear
Animal

Mitochondrial
Vertebrate

Mitochondrial
Mammal

Mitochondrial

CAT <0.01 <0.01 <0.01 <0.01
CAT 1 C <0.01 <0.01 <0.01 <0.01
CAT 1 COV <0.01 <0.01 <0.01 <0.01
CAT 1 COV 1 C <0.01 <0.01 <0.01 0.14
CAT 1 CM 0.51 0.71 0.88 0.76
CAT 1 CM 1 C 0.66 0.39 0.86 0.52

Table 9. The P Value of the Posterior Predictive Discrepancy Test DO Considering the Proportion of Time Per Site in the ON State of the
Covarion Process.

Model/Data
Opisthokonts

Nuclear
Animal
Nuclear

Animal
Mitochondrial

Vertebrate
Mitochondrial

Mammal
Mitochondrial

CAT 1 COV <0.01 <0.01 <0.01 <0.01 <0.01
CAT 1 COV 1 C 0.24 0.24 0.06 <0.01 0.07
CAT 1 CM <0.01 <0.01 <0.01 <0.01 <0.01
CAT 1 CM 1 C 0.64 0.48 0.56 0.55 0.30
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simulated homogeneous data, most sites share a similar
value of the covarion parameters, and the number of com-
ponents is very low. For simulated heterogeneous data, the
Dirichlet process mixture model is able to recover the
shape of the heterogeneous distribution, and the number
of components is close to that of the real data. From this,
we can conclude that the CM model is much better than
the one-component covarion model for real data.

As discussed above, the CM model can generally take
care of RAS signals when the RAS model is not available.
More interestingly, the CAT þ CM model even performs
better than the CAT þ C for the DR test for some data sets.
This is because the Dirichlet process is more efficient at
handling heterogeneities of data than is the four category
discrete gamma distribution. We expect that the site-
specific substitution rate model using the Dirichlet process
will have a much better fit than the classical discrete
gamma rate model (Huelsenbeck and Suchard 2007).

The posterior predictive discrepancies tests confirm that
the CAT þ CM þ C model is able to model the RAS signals
as well as heterotachous signals. However, we are unable to
show a better phylogenetic inference due to convergence
problems when treating the topology as a free parameter;
when several MCMC are independently run, all the nui-
sance parameters converge to similar values, and the topol-
ogies are highly similar, except a few nodes, which are
precisely the ones of interest (unpublished results). Conver-
gence problems may have several causes. One possible rea-
son is the inefficiency of the MCMC sampling. For instance,
we observed that sometimes two components have similar
values of the covarion parameters. One solution to improve
the MCMC for the Dirichlet process mixture model is using
a ‘‘split–merge’’ algorithm (Jain and Neal 2000), which al-
lows merging similar components and splitting a heteroge-

neous component into several components. This might be
insufficient because strong correlations may exist between
tree topology and preferred CM configurations. In fact, the
CM model, being more flexible than currently available
heterotachy models, may lead to situations of lack of iden-
tifiability with respect to the tree topology, such as dem-
onstrated on theoretical grounds under more general
heterotachy settings (Matsen and Steel 2007).

Heterotachous Models
The switch rates between ON and OFF for a given site
could also change over time. In the current CM model,
the values of these switch rates are assumed to be con-
stant over the entire tree. Therefore, if in a tree the var-
iation across time is only present in a few branches, the
CM model might not be able to infer these variations sol-
idly. One solution to this problem is to improve the taxon
sampling, such that the variation signal becomes large
enough for the CM model. The other possibility is to have
a model that allows switch rates between ON and OFF to
vary across sites and time, using for instance a breakpoint
approach (Huelsenbeck et al. 2000; Blanquart and Lartillot
2008). Nevertheless, such a complex model would result
in a heavy computational burden. In this context, the CM
model can be combined with an MBL model, where re-
versible-jump techniques are used to reduce the number
of branch lengths to infer (Pagel and Meade 2008). In such
a case, some sites can have different branch lengths due to
drastic, but rare, changes of substitution rates and follow
a uniform CM model for most of the time. Implementing
all of these approaches in a single encompassing statistical
framework, which allows evaluation of their relative per-
formance, would constitute a worthy direction for future
work.

FIG. 4. Plot of site-specific continuous rate inferred by CAT þ C model against the site-specific poff inferred by the CAT þ CM model for the
opisthokont nuclear data set.
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