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Abstract

The importance of glial cells in the modulation of neuronal processes is now generally

accepted. In particular, enormous progress in our understanding of astrocytes and microglia

physiology in the central nervous system (CNS) has been made in recent years, due to the

development of genetic and molecular toolkits. However, the roles of satellite glial cells

(SGCs) and macrophages–the peripheral counterparts of astrocytes and microglia–remain

poorly studied despite their involvement in debilitating conditions, such as pain. Here, we

characterized in dorsal root ganglia (DRGs), different genetically-modified mouse lines pre-

viously used for studying astrocytes and microglia, with the goal to implement them for

investigating DRG SGC and macrophage functions. Although SGCs and astrocytes share

some molecular properties, most tested transgenic lines were found to not be suitable for

studying selectively a large number of SGCs within DRGs. Nevertheless, we identified and

validated two mouse lines: (i) a CreERT2 recombinase-based mouse line allowing trans-

gene expression almost exclusively in SGCs and in the vast majority of SGCs, and (ii) a

GFP-expressing line allowing the selective visualization of macrophages. In conclusion,

among the tools available for exploring astrocyte functions, a few can be used for studying

selectively a great proportion of SGCs. Thus, efforts remain to be made to characterize

other available mouse lines as well as to develop, rigorously characterize and validate new

molecular tools to investigate the roles of DRG SGCs, but also macrophages, in health and

disease.

Introduction

Astrocytes and microglia serve essential support and immune functions, and contribute to dis-

eases of the CNS [1]. For a long time, their heterogeneity and roles in the CNS have remained

unclear due to the lack of tools to specifically identify them, and monitor or alter their activity.

However, over the last fifteen years, new genetically-encoded tools to selectively visualize
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astrocytes and microglia as well as read out or abolish astrocytic Ca2+ activity have been gener-

ated. They include (i) transgenic mice expressing green fluorescent protein (GFP) under the

control of astrocytic or microglial promoters [2–5], (ii) transgenic mice expressing genetically-

encoded Ca2+ indicators (GCaMP) to monitor astrocyte Ca2+ dynamics [6–8], or (iii) IP3R2

knockout mice to abolish global Gq protein-coupled receptor (Gq GPCR)-mediated Ca2+ ele-

vations in astrocyte cell bodies and large processes [9,10]. These tools have been extremely use-

ful for probing astrocyte and microglia functions in the CNS and are now extensively used in

the field.

In the peripheral nervous system (PNS), SGCs in DRGs share several properties with astro-

cytes, including expression of cytosolic proteins [e.g. glial fibrillary acidic protein: GFAP [11];

S100 calcium-binding protein beta: S100β [12]; glutamine synthetase [13]], membrane neuro-

transmitter transporters [e.g. glutamate aspartate transporter: GLAST [13]], and channels [e.g.

inwardly rectifying K+ channel 4.1 (Kir 4.1) [14]; connexin 43 (Cx43)-based gap junctions and

hemichannels [15]]. As astrocytes and many other cell types, SGCs use Ca2+ as a signaling mol-

ecule [16]. Additionally, there is substantial evidence for a SGC role in chronic pain wherein

SGCs undergo a reactive gliotic response accompanied with increased GFAP expression,

hypertrophy, proliferation and upregulation of Cx43 [17,18]. Furthermore, the counterparts of

CNS microglia in DRGs are the macrophages, and both express the ionized Ca2+-binding

adapter molecule 1 (Iba1) [19,20]. Emerging evidence has implicated the contribution of DRG

macrophages to neuropathic pain development and axonal repair in the context of nerve

injury [21–23]. Thus, understanding how SGC and macrophage morphology and function are

remodeled in physiology and pathology can help to find new therapeutic targets for pain-

related diseases [13,24–26]. However, SGC and macrophage heterogeneity and role remain

largely unknown in DRGs, mainly due to the unavailability of tools to specifically visualize

DRG glial cells and examine or manipulate their Ca2+ dynamics. Satellite glial cell or macro-

phage specific gene expression or deletion would therefore help to clarify the roles of those

cells in DRGs.

To accomplish this, using immunohistochemistry or 2-photon Ca2+ imaging, we have char-

acterized different available genetically-modified mouse lines widely used to study astrocytes

or microglia. Our results showed that most lines used for examining astrocyte functions are

very inefficient for studying selectively a large proportion of SGCs in DRGs. However, we have

identified two mouse lines allowing either the selective expression of a Ca2+ biosensor in SGCs

or the labelling of macrophages.

Material and methods

Animals

Mice were housed in transparent plastic cages (5 mice/cage) and fed ad libitum. Illumination

was controlled automatically with a 12/12h light-dark cycle. S100β-eGFP [5], ALDH1L1-eGFP

[27] and CX3CR1-eGFP [3] transgenic lines were used. Furthermore, CAG-lox-STOP-lox-

GCaMP6f transgenic mouse line [7] was crossed with GLAST-CreERT2 [28], GFAP-Cre [29],

Cx30-CreERT2 [28] or Cx43-CreERT2 [30] mice. As a result, we obtained four new double

transgenic mouse lines that we named GLAST-CreERT2::GCaMP6f, GFAP-Cre::GCaMP6f,

Cx30-CreERT2::GCaMP6f and Cx43-CreERT2::GCaMP6f. To induce expression of the Ca2+

biosensor GCaMP6f, GLAST-CreERT2::GCaMP6f and Cx30-CreERT2::GCaMP6 mice were

injected intraperitoneally (i.p.) with tamoxifen (1 mg/day, Sigma) diluted in corn oil (Sigma)

during 5 consecutive days. To obtain optimum GCaMP6f expression in brain astrocytes of

Cx43-CreERT2::GCaMP6f mice, tamoxifen treatment lasted 10 days as previously described

[31]. Animals were then used 2 weeks after the first day of treatment. All lines used were kept
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heterozygous for transgenes encoding GFP/eGFP, GCaMP6f, Cre or CreERT2. Experiments

were conducted in 2 to 3 month-old male and female mice from the C57BL/6JRj background.

Animal care and procedures were carried out according to the guidelines set out in the Euro-

pean Community Council Directives. The protocol was approved by the Committee on the

Ethics of Animal Experiments of Paris Descartes University (Protocol Number:

2018061412588713).

Immunohistochemistry, image acquisition and analysis

Animals were transcardially perfused with 4% paraformaldehyde under ketamine/xylazine

(100 mg/kg– 10 mg/kg respectively, i.p.) anesthesia. Brains and lumbar L3, L4 and L5 DRGs

were removed, post-fixed for 24 h or 2 h in 4% paraformaldehyde, respectively. Then, tissues

were cryoprotected overnight at 4˚C in 0.02 M phosphate buffer saline (PBS, pH 7.4) contain-

ing 20% sucrose, and frozen in optimal cutting temperature compound. Sixteen or 14 μm

thick sections (brain or DRG, respectively) were cut using a cryostat (Leica), mounted on

Superfrost glass slides and stored at -80˚C. The day of the experiment, sections were washed 3

times for 15 min each in 0.02 M PBS. Sections were incubated overnight in 0.02 M PBS con-

taining 0.3% Triton X100, 0.02% sodium azide and primary antibodies (Table 1) at room tem-

perature in a humid chamber. In order to readily identify fine subcellular compartments

expressing GFP/eGFP or GCaMP6f and to not miss any transgene expression, GFP/eGFP/

GCaMP6f signal was amplified using an antibody directed against GFP. Of note, GFP/eGFP/

GCaMP6f signal was visible without such amplification. The following day, sections were

washed 3 times for 15 min each in 0.02 M PBS, and incubated for 2 h at room temperature

with secondary antibodies diluted in 0.02 M PBS containing 0.3% Triton X100 and 0.02%

sodium azide. Then, sections were washed 3 times for 15 min in 0.02 M PBS and mounted

between slide and coverslip using Vectashield medium containing DAPI (Vector Laborato-

ries). Negative controls, i.e. slices incubated with secondary antibodies only, were used to set

criteria (gain, exposure time) for image acquisition in each experiment. Image acquisition was

performed with an Axio Observer Z1 epifluorescence Zeiss microscope, an ORCA Flash 2.8

million pixel camera, and a PlanNeoFluar 20x/0.5NA objective. Images were extracted using

the ZEN 2011 blue edition software (Zeiss). Cell counting measurements were performed

Table 1. List of primary and secondary antibodies with corresponding dilutions used in the current study.

Antibodies Species Company/Cat. # Dilution (DRG & V1)

Anti-CD68 Rat Serotec/MCA1957 1:2000

Anti-GFAP Rabbit Dako/Z0334 1:5000

Anti-GFAP Chicken Abcam/ab4674 1:1000

Anti-GFP Chicken Invitrogen/A10262 1:1000

Anti-GLAST Rabbit Frontier Institute/Af660 1:5000

Anti-Iba1 Rabbit Wako/019-1974 1:2500 (DRG)

1:1000 (V1)

Anti-NeuN Guinea Pig Millipore/ABN90 1:1000

Anti-NF Rabbit Millipore/AB9568 1:1000

Anti-S100β Rabbit Abcam/ab52642 1:1000

Alexa Fluor1 488 anti-chicken Goat Invitrogen/A-11039 1:1000

Alexa Fluor1 546 anti-guinea pig Goat Invitrogen/A-11074 1:1000

Alexa Fluor1 546 anti-rabbit Goat Invitrogen/A-11035 1:1000

Alexa Fluor1 546 anti-rat Goat Invitrogen/A-11081 1:1000

https://doi.org/10.1371/journal.pone.0229475.t001
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using manual cell counting plugin function in ImageJ software (National Institutes of Health,

USA). Cells were counted on 3–4 mice/genotype, 3 brain slices/mouse (positive control) and

8–15 DRG slices/mouse. The total numbers of counted cells for the 3–4 mice/genotype are pre-

sented in Tables 1 and 2. Because it was difficult to discriminate individual SGCs within the

several SGCs surrounding a single neuronal cell body, “rings” surrounding individual neuro-

nal cell bodies were quantified..

Calcium imaging

Acute intact DRG preparations were prepared from GFAP-Cre::GCaMP6f mice. Briefly, verte-

bras and dura mater were removed and lumbar L4 and L5 DRGs were exposed and immedi-

ately covered with ice cold (slushy) incubation ACSF solution (95 mM NaCl, 1.9 mM KCl, 1.2

mM KH2PO4, 0.5 mM CaCl2, 7 mM MgSO4, 26 mM NaHCO3, 15 mM glucose, 50 mM

sucrose) and bubbled with 95% O2 and 5% CO2. DRGs were incubated for 30 min at 35˚C in

the incubation solution and then left to recover for 1 h 30 min at room temperature. A single

DRG was placed in the recording chamber of a custom-built 2-photon laser-scanning micro-

scope with a 20x water immersion objective (x20/0.95w XLMPlanFluor, Olympus). GCaMP6f

was excited at 920 nm with a Ti:Sapphire laser (Mai Tai HP; Spectra-Physics). DRGs were con-

tinuously superfused at a rate of 4 ml/min with recording solution (127 mM NaCl, 1.9 mM

KCl, 1.2 mM KH2PO4, 2.4 mM CaCl2, 1.3 mM MgSO4, 26 mM NaHCO3, 15 mM glucose) and

bubbled with 95% O2–5% CO2. To evoke intracellular Ca2+ elevations in DRG GCaMP6f-

expressing cells, a cocktail of agonists to endogenous Gq GPCRs containing 50 μM DHPG

(Abcam), 10 μM histamine (Sigma Aldrich), 10 μM carbachol (Abcam), and 50 μM ATP

(Sigma Aldrich) was bath applied for 30 sec.

Table 2. Data quantification in DRG SGCs and V1 astrocytes from the mouse lines used in the current study.

DORSAL ROOT GANGLIA

Mouse lines Nbr of mice, Nbr

of slices/mouse

Total NeuN+ or

NF+ neurons

Total GFP+ or

G6+ neurons

% of GFP+ or G6

+ neurons

Total GLAST

+SGCs

Total GFP+ or G6

+ SGCs

% of GFP+ or G6

+ SGCs

S100β-eGFP 3, 10 599 81 13.5 345 296 85.8

ALDH1L1-eGFP 3, 11 1002 72 7.2 571 322 56.4

GFAP-Cre::GCaMP6f 3, 14 1189 696 58.5 1250 22 1.8

GLAST-CreERT2::

GCaMP6f

4, 15 1148 44 3.8 892 48 5.4

Cx30-CreERT2::

GCaMP6f

3, 8 837 0 0 721 0 0

Cx43-CreERT2::

GCaMP6f

3, 9 433 31 4.0 363 336 92.6

VISUAL CORTEX

Mouse lines Nbr of mice, Nbr

of slices/mouse

Total NeuN

+ neurons

Total GFP+ or

G6+ neurons

% of GFP+ or

G6+ neurons

Total S100β
+astrocytes

Total GFP+ or G6

+ astrocytes

% of GFP+ or G6

+ astrocytes

S100β-eGFP 3, 10 4737 1 0.02 1288 1108 86.0

ALDH1L1-eGFP 3, 8 7807 0 0 1360 1117 82.1

GLAST-CreERT2::

GCaMP6f

3, 9 9533 3 0.03 1267 713 56.3

Cx30-CreERT2::

GCaMP6f

3, 9 5343 5 0.1 1000 464 46.4

Cx43-CreERT2::

GCaMP6f

3, 9 5203 227 4.4 780 74 9.5

Abbreviations: G6, GCaMP6f; GFP, green fluorescent protein; Nbr, number; NF, neurofilament.

https://doi.org/10.1371/journal.pone.0229475.t002
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Results

Transgenic mouse lines for investigating the distribution and morphology

of sgcs and macrophages

S100β-eGFP mice exhibit eGFP expression in both SGCs and sensory neurons. S100β protein is a

commonly used astrocytic marker in the brain and spinal cord and has also been reported to

be a marker of SGCs in DRGs [12,32]. The S100β-eGFP transgenic mouse [5], which expresses

enhanced GFP (eGFP) under the control of the S100β promoter, has proved to be a useful tool

to selectively label almost all astrocytes [32,33]. In the primary visual cortex (V1), we found

that eGFP was expressed in 86% of astrocytes (Fig 1A; Table 2) and only marginally (0.02%)

in neurons (Fig 1B; Table 2), corroborating those previous studies. This mouse line appears

also to be valuable for labeling SGCs within DRGs, since eGFP immunoreactivity was detected

in 85.8% of SGCs as shown by the colocalization of eGFP with GLAST, a specific SGC marker

(Fig 2A; Table 2). In addition, some cells expressing eGFP, and exhibiting a typical feature of

non-myelinating Schwann cells, were found in nerves attached to DRGs (Fig 2C; Table 2);

this is expected for cells known to synthetize S100β [34,35]. However, 13.5% of sensory neuron

soma (Fig 2B; Table 2) and their corresponding axons (Fig 2C) were found to express eGFP.

To test whether this unexpected neuronal eGFP expression reflected normal endogenous

S100β protein expression in DRGs of wildtype mice, we used an antibody directed against

S100β. S100β endogenous protein was detected in both DRG SGCs and neurons of wildtype

mice (S1 Fig), in agreement with the eGFP expression pattern observed in S100β-eGFP mice.

Hence, the S100β promoter does not represent a valuable promoter to target transgene expres-

sion selectively in DRG SGCs. However, it does allow eGFP expression in the vast majority of

DRG SGCs.

ALDH1L1-eGFP mice express eGFP in a subset of SGCs and some neurons. Another recently

discovered marker of astrocytes is the protein aldehyde dehydrogenase 1 family member L1

[aldh1l1; [2]]. The ALDH1L1 promoter has been used to generate several transgenic mouse

lines [2,8,36], including the ALDH1L1-eGFP mice that exhibit eGFP selectively in most astro-

cytes of the CNS [2]. In agreement, we found that eGFP is expressed in 82.1% of V1 astrocytes

(Fig 3A; Table 2) with no detectable expression in neurons (Fig 3B; Table 2). The distribution

of eGFP-expressing cells was then investigated in DRGs of ALDH1L1-eGFP mice. Enhanced

GFP immunoreactivity was observed only in 56.4% of SGCs (Fig 4A; Table 2) as well as in a

low percentage (7.2%) of sensory neuron soma, making this transgenic line unsuitable for the

specific visualization of the majority of SGCs.

CX3CR1-eGFP mice show specific eGFP expression in macrophages. The CX3C chemokine

receptor 1 (CX3CR1), known as the fractalkine receptor [3], is a marker of microglial cells

[37,38]. The CX3CR1-eGFP mouse line, expressing eGFP under the control of the CX3CR1

promoter [3], has been extremely useful to visualize microglial cells and dynamic changes in

their morphology. In support of this previous study, we found a selective eGFP expression in

99.5% of V1 microglial cells with no detectable expression in neurons (Fig 5A and 5B;

Table 3). Since microglial cells are the CNS resident macrophages, we reasoned that peripheral

macrophages should also express eGFP in DRGs from CX3CR1-GFP mice. Indeed, we

observed that eGFP was expressed in 90.9% of Iba1-expressing macrophages (Fig 6A;

Table 3), validating the use of the CX3CR1-eGFP mouse line for labeling a prominent number

of DRG macrophages and investigating their morphological remodeling. Note that a few

eGFP-positive elements did not express Iba1 (Fig 6A, arrow). Because Iba1-immunopositive

profiles are spotty and not found within the whole cytosol, but instead are localized in some

subcellular compartments of macrophages, such eGFP-positive elements might correspond to

Iba1-negative macrophage compartments.
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Fig 1. Expression of eGFP in S100β-eGFP mouse brain. A, B, Representative images of immunohistochemistry in the primary visual cortex (V1) from S100β-

eGFP mice showing eGFP-expressing cells (A & B left, green), S100β–expressing astrocytes (A middle, red, arrowheads), and NeuN-expressing neurons (B

middle, red, asterisks). A & B right show superimposed pictures. In A & B, bottom panel images correspond to higher magnification images. For each row,

scale bar in left picture applies to middle and right corresponding pictures. Abbreviations: ec, external capsule; CA1, subfield 1 of Ammon’s horn; I-VI, layers

of V1.

https://doi.org/10.1371/journal.pone.0229475.g001
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Mouse lines for investigating the roles of SGC Ca2+ signaling

GFAP-Cre::GCaMP6f mouse line expresses GCaMP6f Ca2+ biosensor mainly in DRG sensory
neurons. Emerging evidence showing that Ca2+ is an important signaling messenger in SGCs

[12,39,40] prompted us to search for molecular tools to probe SGC Ca2+ dynamics. To do so,

we took advantage of the powerful CAG-lox-STOP-lox-GCaMP6f transgenic mouse line [7]

that was recently developed to express the genetically-encoded Ca2+ indicator GCaMP6f in cell

types of interest. We first crossed CAG-lox-STOP-lox-GCaMP6f mice with GFAP-Cre mice

[29] to generate GFAP-Cre::GCaMP6f double transgenic mice. GFAP is indeed extensively

used as a gold standard astrocytic marker, which expression is enhanced in reactive astrocytes

during aging, CNS injury, pain, and diseases [41]. GFAP has also been reported as a marker of

DRG SGCs [11], although we have not found convincing immunohistochemical evidence in

the literature showing clear SGC GFAP expression under physiological conditions. In agree-

ment, in our hands, immunohistochemical experiments conducted on DRGs from wildtype

Fig 2. Expression of eGFP in S100β-eGFP mouse DRGs. A, B, Representative images of immunohistochemistry in DRGs from

S100β-eGFP mice showing eGFP-expressing cells (A-C left, green), GLAST-expressing SGCs (A middle, red, arrowheads), and

neurofilament-expressing neurons (B middle, red, asterisks). C, Images of proximal DRG nerves showing eGFP staining (C left,

green), non-myelinating Schwann cells (C left, arrows) and neurofilament-expressing axons (C middle, arrowheads). A-C right

show superimposed pictures. In A-C, bottom panel images correspond to enlargements of boxed areas in top panel images. For

each row, scale bar in left picture applies to middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g002

Fig 3. Expression of eGFP in ALDH1L1-eGFP mouse brain. A, B, Representative images of immunohistochemistry in V1 from ALDH1L1-eGFP mice showing eGFP-

expressing cells (A & B left, green), S100β–expressing astrocytes (A middle, red, arrowheads), and NeuN-expressing neurons (B middle, red, asterisks). A & B right

show superimposed pictures. For each row, scale bar in left picture applies to middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g003
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mice using two different antibodies directed against GFAP (Table 1) have revealed almost no

GFAP-expressing SGCs (data not shown). However, a large number of studies have shown

increases in SGC GFAP expression level under pathological conditions, including, peripheral

nerve injury, DRG compression and pain [17,24].

In the CNS, GFAP is known to be expressed in neural progenitors during developmental

stages, giving rise to neurons, astrocytes and oligodendrocytes, thus preventing the use of the

non-inducible GFAP-Cre mice and Cre-LoxP system to selectively study astrocytes [29,42–

44]. The observation that astrocytes, neurons, and neuropil from V1 GFAP-Cre::GCaMP6f

expressed GCaMP6f (Fig 7A and 7B) was consistent with those previous studies and the view

that recombination occurs during development. However, because SGCs derive from the neu-

ral crest, a different lineage than astrocytic lineage, there was a possibility that GFAP-Cre mice

could be useful to drive gene expression selectively in a great proportion of SGCs. In DRGs

from GFAP-Cre::GCaMP6f mice, GCaMP6f was expressed in only 1.8% of SGCs while, to our

surprise, it was observed in 58.5% of sensory neurons (including small- and large-sized

Fig 4. Expression of eGFP in ALDH1L1-eGFP mouse DRGs. A, B, Representative images of immunohistochemistry in DRGs

from ALDH1L1-eGFP mice showing eGFP-expressing cells (A & B left, green), GLAST-expressing SGCs (A middle, red,

arrowheads), and NeuN-expressing neurons (B middle, red, asterisks). A & B right show superimposed pictures. In A & B,

bottom panel images correspond to enlargements of boxed areas in top panel pictures. In A bottom row, boxed area has been

rotated by about 45˚ clockwise. For each row, scale bar in left picture applies to middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g004

Fig 5. Expression of eGFP in CX3CR1-eGFP mouse brain. A, B, Representative images of immunohistochemistry in V1 from CX3CR1-eGFP mice showing eGFP-

expressing cells (A & B left, green), Iba1-expressing microglial cells (A middle, red, arrowheads), and NeuN-expressing neurons (B middle, red, asterisks). A & B

right show superimposed pictures. For each row, scale bar in left picture applies to middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g005
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diameter neurons; Fig 8A; Table 2). To assess whether GCaMP6f was expressed under detect-

able levels in SGCs, SGC functional Ca2+ signals were registered using 2-photon imaging in

intact ex vivo DRGs. Bath application of an agonist cocktail to Gq GPCRs did not evoke any

Ca2+ elevations in cells morphologically identified as SGCs (i.e. ring-shaped cells surrounding

neuronal soma). However, 23.5% of GCaMP6f-expressing sensory neurons exhibited marked

intracellular Ca2+ elevations (Fig 8B). Taken together these results show that the GFAP-Cre::

GCaMP6f double transgenic mouse line is not an adequate tool for studying Ca2+ dynamics

selectively in DRG SGCs.

GLAST-CreERT2::GCaMP6f and Cx30-CreERT2::GCaMP6f mice express GCaMP6f in a few
or no SGCs, respectively. GLAST has been conventionally used to identify a subset of astrocytes

and the majority of DRG SGCs [45–47], making the GLAST promoter a good candidate to tar-

get gene expression in a large number of SGCs. Additionally, connexin 30 (Cx30) has also

been used as a marker of a fraction of astrocytes [45], although its expression in DRG SGCs

has not yet been reported. To determine whether GLAST and Cx30 promoters could drive

GCaMP6f expression selectively in SGCs, we crossed both inducible GLAST-CreERT2 [28]

and Cx30-CreERT2 [28] mice with CAG-lox-STOP-lox-GCaMP6f mice. To induce GCaMP6f

expression in the resultant GLAST-CreERT2::GCaMP6f and Cx30-CreERT2::GCaMP6f dou-

ble transgenic lines, mice were treated with 1 mg tamoxifen per day during 5 consecutive days.

As expected, in the CNS (V1), GCaMP6f was detected in 56.3% and 46.4% of astrocytes, in

these two lines respectively (Fig 9A; Fig 10A; Table 2) with an insignificant expression in neu-

rons (0.03% and 0.1%, respectively; Fig 9B; Fig 10B; Table 2). In contrast, DRGs from

GLAST-CreERT2::GCaMP6f mice showed GCaMP6f immunoreactivity in only 5.4% of SGCs

and a low percentage (3.8%) of sensory neurons (Fig 11A and 1B; Table 2), invalidating this

mouse line for investigating Ca2+ dynamics selectively in SGCs. Furthermore, no GCaMP6f

expression at all was found in SGCs or sensory neurons of Cx30-CreERT2::GCaMP6f (Fig

12A and 12B; Table 2), making this mouse line unsuitable to study Ca2+ signaling in DRG

SGCs. Surprisingly though, GCaMP6f was observed in non-identified cells, which occasionally

expressed macrophage markers (Fig 12C), suggesting that a few of them are macrophages. Of

note, GCaMP6f was also found to be expressed at the DRG surface, possibly in tissues encapsu-

lating DRGs (Fig 12B).

Cx43-CreERT2::GCaMP6f mouse line allows the detection of Ca2+ transients in the vast
majority of SGCs. Cx43 is a widely used specific marker of a large proportion of CNS astrocytes

and almost all DRG SGCs [13,48], making it particularly relevant to astrocyte and SGC

research. In another attempt to establish a tool for monitoring Ca2+ transients selectively in a

great number of SGCs, we generated the inducible Cx43-CreERT2::GCaMP6f double trans-

genic mouse line by crossing the tamoxifen-inducible Cx43-CreERT2 [30] with the CAG-lox-

STOP-lox-GCaMP6f mice [7]. Two weeks after tamoxifen treatment, V1 cortex and DRGs

Table 3. Data quantification in DRG macrophages and V1 microglial cells from the CX3CR1-eGFP mouse line.

DORSAL ROOT GANGLIA

Mouse line Nbr of mice, Nbr of

slices/mouse

Total NeuN

+ neurons

Total GFP

+ neurons

% of GFP

+ neurons

Total Iba1

+macrophages

Total GFP

+ macrophages

% of GFP

+ macrophages

CX3CR1-eGFP 3, 8 689 0 0 320 291 90.9

VISUAL CORTEX

Mouse line Nbr of mice, Nbr of

slices/mouse

Total NeuN

+neurons

Total GFP

+ neurons

% of GFP

+ neurons

Total Iba1

+microglia

Total GFP

+microglia

% of GFP

+ microglia

CX3CR1-eGFP 3, 8 2488 0 0 851 847 99.5

Abbreviations: GFP, green fluorescent protein; Nbr, number.

https://doi.org/10.1371/journal.pone.0229475.t003
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Fig 6. Expression of eGFP in CX3CR1-eGFP mouse DRGs. A, B, Representative images of immunohistochemistry in DRGs from CX3CR1-eGFP mice

showing eGFP staining (A & B left, green, arrowheads), Iba1 staining (A middle, red, arrowheads), and neurons identified by NeuN immunoreactivity (B
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were analyzed. To our disappointment, GCaMP6f immunoreactivity was observed in only

9.5% of V1 astrocytes (Fig 13A; Table 2), a much lower percentage than previously reported

in hippocampal astrocytes (~70%; 31). Possible explanations for these discrepancies are

regional (V1 versus hippocampus) variability in transgene recombination efficiency, in addi-

tion to the fact that we tested our mice 2 weeks after tamoxifen treatment compared to 4 weeks

[31]. Furthermore, GCaMP6f was also detectable in a small subset (4.4%) of neurons (Fig 13B;

Table 2). These results suggest that Cx43-CreERT2 mouse line may be ineffective for driving

substantial GCamP6f expression specifically in V1 astrocytes, even when treating mice 10

times (10 x 1 mg/kg tamoxifen) as previously reported [31].

However, and importantly, cellular immunohistochemical characterization in DRGs

revealed that GCaMP6f was expressed in 92.6% of SGCs and a very small subset (4%) of neu-

rons (Fig 14A and 14B; Table 2). In conclusion, the inducible Cx43-CreERT2::GCaMP6f line

can be used to study the role of Ca2+ activity in the majority of DRG SGCs. We believe that

this mouse line will prove to be a valuable tool to examine DRG SGC functions.

middle, red, asterisks). In A bottom panel, the arrow points to an eGFP-expressing element that does not colocalize with Iba1 staining. A & B right show

superimposed pictures. In A & B, bottom panel images correspond to higher magnification images. For each row, scale bar in left picture is applied to

middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g006

Fig 7. Expression of GCaMP6f in GFAP-Cre::GCaMP6f mouse brain. A, B, Representative images of immunohistochemistry in V1 from GFAP-Cre::GCaMP6f mice

showing GCaMP6f ubiquitous expression (A & B left, green), S100β–expressing astrocytes (A middle, red, arrowheads), and NeuN-expressing neurons (B middle, red,

asterisks). A & B right show superimposed pictures. For each row, scale bar in left picture applies to middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g007
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Discussion

In this study we report the characterization of several tools for investigating SGC and macro-

phage morphological changes as well as Ca2+ activity within DRGs. Our data show that most

tested transgenic mice widely used to investigate astrocyte morphology and function are not

suitable for studying DRG SGCs. Indeed, among these mice, some exhibit ectopic transgene

expression in small to large proportions of neurons while others show low to no transgene

expression in SGCs.

Fig 8. Cellular expression and functionality of GCaMP6f in GFAP-Cre::GCaMP6f mouse DRGs. A, Representative images of immunohistochemistry in DRGs from

GFAP-Cre::GCaMP6f mice showing GCaMP6f staining (top & bottom left panels, green), GLAST-expressing SGCs (top middle panel, red, arrowheads), and small

and large sensory neurons (bottom middle panel, red, asterisks). Top & bottom right panels show superimposed pictures. For each row, scale bar in left picture applies

to middle and right corresponding pictures. B, Representative images of 2-photon Ca2+ imaging experiment in ex vivo DRGs where neuronal GCaMP6f-expressing cell

bodies (outlined areas of interest, left panel) exhibit intracellular Ca2+ increases; ➀ baseline, ➁ Gq GPCR agonist cocktail (50μM ATP, 10μM Histamine, 10μM

Carbachol and 50μM DHPG) application, and ➂ wash (right panel).

https://doi.org/10.1371/journal.pone.0229475.g008
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However, we generated and identified a double transgenic line, named Cx43-CreERT2::

GCaMP6f, allowing inducible GCaMP6f expression primarily in the vast majority of DRG

SGCs (92.6%) with only a very small percentage (4%) of neurons expressing GCaMP6f. Con-

sidering the high GCaMP6f expression level detected in SGCs, ectopic CreERT2-mediated

recombination in neurons might be easily reduced by simply decreasing the number of tamox-

ifen injections (< 10 injections) as well as time post-treatment (< 15 days). Although it would

be of interest to test whether GCaMP6f is detectable in other DRG cell types, including

Schwann cells, fibroblasts, pericytes and endothelial cells, this possibility seems unlikely based

on (i) the peculiar and readily identifiable SGC shape (ring surrounding round neurons), (ii)

the fact that no GCaMP6f expression was observed in nerves attached to DRG, and (iii) the

fact that drug-induced Ca2+ elevations were observed exclusively in ring-shaped cells sur-

rounding neuronal cell bodies from the Cx43-CreERT2::GCaMP6f (data not shown). With the

emerging interest in SGC Ca2+ signaling in modulating nociceptive neuron activity [39,40,49],

this new line should be applicable for investigating a wide array of questions in pain research.

Additionally, it is worth pointing out that Cx43 expression is very stable and even upregulated

in SGCs following PNS injury. Therefore we do not anticipate any compromised (downregu-

lated) transgene expression using the Cx43-CreERT2 mouse line, strengthening the likely

applicability of this mouse line for a wide array of questions in PNS neurobiology and pain

research. Interestingly, a publication from Valeria Cavalli’s laboratory was recently posted on

BioRxiv and reported a mouse line (BLBPCre-ERT2) allowing conditional expression of trans-

genes specifically in SGCs, complementing the use of the Cx43-CreERT2 mouse line. Further-

more, we identified a second mouse line, called CX3CR1-eGFP, displaying eGFP expression

selectively in most DRG macrophages. This line is likely to be useful for the study of spinal

Fig 9. Expression of GCaMP6f in GLAST-CreERT2::GCaMP6f mouse brain. A, B, Representative images of immunohistochemistry in V1 from GLAST-CreERT2::

GCaMP6f mice showing GCaMP6f-expressing cells (A & B left, green, arrowheads), S100β–expressing astrocytes (A middle, red, arrowheads), and NeuN-expressing

neurons (B middle, red, asterisks). A & B right show superimposed pictures. For each row, scale bar in left picture applies to middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g009
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cord injury in which abnormal pain strongly correlates with an increased number of DRG

macrophages [50].

Among the other mouse lines we characterized, S100β-eGFP line may be considered appli-

cable to some extent, even though eGFP was expressed in a substantial percentage of sensory

neurons (13.5%), but also in a great proportion of DRG SGCs (85.8%). The readily identifiable

ring-shaped SGCs can indeed be almost undoubtedly differentiated from the rounded neuro-

nal cell bodies. Additionally, eGFP expression was found to be brighter in SGCs relatively to

neuronal cell bodies (Fig 2A and 2B), which helps ascertain the identity of both cell types. Of

note, we found that eGFP expression in SGCs and neurons reflects the endogenous S100β pro-

tein expression, showing that, in DRGs, S100β is not a glial selective promoter. These data

complement studies reporting that S100β promoter drives transgene expression in some

motor neurons within the brainstem and spinal cord [33,51].

The fact that the GFAP promoter drives merely no transgene expression in SGCs from

GFAP-Cre::GCaMP6f mouse line is consistent with our immunohistochemistry data showing

only rare GFAP-expressing SGCs. Furthermore, our data showing Cre-mediated recombina-

tion in 58.5% of sensory neurons in such GFAP-Cre::GCaMP6f mice suggest the possibility

that GFAP is expressed in DRG neuronal lineage during development. This possibility though

is not supported by the absence of evidence for a developmental GFAP expression in PNS neu-

ronal lineage, while such expression is well described in the CNS [52]. Thus, together our

results suggest that the GFAP promoter used in the GFAP-Cre::GCaMP6f mice is not

Fig 10. Expression of GCaMP6f in Cx30-CreERT2::GCaMP6f mouse brain. A, B, Representative images of immunohistochemistry in V1 from Cx30-CreERT2::

GCaMP6f mice showing GCaMP6f-expressing cells (A & B left, green, arrowheads), S100β–expressing astrocytes (A middle, red, arrowheads), and NeuN-expressing

neurons (B middle, red, asterisks). A & B right show superimposed pictures. For each row, scale bar in left picture applies to middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g010
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Fig 11. Expression of GCaMP6f in GLAST-CreERT2::GCaMP6f mouse DRGs. A, B, Representative images of immunohistochemistry in DRGs from

GLAST-CreERT2::GCaMP6f mice showing GCaMP6f labeling (A & B left, green), GLAST-expressing SGCs (A bottom panel, red, arrowheads,), and
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sufficient to drive a strong and selective expression of transgenes in a large number of SGCs

under physiological conditions. However, in disagreement of this hypothesis, the same pro-

moter (2.2kB human GFAP minimum promoter, 29) has been previously used successfully to

highly express a transgene selectively in the overwhelming majority of DRG SGCs with no

NeuN-expressing neurons (B bottom panel, red, asterisks). A & B right show superimposed pictures. In A & B, bottom panel images correspond to higher

magnification images. For each row, scale bar in left picture applies to middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g011

Fig 12. Expression of GCaMP6f in Cx30-CreERT2::GCaMP6f mouse DRGs. A-C, Representative images of immunohistochemistry in DRGs from

Cx30-CreERT2::GCaMP6f mice showing GCaMP6f immunoreactivity (A–C left, green, arrowheads), GLAST-expressing SGCs (A middle, red), and NeuN-

expressing neurons (B middle, red, asterisks). In B left, empty arrows point to GCaMP6f expression at the surface of the DRG. In C left, white arrow points

to GCaMP6f staining that colocalizes with the macrophage marker CD68 immunoreactivity (C middle, red,). A-B right show superimposed pictures. For

each row, scale bar in left picture applies to middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g012
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Fig 13. Expression of GCaMP6f in Cx43-CreERT2::GCaMP6f mouse brain. A, B, Representative images of immunohistochemistry in V1 from Cx43-CreERT2::

GCaMP6f mice showing GCaMP6f immunoreactivity (A & B left, green), S100β–expressing astrocytes (A middle bottom panel, red, arrowheads) and NeuN-

expressing neurons (B bottom panel, red, asterisk). A & B right show superimposed pictures. In A & B, bottom panel pictures correspond to enlargements of top panel

pictures. For each row, scale bar in left picture applies to middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g013
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Fig 14. Expression of GCaMP6f in Cx43-CreERT2::GCaMP6f mouse DRGs. A, B, Representative images of immunohistochemistry in DRGs from

Cx43-CreERT2::GCaMP6f mice showing GCaMP6f immunoreactivity (A & B left, green), GLAST-expressing SGCs (A middle, red, arrowheads), and NF-

expressing neuronal cell bodies (B middle, red, asterisks). Note: Yellow asterisk (A, top panel) shows a single neuron expressing GCaMP6f. A & B right show

superimposed pictures. In A & B, bottom panel pictures correspond to enlargements of boxed areas in top panel images. For each row, scale bar in left picture

applies to middle and right corresponding pictures.

https://doi.org/10.1371/journal.pone.0229475.g014
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ectopic sensory neuronal expression [53]. This implies that other factors (e.g. number of trans-

gene copies, gene microenvironment) may account for the variability of transgene expression

levels in SGCs and cell selectivity. Indeed, transgenes insert randomly into the genome and the

transgene expression cannot always mimic endogenous promoter activity. Thus, controlling

gene microenvironment represents a strategy to enhance the specificity of transgenic targeting.

One approach is to insert transgenes into a cassette containing all introns, promoter regulatory

elements, exons and 5’ and 3’ flanking DNA of the GFAP gene [52]. This approach has been

used in a recent study showing specific transgene expression in SGCs of the trigeminal ganglia,

although it remains to be evaluated in DRG SGCs [49]. Another approach is to insert trans-

genes into bacterial artificial chromosomes (BACs) as they reduce the influence of chromo-

some position effects and allow more predictable transgene expression patterns. Despite these

advantages, BAC transgenic mice appear to suffer from some remaining expression variation.

Indeed, using the BAC-based GLAST-CreERT2 mice [28] to generate the GLAST-CreERT2::

GCaMP6f mice, we obtained both (i) a marginal percentage of GLAST-driven CreERT2-me-

diated recombination in DRG SGCs, and (ii) a lack of cell specificity, while endogenous

GLAST protein is selectively and prominently expressed in essentially all SGCs [47]. Therefore,

it stands to reason that even though both, conventional and BAC-based transgenesis, can lead

to robust and cell specific transgene expression in the CNS glial cells, their expression pattern

may significantly differ in DRG glia (and vice versa). Knock-in technology may be considered

as a good alternative to traditional transgenic techniques; indeed it enables transgene insertion

at a specific glial gene locus of the mouse genome, which allows excellent control of gene

microenvironment, and thus is likely to better avoid chromosome position effects and circum-

vent the above-discussed drawbacks associated with conventional and BAC-based transgen-

esis. Our findings using the knock-in CX3CR1-eGFP mouse line does support the relevance of

this approach by showing specific eGFP expression in the vast majority of microglial cells and

macrophages in V1 and DRGs, respectively (Fig 5; Fig 6). Thus, to improve DRG glial cell spe-

cific targeting, it would be of interest in future studies to generate and/or use knock-in glial

mouse models. One of such mouse models, the knock-in GLAST-CreERT2 mouse line in

which CreERT2 transgene is inserted at the GLAST gene locus [54], appears to be a good can-

didate to examine next.

A large number of in vivo studies have used the GFAP or S100β promoters to drive different

transgene expression in astrocytes. Results from these studies are routinely interpreted as due

to the expression of transgenes only in astrocytes. Our finding that the GFAP or S100β pro-

moters drive GCaMP6f or eGFP expression in 58.8% or 13.5% of DRG sensory neurons,

respectively, should be considered when interpreting in vivo results from such studies.

In conclusion, most of the tools tested in the current study were found ineffective in study-

ing selectively the majority of SGCs in DRGs, although a lot of molecular and functional simi-

larities exist between DRG SGCs and astrocytes. Therefore, further work is required for

characterizing and identifying other already available tools as well as developing new geneti-

cally-modified mouse lines and adeno-associated viral tools to specifically target large propor-

tions of DRG SGCs, but also macrophages. Together with the two mouse lines validated here

(Cx43-CreERT2::GCaMP6f and CX3CR1-eGFP), these future molecular tools will be of prom-

inent interest in understanding better how DRG glia can modulate sensory information pro-

cessing under physiological and pathological conditions.

Supporting information

S1 Fig. S100β immunoreactivity signal (red) in DRGs from wildtype mice, showing that

endogenous S100β is expressed in both ring-shaped SGCs (arrowheads) and sensory

PLOS ONE Mouse lines for targeting glial cells in dorsal root ganglia

PLOS ONE | https://doi.org/10.1371/journal.pone.0229475 September 11, 2020 21 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229475.s001
https://doi.org/10.1371/journal.pone.0229475


neuron cell bodies (asterisks).
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