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Computational Methods for Evaluating Phylogenetic Models of Coding Sequence
Evolution with Dependence between Codons
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*Department of Biology, Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario K1N
6N5, Canada; and †Département de Biochimie, Centre Robert Cedergren, Université de Montréal, C.P. 6821, Succursale Centre-ville,
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In recent years, molecular evolutionary models formulated as site-interdependent Markovian codon substitution pro-
cesses have been proposed as means of mechanistically accounting for selective features over long-range evolutionary
scales. Under such models, site interdependencies are reflected in the use of a simplified protein tertiary structure repre-
sentation and predefined statistical potential, which, along with mutational parameters, mediate nonsynonymous rates of
substitution; rates of synonymous events are solely mediated by mutational parameters. Although theoretically attractive,
the models are computationally challenging, and the methods used to manipulate them still do not allow for quantitative
model evaluations in a multiple-sequence context. Here, we describe Markov chain Monte Carlo computational method-
ologies for sampling parameters from their posterior distribution under site-interdependent codon substitution models
within a phylogenetic context and allowing for Bayesian model assessment and ranking. Specifically, the techniques
we expound here can form the basis of posterior predictive checking under these models and can be embedded within
thermodynamic integration algorithms for computing Bayes factors. We illustrate the methods using two data sets and
find that although current forms of site-interdependent models of codon substitution provide an improved fit, they are
outperformed by the extended site-independent versions. Altogether, the methodologies described here should enable a
quantified contrasting of alternative ways of modeling structural constraints, or other site-interdependent criteria, and
establish if such formulations can match (or supplant) site-independent model extensions.

Introduction

Recent years have seen an increasing interest in
Markovian models of molecular evolution that incorpo-
rate a greater level of realism and that make the explicit
distinction between mutational and selective parameteri-
zations (e.g., Robinson et al. 2003; Thorne 2007; Thorne
et al. 2007; Yang and Nielsen 2008; Rodrigue, Lartillot,
and Philippe 2008). The original proposal of Goldman
and Yang (1994) and Muse and Gaut (1994) consisted
in assuming that all substitutions arise from point mu-
tations and defining the state space of the Markov pro-
cess to be the sense codons (i.e., omitting stop codons).
An additional feature of such codon substitution models
is their distinction between synonymous and nonsynony-
mous events, which has made them relevant tools for study-
ing selective effects (for recent reviews, see Delport et al.
2008; Anisimova and Kosiol 2009). Huelsenbeck et al.
(2006), for instance, proposed the use of a Dirichlet pro-
cess prior for modeling site-specific modes of selection.
Their model considers the rate of nonsynonymous events
at a given codon as being mediated by one of several possi-
ble components (rate classes); under the Dirichlet process,
the number of components is a random variable controlled
by a higher level (hyper-)parameterization. Another ap-
proach making the distinction between synonymous and
nonsynonymous events was presented by Robinson et al.
(2003), who described a model and computational method-
ologies that allow for dependence between codon sites.
In their model, Robinson et al. (2003) used an empirical
potential originally derived for the protein-fold prediction
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problem (Jones et al. 1992) to quantify the compatibility
of an amino acid sequence with a particular protein ter-
tiary structure; assuming a fixed, coarse-grained protein
structure representation, nonsynonymous rates of substitu-
tion depend on amino acid sequence pseudo-energy scores
returned by the potential before and after the postulated
event. For a codon sequence of length N, the Markov gen-
erator is defined by a 61N×61N matrix (assuming the uni-
versal genetic code), in principle allowing the possibility of
a total dependence between all codons (although still based
on a point mutation process).

The evolutionary models described by Robinson et al.
(2003) and Huelsenbeck et al. (2006) are illustrative of two
different modeling stances. The modeling stance taken by
Huelsenbeck et al. (2006) may be said to be “phenomeno-
logical,” in the sense that it aims only at detecting selective
effects, in a site heterogeneous manner, without regard to
underlying causes. In contrast, the modeling stance taken
by Robinson et al. (2003) is “mechanistic,” in the sense
that it is aimed at explaining underlying selective effects,
in this case as pertaining to protein tertiary structure con-
straints. The mechanistic stance proposed by Robinson
et al. (2003) is particularly attractive because it offers the
possibility of interrogating real data regarding explicitly
defined selective features and because it can be assigned
population genetic interpretations (Thorne et al. 2007).
However, their modeling approach is computationally
challenging.

Specifically, the practical complications of the model
presented by Robinson et al. (2003) led these authors to
propose the use of a set of Markov chain Monte Carlo
(MCMC) techniques based on two different forms of aux-
iliary variable methods: 1) a data augmentation system,
providing a numerical means of integrating over detailed
substitution histories (addressing the transient aspects of
the model) and 2) an importance sampling argument, pro-
viding an approximation of the ratio of two intractable
normalizing “constants” (addressing the stationary aspects
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of the model) to draw from so-called doubly intrac-
table distributions. Together, these approaches provided
the first proof-of-concept that models with a gen-
eral dependence between codons could be implemented.
However, the resulting sampling devices are elaborate,
computationally highly demanding, and do not ad-
dress the calculation of model fit. By invoking certain
modeling simplifications, we have previously sought
to explore variants of the approaches presented by
Robinson et al. (2003) in the multiple-sequence con-
text (Rodrigue et al. 2005) and to calculate Bayes fac-
tors (Rodrigue et al. 2006; Rodrigue et al. 2007), but
these exploratory works are based on models that operate
only at the level of amino acids, relinquishing the attrac-
tive codon-based framework of mutational and selective
parameterizations.

Recently, Choi et al. (2007) have presented techniques
for evaluating Bayes factors under the stationarity of the
original model of Robinson et al. (2003). The main moti-
vation of Choi et al. (2007) was to conduct a meta-analysis
on numerous protein-coding genes, but each represented
by a single sequence and each considered as a sample from
the stationary distribution defined by a mutation selection
balance (in which selection is embodied by the potential).
Their analysis demonstrates that the use of an empirical po-
tential in this way leads to a significantly improved model
fit for most protein-coding genes under study. Focusing on
the stationarity of the process, Choi et al. (2007) could
dispense with the first of the two auxiliary variable meth-
ods (data augmentation), but there remains an interest for
approaches that incorporate the phylogenetic component
into the overall comparisons as only then can we contrast
the performance of parameterizations that only influence
the transient aspects of the Markov process (such as mod-
els with the Dirichlet process on nonsynonymous rates, or
models with implicit versus direct connections to popula-
tion genetic theory; Thorne et al. 2007). Overall, we still
lack a naturally extensible MCMC sampling methodology
for quantified phylogenetic explorations of the use of sta-
tistical potentials within the context of codon substitution
models.

Here, we combine and configure a set of previ-
ously proposed numerical techniques in order to imple-
ment, assess, and rank codon substitution models including
those in the category proposed by Robinson et al. (2003)
within a full phylogenetic (multiple-sequence) context.
Specifically, we study models that incorporate an em-
pirical potential derived in the context of protein design
(Kleinman et al. 2006) with the more well-known codon
substitution model formulations inspired by Muse and
Gaut (1994). We describe a sampling methodology that
exploits recent techniques from the statistical literature
derived for approximating posterior distributions under
models with intractable normalizing factors in the likeli-
hood function (Murray et al. 2006), as well as data aug-
mentation procedures based on accept/reject simulation
(Nielsen 2002) and the uniformization method (Rodrigue,
Philippe, and Lartillot 2008). We illustrate empirical
explorations of the tuning of the MCMC devices, address-
ing both forms of auxiliary methods mentioned above, and
find that the techniques detailed here allow for tractable

applications of the site-interdependent framework for most
models of interest. To demonstrate the usefulness of the
methods in practice, we conduct simple posterior predic-
tive checks, assessing the ability of different models to re-
produce observed features of nonsynonymous rates, and
embed the sampling approaches within the thermodynamic
integration methods described in Rodrigue et al. (2006),
for the calculation of Bayes factors. Using two data sets,
we find that although the site-interdependent framework
provides an improved fit, it is markedly outperformed by
sophisticated site-independent models.

Materials and Methods
Substitution Models

The main motivation of site-interdependent models
has been to incorporate explicit protein structure consid-
erations within the phylogenetic context. We follow the
nomenclature of Parisi and Echave (2001) and refer to the
models as “structurally constrained” (SC) but utilizing the
combined contact and solvent accessibility potential de-
veloped in Kleinman et al. (2006). The potential, written
as G(s) for the pseudo-energy score of the amino acid
sequence encoded by the codon sequence s = (si)1�i�N ,
is given by

G(s) = ∑
1�i< j�N

∆ijε f (si) f (s j)

+ ∑
1�i�N

Ξwi
f (si)
+ ∑

1�i�N

µ f (si), (1)

where f (a) returns the amino acid state encoded by codon
a. The first term in equation (1) is a contact potential:
∆ij = 1 if amino acids encoded at positions i and j are in
contact in the three-dimensional structure (see Miyazawa
and Jernigan 1985) and 0 otherwise (∆ is the “contact
map” and is of dimension N ×N) and εlm is the pseudo-
energy associated with observing the amino acids l and m
in contact (ε is 20× 20, with 210 nonredundant values).
The second term is a solvent accessibility potential: Ξwi

l
is the pseudo-energy associated with observing the amino
acid l at position i, where wi is an index (not an exponent)
of the solvent accessibility class defined at site i (the poten-
tial uses 14 different solvent accessibility classes, such that
Ξ has 14×20 values). The last term accounts for composi-
tional effects, inspired from the random energy approxima-
tion (Shakhnovich and Gutin 1993; Sun et al. 1995; Seno
et al. 1998): µl is the pseudo-energy associated with ob-
serving the amino acid l (µ is also called the “chemical
potential” of amino acids and has 20 values). We empha-
size that the ε , Ξ, and µ parameters are fixed in all models
to the values obtained in Kleinman et al. (2006).

The criterion defined in equation (1) is combined
to a mutational specification, consisting of two sets of
parameters: = ( lm)1�l,m�4 is a set of (symmetrical) nu-
cleotide relative exchangeability parameters, with the (ar-
bitrary) constraint ∑1�l<m�4 lm = 1 and ϕ = (ϕm)1�m�4,
with ∑4

m=1 ϕm = 1, represents a set of global nucleotide
equilibrium propensities. The final model also includes a
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parameter ω , for now treated as a global factor modulating
nonsynonymous rates without regard to the amino acids
involved.

Following Robinson et al. (2003), an off-diagonal en-
try of the Markov generator, corresponding to the instanta-
neous rate of substitution from one sequence (s) to another
(s′), is given by

Rss′ =




sic s′ic
ϕs′ic , if A ,

ω sic s′ic
ϕs′ic

eβ (G(s)−G(s′)), if B,

0, otherwise,

(2)

where

A : s and s′ differ only at the cth codon position of the
ith site and imply a synonymous change;

B: s and s′ differ only at the cth codon position of the
ith site and imply a nonsynonymous change;

and sic is the nucleotide at the cth codon position of the ith
site of sequence s. Diagonal entries are given by the neg-
ative sum of off-diagonal entries in a given row. Note that
when β = 0, the model collapses to the type of codon sub-
stitution model proposed by Muse and Gaut (1994). Here,
given the scaling of the potential, we may fix the value of
this parameter at β = 1/2 (the reason for this is explained
below), but we also explore the behavior of the model when
β is treated as a free parameter.

The model differs with that of Robinson et al. (2003)
in using a set of nucleotide exchangeabilities rather than
a single parameter distinguishing transitions and transver-
sions and in using a different pseudo-energy score.

Priors and Model Nomenclature

We used the same priors as described in Rodrigue,
Lartillot, and Philippe (2008), along with a uniform prior
on β over the range [−5,5] (when its value is not fixed).
We refer to the simplest model based on the mutational pa-
rameters ϕ and only as MG because it is inspired from
Muse and Gaut (1994) and write MG-NS to refer to the
model with a global nonsynonymous rate factor. When us-
ing the SC model based on the statistical potential, we add
the suffix -SC for the version with β = 1/2 and -SC-β for
the version treating β as a free parameter, giving MG-SC
and MG-SC-β . We also explore combined models, which
invoke both a free ω parameter as well as the SC param-
eterization, and refer to the models as MG-NS-SC and
MG-NS-SC-β . We refer to the models with the Dirichlet
process prior on ω as MG-NSDP and those that combine
it with the SC parameterization as MG-NSDP-SC and MG-
NSDP-SC-β .

Data Augmentation

The model given in equation (2) does not allow for a
closed-form calculation of the likelihood function. Rather,
we rely on various MCMC computational devices, such
as a demarginalization strategy known as “data augmenta-
tion.” Within the present context, the traditional Bayesian

sampling of parameters, collectively denoted as θ , from
their distribution conditional on the data, D, and the over-
all construction of the model, M, is expanded (or aug-
mented) into a two-stage sampling approach: 1) sample
a detailed substitution mapping φ (including the timing
and nature of all events along all branches), conditional
on the parameters of the Markov process and the data set
under study, and 2) sample a parameter vector θ , condi-
tional on φ (and hence also conditional on D). These types
of sampling approaches exploit the fact that if a sample
can be obtained from the joint distribution p(φ ,θ | D,M),
the θ component of this sample is distributed according
to the posterior distribution of interest p(θ | D,M). For
the traditional substitution models assuming independence
between sites, such realizations of the Markov process
can be generated directly (e.g., Rodrigue, Philippe, and
Lartillot 2008). Although this is not the case for models
with dependence, as in equation (2), Robinson et al. (2003)
exploit a methodology that consists in using a simple
site-independent model to draw a site-independent map-
ping and accepting or rejecting the mapping with proba-
bility ϑ , using the target site-interdependent distribution
in the Metropolis–Hastings (MH) (Metropolis et al. 1953;
Hastings 1970) rule:

ϑ =min

{
1,

p(φ ′ | θ ,D,M)q(φ ′,φ)
p(φ | θ ,D,M)q(φ ,φ ′)

}
, (3)

where q(φ ′,φ)/q(φ ,φ ′) is the Hastings ratio, computed un-
der the model used to produce the site-independent map-
pings. Repeatedly proposing and accepting or rejecting
mappings in this way form a Markov chain with stationary
distribution p(φ | θ ,D,M), and by further alternating with
updates on parameter values conditional on the mappings,
as we will get to below, the Markov chain formed has the
full posterior probability distribution p(φ ,θ | D,M) as its
stationary distribution, from which draws can be made at
regular intervals to produce large-sample (Monte Carlo)
approximations.

Robinson et al. (2003) rely on a nucleotide-level evo-
lutionary model to propose mappings, for one nucleotide
position at a time. In neglecting the structure of the ge-
netic code, and other aspects of the site-interdependent
model, we can expect the proposal density produced by a
nucleotide-level model to be quite distant to the target den-
sity (e.g., by producing mappings that include stop codons,
which are disallowed under the target model). The map-
ping proposal system described here is designed to be “as
close as possible” to the target site-interdependent density.
Our strategy consists in defining a codon-level model for
each codon site of the alignment, from all but the contact
component of the target model’s specifications. Let Gi(a)
represent the pseudo-energy associated with observing the
amino acid encoded by codon a at site i, but without con-
sideration of the contact component; with the present form
of potential, this consists of the solvent and chemical com-
ponents, that is, Gi(a) = Ξwi

f (a) + µ f (a). Then, the Markov
generator specifying the instantaneous rate from codon a



1666 Nicolas Rodrigue et al.

to codon b for site i is given by a 61× 61 matrix, with
entries

Q(i)ab =




acbc ϕbc , if a and b are

synonymous and

differ only at cth

codon position,

ω acbc ϕbc eβ (Gi(a)−Gi(b)), if a and b are

synonymous and

differ only at cth

codon position,

0, otherwise.

(4)

As before, diagonal entries are given by the negative sum
of off-diagonal entries in a given row (see Appendix for
details specific to our implementation). Note that from the
form of the site-independent components of the potential,
only 14 different Markov generators are possible at this
point (one for each solvent accessibility class). However,
when other site heterogeneous variables are introduced
(e.g., the Dirichlet process on ω), working with site-
specific matrices as written in equation (4) is both more
general and more convenient, with each additional site
variable incorporated directly. If we now let G∆ (s) be the
contact component pseudo-energy of sequence s, that is,
G∆ (s) =∑1�i< j�N ∆ijεsis j , we can see that the model given
in equation (2) can be written as

Rss′ =




Qsis′i , if s and s′ differ by one

synonymous codon at

position i,

Qsis′i eβ (G∆ (s)−G∆ (s
′) if s and s′ differ by one

nonsynonymous codon

at position i,

0, otherwise.

(5)

We instantiate the methodology described by
Robinson et al. (2003) by proposing (codon) site-specific
mappings under the model given in equation (4) and ac-
cepting or rejecting the resulting sequence-wide mapping
under the model given in equation (5), which differs with
the proposal model only by the factor eβ (G∆ (s)−G∆ (s

′) in
nonsynonymous rate entries.

The first step to proposing a site-independent mapping
under equation (4) is to draw the codon states at the internal
nodes of the tree from their joint distribution, conditional
on the parameters of the Markov process and the observed
states in the alignment. We use the method described in
Nielsen (2002) for this purpose (also see Bollback 2005)
and proceed to sample the series of events along each
branch, conditional on the parameters of the Markov pro-
cess and the codon states at both ends, according to one of
two methods: if the codon states at both ends of the branch
are identical, or differ by one nucleotide only, we use the
accept/reject simulation methods given in Nielsen (2002)

to draw the mapping; otherwise, we use the uniformiza-
tion method described in Rodrigue, Philippe, and Lartillot
(2008). We initialize the first mapping of our sampler by
calling this procedure over all sites.

Updating Model Parameters

The same types of update operators as used in previ-
ous works (see, e.g., Rodrigue et al. 2006) can be applied
in the present context to approximate the posterior distri-
bution, based on the site-interdependent MH rule. How-
ever, as described in Robinson et al. (2003), for parameters
bearing on the stationary distribution of the substitution
process, the ratio of two intractable normalizing factors
appears in the MH ratio and hence requiring a more elabo-
rate approach. First note that within the data-augmentation
framework, the likelihood function can be further decom-
posed into two factors: one corresponding to the probabil-
ity of the sequence state at the root node of the tree, which
we write as so, and another corresponding to the proba-
bility density of the mapping, conditional on the starting
state at the root node. Because the substitution process is
reversible, we may take one of the sequences observed at a
leaf node to be so and write this factoring as

p(D,φ | θ ,M) = p(so | θ ,M)p(Dø,φ | so,θ ,M), (6)

where Dø represents the remaining sequences of the data
set once so has been removed.

The stationary distribution of the full site-
interdependent codon model given in equation (2) reads
as

p(so | θ ,M) = 1
Zθ

e−2βG(so)
N

∏
i=1

(
3

∏
c=1

ϕso
ic

)
, (7)

where Zθ is the normalizing factor:

Zθ =∑
s

e−2βG(s)
N

∏
i=1

(
3

∏
c=1

ϕsic

)
, (8)

with the sum being over all 61N possible sequences. Of
course, this sum is not tractable (and hence making the pos-
terior distribution of ultimate interest doubly intractable).
When proposing new values for any of the parameters im-
plicated in the stationary distribution, the ratio of two of
these terms appears. For simplicity, let f (so,θ) be the un-
normalized density:

f (so,θ) = e−2βG(so)
N

∏
i=1

(
3

∏
c=1

ϕso
ic

)
. (9)

Expanding the MH rule for the present context, we have

ϑ =min

{
1,

p(Dø,φ | so,θ ′,M)p(θ ′ |M) f (so,θ ′)q(θ ′,θ)Zθ

p(Dø,φ | so,θ ,M)p(θ |M) f (so,θ)q(θ ,θ ′)Zθ ′

}
, (10)

where we have written the complicating factors at the end
of the ratio for emphasis.

The importance sampling method proposed by
Robinson et al. (2003), which we call the “single-point
bridge” (SPB) method, involves an internal Gibbs MCMC
(detailed below) to approximate the MH ratio itself based
on a large sample of K sequences, written as (s(k))1�k�K .
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The sample of sequences is drawn from the stationary dis-
tribution induced by a third set of parameters (other than θ
and θ ′) written as θ ∗, and the approximation in the present
context reads as

Zθ
Zθ ′
�

∑K
k=1 e−2(β−β ∗)G(s(k))∏N

i=1 ∏3
c=1

ϕ
s
(k)
ic

ϕ∗
s
(k)
ic

∑K
k=1 e−2(β ′−β ∗)G(s(k))∏N

i=1 ∏3
c=1

ϕ ′
s
(k)
ic

ϕ∗
s
(k)
ic

. (11)

As discussed in Robinson et al. (2003), the quality of the
approximation depends on the choice of θ ∗; a parameter
vector chosen to be as close as possible to the mid-point
of the θ and θ ′ yields the best approximation. As a simple,
yet crude implementation of this approach, we define a new
θ ∗ for each update attempt on parameters involved in the
stationary distribution, always at the mid-point between θ
and θ ′, and explore empirically the size of the sample of
sequences (see Results and Discussion).

Another strategy to approximating the MH ratio itself
is to design a different MH ratio that has the same desired
probability distribution (or a good approximation thereof)
as its limiting distribution. Here, we propose an adaptation
of the “single variable exchange” (SVE) method recently
proposed by Murray et al. (2006). In the present context,
the method rests on drawing a single auxiliary sequence
(written as ς ) from the stationary distribution of the sub-
stitution process induced by θ ′. Then, the MH kernel is
expanded to

ϑ =min

{
1,

p(Dø,φ | so,θ ′,M)p(θ ′ |M) f (so,θ ′) f (ς ,θ)q(θ ′,θ)Zθ Zθ ′
p(Dø,φ | so,θ ,M)p(θ |M) f (so,θ) f (ς ,θ ′)q(θ ,θ ′)Zθ ′Zθ

}
, (12)

where all intractable factors at the end of the ratio cancel.
The MH kernel’s validity rests on having truly sampled ς
from the stationary probability induced by θ ′, which we
cannot do analytically here. Instead, we again make use of
an empirically tuned (see Results and Discussion) internal
Gibbs MCMC system. This means that our sampler is mak-
ing draws from an approximation of the desired posterior
distribution.

As for updating parameters not involved in the sta-
tionary distribution of the substitution process, note that
the MH kernel in equation (10) simplifies to

ϑ =min

{
1,

p(Dø,φ | so,θ ′,M)p(θ ′ |M)q(θ ′,θ)
p(Dø,φ | so,θ ,M)p(θ |M)q(θ ,θ ′)

}
(13)

and hence we need not call any doubly intractable device
for such cases.

Internal Gibbs MCMC

As mentioned above, both the SPB and the SVE ap-
proaches to updating parameters involved in the stationary
distribution of the substitution process rely on an internal
Gibbs MCMC to draw one or several sequences, subse-
quently used in the MH kernel of the main MCMC, sam-
pling from the full posterior distribution. The basic Gibbs
update we use is conceptually the same as that described
in Robinson et al. (2003); we fix all but one codon site and

update the state at that site according to the probability of
the 61 possible states. The 61 probabilities required for the
Gibbs update can be calculated analytically (up to a multi-
plicative constant) according to equation (9). By repeating
this procedure over all sites, a Markov chain in sequence
space is formed, with a limiting distribution correspond-
ing to the stationary distribution of the codon substitution
model. In practice, we loop the procedure over all sites,
in what we call a “Gibbs sweep” across the sequence, and
tune the number of Gibbs sweeps empirically (see Results
and Discussion).

General MCMC Settings

We used similar computational settings as in previ-
ous works alternating between updates on parameters and
mappings (see, e.g., Lartillot 2006; Rodrigue et al. 2006).
We use additive, multiplicative, and constrained update op-
erators to propose new parameter values given the current
parameter values and the current mapping. Additive oper-
ators rest on random draws from a uniform distribution in
the interval [0, 1], denoted as U , as well as a tuning pa-
rameter, denoted as δ , and propose a new value for a unidi-
mensional parameter by adding δ (U − 1/2) to the current
parameter value; they have Hastings ratio of 1. Multiplica-
tive operators propose a new value by multiplying the cur-
rent value by eδ (U−1/2); they have a Hastings ratio equal to
eδ (U−1/2). Constrained operators are applicable to profile-
like parameters, with the constraint that they sum to 1. For
these operators, a pair of entries in the profile is selected
at random and their sum is stored; then an additive oper-
ator is applied to one of the pair, with back reflection if
the value is beyond the stored sum or if it is negative; the
other pair is then set under the constraint that the sum of
both new values is equal to the original sum. Note that con-
strained operators can be applied on more than one pair of
entries in profile-like vectors, always with a Hastings ratio
of 1.

Briefly, each parameter (including each branch length)
and hyperparameter is updated multiple times per cycle.
Also, under the models using the Dirichlet process on ω ,
we loop multiplicative update attempts over all compo-
nents of the current configuration of the process; the con-
figuration of the Dirichlet process itself is resampled by
looping a Gibbs update system including five new ω com-
ponents drawn from the base (hyper-) prior (see Huelsen-
beck et al. 2006) over all sites, five times per cycle. Follow-
ing the series of parameter and hyperparameter updates, a
cycle is completed by performing a series of updates on
mappings. We established the detailed settings of each cy-
cle empirically (see examples in Results and Discussion),
and unless stated otherwise the results presented here are
based on 11,000 cycles, removing the first 1,000 cycles as
burn-in, and subsampling every 10th cycle, leaving 1,000
draws.

Posterior Predictive Checks

We performed simple posterior predictive checks en-
abled by the substitution mapping framework (Nielsen
2002; Bollback 2005). The overall framework consists of
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contrasting statistics computed on the detailed mappings
that constitute the data augmentation, which we call the
“posterior mappings” as they are conditional on the pa-
rameters and constrained by the observed data, with the
same statistics computed on “predictive mappings”, which
are obtained by an additional simulation step, conditional
on the parameters, but unconstrained to the specific codon
states observed in the true data. More precisely, using a
set of parameters drawn from the posterior distribution,
we first sample a sequence from equation (7) using Gibbs
MCMC (for site-independent models, the sequence state
can be drawn directly), then set the root node to this se-
quence state, and finally evolve the sequence over the tree
according to the Markov process defined by the codon sub-
stitution parameters. Repeating this for each draw from the
original sample obtained by MCMC allows us to gener-
ate posterior predictive distributions of the test statistics
of interest. A discrepancy between the distributions of a
statistic computed from predictive and posterior mappings
indicates a weakness of the model, or, stated reciprocally,
a good model should produce predictive mappings that ex-
hibit the same features as posterior mappings.

Given that the SC models mediate nonsynonymous
rates of substitution, we explored the properties they in-
duce on statistics that are a function of the nonsynony-
mous events within the detailed substitution mappings.
Many statistics can be envisaged. Here, for illustrative pur-
poses, we compute two simple statistics: the mean number
of nonsynonymous events across sites and the variance in
the number of nonsynonymous statistics across sites. The
distributions of these (or other) statistics, produced from
posterior and predictive mappings, can be compared graph-
ically as a first appraisal (Nielsen 2002; Rodrigue et al.
2006; Lartillot et al. 2007, and see Supplementary Mate-
rial online). We note here, however, that when conduct-
ing a posterior predictive check based on statistics that are
a function of parameters of the model (as is the case in
the present context), one can compute the proportion of
draws from the posterior distribution in which the statistic
is higher in the predictive mapping than it is in the poste-
rior mapping (displayed graphically in the Supplementary
Material online); this proportion is the posterior predictive
P value, and extreme values (say below 0.05 or above 0.95)
are considered as flags of model inadequacy (see, e.g.,
Gelman et al. 2004). Note that the posterior predictive P
values are uncalibrated (as they are based on previously in-
ferred parameters) and hence tend to be conservative (e.g.,
Meng 1994; Gelman et al. 1996; Dahl 2006). Also note
that the P values obtained with different models should not
be viewed as directly comparable to one another nor as a
means of quantitative model comparison.

Bayes Factors

We use Bayes factors to perform a formal compari-
son of models. The same thermodynamic integration meth-
ods described in Rodrigue et al. (2006) can be applied here
to calculate the (log) Bayes factor comparing a model in-
cluding the statistical potential with its nonstructural coun-
terpart (i.e., with β = 0). The procedure consists of first
running an MCMC sampler with the value of β progres-

sively incremented from 0 to some sufficiently large value
(to encompass all the relevant high-likelihood region), with
block series of MH updates performed on other parame-
ters (and hyperparameters, and mappings) between each
increment; we denote the values of β over this thermo-
dynamic MCMC run as (βk)0�k�K , with β0 = 0. For any
value K′ (0� K′ � K), the difference in log marginal like-
lihood (marginalized over all but β ) between a model fixed
at the value βK′ and a site-independent model fixed at β0,
written as ln p(D | βK′)− ln p(D | β0), can be computed,
and using this for the entire thermodynamic sample pro-
duces a trace of log marginal likelihood differences along
β (see supplementary fig. S1 [Supplementary Material on-
line] for a specific example in the the codon context). When
using the more rigid SC settings, the value at the β = 1/2
point along the curve is the log Bayes factor in favor of
the structural model. In the case of the MG-NS-SC-β set-
tings (treating β as a free parameter), this is followed by
an exponentiation and averaging of the curve over the prior
distribution (see eq. 23 in Rodrigue et al. 2006). We used
these methods in combination with the site-independent
“omega”-switch method described in Rodrigue, Lartillot,
and Philippe (2008) to calculate all log-Bayes factors with
respect to MG-NS.

Data

We applied the computational framework described
above on two data sets taken from Yang et al. (2000). The
first, which we refer to as GLOBIN17-144, consists of 17
vertebrate nucleotide sequences of the β -globin gene (144
codons). The second, referred to as ADH23-254, consists
of alcohol dehydrogenase genes taken from 23 species of
Drosophila (254 codons). Contact maps and solvent acces-
sibility profiles were derived from the Protein Data Bank
files 4HHB and 1A4U for the GLOBIN17-144 and ADH23-
254 data sets, respectively. The solvent accessibility pro-
files consider the quaternary structure, though the contact
maps do not. For both data sets, we worked under the tree
topology used by Yang et al. (2000).

Results and Discussion
Empirical Explorations of Data Augmentation Sampling

We first investigated the properties of the compu-
tational devices based on a simplified, rigid codon sub-
stitution model with β = 1/2, ω = 1, and mutational
parameters fixed to equal values on their state space (ϕl =
1/4 and lm = 1/6). Such a model is formally site inter-
dependent, allowing us to explore the data augmentation
system with branch lengths (and the hyperparameter gov-
erning the prior on branch lengths) being the only parame-
ters updated. In other words, none of the MCMC operators
required for sampling from the posterior distribution under
such a model involve changes to the limiting distribution
of the codon substitution process and hence do not require
an internal Gibbs MCMC for doubly intractable operators.

We performed numerous pilot runs to tune the sam-
pler. In a first series of pilot runs, we used the uniformiza-
tion method (Rodrigue, Philippe, and Lartillot 2008) for
proposing mappings. In the codon context, the uniformiza-
tion is more stable in certain cases than the accept/reject
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FIG. 1.—Empirical explorations of proportion of accepted updates
on substitution mappings as a function of the number of sites with updated
mappings in the proposal density. The substitution model used here has
ω = 1, β = 1/2, and all other parameters fixed to uniform values on their
state space. The display is for the GLOBIN17-144 data set.

method, specifically, when the states at the ancestral
and descendant nodes differ by two or three nucleotides
(Rodrigue, Philippe, and Lartillot 2008). On the other
hand, uniformization sampling involves computationally
costly matrix powers, which the accept/reject method does
not, and in practice, most configurations of internal node
states drawn do not correspond to the problematic sampling
cases. Using the rigid model described above, for instance,
only about 20% of the cases where the ancestral and de-
scendent nodes differ at a codon site do so by more than
one nucleotide. When all cases are considered (i.e., when
cases with identical ancestral and descendent node states
are included), only about 3% of internal node states in-
volve starting and ending states that differ by more than one
nucleotide. We observed our sampler to run roughly 120
times faster when using the uniformization method only
in these approximately 3% of cases and the accept/reject
method in all other cases.

In another example pilot run, we performed 100 mul-
tiplicative updates per cycle on branch lengths and 100 ad-
ditive updates per cycle on the hyperparameter governing
the branch length prior; each cycle also included calls to
data augmentation updates, with a separate call attempt-
ing an update at a single codon, along the entire tree, an-
other call attempting an update at 10 randomly selected
codons sites, again over the entire tree, another with 20
sites, and so forth in steps of 10, up to 100 sites. Our objec-
tive here was to establish settings that simultaneously up-
date as many site mappings as possible (to “make the most”
of calls to the site-interdependent calculations), while ob-
taining reasonable acceptance rates. Figure 1 displays the
percentage of accepted updates as a function of the number
of sites in update attempts, working with the GLOBIN17-
144 data set. In this example, the operator attempting an
update at a single codon site over the entire tree yielded an
acceptance rate over 90%. Such a high acceptance rate is
the simple result of having the proposal distribution nearly
identical to the target distribution; these differ only in the
mapping of a single codon site. However, the operator

needs to be called numerous times in order to update the
entire sequence-wide mapping. In contrast, an operator at-
tempting an update to many sites has a lower acceptance
rate, although even for an operator applied to 50 sites the
acceptance rate of 16% is still reasonable. Via these types
of experiments, we tuned our sampler to use operators at-
tempting updates to 50, 40, 30, 20, and 10 sites at once,
each of these called 10 times per cycle. We note that up-
dating an equivalent number of sites with attempts that al-
ter a single codon site requires about 100-fold more CPU
time per cycle. We did not explore a mapping update sys-
tem that attempts an update along a single branch for a
single nucleotide position (Robinson et al. 2003), but pre-
sumably such a system would also require a CPU time at
least two orders of magnitude greater than the system we
use here.

Empirical Explorations of Doubly Intractable Sampling

We next wanted to explore the sampling procedure
handling the stationary probability of the codon substitu-
tion process within the overall MCMC. In order to focus
our exploration on this doubly intractable sampling only,
we used data sets consisting of a single sequence, taken
from the GLOBIN17-144 data set, and the MG-SC model.
Note that because we consider a single sequence, any ex-
pansion to the MG-NS-SC or MG-NSDP-SC models is
meaningless because the parameters involved have no bear-
ing on the probability distribution of interest. Likewise, the
nucleotide exchangeability parameters are not involved in
the stationary probability, and hence only the nucleotide
propensity parameters are free in such settings.

The SPB and SVE sampling devices both rest on
drawing sequences from equation (7), and hence we ran
several pilot runs in order to tune the internal Gibbs
MCMC, before embedding it in the main MH MCMC. For
example, we performed several pilot runs drawing samples
of 100 sequences with a different number of Gibbs sweeps
(see Materials and Methods) between draws. Figure 2a
summarizes the experiment as the autocorrelation function
of the sequence pseudo-energy score, from samples with a
lag between 1 and 10. The first zero-crossing is observed
with a lag of five Gibbs sweeps between draws. Based on
these and other similar results, we subsequently devised
our implementation to follow a simple procedure: upon
starting the overall MCMC, the sequence ς is initialized
by performing a random draw from the 61 possible codons
at each site, according to the stationary distribution of the
site-specific stationary probabilities under the site-specific
codon model (lacking the contact component); when call-
ing an operator on a parameters bearing on the station-
ary distribution of the full site-interdependent process, five
Gibbs sweeps across the positions of ς are performed; sub-
sequent calls on parameters bearing on the stationary dis-
tribution start from the current ς and again perform five
Gibbs sweeps across the sequence.

Using these Gibbs MCMC settings, we explored the
effect of the sample size on the SPB approximation given
in equation (11). We used constrained moves to pro-
pose new values for the nucleotide propensity parameters.
Figure 2b displays the (log) approximation as a function
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FIG. 2.—Empirical explorations of MCMC sampling behavior using
the MG-SC model on the GLOBIN17-144 data set. In (a), we explore
the number of Gibbs sweeps needed to decorrelate successive sequences
drawn from equation (7). In (b), we explore the number of sequences
needed to stabilize the importance sampling approximation in equation
(11). In (c), we compare the posterior means of the nucleotide propensity
parameters, inferred separately (one sequence at a time) on each of the 17
sequences of the data set, using the SPB and SVE methods.

of the number of sequences for three different update
attempts. These and all other cases we looked at (not
shown) were well stabilized with a sample size of 1,000
sequences.

We next applied the SPB method with 1,000 se-
quences to sample the nucleotide propensity parameters

from their posterior distribution (with 100 updates per cy-
cle) using each of the 17 sequences in the GLOBIN17-144
data set in turn. We also ran the SVE method in these
conditions, with the exception that it only requires one se-
quence (again obtained by updating the auxiliary sequence
with five Gibbs sweeps). In practice, we found that both
the SPB and SVE methods produce very similar results.
Figure 2c displays a comparison of the posterior mean of
the nucleotide propensity parameters obtained from both
methods (for all 17 analyses), which show a strong corre-
lation (0.999). However, we found the SVE sampler to run
about 960 times faster than the sampler using SPB method.
The SPB method could undoubtedly be made more effi-
cient, for instance using a grid-based system for predefin-
ing a small number θ ∗ parameters (Robinson et al. 2003)
as opposed to defining a new θ ∗ with each update, but be-
cause the SVE method is conceptually simpler—without
the additional tuning of a grid-based system—and yields
the same results, we used it in all subsequent calculations.

We repeated the calculations of drawing nucleotide
propensity parameters from their posterior distribution for
a few other simple explorations of the SVE methods, us-
ing 1, 5, 10, and 50 Gibbs sweeps to update the auxiliary
sequence. Surprisingly, even when using a single Gibbs
sweep to update the auxiliary sequence, duplicate analy-
ses on the each of the 17 sequences of the GLOBIN17-144
data set show a good correlation (0.947). When increas-
ing the number of updates per cycle by a factor of 5, a
strong correlation (0.998) between duplicate MCMC ex-
periments is obtained again. In other words, even when us-
ing an auxiliary sequence that is not exactly decorrelated
from one update to the next, the SVE does not appear bi-
ased in the present context (although its mixing is mildly
degraded). Note that these last sampling settings, with a
single Gibbs sweep but five times more update attempts
per cycle, in fact have similar computational requirements
as previous settings, with five Gibbs sweeps because both
amount to performing the same overall number of updates
to the auxiliary sequence. We did not observe any differ-
ences in the results of the SVE method when using 10 or
50 Gibbs sweeps, indicating such settings to be computa-
tionally wasteful.

Combined Data Augmentation and Doubly Intractable
Sampling

We finally applied a fully combined MCMC sampler
(using both auxiliary variable methods) to draw from the
posterior distribution under all models mentioned (see Ma-
terials and Methods) for both data sets. The components of
the overall sampler are summarized below (see Materials
and Methods for details):

• Data augmentation moves: update attempts on substitu-
tion mappings, using the MH kernel given in equation
(3);

• Doubly intractable moves: update attempts on param-
eters involved in the stationary distribution, which
require (Gibbs) updates to an auxiliary variable se-
quence used in the MH kernel given in equation (12);
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• Plain moves: update attempts on parameters not in-
volved in the stationary distribution, using MH kernel
given in equation (13).

As suggested in Robinson et al. (2003) and Rodrigue et al.
(2005), we checked that when fixing β = 0, the approx-
imated posterior distributions match well with the re-
sults obtained under site-independent sampling (Rodrigue,
Lartillot, and Philippe, 2008) and that all substitution map-
ping proposals are accepted because the MH ratio cancels
out in such conditions. We found the sampler to be rea-
sonably tractable with models based on a fixed or homo-
geneous ω , requiring about 5 days of CPU time on a Intel
P4 3.2 GHz computer. Combined models using both the
structural approaches with the Dirichlet process prior on
ω , however, are computationally very demanding. The dif-
ficulty with these last models is that the sampling methods
for updating the configuration of the Dirichlet process were
designed to exploit site-specific log-likelihood (or aug-
mented log-likelihood) calculations (see, e.g., Neal 2000;
Lartillot and Philippe 2004; Huelsenbeck et al. 2006),
whereas under the site-interdependent settings, all calcu-
lations are sequence wide. In practice, our sampler spends
over 90% of its time updating the Dirichlet process, requir-
ing well over a month of CPU time for obtaining a sample
with these data sets. Such combined models are only of
moderate interest, however, as we discuss below.

Posterior Distributions

As in previous studies (Robinson et al. 2003;
Rodrigue et al. 2005; Rodrigue et al. 2006), we first fo-
cus on the posterior distribution of β (for those models
that consider it a free parameter), displayed in figure 3 for
both data sets. In all cases, we find the distribution to be
well above zero, corresponding to the biologically plausi-
ble case with evolution favoring sequences that are com-
patible with the protein tertiary structure (Robinson et al.
2003; Rodrigue et al. 2005; Rodrigue et al. 2006; Choi et al.
2007). Note that with the potential we use here, we expect
the posterior distribution of β to be situated around 1/2; the
potential was optimized to maximize a probability similar
to equation (7), but lacking the nucleotide propensity fac-
tors, and with β = 1/2 (Kleinman et al. 2006). Under the
models with fixed or homogeneous ω , the posterior dis-
tribution of β is slightly below 1/2; under the MG-SC-β
model the 95% credibility intervals are [0.337, 0.463] and
[0.361, 0.479] for the GLOBIN17-144 and ADH23-254 data
sets, respectively, and under the MG-NS-SC-β model, the
intervals are [0.310, 0.455] and [0.325, 0.461]. These inter-
vals do not contain the β = 1/2, which might reflect that
the structural features of the protein are slightly at odds
with the average structural features of the database used
to derive the potential or that the mutational biases, which
were not accounted for in the potential’s optimization, play
an important role, or that yet other model violations are
at play. This last scenario is consistent with the observa-
tion that when the Dirichlet process on ω is invoked (i.e.,
under the MG-NSDP-SC-β model), the posterior distribu-
tions are found to be around β = 1/2, with the 95% credi-
bility intervals at [0.493, 0.569] and [0.395, 0.534] for the
GLOBIN17-144 and ADH23-254 data sets, respectively.

Also noteworthy are the distributions of ω under the
MG-NS, MG-NS-SC, and MG-NS-SC-β models. For the
GLOBIN17-144 data sets, for instance, the posterior mean
of ω under the MG-NS model is 0.305, indicating that
most sites are under strong purifying selection. The SC
configurations can also, in theory, capture purifying se-
lection such that we might expect a level of redundancy
in the MG-NS-SC and MG-NS-SC-β models. Indeed, we
view the combined models (using both NS and SC set-
tings) as confounded in their approach; we would rather
adhere to either the phenomenological modeling stance of
capturing selective effects using the ω parameter or the
mechanistic modeling stance of explaining selective effects
using the SC approach. However, if the structural models
indeed capture the most important facets of purifying se-
lection, a combined model could exhibit a very different
distribution of ω than when using the NS setting alone.
Note that the traditional interpretation of ω as the non-
synonymous/synonymous rate ratio no longer holds for
combined models and should rather be viewed as the
“residual” nonsynonymous/synonymous rate ratio (not
captured by the SC approach). The posterior means of ω
of 0.354 and 0.349, respectively, under the MG-NS-SC and
MG-NS-SC-β models, are mildly higher than under the
MG-NS. Nonetheless, the distributions are situated well
below 1, indicating that the SC models leave important
aspects of purifying selection unaccounted for. The MG-
NSDP, MG-NSDP-SC, and MG-NSDP-SC-β models also
exhibit only mild differences in posterior distributions. For
example, still referring to the GLOBIN17-144 data set, the
posterior mean number of ω classes under the Dirichlet
process is approximately 11 with the MG-NSDP model and
approximately 10 with the MG-NSDP-SC and MG-NSDP-
SC-β models, indicating that much of the heterogeneity of
nonsynonymous rates across sites remains unexplained by
the structural models. The same trends were observed with
the ADH23-254 data set (see supplementary tables S1–S6
[Supplementary Material online] for posterior distributions
of all substitution parameters under all models for both data
sets). Together, we interpret these results as first indications
that the overall influence of the structural models is mild.

Posterior Predictive Checks

Using our samples from the posterior distribution, we
performed simple posterior predictive checks of model ad-
equacy (see Materials and Methods and supplementary figs
S2–S13). The statistic for the first test we performed is
simply the mean number of nonsynonymous events across
sites. The full distributions (from both posterior and predic-
tive mappings) are displayed in the Supplementary Mate-
rial online, along with graphical displays of the calculation
of P values (also see, e.g., Gelman et al. 2004). The list
of P values reported in table 1 summarizes the results. We
first note that for the MG model, the P value is 0.995. This
reveals that the mean number of nonsynonymous events
across sites is greater in predictive mappings than it is in
posterior mappings, and the discrepancy is indicative of a
problem with the model. For the simple MG model, this re-
sult is trivially expected: the model essentially assumes no
purifying selection, except against stop codons. Therefore,
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FIG. 3.—Posterior distributions of the β parameter under the MG-SC-β (a and b), MG-NS-SC-β (c and d), and MG-NSDP-SC-β (e and f ) models.
Left panels are for the GLOBIN17-144 data set, and right panels are for the ADH23-254 data set.

it is strongly rejected by protein sequences that are sub-
ject to strong purifying selection (Yang 2006; Delport
et al. 2008; Anisimova and Kosiol 2009). Specifically here,
whereas posterior mappings will be constrained by the
data to display a low nonsynonymous/synonymous ratio,
predictive mappings under MG will have a ratio of
approximately 1.

In contrast with the MG model, under the MG-NS
model, which explicitly distinguishes nonsynonymous and
synonymous events via the parameter ω , the P values ob-
tained are quite low (0.024 and 0.022 for the GLOBIN17-
144 and ADH23-254 data sets, respectively). This indi-
cates that for this model, the number of nonsynonymous
events is lower in predictive mappings than in posterior
mappings. One possible explanation for is that the MG-
NS model treats all types of nonsynonymous events as
equivalent, whereas it is now well understood that most
sites typically involve replacements between a small subset
of amino acids (e.g., Lartillot and Philippe 2004; Lartillot
et al. 2007).

As mentioned above, the SC versions take a more
challenging approach, consisting in explicitly modeling se-
lection using the statistical potential, rather than just fitting
its effect using ω (without regard to underlying causes).
The result in practice, however, is that the MG-SC and
MG-SC-β models do not not appear to perform better than
the MG model for this test, with P values again above the
traditional 0.95 threshold. The result is consistent with our
analysis of posterior distributions showing that the struc-
tural models have only a mild effect. Interestingly, combin-
ing the SC and NS settings results in P values within the
0.05/0.95 threshold. The phenomenologically motivated
MG-NSDP model also performs well for this statistic, with
P values within the traditional 0.05/0.95 cutoff, as do the
combined MG-NSDP-SC and MG-NSDP-SC-β models.

We next performed a posterior predictive check
using a second statistic: the variance in the number of
nonsynonymous events across sites. The full distributions
are again displayed in the Supplementary Material online,
and the P values are reported in table 2. We first note that
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Table 1
Posterior Predictive P Values for the Mean Number of
Nonsynonymous Events across Sites

Model GLOBIN17-144 ADH23-254

MG 0.995 1.000
MG-SC 0.985 1.000
MG-SC-β 1.000 1.000
MG-NS 0.024 0.022
MG-NS-SC 0.082 0.126
MG-NS-SC-β 0.258 0.270
MG-NSDP 0.061 0.118
MG-NSDP-SC 0.434 0.510
MG-NSDP-SC-β 0.448 0.515

all models with fixed or homogeneous ω have P values of
zero, or nearly so, indicating that the variance in number
of nonsynonymous events across sites is greater in poste-
rior mappings than in predictive mappings. For the MG and
MG-NS models, this is again trivially expected: owing to
the constraints of the true data, some sites will have more
nonsynonymous events than others in order of produce
consistent mappings, whereas when simulating predictive
mappings, the variance in the number of nonsynonymous
events should be low by the definition of the model (which
attributes the same nonsynonymous rate to all sites). Once
again, in theory, the SC models could induce heterogeneity
in the number of nonsynonymous events across sites: struc-
tural constraints may vary across sites, leading to an uneven
number of nonsynonymous events across sites. Again, in
practice, this does not appear to be the case. However, un-
der the MG-NSDP model, the variance in the number of
nonsynonymous events is well matched in predictive and
posterior mappings and likewise under the combined MG-
NSDP-SC and MG-NSDP-SC-β models.

Bayes Factors

Table 3 reports the log-Bayes factors for both data
sets. In each case, two values are reported: all calculations
were done in duplicates but with different model-switch
orientations (see Lartillot and Philippe 2006; Rodrigue
et al. 2006; Rodrigue, Lartillot, and Philippe 2008), and
we display the lowest and highest values obtained from
these procedures. Here, such bidirectional calculations are
used to tune the MCMC settings (Rodrigue et al. 2006;
Rodrigue, Lartillot, and Philippe 2008). The procedures re-
quire about 10 days under the models with homogeneous
ω (although crude approximations can be made in a day
or two) and over 4 months for models with the Dirichlet
process prior, due to the basic MCMC sampling costs de-
scribed above.

We first note that the most important steps in Bayesian
model fit that we observe here are those between the MG
and MG-NS models and between the MG-NS and MG-
NSDP models. In other words, although the SC and SC-β
configurations result in an improved model fit, these con-
figurations in themselves do not provide as good a fit as
even the use of a simple global ω parameter. This result is
somewhat disappointing (though expected from our poste-
rior predictive analysis) because, as already mentioned, the
MG-SC and MG-SC-β models are theoretically attractive
in their mechanistic formulation.

Table 2
Posterior Predictive P Values for the Variance in the
Number of Nonsynonymous Events across Sites

Model GLOBIN17-144 ADH23-254

MG 0.000 0.000
MG-SC 0.000 0.008
MG-SC-β 0.000 0.003
MG-NS 0.000 0.000
MG-NS-SC 0.000 0.000
MG-NS-SC-β 0.000 0.000
MG-NSDP 0.356 0.226
MG-NSDP-SC 0.663 0.569
MG-NSDP-SC-β 0.629 0.610

We next note that the amelioration brought about by
the SC settings is greater when combined with the pure MG
model than when combined with the MG-NS model. One
possible explanation is that the SC settings mainly capture
aspects of purifying (negative) selection, as does the global
ω factor (in these cases), such that the combination of the
two approaches leads to a level of overlap. This is also
consistent with the mild upward shift of the distribution
of ω in comparing MG-NS, MG-NS-SC, and MG-NS-SC-
β models. In contrast with an overlap effect, the models
combining the SC settings with the Dirichlet process on
ω produce a synergistic effect; the log-Bayes factor in fa-
vor of the MG-NSDP-SC-β model is greater than the sum
of log-Bayes factors in favor of MG-NS-SC-β and MG-
NSDP. This is likely related to our observation that the pos-
terior mean of β is closer to 1/2 under the MG-NSDP-SC-β
model than it is under the MG-NS-SC-β model.

Finally, we note that although the effect is mild, un-
der the SC configurations combined with the Dirichlet
process device on ω , setting β = 1/2 is slightly favored
over treating it as a free parameter. In other words, the
Bayes factor gives favor to the lower dimensional config-
uration. Treating β as a free parameter in the present con-
text amounts to purporting having no knowledge about it,
beyond its location being between −5 and 5. However, as
explained above, we in fact do have knowledge about this
parameter’s value (i.e., the potentials were originally opti-
mized according to a similar model, with β = 1/2). This
result is also consistent with the posterior distribution in-
ferred for β : the 95% credibility interval straddles the value

Table 3
Natural Logarithm of the Bayes Factor for Models
Considered, Computed with MG-NS Used as a Reference

Model GLOBIN17-144 ADH23-254

MG [−92.0, −91.8] [−319.1, −316.3]
MG-SC [−22.3, −21.8] [−220.8, −217.7]
MG-SC-β [−22.4, −21.7] [−221.7, −218.6]
MG-NS — —
MG-NS-SC [48.9, 49.3] [58.1, 58.6]
MG-NS-SC-β [49.2, 49.6] [57.9, 58.4]
MG-NSDP [102.2, 104.2] [96.8, 100.3]
MG-NSDP-SC [185.7, 188.4] [177.7, 181.6]
MG-NSDP-SC-β [180.9, 183.8] [173.5, 177.4]

NOTE.—Values given are the upper and lower estimates from bidirectional ther-
modynamic integrations.
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β = 1/2, in effect inferring the value that we expect from
the original scaling of the potential. The mildness of the
dimensionality penalty reflected in the Bayes factor can be
expected from the fact that these models differ by a single
degree of freedom. It may nevertheleess be worthwhile to
treat β as a free parameter as a preliminary exploration of
possible model violations (as we have done here), at least
until the parameters of the potentials themselves can be
free within the overall framework.

Conclusions and Future Directions

Overall, our analysis comes to similar conclusions
as previous works concerned only with amino acid data
(Rodrigue et al. 2006; Rodrigue et al. 2007): models em-
ploying simplified structural representations and empirical
potentials provide an improved fit but are outperformed by
the sophisticated site-independent models of codon sub-
stitution. In particular here, the Dirichlet process prior on
the nonsynonymous rate factor markedly outperforms the
pure site-interdependent SC model. As discussed in Thorne
et al. (2007), assigning a meaningful interpretation to ω , let
alone with the Dirichlet process, can be difficult, and other
directions inspired from population genetic theory should
be explored. In the meantime, given that the Dirichlet pro-
cess modeling proposed by Huelsenbeck et al. (2006) pro-
vides an important improvement in model fit and is able
to reproduce observed nonsynonymous rate features, it can
serve as a phenomenological benchmark, to which biolog-
ically motivated alternatives can be compared.

In particular, efforts should now be made to ame-
liorate the basic form of functions used as proxies for
sequence fitness. For instance, structural representations
could include other features, such as main-chain dihedral
angles (e.g., Betancourt and Skolnik 2004), or consider
different contact classes (e.g., based on different distance
categories or by distinguishing between the context of
contacts—say, solvent exposed contacts as opposed to
buried contacts). Other extensions unrelated to protein
structure could also be combined, such as a modeling of
codon usage preference (Rodrigue, Lartillot, and Philippe
2008; Yang and Nielsen 2008), or context-dependent mu-
tational features (e.g., Baele et al. 2008). We are currently
exploring the use of the methods as a means of merg-
ing the protein design framework proposed in Kleinman
et al. (2006) within the phylogenetic modeling we perform
here (along with extensions just mentioned), with the pa-
rameters of the potential themselves jointly inferred, along
with other parameters of the model. Though such a model
will likely require large data sets—of the sort used to con-
struct amino acid replacement matrices (e.g., Whelan and
Goldman 2001)—and be computationally demanding, it is
not unfeasible and could allow for a more definitive eval-
uation of the strengths and limitations of alternative func-
tional forms of sequence fitness proxies.

Several other directions could be taken from present
work. Exploiting the posterior predictive framework we
use here, future studies could consider a broader range
of test statistics, such as the proportion of various types
of nonsynonymous events (e.g., between specific amino
acid pairs), the relative timing of different nonsynonymous

events in relation to their location in the protein struc-
ture, as well as statistics that are a function of synonymous
events in the detailed mappings (and hence potentially mo-
tivating further model expansions; e.g., Pond and Muse
2005). Regarding the data augmentation sampling meth-
ods, the use of other methods and substitution models to
propose mappings (e.g., Hobolth and Stone 2008; Minin
and Suchard 2008) could be explored, and we are currently
studying mapping proposal methods that do not rely on
any substitution model. Regarding the doubly intractable
sampling methods, we are currently investigating if other
techniques inspired from statistical physics (e.g., Propp
and Wilson 1996) could be adapted to perform exact sam-
pling from equation (7). The methods explored here may
also serve as a stepping-stone toward the types of Laplace
approximations used in Rodrigue et al. (2007) for more
economical computations, which would in turn enable
quantitative large-scale studies of the factors influencing
protein-coding sequence evolution.

Supplementary Material

Supplementary figures S1–S13 and tables S1–S6
are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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Appendix: Site-Specific Codon Substitution Models

Our implementation constructs the entries of site-
specific Markov generators Q(i) = [Q(i)ab ] from two sets of
specifications: a 61-dimensional vector of “stationary prob-
abilities”, π(i) = (π(i)a )1�a�61, and a set of “transient spec-
ification”, ρ(i) = (ρ(i)ab )1�a,b�61. The entries are given as

Q(i)ab = ρ(i)ab π(i)b , a �= b, (14)

Q(i)aa = −∑
b�=a

Q(i)ab . (15)

The site-specific stationary probabilities are given by

π(i)a =
ϕa1 ϕa2ϕa3 e−2βGi(a)

∑61
b=1 ϕb1 ϕb2 ϕb3 e−2βGi(b)

. (16)

http://www.mbe.oxfordjournals.org/
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The transient specifications are given by

ρ(i)ab =




acbc

ϕac′ ϕac′′ e−2βGi(a)
, if a and b are

synonymous and

differ only at cth

codon position,

ω acbc

ϕac′ ϕac′′ e−βGi(a) e−βGi(b)
, if a and b are

nonsynonymous and

differ only at cth

codon position,

0, otherwise,

(17)

where c′ and c′′ are the two nucleotide positions that are
not involved in the event. Substituting equation (16) and
equation (17) into equation (14) yields the model given in
equation (4).
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