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Abstract
This paper investigates the impact of transition risk on a firm’s low-
carbon production. As the world is facing global climate change, the
Intergovernmental Panel on Climate Change (IPCC) has set the ideal-
ized carbon-neutral scenario around 2050. In the meantime, many carbon
reduction scenarios, known as Shared Socioeconomic Pathways (SSPs)
have been proposed in the literature for different production sectors in
a more comprehensive socio-economic context. We consider, on the one
hand, a firm that aims to optimize its emission level under the dou-
ble objectives of maximizing its production profit and respecting the
emission mitigation scenarios. Solving the penalized optimization prob-
lem provides the optimal emission according to a given SSP benchmark.
On the other hand, such transitions affect the firm’s credit risk. We
model the default time by using the structural default approach. We are
particularly concerned with how, by following different SSPs scenarios,
the adopted strategies may influence the firm’s default probability.

Keywords: Climate risk, transition risk, credit risk, Shared Socioeconomic
Pathways, carbon emission reduction, optimal production profit, structural
credit model.
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1 Introduction
The context of CO2 emission scenario.
The continuous increase in anthropogenic greenhouse gas (GHG) emissions
over the two last centuries is leading to climate change, characterized by an
increase in the average surface temperature of the land and oceans. According
to the Intergovernmental Panel on Climate Change [23], the global average
temperature has already increased by 1oC since the pre-industrial era. With-
out proactive measures to limit these CO2 and other GHG emissions, one can
expect global warming of 3 or 4oC, and maybe more, by 2100. This current
global warming is and will continue to profoundly disrupt environmental, geo-
graphical, and economic balances if no mitigation and adaptation measures are
taken. The Paris Agreement at the twenty-first session of the Conference of the
Parties (COP 21) is an important milestone in international climate policy as it
establishes a global mitigation framework towards 2030 and sets the ground for
global warming with stabilization at around 1.5oC only. This idealized scenario
is based on carbon neutrality around 2050, with some variations depending on
the countries and their Nationally Determined Contributions (NDC). There are
many other scenarios, depending on the ecological transition trajectory that
countries, economic actors, and populations will follow. In the most recent sci-
entific literature, these scenarios are known as Shared Socioeconomic Pathways
(SSPs), see [37] and references therein for an overview. In Figure 1, we plot the
global CO2 emissions of different sectors (energy, industrial, residential, and
transportation) and scenarios for members of the Organization for Economic
Co-operation and Development (OECD), [17, 37, 38]. The data is available on
the SSP Public Database https://tntcat.iiasa.ac.at/SspDb. While the impacts
of climate change are already perceptible, these scenarios are essential tools
to help us to understand and anticipate mid-term and long-term consequences
of near-term decisions. Our work aims to quantify how one firm’s transition
effort and strategy facing climate change will propagate to the firm’s credit
risk for a given scenario. Credit risk is the possibility of loss resulting from the
default of a borrower (typically a company) to the lender (typically a bank).
We refer to [28, 39] and references therein for possible modeling approaches to
credit risk (without climate concerns).

Climate risks in finance.
Climate change generates new sources of risk (so-called climate risks), in partic-
ular, physical and transition risks as described by the solemn resounding speech

https://tntcat.iiasa.ac.at/SspDb
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Fig. 1 Historical and scenario-based CO2 emission, from 1980 to 2100, in Mt/yr in the
OECD, according to the activity sectors: Energy (top left), Industry (top right), Residential
Commercial (bottom left), and Transportation (bottom right). Source: Project CMIP 6,
https://tntcat.iiasa.ac.at/SspDb.

by Mark Carney, the former Bank of England Governor [8]. Very quickly, regu-
lators and financial institutions took up the issue and gathered under the aegis
of the Network for the Greening of the Financial System (NGFS) [31]. The
Basel Committee on Banking Supervision published on April 2021 a report [3]
exploring how climate-related risk drivers, including physical risks and transi-
tion risks, can arise and affect both banks and the banking system via micro
and macro-economic transmission channels. In this work, we mainly focus on
the transition risks and explore how to link climate projection scenarios such
as those described in the SSPs by Phase 6 of the Coupled Model Intercom-
parison Project (CMIP 6) into credit risk projections. More specifically, we
provide a quantitative model where the inputs are some desired paths of CO2

emission (et)t≥0, the production characteristics of a company, its sensitivity to
CO2 emissions, its climate-free credit spread, and the outputs are the stochas-
tic evolution of credit spread in an uncertain commercial demand. We consider
a firm that aims to maximize its production profit and at the same time takes
into consideration the CO2 reduction plan described by SSPs. Over-emission
compared to the target may induce a penalty. From the firm’s perspective,
the objective is to determine the optimal strategy for its effective emission by
solving a penalized optimization problem. The credit quality of the firm can
be impacted by such a carbon emission transition via its cash flow. In the clas-
sic structural credit approach of Merton [29] or Black–Cox [5], a default event

https://tntcat.iiasa.ac.at/SspDb
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occurs when the firm’s value is below its debt level. We describe the firm’s
value process as the discounted value of all its future cash flow according to the
optimal emission and production profit and study the corresponding default
probability.

The optimal production problem to maximize the expected profit of a com-
pany is well studied, see for example Guo and Pham [19]. We suppose that
the firm’s production depends on its energy consumption and in particular on
the carbon emission level. We consider, in addition, the over-emission penalty
under certain probabilistic risk measure constraints in the spirit of Föllmer and
Leukert [14], where a loss function is concerned. The optimal emission strategy
is obtained by adopting Pontryagin’s maximum principle approach [35] which
is a standard method in optimal control theory, especially for convex-type fea-
tures. We then follow the classic structural models in credit risk to compute the
climate-related default probability of the firm and show by numerical examples
the impact of different relevant parameters and SSPs scenarios on the default
probabilities and intensities. In this paper, we focus on the impact of transi-
tion risk and ignore at this stage the possible physical risk and related losses
which may be caused by extreme weather. In other words, the joint influence
of both transition and physical risks is not in the scope of this paper and will
be explored in future works. Suggestions about how to combine both are given
in section 3.

State of the art.
Quantitative modeling of the climate change impact on banking is in its
infancy, see [7] for a review of the challenges. Several works have performed
a thorough qualitative analysis, see for example [2], [30], [10]. We differ from
them by providing a more quantitative description of the transmission mech-
anism from transition risk to credit risk. Very recently, NGFS has reported
that transition scenarii should significantly impact the Gross Domestic Prod-
uct [33], and presumably the credit risk [32] but without precise quantitative
assessment for the latter: these references highlight the primary importance of
the topics. In [16], the authors proposed an extended (top-down) approach to
the usual credit models by incorporating new factors for physical and transition
risks, with suggestions for estimating these extra factors’ characteristics. On
the other hand, bottom-up approaches attempt to start from financial state-
ments and balance sheets (to be impacted by shocks or climate scenarios), to
derive the firm’s value, and then infer its default probability and credit risk.
Very recently, a statistical approach has been conducted by the European Cen-
tral Bank [1] on 4 million companies by calibrating a multivariate econometric
model. Although intuitively meaningful, it leads to disappointing results on
the default probability (the R squared is about 11.9%, see [1, Table 4, p.85]).
This bottom-up approach has been developed by [4] in the first reference arti-
cle on climate stress tests, see also [36] for the Dutch banking system. In [6],
the authors study the credit risk sensitivity of nearly 800 companies to the
price of carbon and look closely at the impact on the balance sheet. Such an
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analysis implicitly assumes a lack of adaptation of the firm to carbon prices,
see also the recent literature review summarized in [6, Figure 3]. The latter
paper is presumably the closest to ours, but still, our contribution is differ-
ent. Dealing also with a bottom-up approach, we model the firm’s response
(by optimizing its production accordingly) to a target CO2 trajectory and an
announced climate policy. The firm’s response (see Proposition 2) may depend
on its activity sector and parameters. As often pointed out in this field, to
enable climate risk management, some actors need a simple but meaningful
model (provided here) with a small number of features and parameters, as the
data is often deficient or provided at an excessively low granularity.

Organization of the paper.
The models and the main results are presented in section 2. The production
model and the optimization problem are introduced in section 2.1 while the
optimal emission strategies are presented in section 2.2, first in the general
case, and then in a special case where a closed-form formula can be obtained.
Section 2.3 focuses on credit risk and default probability. Finally, numerical
applications are given in section 3 illustrating the main results.

2 Model and results

2.1 Production and carbon emission constraint
Let us fix a probability space (Ω,A,P) equipped with a filtration F = (Ft)t≥0
satisfying the usual assumptions. We consider a firm whose production P =
(Pt, t ≥ 0) depends on its energy consumption and in particular on its effec-
tive CO2-emission volume γ = (γt, t ≥ 0), and solves the following stochastic
differential equation (SDE),

dPt = Pt (µ (t, Pt, γt) dt+ σdWt) , P0 > 0, (1)

where γt is the instantaneous emission rate at time t, W = (Wt, t ≥ 0) is
an F-Brownian motion representing the demand and supply uncertainty for
the production and σ is a positive constant volatility parameter. The emission
rate is in general positive. The function µ : (t, x, y) ∈ R+ × R+ × R+ → R
characterizes the production rate and satisfies the local Lipschitz condition on
x, i.e., for all t ≥ 0,

∀y ∈ R,∀x, x′ ∈ R+, |µ(t, x, y)− µ(t, x′, y)| ≤ K|x− x′|, (2)

for an independent positive constant K. We suppose in addition that for any
t ∈ R+, µ(t, ·, ·) is of class C1. Empirical studies show that overproduction
can lead to a decrease in production rate, for example, due to excess supply,
whereas the effect of emissions on production growth is positive (see, e.g., [24]).
We thus suppose that µ is decreasing with respect to the production P and
increasing with respect to the emission γ.
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In response to the greenhouse gas emission reduction target, the firm has
an objective emission plan described by e = (et, t ≥ 0), which represents the
emission benchmark suggested by an SSP projection or accredited to the firm
by the European Commission. This quantity could be deterministic or stochas-
tic, meaning that the allowances are fixed or recommended with a certain
tolerance by regulation. The firm must monitor its emission evolution trajec-
tory γt compared to the objective benchmark et at any time t ≥ 0. In this
paper, we consider the effective emission which is in general supposed to be
positive. However, in other contexts such as carbon sequestration, or the emis-
sion allowance compensation within the European Emission Trading System
(ETS), the SSPs may take negative values (see, e.g., Figure 1 Energy sector).
In other words, the objective emission et may be negative, meaning that it has
to be considered as net emission, once all processes related to compensation
and carbon capture have been taken into account. We suppose, in addition,
that e is bounded: this technical condition is anything but a restriction in
practice. Exceeding the allocated benchmark can induce penalty losses to the
firm as it may need to pay for the carbon tax or to purchase an extra quantity
of emission allocation through ETS. In the meantime, if the effective emis-
sion is lower than the reference value, then the firm can obtain a certain form
of award for its effort from regulators to stimulate additional future actions1.
These regulation rules suggest measuring the impact of effective emission tran-
sition trajectory on the firm’s financial plan by using a loss function related to
risk measures. In the literature, we often focus on the downside risk by using
loss functions such as expected shortfall at a terminal date, see for example
[11, 14]. In our case, we may also take into account the possibility of an upside
award so that the loss function can take both positive and negative values, as
in [15, section 4.9]. More precisely, concerning the regulation risk constraints,
the evolving emission trajectory is tracked continuously and the penalty is
described by a loss function ` : R → R which is an increasing and convex
function with standardization condition `(0) = 0. In addition, we assume the
following technical assumption that the loss function ` is of quadratic growth
at most, i.e., `(x) = O(|x|2) as |x| → +∞.

The firm’s goal is to maximize its production profit and, at the same time,
manage its effective emission level by taking into account the advertised con-
straints. We let the instantaneous profit of the firm be described by a function
π : R+ → R on the production P . We suppose that it is increasing and concave,
and belongs to C1, the class of all differentiable functions whose derivative
is continuous, as in [19]. In addition, π satisfies the Inada conditions, i.e.,
limx→0+ π

′(x) = +∞ and limx→+∞ π′(x) = 0, which is a standard assump-
tion on production functions in economic growth theory, initially proposed by
Inada [22].

We also consider the firm’s production cost function C : R+ → R+ on
the effective emission which represents the firm’s energy-related costs such as
supply and use, and the technical reform cost to reduce the emission during its

1see https://ec.europa.eu/clima/policies/effort/regulation_en.

https://ec.europa.eu/clima/policies/effort/regulation_en
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production process. Naturally, the cost function C is increasing with respect to
emission. In addition, we suppose that C is convex, which is consistent with the
principle that the marginal cost is higher and higher with the emissions because
we use less and less efficient and more and more emitting energy sources. At
this stage, we do not consider other types of costs such as the labor cost of the
firm.

Given a benchmark emission projection, the firm chooses its optimal effec-
tive emission to maximize the expected profit by controlling the related
production, cost, and emission constraints. The optimization problem is pre-
sented as below. We consider the profit maximization over all future time
under the pathwise emission constraint and define the objective optimization
function as

J(γ) := E
[∫ ∞

0

e−rt (π(Pt)− C(γt)− `(γt − et)) dt

]
(3)

where r > 0 is a constant2discount rate. We aim to solve

Ĵ = sup
γ∈A

J(γ) (4)

where A is the admissible strategy set for the positive progressively measurable
processes γ such that for some η ∈ (0, r),

E
[∫ ∞

0

e−ηtγ2t dt

]
< +∞.

Note that a bounded emission process γ, as in Proposition 2, automatically
fulfills the integrability condition above. We may also consider a fixed hori-
zon time such as 2050, the year by which the COP wishes the world to be
carbon-neutral. In this case, besides the path-wise constraint, an extra penalty
function could be included for the total cumulative emission at the terminal
time (see Remark 1 for details).

2.2 Optimal emission strategy
In this section, we solve the optimization problems and characterize the opti-
mal effective emission. We begin by using Pontryagin’s maximum principle
approach [35]. It provides a general set of necessary conditions for the optimal
strategy based on perturbation arguments (first-order optimality condition).
We then present an explicit model where the optimal emission strategy is
obtained in closed form.

2This rate could be a deterministic function of time without significantly changing the following
results.
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2.2.1 Stochastic Pontryagin’s maximum principle

We now deal with the optimization problem (4). From (1), the log-production
p := logP solves

dpt = µ(t, pt, γt)dt+ σdWt, (5)

where the drift coefficient satisfies µ(t, x, y) := µ(t, ex, y) − 1
2σ

2 for every t ∈
R+, x ∈ R, y ∈ R+. We then define accordingly, for every x ∈ R, the auxiliary
cost function π(x) := π(ex) so that

π(Pt) = π(pt). (6)

We characterize the optimal effective emission and we are willingly a bit
vague about the growth assumptions on the functions `, C, π, and µ (and their
derivatives). These assumptions and some monotone conditions play an impor-
tant role in justifying the next computations related to Pontryagin’s maximum
principle and ensuring the existence of the control and adjoint process Y in a
suitable weighted L2 space for the infinite horizon problem, see for instance
the book of [34] for a broad account on the subject. The assumptions are
similar to those of Proposition 1. The take-home message from the following
derivation is rather to get the optimality condition equation characterizing the
optimal emission in a fairly general situation. Checking these technical con-
ditions would be done in a second step, according to the cost and dynamics
coefficients.
Proposition 1. For any γ ∈ A, let Y·(γ) denote the conditional expectation

Yt(γ) = E
[∫ ∞

t

e−ru+
∫ u
t
∂xµ(t,ps,γs)ds π′(pu)du | Ft

]
, t ≥ 0 (7)

which is an F-adapted càdlàg process and is supposed to satisfy
E
[∫∞

0
Yt(γ)2dt

]
< +∞. If γ̂ is an optimal control, then

J(γ̂) = sup
γ∈A

J(γ),

so that it solves

C′(γ̂t) + `′ (γ̂t − et) = ert∂yµ (t, p̂t, γ̂t)Yt(γ̂), dt⊗ dP a.e., (8)

where dp̂t = µ (t, p̂t, γ̂t) dt+ σdWt.

Proof For two given controls γ, γ̃ ∈ A, define the directional derivatives for the
log-production as

ṗt := ∂εp
γ+εγ̃
t

∣∣∣
ε=0

.

From (5), it holds that

dṗt = (∂xµ (t, pt, γt) ṗt + ∂yµ (t, pt, γt) γ̃t) dt, ṗ0 = 0. (9)
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Similarly, we define the objective value function

J̇ (γ, γ̃) := ∂εJ (γ + εγ̃)|ε=0 ,

which from (3) equals

J̇ (γ, γ̃) = E
[ ∫ ∞

0
e−rt

(
π′ (pt) ṗt − C′(γt)γ̃t − `′ (γt − et) γ̃t

)
dt
]
. (10)

By the definition of Y·(γ), the process

Mt = Yt(γ) +

∫ t

0
e−ru+

∫ u
t
∂xµ(t,ps,γs)ds π′(pu)du, t ≥ 0

is an F-martingale and
lim

t→+∞
Yt(γ) = 0.

Observing by (9) that Y0(γ)ṗ0 = 0 and that ṗ is a finite-variation process, we apply
Ito’s formula on Yt(γ)ṗt,

0 = E
[∫ ∞

0
(Yt(γ)dṗt + ṗtdYt(γ))

]
= E

[ ∫ ∞
0

Yt(γ)
(
∂xµ (t, pt, γt) ṗt + ∂yµ (t, pt, γt) γ̃t

)
dt

−
∫ ∞
0

ṗt
(
e−rtπ′ (pt) + ∂xµ (t, pt, γt)Yt(γ)

)
dt
]

= E
[ ∫ ∞

0
Yt(γ)∂yµ (t, pt, γt) γ̃tdt−

∫ ∞
0

e−rtπ′ (pt) ṗtdt
]
,

using that E
[∫∞

0 ṗtdMt
]
= 0, which implies that

E
[∫ ∞

0
e−rtπ′ (pt) ṗtdt

]
= E

[∫ ∞
0

Yt(γ)∂yµ (t, pt, γt) γ̃tdt

]
.

We can then rewrite (10) as

J̇ (γ, γ̃) = E
[ ∫ ∞

0

(
∂yµ (t, pt, γt)Yt(γ)− e−rtC′(γt)− e−rt`′ (γt − et)

)
γ̃tdt

]
,

which holds for any control process γ̃ ∈ A. Consequently, if γ̂ is an optimal control,
then necessarily dt⊗ dP a.e.

∂yµ (t, p̂t, γ̂t)Yt(γ̂) = e−rt
(
C′(γ̂t) + `′ (γ̂t − et)

)
where Yt(γ̂) is written as

Yt(γ̂) = E
[∫ ∞
t

e−ru+
∫ u
t
∂xµ(t,p̂s,γ̂s)ds π′(p̂u)du | Ft

]
.

In other words, γ̂ is the solution to (8), which ends the proof. �

Remark 1. We can consider an alternative problem with a finite horizon T >
0 and introduce the effective cumulative emission process up to time t as
Γt :=

∫ t
0
γsds. It is then possible to incorporate a final regulation for the

cumulative emission compared to the target Et =
∫ t
0
esds at the horizon time.

The objective function is then defined as

JT (γ) := E

[∫ T

0

e−rt (π(Pt)− C(γt)− `1(γt − et)) dt− e−rT `2 (ΓT − ET )

]
,

(11)
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where `1 and `2 are two loss functions and the optimization problem becomes

ĴT = sup
γ∈AT

JT (γ), (12)

where AT is the admissible strategy set such that for any T > 0, E[Γ2
T ] < +∞,

and that for any x ≥ 0,
∫ T
0
|µ (t, x, γt)|2 dt < +∞ almost surely. As Proposition

1, the solution to the finite time horizon can be characterized as below. The
difference lies in the extra terminal constraint. More precisely, defining

Y 1
t (γ) = E

[∫ T

t

e−ru+
∫ u
t
∂xµ(t,ps,γs)ds π′(pu)du | Ft

]
.

If γ̂ is an optimal solution to (12) then it must satisfy

e−rt
(
C′(γ̂t) + `′1

(
γ̂t − et

))
+ E

[
e−rT `′2

(
Γ̂T − ET

)
| Ft

]
= ∂yµ (t, p̂t, γ̂t)Y

1
t (γ̂). (13)

2.2.2 Profit maximization in an explicit model

We now consider an explicit model with logarithmic profit function π(x) =
log x and we let the cost and penalty be quadratic functions given respectively
as

C(x) =
x2

2
and `(x) = ω

(x+)2

2
. (14)

The coefficient ω ≥ 0 characterizes the penalty force of the CO2 emission con-
straint and the function x+ denotes max(x, 0). We choose a quadratic penalty
function to accentuate higher quantities of over-emission compared to the
benchmark. The objective function (3) rewrites as

J(γ) = E

∫ ∞
0

e−rt
(

logPt −
γ2t
2
− ω

(
γt − et

)2
+

2

)
dt

 . (15)

We also assume that the drift function for the log-production (5) to have
is affine, that is

µ(t, x, y) = a+ bx+ cy, t ∈ R+, x ∈ R, y ∈ R+. (16)

The coefficient a ≥ 0 corresponds to an average production level, b ≤ 0 is a
mean-reverting parameter with a negative sign meaning that over-production
may deteriorate the production ability, and c ≥ 0 represents the firm’s
production dependence on CO2 emission.
Remark 2 (Comparison with the literature). As explained, the model above
is inspired by intuitive modelling arguments. Some models in the literature
also support this choice. For instance, in [9, section 1.3.2.], the authors, while
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explaining the different mechanisms of carbon markets, propose a simple model
similar to ours for the firm’s profit. Using our notations, they assume that the
firm’s profit (see (25) for our expression) is

V (γ) = a+ bγ − γ2 − θγ.

The first linear term is linear in the emission γ as they also (see (16)) assume
that a higher production generates more emission, and thus increases revenue.
The third term corresponds to the cost of production, assumed also (see (14))
to be quadratic in production levels, and directly correlated with emissions. θ
refers to the carbon price.

Proposition 2. Suppose r > b and consider the optimization problem (15)-(16).
The optimal emission strategy γ̂ is given by

γ̂t = min

{
c

r − b
,

1

1 + ω

(
ω et +

c

r − b
)}

. (17)

Proof From Proposition 1, we obtain that the conditional expectation (7) is a deter-
ministic function and is given by Yt(γ) = e−rt/(r − b) for any γ ∈ A. Then, solving
(8) leads to an explicit form for γ̂t, see (17).

We verify below that γ̂t is indeed an optimal strategy for the optimization
problem. Let γ ∈ A be any admissible strategy to the problem (15). Then

J(γ̂)− J(γ) = E
[∫ ∞

0
e−rt

((
p̂t − pt

)
− 1

2

(
γ̂2t − γ2t

)
− ω

2

(
(γ̂t − et)2+ − (γt − et)2+

))
dt

]
(18)

where p̂t is given by
dp̂t = (a+ bp̂t + cγ̂t)dt+ σdWt.

By Ito’s formula, we have

d
(
e−rt(p̂t − pt)

)
= e−rt

(
(b− r)(p̂t − pt) + c(γ̂t − γt)

)
dt. (19)

Since γ ∈ A and

E
[
(

∫ ∞
0

e−ηt|γt|dt)2
]
≤ (

∫ ∞
0

(e−ηt/2)2dt)E
[∫ ∞

0
(e−ηt/2|γt|)2dt

]
< +∞ (20)

for some η ∈ (0, r), the integral
∫∞
0 e−ηt|γt|dt is finite almost surely, the same holds

obviously for γ̂ since the benchmark e is bounded. By solving the linear equation
(19), we get

e−rt(p̂t − pt) = e−rt
∫ t

0
eb(t−s)c(γ̂s − γs)ds,

|e−rt(p̂t − pt)| ≤ ce−rt
∫ t

0
|γ̂s − γs|ds ≤ ce(η−r)t

∫ +∞

0
e−ηs|γ̂s − γs|ds

using b ≤ 0. Hence, since r > η,

lim
t→+∞

e−rt(p̂t − pt) = 0, a.s.
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which leads to ∫ ∞
0

e−rt
(
(b− r)(p̂t − pt) + c(γ̂t − γt)

)
dt = 0, a.s. (21)

owing to (19).
So (18) can be rewritten as

J(γ̂)− J(γ)

= E
[∫ ∞

0
e−rt

( c

r − b
(
γ̂t − γt

)
− 1

2

(
γ̂2t − γ2t

)
− ω

2

(
(γ̂t − et)2+ − (γt − et)2+

))
dt

]
= E

[∫ ∞
0

e−rt
(
f(γ̂t, et)− f(γt, et)

)
dt

]
where

f(x, e) :=
c

r − bx−
x2

2
− ω

2
(x− e)2+. (22)

We note that for a given e, the maximal value of x 7→ f(x, e) is attained at

x = min

{
c

r − b ,
1

1 + ω

(
ω e+

c

r − b
)}

,

which implies that J(γ̂)− J(γ) ≥ 0 for any γ ∈ A and concludes the proof. �

Remark 3 (On the estimation of the model’s parameters). Assume that we are
given an n-dimensional vector of the firm’s log-production (pti)i=1,...,n along
with its carbon emission (γti)i=1,...,n. The typical time-step ti+1− ti would be
one year. Such data can be retrieved through standard financial data providers:
this is easy for companies with a typical flagship product (for example, a
car manufacturer), this is more complicated for companies with numerous
sales products. Then, estimating a, b, c, σ in (16) boils down to estimate the
parameters of a linear model, using for instance log-likelihood type methods
such as the Shoji–Ozaki method, see [20, section 2.3.]; see also [25] for an
overview of statistical methods for stochastic processes. Observe that getting
a, b, c is equivalent to a regression problem of the response (pti+1 − pti) using
the co-variates pti , γti .

In Proposition 2, we note that the constant value

γ :=
c

r − b
(23)

appearing in (17), corresponds to a critical level for the firm’s optimal emission
strategy. It represents its desired emission level without any carbon penalty,
i.e., when ω = 0.

• If the benchmark et is above γ, then the optimal strategy is to remain at
the constant level γ. No efforts are required for the company. In particular,
when c = 0, the firm’s production does not depend on emission at all, and
the optimal emission is expected to be zero.

• On the contrary, when et is below γ, the regulation requires a stricter emis-
sion reduction plan. The optimal strategy is then an affine function of the
benchmark.
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The penalty weight ω also plays an essential role. A larger value of ω implies
that the firm will adopt a stronger mitigation strategy. In particular, when ω
tends to infinity, the optimal emission converges to the benchmark.

Remark 4. The positive function ` defined in (14) focuses on the downside
penalty corresponding to the out-performance part of the effective emission
compared to the SSP benchmark. It is possible to describe the compensation
or award when the firm’s emission is below the benchmark. In such a case, one
may consider instead a more general function ` that can take both positive
and negative values such as

`(x) = ω1
(x+)2

2
− ω2

(x−)2

2

where ω1 and ω2 are two positive real numbers and x− = max(−x, 0). We note
that when ω2 < 1, x 7→ `(x) + 1

2x
2 is a convex function as assumed in section

2.1. Similar to the proof of Proposition 2, we replace the function (22) by

f(x, e) :=
c

r − b
x− x2

2
− ω1

2
(x− e)2+ +

ω2

2
(x− e)2−.

Then, when 0 ≤ ω2 < 1, the explicit optimal effective emission reads as

γ̂t =

{
1

1+ω1
(ω1et + γ), if et ≤ γ,

1
1−ω2

(γ − ω2et), if et > γ.
(24)

In particular, when et is above γ, the optimal emission γ̂ is mitigated with
respect to γ (instead of remaining constant γ as in Proposition 2) when the
reward force parameter ω2 becomes strictly positive, i.e., ω2 ∈ (0, 1), since

1

1− ω2
(γ − ω2et) < γ < et.

The comparison with Proposition 2 shows that adding the reward mechanism
when the firm achieves better mitigation results (besides the penalty upon
over-emission) can urge firms to attain carbon neutrality.

2.3 Credit risk under emission transition
In this section, we study the firm’s credit risk induced by the transition towards
the low-carbon emission and production pattern. We use the effective produc-
tion obtained in the previous optimization problem to deduce the firm’s value
process and then compute the default probability in a structural modeling
approach.
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2.3.1 Firm’s value process

In the classical structural credit models such as Merton [29] and Black-Cox [5]
models, a default event is triggered when the firm’s value no longer covers the
debt reimbursement. In the following, we describe the value process of the firm
by using the discounted cash flow approach which traces back to Keynesian
economics. More precisely, let the firm’s value V γ = (V γt , t ≥ 0) be defined as
the conditional discounted value of all future cash flows including the global
production income deduced by the cost and penalty depending on the effective
emission γ, that is

V γt = E
[∫ ∞

t

e−r(u−t) (π(Pu)− C(γu)− `(γu − eu)) du | Ft
]
. (25)

At the initial time t = 0, we have V γ0 = J(γ). The firm would produce accord-
ing to the optimal production quantity associated with the emission strategy
γ̂ obtained from the maximization procedure in Propositions 1 or 2.

For any ν ∈ A and any t ≥ 0, the firm’s dynamic optimal value (viewed at
time t) is given by

V̂t(γ) = ess sup
γ∈A(t,ν)

V γt

= ess sup
γ∈A(t,ν)

E
[∫ ∞

t

e−r(u−t) (π(pu)− C(γu)− `(γu − eu)) du | Ft
]

(26)

where the set A(t, ν) := {γ ∈ A such that γ·∧t = ν·∧t} represents all controls
that coincide with ν up to time t. By the dynamic programming princi-
ple exposed in El Karoui and Quenez [13], we have that for any γ ∈ A,
the process

(
V̂t(γ) +

∫ t
0
e−r(u−t) (π(pu)− C(γu)− `(γu − eu)) du, t ≥ 0

)
is a supermartingale. In particular, for an optimal γ̂,(
V̂t(γ̂) +

∫ t
0
e−r(u−t)

(
π(p̂u)− C(γ̂u)− `(γ̂u − eu)

)
du, t ≥ 0

)
is a martingale.

The value process associated with γ̂ by Proposition 1 or 2 corresponds to the
firm’s optimal value.
Proposition 3. Let γ̂ be an optimal emission strategy solving (3). Then, for
any t ≥ 0,

E
[
V̂t(γ̂)

]
= E

[
Vt
γ̂
]
. (27)

Proof By definition of the essential supremum in (26), we have E[V̂t(γ̂)] ≥ E[Vtγ̂ ]
for any t ≥ 0. To prove the converse inequality, fix t ≥ 0 and observe that for any
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γ ∈ A(t, γ̂),

E
[
V γt +

∫ t

0
e−r(u−t) (π(pu)− C(γu)− `(γu − eu)) du

]
= E

[∫ ∞
0

e−r(u−t) (π(pu)− C(γu)− `(γu − eu)) du
]

≤ E
[∫ ∞

0
e−r(u−t) (π(p̂u)− C(γ̂u)− `(γ̂u − eu)) du

]
where the last inequality stems from the optimality of γ̂ in the optimization problem
(3). By the definition of A(t, γ̂), it holds γ̂s = γs for any s ≤ t, we then obtain from
the above inequality

E[V γt ] ≤ E
[∫ ∞
t

e−r(u−t) (π(p̂u)− C(γ̂u)− `(γ̂u − eu)) du
]
= E[V γ̂t ], (28)

since

E
[∫ t

0
e−r(u−t) (π(pu)− C(γu)− `(γu − eu)) du

]
= E

[∫ t

0
e−r(u−t) (π(p̂u)− C(γ̂u)− `(γ̂u − eu)) du

]
.

Note by (26) that E[V̂t(γ̂)] = E[ess supγ∈A(t,γ̂) V
γ
t ]. By using a measurable selection

argument (see, e.g., [40]), for any ε > 0, there exists γε ∈ A(t, γ̂) such that

ess sup
γ∈A(t,γ̂)

V γt ≤ V
γε
t + ε.

We then have from (28) that

E
[
ess sup
γ∈A(t,γ̂)

V γt

]
≤ E

[
V γεt

]
+ ε ≤ E[V γ̂t ] + ε.

From the arbitrariness of ε > 0, we obtain the following inequality

E
[
V̂t(γ̂)

]
= E

[
ess sup
γ∈A(t,γ̂)

V γt

]
≤ E[V γ̂t ],

and hence the required equality (27). �

2.3.2 Structural credit model and default probability

In a structural credit model, the firm is considered to default when its value
process gets below a default threshold. We let the default barrier be described
by a deterministic function L(t) which depends on time and represents the
minimal level of the firm’s liability payment such as the debt reimbursement
together with labor and other functioning costs (as the operational and capital
expenditure) at time t. When the firm’s value is higher than the threshold,
it is in a financially sustainable situation and can function normally. On the
contrary, when the firm encounters fiscal difficulty, a default event may be
triggered. We are interested in the probability of default (PD in short) at a
certain date t, defined as

PDt = P
(
V γ̂t ≤L(t)

)
. (29)
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This corresponds to the classic Merton model where the default-or-not state of
the firm is determined by the instantaneous value of the firm’s value and the
default threshold. From a regulation viewpoint, financial and insurance insti-
tutions are required by the Solvency II Directive to evaluate their solvency
risk and associated default probability at a certain given time. From a compu-
tational viewpoint, the default probability depends on the distribution of the
firm’s value process V γ̂ at time t. In the next section, we give quasi-explicit
formulas for PDt in the model of Proposition 2. It is expressed as a function
of the SSP describing the target emission scenario (et)t≥0.

In other cases such as the Black–Cox model, the default event depends on
the trajectory of the value process. At a given time t, the firm defaults if its
value has crossed the threshold during the period [0, t], that is,

PDt = P
(
∃s ∈ [0, t] such that V γ̂s ≤L(s)

)
. (30)

We are then concerned with the random default time or first-hitting time τ
with respect to the filtration F given as

τ := inf{t ≥ 0, V γ̂t ≤ L(t)}, (31)

with the convention inf ∅ = ∞. In this case, the first-passage time to the
curved boundary is a deterministic function of time. Such problems are studied
in theoretical and applied probability theory using different approaches (see
for example the book of [26]). Since explicit expressions for the probability
density of the first-passage time can be obtained only in very specific cases,
a computational approach is often required either to approximate the density
function, e.g., [12] or to simulate directly the first-passage time, e.g., [18, 21].

2.3.3 Default probability in the explicit model

We now present the emission-related default probability in the explicit model
as in Proposition 2. We use here a slightly different definition for the value pro-
cess associated with the optimal emission V γ̂ . Instead of choosing a logarithmic
function, the firm’s profit is defined as the average price N > 0 multiplied by
the total production so that

V̂t = E
[∫ ∞

t

e−r(u−t)
(
NP̂u − C(γ̂u)− `(γ̂u − eu)

)
du | Ft

]
. (32)

Suppose that V̂0 > L(0) and recall the expression for the probability of default
(29). We aim to compute the firm’s value (32) by specifying a benchmark et.
Note that if the benchmark is given as a deterministic function, such as in an
SSP scenario, then from (17), the optimal emission γ̂ is also deterministic. We
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then have

V̂t = N

∫ ∞
t

e−r(u−t)E
[
P̂u | Ft

]
du−

∫ ∞
t

e−r(u−t)(C(γ̂u)+`(γ̂u−eu))du. (33)

From (5) and (16), the optimal log-production rewrites as

p̂u = eb(u−t)p̂t +
a

b
(eb(u−t) − 1) + c

∫ u

t

eb(u−v)γ̂vdv + σ

∫ u

t

eb(u−v)dWv.

Hence for every u ≥ t ≥ 0, conditionally on Ft, the optimal log-production p̂u
is Gaussian with mean

eb(u−t)p̂t +
a

b
(eb(u−t) − 1) + c

∫ u

t

eb(u−v)γ̂vdv =: eb(u−t)p̂t +mu,t,

and variance

σ2
u,t :=

σ2

2b

(
e2b(u−t) − 1

)
.

Therefore, concerning the optimal production P̂ , we have

E[P̂u | Ft] = exp

(
eb(u−t)p̂t +mu,t +

σ2
u,t

2

)
.

From (33), the firm’s value with an optimal emission is thus given by

V̂t = N

∫ ∞
t

e−r(u−t) exp

(
eb(u−t)p̂t +mu,t +

σ2
u,t

2

)
du

−
∫ ∞
t

e−r(u−t)

2
(γ̂2u + ω

(
(γ̂u − eu)+)2

)
du

=: h(t, p̂t). (34)

We can then compute the emission-related default probabilities with the
explicit form of the firm’s value V̂ according to the Merton model. Here, the
default probability rewrites as

PDt = P
(
V̂t ≤ L(t)

)
= P

(
p̂t ≤ (h(t, ·))−1(L(t))

)
= Φ

( (h(t, ·))−1(L(t))− ebtp0 −mt,0

σt,0

)
, (35)

where Φ is the cumulative distribution function of a standard normal random
variable.
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3 Numerical illustrations

3.1 SSPs scenarios and optimal emission
We consider the following CO2 emission scenarios which correspond to different
socioeconomic reference pathways provided by CMIP6: SSP1-2.6, SSP2-4.5,
SSP3-LowNTCF, SSP4-6.0, and SSP5-3.4-OS. These scenarios are illustrative
pathways adopted by the IPCC in the sixth Assessment Report indicating the
CO2 concentrations in the atmosphere from lowest (SSP1) to highest (SSP5).
In other words, SSP1 and SSP5 describe respectively economic growth patterns
via sustainable and fossil-fuel pathways. We choose two sectors: Transporta-
tion (Figure 2) and Industrial (Figure 3) sectors for which the year 2015 is
our starting point. For each sector, we consider the above five SSPs includ-
ing two baseline scenarios (Tier 1, c.f. [27]): SSP1-2.6 which is the most
mitigated scenario corresponding approximately to the previous scenario gen-
eration Representative Concentration Pathway (RCP) 2.6, and SSP2-4.5 with
is a moderate scenario similar to RCP-4.5. We also consider three (Tier 2) sup-
plementary scenarios: SSP3-LowNTCF (Near-Term Climate Forcing) which
provides a comparison scenario with high NTCF emissions (notably SOx and
methane), SSP4-6.0 focusing on a socio-economic context of inequality, and
SSP5-34-OS (Overshoot) which allows for a large overshoot by mid-century
followed by substantive policy tools in the latter half of the century.

The numerical computations are based on the explicit model of Proposition
2. We start with the transportation sector. The different emission benchmarks
(left) t 7→ et are normalized so that e0 = γ̂0 = c

r−b (= γ). The associated opti-
mal emission (right) is provided by (17) which is equal to γ if the benchmark
is above and is given as an affine function of et on the contrary case. As one
can observe, for both sectors, the scenario SSP1-2.6 is the hardest benchmark
which imposes immediate reduction from the start date of 2015. For the trans-
portation sector, the scenario SSP4-6.0 imposes no emission constraints and
the optimal emission remains constant at level γ. The situation is similar to the
scenario SSP3-LowNTCF in the industrial sector. Other scenarios correspond
to relatively soft emission constraints with overshoot where the reduction may
begin from a later date. Figure 4 shows the impact of the parameter ω. More
precisely, the optimal emission is decreasing with respect to the penalty force.
In other words, a stronger penalty policy will induce larger emission reductions
from the firm.

3.2 Default probability and intensity
We now plot for different sectors the default probability PDt given by (35).

For our experiments, the default boundary L(t) is determined as follows. We
consider the firm’s default probability without climate concern (that is, ω = 0)
as a baseline where the default intensity λref is supposed to be a fixed reference
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Fig. 2 Transportation sector: SSPs emission scenarios v.s. associated optimal emission.

Fig. 3 Industrial sector: SSPs emission scenarios v.s. associated optimal emission .

Fig. 4 Industrial sector: different optimal emissions w.r.t. ω for scenarios SSP1-26 and
SSP4-60.

value in our numerical tests and is set at 3%. More precisely, we let

P
(
V̂ ref
t ≤ L(t)

)
= 1− e−λref t,
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where V̂ ref
t corresponds to the optimal value without any emission constraint,

i.e., ω = 0, so that the value of L(t) is obtained. We have by (34) that

L(t) = h

(
t,Φ−1(1− e−λref t)σt,0 +

ebt − 1

b

(
a+

c2

r − b
)

+ ebtp0

)
,

using that mt,0 = ebt−1
b

(
a+ c2

r−b
)
when ω = 0 and σt,0 is independent of et.

In Figures 5 and 6, we plot for the two sectors Transportation and Industrial
the default probability PDt given by (35) and the respective intensity t 7→ λt
for the different scenarios. The intensity λt is computed as

P(V̂t ≤ L(t)) = 1− exp

(
−
∫ t

0

λsds

)
.

The integral
∫ t
0
λsds is approximated with a left-point rectangle scheme, i.e.,

between two times 0 ≤ si−1 < si ≤ t, we have

λsi−1 =
1

si − si−1
log

(
P(V̂si−1

> L(si−1))

P(V̂si > L(si))

)
.

As expected the initial value of the intensity coincides with the prefixed value
λ0 = 3%. When time evolves, the more constrained scenarios are associated
with larger default probabilities and higher intensities. The SSP1-2.6 scenario
is the most impacted one, which is quite natural given its immediate and hard
reduction strategy. The scenario which follows is SSP5-3.4-OS: although this
benchmark allows for a large overshoot up to 2060, the relatively strict mit-
igation during the latter period makes the default probability and intensity
increase significantly. Observe that SSP4-6.0 corresponds to a fixed intensity of
λ0 = 3% in the Transportation sector and the same phenomenon appears for
the SSP3-LowNTCF scenario in the Industrial sector, as the optimal emission
is unconstrained in these two cases. We note that in this study we only inves-
tigate the transition risk related to the firm’s mitigation strategy and ignore
the possible physical risks under each scenario for example the more frequent
damage and natural catastrophes under scenarios with higher temperature
increases such as an SSP5 scenario (see for example [1] for more discussions).
Although physical climate risk is not the main modeling concern of this work,
it could easily be incorporated consistently with our approach, by adding a
suitable physical climate damage contribution in the firm’s value (32)-(34), to
broadly account for climate risks.
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Fig. 5 Transportation sector: default probability and associated intensity.

Fig. 6 Industrial sector: default probability and associated intensity.

Figure 7 illustrates the default intensity for the industrial sector under
the impact of parameter c representing the firm’s dependence on emission
and ω representing the penalty force. We consider the hardest scenario SSP1-
2.6 and a moderate one SSP4-6.0. For both scenarios, the increase of one of
the two parameters implies a higher default intensity and this phenomenon is
particularly accentuated when the firm’s production is highly dependent on
the CO2 emission (when c is large). For such a firm, a strong penalty policy
together with a hard mitigation scenario such as SSP1-2.6 (left) could have a
significant impact on the firm’s default probability.
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Fig. 7 Industrial sector: intensity surface at 2030 for the scenarios SSP1-26 and SSP4-60

We finally present in Figure 8 the default intensity obtained in the path-
dependent Black-Cox model (30) in comparison with the Merton model (29):
since in the Black-Cox approach the default event is monitored throughout
a given period and not only at the end, this naturally gives rise to a more
important measure of credit risk. For our experiments, the default event is
considered at annual intermediate dates, and the default probability is then
computed as a discrete approximation of (30) given by the following definition
of default probability:

t 7→ P
(
∃s = t0, t1, ..., tn ∈ [0, t] : V̂s ≤ L(s)

)
= PDt.

The Black-Cox default intensity is then obtained as

1− PDtk+1
= (1− PDtk) exp (−λtk(tk+1 − tk)) .

The two scenarios in Figure 8 are SSP1-2.6 and SSP5-3.4-OS (industrial sector)
which are the most impacted scenarios by the mitigation strategy (as shown in
Figure 6). As expected, we observe that the possibility to include intermediate
default will induce a gap – for both scenarios – between the default probabilities
and intensities obtained in the two credit models. Anyway, choosing a Merton
or Black-Cox approach is up to the end-user of credit risk; in our “SSP emission-
to-firm production” modeling both are possible and allow in all cases to bridge
a projected transition scenario and the credit risk of a company in a given
sector.
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Fig. 8 Industrial sector: Black–Cox default probability and associated intensity for the
industrial sector.

4 Conclusion
This paper focuses on a firm’s transition risk towards low-carbon production
and shows how to quantify the credit risk embedded in the CO2 emission mit-
igation strategy. We consider a profit maximization problem under some loss
constraints (related to CO2 emission) and then use the obtained optimal emis-
sion to construct the firm’s value process and investigate default probabilities
and intensities under different SSPs scenarios. An explicit model of production
is proposed to derive closed-form computation for related quantities: this is a
valuable building block in the climate risk-credit risk nexus.

We conclude that the loss penalty imposed on over-emission compared
to the benchmark may urge the firm to decrease its effective CO2 emission.
The adopted strategy depends on the relevant SSP scenario and the firm’s
production characteristics. A suitable choice for the loss function, such as
incorporating some kind of reward when under-emitting, appears to stimulate
more efficiently the firm to achieve the carbon-neutral objective. Concern-
ing credit risk, the more constrained mitigation scenarios are associated with
higher default probability and intensity, especially for firms whose production
is closely related to emission and when the penalty force is strong. A higher
value of penalty force enforces the firm to perform a larger emission reduction
but increases its default risk.

In this work, we do not investigate the physical risk related to different
SSPs scenarios and their impact on the credit quality and default probability:
however, the model we have proposed could be adapted to analyze the presence
of joint impact by both physical and transition risks, see remarks in section
3. Moreover, in the numerical examples, we have presented, we consider the
reference intensity to be constant for illustration, it could straightforwardly
be extended to account for the credit intensity curve. A more comprehensive
default model including stochastic intensity could also be more realistic. These
points are left to future works.
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