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Abstract

This paper investigates the impact of transition risk on a firm’s low-carbon production. As the
world is facing global climate changes, the Intergovernmental Panel on Climate Change (IPCC)
has set the idealized carbon-neutral scenario around 2050. In the meantime, many carbon
reduction scenarios, known as Shared Socioeconomic Pathways (SSPs) have been proposed in
the literature for different production sectors in more comprehensive socio-economic context. In
this paper, we consider, on the one hand, a firm that aims to optimize its emission level under
the double objectives of maximizing its production profit and respecting the emission mitigation
scenarios. Solving the penalized optimization problem provides the optimal emission according
to a given SSP benchmark. On the other hand, such transitions affect the firm’s credit risk. We
model the default time by using the structural default approach. We are particularly concerned
with how the adopted strategies by following different SSPs scenarios may influence the firm’s
default probability.
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1 Introduction

The context of CO2 emission scenario. The continuous increase in anthropogenic greenhouse
gas (GHG) emissions over the two last centuries is leading to a climate change, that is characterized
in particular by an increase in the average surface temperature of the land and oceans. According
to the Intergovernmental Panel on Climate Change [21], the global average temperature has already
increased by 1oC since the pre-industrial era. Without proactive measures to limit these CO2 and
other GHG emissions, one can expect a global warming by 3 or 4oC, and maybe more, by 2100.
This current global warming is and will continue to profoundly disrupt environmental, geographical
and economic balances, if no mitigation and adaptation measures are taken. The Paris Agreement
at the twenty-first session of the Conference of the Parties (COP 21) is an important milestone in
international climate policy as it establishes a global mitigation framework towards 2030 and sets the
ground for a global warming with stabilization around 1.5oC only. This idealized scenario is based on
a carbon neutrality around 2050, with some variations depending on the countries according to their
Nationally Determined Contributions (NDC). Actually there are many other scenarios, depending
on the ecological transition trajectory that countries, economic actors and populations will follow.
In the most recent scientific literature, these scenarios are known as Shared Socioeconomic Pathways
(SSPs), see [32] and references therein for an overview. See Figure 1 for the global CO2 emission
in different sectors, in the Organization for Economic Co-operation and Development (OECD),
according to the scenarios chosen, [32, 33, 16]: the data are available on the SSP Public Database
https://tntcat.iiasa.ac.at/SspDb. While the impacts of climate change are already perceptible,
these scenarios are essential tools to help us to understand and anticipate mid-term and long-term
consequences of near-term decisions. Our work aims to quantify how one firm’s transition effort and
strategy facing the climate change, in one of these scenarios, will propagate to the firm’s credit risk.
Credit risk is the possibility of loss resulting from the default of a borrower (typically a company)
to the lender (typically a bank): see [25, 34] and references therein for possible modeling approaches
to credit risk (without climate concerns).

Climate risks in finance. Climate change generates new sources of risk (so-called climate risks),
in particular physical and transition risks as described by the solemn resounding speech by Mark
Carney, the former Bank of England Governor [8]. Very quickly, regulators and financial institutions
took up the issue, and gathered under the aegis of the Network for the Greening of the Financial
System (NGFS) [28]. The Basel Committee on Banking Supervision published in April 2021 a report
[3] exploring how climate-related risk drivers, including physical risks and transition risks, can arise
and affect both banks and the banking system via micro and macro-economic transmission channels.
In this work, we mainly focus on the transition risks and explore how to link projection scenarios
such as those described in the SSPs by Phase 6 of Coupled Model Intercomparison Project (CMIP
6) into credit risk projections for firms. More specifically, we provide a quantitative model where the
inputs are some desired paths of CO2 emission (et)t≥0, the production characteristics of a company,
its sensitivity to CO2 emissions, its climate-free credit spread and the outputs are the stochastic
evolution of credit spread in an uncertain commercial demand. We consider the firm who aims to
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Figure 1: Historical and scenario-based CO2 emission, from 1980 to 2100, in Mt/yr in the OECD,
according to the activity sectors: Energy (top left), Industry (top right), Residential Commercial
(bottom left), Transportation (bottom right). Source: Project CMIP 6, https://tntcat.iiasa.
ac.at/SspDb.

maximize its production profit and at the same time takes into consideration the CO2 reduction
plan described by SSPs. Over-emission compared to the target may induce penalty. From the point
of view of the firm, the objective is to determine the optimal strategy of its effective emission by
solving a penalized optimization problem. The credit quality of the firm can be impacted by such
carbon emission transition via its cash flow. In the classic structural credit approach such as Merton
[26] or Black-Cox [5] model, a default event occurs when the firm’s value is inferior to its debt level.
We describe the firm’s value process as the discounted value of all its future cash flow according to
the optimal emission and production profit and study the corresponding default probability.

The optimal production problem in order to maximize expected profit of a company is well
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studied, see for example Guo and Pham [18]. We suppose that the firm’s production depends on
its energy consumption and in particular on the carbon emission level. We consider in addition the
over-emission penalty under certain probabilistic risk measure constraints in the spirit of Föllmer
and Leukert [13] where a loss function is concerned. The optimal emission strategy is obtained by
adopting the Pontryagin’s maximum principle approach [30] which is a standard method in optimal
control theory especially for convex-type features. We then follow the classic structural models in
credit risk to compute the climate-related default probability of the firm and show by numerical
examples the impact of different relevant parameters and SSPs scenarios on the default probabilities
and intensities. In this paper, we concentrate on the impact of transition risk and ignore at this
stage the possible physical risk and related losses which may be caused by extreme weathers. In
other words, the joint influence of both transition and physical risks is not in the scope of this paper
and will be explored in future works. Suggestions about how to combine both are given in Section
3.

State of the art. Quantitative modeling of the impact of climate change on banking is in its
infancy, see [7] for a review of the challenges. Several works have performed a thorough qualita-
tive analysis, see for example [2], [27], [9]; we differ from them by providing a more quantitative
description of the transmission mechanism of transition risk to credit risk. The author of [15] has
proposed an extended (top-down) approach to the usual credit models incorporating new factors for
physical and transition risks, with proposals for estimating the characteristics of these extra factors.
On the other hand, bottom-up approaches attempt to start from financial statements and balance
sheet (to be impacted by shocks or climate scenarios), to derive the firm value and then deduce
its default probability and credit risk. Very recently, a statistical approach has been conducted by
the European Central Bank [1] on 4 million companies: the authors have calibrated a multivariate
econometric model. Although intuitively meaningful, it leads to disappointing results on the de-
fault probability (the R squared is about 11.9%, see [1, Table 4, p.85]). This bottum-up approach
has been developed by [4] in the first reference article on climate stress tests. See also [31] for the
Dutsch bankink system. The authors of [6] have studied the sensitivity of the credit risk of nearly
800 companies to the price of carbon, looking closely at the impact on the balance sheet. Such an
analysis implicitly assumes a lack of adaptation of the firm to carbon prices. See also the recent
literature review summarized in [6, Figure 3]. This paper is presumably the closest to the current
work, but still, our contribution is different. Also dealing with a bottom-up approach, we also aim at
modeling the firm’s response (by optimizing its production accordingly) to a target CO2 trajectory
and an announced climate policy: the possible response (see Proposition 1) of the firm may depend
on its sector of activity and its own parameters. As often pointed out in this field, to enable climate
risk management some actors need a simple but meaningful model (which we provide in this work)
with a small number of features and parameters, as the data is often deficient or provided at an
excessively low granularity.
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Organization of the paper. We present models and main results in Section 2: the production
model and the optimization problem are introduced in Section 2.1; the optimal emission strategies
are presented in Section 2.2, first in a special case where closed-form formula can be obtained and
then in the general case; Section 2.3 focuses on the credit risk and default probability. Finally
numerical applications are given in Section 3 to illustrate the main results.

2 Model and results

2.1 Production and carbon emission constraint

Let us fix a probability space (Ω,A,P) equipped with a filtration F = (Ft)t≥0 satisfying the usual
assumptions. We consider a firm whose production P = (Pt, t ≥ 0) depends on the energy consump-
tion and in particular on its effective CO2-emission volume γ = (γt, t ≥ 0) and solves the following
stochastic differential equation (SDE),

dPt = Pt (µ (t, Pt, γt) dt+ σdWt) , P0 > 0, (1)

where γt is the instantaneous emission rate at time t, W = (Wt, t ≥ 0) is an F-Brownian motion
which represents the uncertainty in demand and supply for the production and σ is a positive
constant volatility parameter. The emission rate is in general positive. The function µ : (t, x, y) ∈
R+ × R+ × R+ → R characterizes the production rate and satisfies the local Lipschitz condition on
x, i.e., for all t ≥ 0,

∀y ∈ R,∀x, x′ ∈ R+,
∣∣µ(t, x, y)− µ(t, x′, y)

∣∣ ≤ K∣∣x− x′∣∣, (2)

for an independent positive constant K. We suppose in addition that for any t ∈ R+, µ(t, ·, ·) is of
class C1. Empirical studies show that overproduction can lead to a decrease of production rate for
example due to excess of supply, whereas the effect of emissions on production growth is positive (see,
e.g., [22]). We thus suppose that µ is decreasing with respect to the production P and increasing
with respect to the emission γ.

In response to the greenhouse gas emission reduction target, the firm has an objective emission
plan described by e = (et, t ≥ 0), which represents the emission benchmark suggested by a SSP pro-
jection or accredited to the firm by the European Commission. This quantity could be deterministic
or stochastic meaning respectively the allowances fixed or recommended with certain tolerance by
regulation. The firm must keep watching on its emission evolution trajectory γt compared to the
objective benchmark et at any time t ≥ 0. In this paper, we consider the effective emission which is
in general supposed to be positive. However, in other context such as carbon sequestration, or the
emission allowance compensation within the European Emission Trading System (ETS), the SSPs
may take negative values (see e.g. Figure 1 Energy sector). In other words, the objective emission
et may be negative, meaning that it has to be considered as net emission, once that all processes
related to compensation and carbon capture have been taken into account. We suppose in addition
that e is bounded: this technical condition is anything but a restriction in practice. Exceeding the
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allocated benchmark can induce penalty losses to the firm as it may need to pay for the carbon
tax or to purchase an extra quantity of emission allocation through ETS. In the meantime, if the
effective emission is lower than the reference value, then the firm can obtain a certain form of award
for its effort from regulators to stimulate additional future actions1. These regulation rules suggest
measuring the impact of effective emission transition trajectory on the firm’s financial plan by using
a loss function related to risk measures. In literature, we often focus on the downside risk by using
loss functions such as expected shortfall at a terminal date, see for example [13, 10]. In our case,
we may also take into account the possibility of an upside award so the loss function can take both
positive and negative values, as in [14, Section 4.9]. More precisely, concerning the regulation risk
constraints, the evolving emission trajectory is traced continuously and the penalty is described by
a loss function ` : R→ R which is an increasing and convex function with standardization condition
`(0) = 0. We suppose in addition the following technical assumption that the loss function ` is of
quadratic growth at most, i.e., `(x) = O(|x|2) as |x| → +∞.

The firm’s goal is to maximize its production profit and, at the same time, manage the effective
emission level by taking into account the advertised constraints. We let the instantaneous profit
of the firm be described by a function π : R+ → R on the production P . We suppose that it is
increasing and concave, and belongs to C1, the class of all differentiable functions whose derivative
is continuous, as in [18]. In addition, π satisfies the Inada conditions, i.e., limx→0+ π

′(x) = +∞ and
limx→+∞ π

′(x) = 0, which is a standard assumption on production functions in economic growth
theory, initially proposed by Inada [20].

We also consider the firm’s production cost function C : R+ → R+ on the effective emission
which represents the firm’s energy-related costs such as supply and use, and the technical reform
cost to reduce the emission during its production process. It is natural that the cost function C is
increasing with respect to emission. We suppose that C is convex meaning that higher emission can
imply over-cost to the firm such as accelerating equipment’s deterioration and increasing repair and
replacement expenses. At this stage, we do not consider other types of costs such as the labor cost
of the firm.

Given a benchmark emission projection, the firm chooses its optimal effective emission to maxi-
mize the expected profit by controlling the related production, cost, and emission constraints. The
optimization problem is presented as below. We consider the profit maximization over all future
time under the pathwise emission constraint and define the objective optimization function as

J(γ) := E

[∫ ∞
0

e−rt (π(Pt)− C(γt)− `(γt − et)) dt

]
. (3)

where r > 0 is a constant2discount rate. We aim to solve

Ĵ = sup
γ∈A

J(γ) (4)

1see https://ec.europa.eu/clima/policies/effort/regulation_en.
2This rate could be a deterministic function of time without significantly changing the following results.
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where A is the admissible strategy set for the positive progressively measurable processes γ such
that for some η ∈ (0, r),

E

[∫ ∞
0

e−ηtγ2t dt

]
< +∞.

Note that bounded emission γ – as that for Proposition 1 – automatically fulfills the above inte-
grability condition. We may also consider a fixed horizon time such as 2050, the year by which the
COP wishes the world achieve the carbon-neutrality. In this case, besides the pathwise constraint,
an extra penalty function could be included for the total cumulative emission at the terminal time.

2.2 Optimal emission strategy

In this section, we solve the optimization problems and characterize the optimal effective emission.
We begin by presenting an explicit model where the optimal emission strategy is obtained in closed-
form formula. We then study the general case by using the Pontryagin’s maximum principle approach
[30] which provides a general set of necessary conditions for the optimal strategy using the method
of Lagrange multipliers applied to constrained optimization problems.

2.2.1 Profit maximization in an explicit model

We consider a logarithmic profit function π(x) = log x and let the cost and penalty functions be
given respectively as

C(x) =
x2

2
and `(x) = ω

(x+)2

2
, (5)

where ω ≥ 0 is a constant coefficient characterizing the penalty force of the CO2 emission constraint
and the function x+ denotes max(x, 0). The choice of a quadratic penalty function is to accentuate
higher quantities of over-emission compared to the benchmark. The objective function (3) rewrites
as

J(γ) = E

[∫ ∞
0

e−rt
(

logPt −
γ2t
2
− ω

(
γt − et

)2
+

2

)
dt

]
. (6)

Introduce a variable transform and define the log-production pt := logPt which by (1) solves the
SDE

dpt = µ(t, pt, γt)dt+ σdWt, (7)

where the drift coefficient satisfies µ(t, x, y) := µ(t, ex, y)− 1
2σ

2 for every t ∈ R+, x ∈ R, y ∈ R+. We
then set the following explicit model and suppose that the drift function of log-production has an
affine form

µ(t, x, y) = a+ bx+ cy, t ∈ R+, x ∈ R, y ∈ R+, (8)

where the coefficients a ≥ 0 corresponds to an average production level, b ≤ 0 is a mean-reverting
parameter with the negative sign meaning that over-production may deteriorate the production
ability and c ≥ 0 represents the dependence of the firm’s production upon CO2 emission.
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Proposition 1. Suppose r > b. The optimal emission strategy γ̂ is given by

γ̂t = min

{
c

r − b
,

1

1 + ω

(
ω et +

c

r − b
)}

. (9)

Proof. Let γ ∈ A be any admissible strategy to the problem (6). Then

J(γ̂)− J(γ) = E

[∫ ∞
0

e−rt
((
p̂t − pt

)
− 1

2

(
γ̂2t − γ2t

)
− ω

2

(
(γ̂t − et)2+ − (γt − et)2+

))
dt

]
(10)

where p̂t is given by
dp̂t = (a+ bp̂t + cγ̂t)dt+ σdWt.

By Itô’s formula, we have

d
(
e−rt(p̂t − pt)

)
= e−rt

(
(b− r)(p̂t − pt) + c(γ̂t − γt)

)
dt. (11)

Since γ ∈ A and

E

[
(

∫ ∞
0

e−ηt|γt|dt)2
]
≤ (

∫ ∞
0

(e−ηt/2)2dt)E

[∫ ∞
0

(e−ηt/2|γt|)2dt
]
< +∞ (12)

for some η ∈ (0, r), the integral
∫∞
0 e−ηt|γt|dt is finite almost surely, the same holds obviously for

γ̂ since the benchmark e is bounded. By solving the linear equation (11), we get

e−rt(p̂t − pt) = e−rt
∫ t

0
eb(t−s)c(γ̂s − γs)ds,

|e−rt(p̂t − pt)| ≤ ce−rt
∫ t

0
|γ̂s − γs|ds ≤ ce(η−r)t

∫ +∞

0
e−ηs|γ̂s − γs|ds

using b ≤ 0. Hence, since r > η,

lim
t→+∞

e−rt(p̂t − pt) = 0, a.s.

which leads to ∫ ∞
0

e−rt
(

(b− r)(p̂t − pt) + c(γ̂t − γt)
)

dt = 0, a.s. (13)

owing to (11). So (10) can be rewritten as

J(γ̂)− J(γ) = E

[∫ ∞
0

e−rt
( c

r − b
(
γ̂t − γt

)
− 1

2

(
γ̂2t − γ2t

)
− ω

2

(
(γ̂t − et)2+ − (γt − et)2+

))
dt

]
= E

[∫ ∞
0

e−rt
(
f(γ̂t, et)− f(γt, et)

)
dt

]
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where

f(x, e) :=
c

r − b
x− x2

2
− ω

2
(x− e)2+. (14)

For given e, the maximal value in x of f(x, e) is attained at

x = min

{
c

r − b
,

1

1 + ω

(
ω e+

c

r − b
)}

,

which concludes the proof.

In the above proposition, we note that the constant value in (9)

γ :=
c

r − b
(15)

corresponds to a critical level for the optimal emission strategy for the firm and corresponds to its
desired emission level without carbon penalty, i.e., when ω = 0.

• If the benchmark et is superior to γ, then the optimal strategy is to remain at the constant
level γ which means that no effort needs to be provided by the company. In particular, when
c = 0, i.e., the firm’s production does not depend on emission at all, then the optimal emission
is expected to be zero.

• On the contrary, when et is inferior to γ, meaning that the regulation requires a stricter
emission reduction plan, then the optimal strategy is to proceed as an affine function of the
benchmark.

The penalty weight ω also plays an essential role. A larger value of ω implies that the firm will adopt
a stronger mitigation strategy. In particular, when ω tends to infinity, then the optimal emission
converges to the benchmark.

Remark 1. The positive function ` defined in (5) focuses on the downside penalty corresponding to
the out-performance part of the effective emission compared to the SSP benchmark. It is possible
to describe the compensation or award when the firm’s emission is below the benchmark. In such a
case, one may consider instead a more general function ` that can take both positive and negative
values such as

`(x) = ω1
(x+)2

2
− ω2

(x−)2

2

where ω1 and ω2 are two positive real numbers and x− = max(−x, 0). Similar as in the proof of
Proposition 1, we can obtain in this case the explicit optimal effective emission with the function
(14) replaced by

f(x, e) :=
c

r − b
x− x2

2
− ω1

2
(x− e)2+ +

ω2

2
(x− e)2−.
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When 0 ≤ ω2 < 1,

γ̂t =

{
1

1+ω1
(ω1et + γ), if et ≤ γ;

1
1−ω2

(γ − ω2et), otherwise.
(16)

When ω2 ≥ 1,

γ̂t =

{
1

1+ω1
(ω1et + γ), if et ≤ γ and b(et) ≤ 0;

0, otherwise;
(17)

where b(·) is a boundary function given by

b(e) =
ω1ω2 + ω1 + ω2

2(1 + ω1)
e2 − ω1γ

1 + ω1
e− γ2

2(1 + ω1)
.

In particular, when et is superior to γ, we note that the optimal emission γ̂ is mitigated with
respect to γ (see Proposition 1) when the reward force parameter ω2 becomes strictly positive, i.e.,
ω2 ∈ (0, 1), by noticing that

1

1− ω2
(γ − ω2et) < γ < et.

When the reward force is large enough, i.e. ω2 > 1, the optimal emission becomes zero , i.e. γ̂t = 0.
The comparison with Proposition 1 shows that the fact of adding the reward mechanism when the
firm achieves better mitigation results (besides the penalty upon over-emission) can stimulate more
efficiently the firms to attain the carbon neutral objective.

2.2.2 General case by stochastic Pontryagin’s maximum principle

We now consider the general problem (3). We still use the log-production pt given by (7) with a
general drift term µ (under the assumptions of Subsection 2.1), and define accordingly, for every
x ∈ R, the auxiliary cost function π(x) := π(ex). Then

π(Pt) = π(pt). (18)

Besides, we deal with more general cost and penalty functions C and ` than those previously chosen
in (5); still, C and ` are assumed to be convex and C1. We characterize the optimal effective emission
as below. In the statement below, we are willingly a bit vague about the growth assumptions on the
functions `, C, π and µ (and their derivatives), these assumptions and some monotone conditions play
an important role to justify the next computations of Pontryagin maximum principle and ensure
the existence of control and adjoint process Y (like those in Proposition 2) in infinite horizon in
suitable weighted L2 space, see for instance the book of [29] for a broad account on the subject. The
take-home message from the following derivation is rather to get the optimality condition equation
characterizing the optimal emission in a fairly eneral situation, the verification of technical conditions
would be done in a second step, according to the cost and dynamics coefficients.
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Proposition 2. For any γ ∈ A, let Y·(γ) denote the conditional expectation

Yt(γ) = E

[∫ ∞
t

e−ru+
∫ u
t ∂xµ(t,ps,γs)ds π′(pu)du

∣∣∣∣Ft] , t ≥ 0

which is an F-adapted cÃădlÃăg process and supposed to satisfy E[
∫∞
0 Yt(γ)2dt] < +∞. If γ̂ is an

optimal control
J(γ̂) = sup

γ∈A
J(γ),

then it must solve the following equation

C′(γ̂t) + `′ (γ̂t − et) = ert∂yµ (t, p̂t, γ̂t)Yt(γ̂), dt⊗ dP a.e., (19)

where dp̂t = µ (t, p̂t, γ̂t) dt+ σdWt.

Proof. We first introduce, for two given controls γ, γ̃ ∈ A, the directional derivatives for the log-
production

ṗt := ∂εp
γ+εγ̃
t

∣∣∣
ε=0

.

From (7), it holds that

dṗt = (∂xµ (t, pt, γt) ṗt + ∂yµ (t, pt, γt) γ̃t) dt, ṗ0 = 0. (20)

Similarly, we define for the objective value function

J̇ (γ, γ̃) := ∂εJ (γ + εγ̃)|ε=0 ,

which from (3) equals

J̇ (γ, γ̃) = E
[ ∫ ∞

0
e−rt

(
π′ (pt) ṗt − C′(γt)γ̃t − `′ (γt − et) γ̃t

)
dt
]
. (21)

By the definition of Y·(γ), the process

Mt = Yt(γ) +

∫ t

0
e−ru+

∫ u
t ∂xµ(t,ps,γs)ds π′(pu)du, t ≥ 0

is an F-martingale and
lim

t→+∞
Yt(γ) = 0.

Observing by (20) that Y0(γ)ṗ0 = 0 and that ṗ is a finite-variation process, we apply Ito’s formula
on Yt(γ)ṗt,

0 = E

[∫ ∞
0

(Yt(γ)dṗt + ṗtdYt(γ))

]
11



= E
[ ∫ ∞

0
Yt(γ)

(
∂xµ (t, pt, γt) ṗt + ∂yµ (t, pt, γt) γ̃t

)
dt−

∫ ∞
0

ṗt
(
e−rtπ′ (pt) + ∂xµ (t, pt, γt)Yt(γ)

)
dt
]

= E
[ ∫ ∞

0
Yt(γ)∂yµ (t, pt, γt) γ̃tdt−

∫ ∞
0

e−rtπ′ (pt) ṗtdt
]
,

using that E
[∫∞

0 ṗtdMt

]
= 0, which implies that

E

[∫ ∞
0

e−rtπ′ (pt) ṗtdt

]
= E

[∫ ∞
0

Yt(γ)∂yµ (t, pt, γt) γ̃tdt

]
.

We can then rewrite (21) as

J̇ (γ, γ̃) = E
[ ∫ ∞

0

(
∂yµ (t, pt, γt)Yt(γ)− e−rtC′(γt)− e−rt`′ (γt − et)

)
γ̃tdt

]
,

which holds for any control process γ̃ ∈ A. Consequently, if γ̂ is an optimal control, then necessarily
dt⊗ dP a.e.

∂yµ (t, p̂t, γ̂t)Yt(γ̂) = e−rt
(
C′(γ̂t) + `′ (γ̂t − et)

)
where Yt(γ̂) is written as

Yt(γ̂) = E

[∫ ∞
t

e−ru+
∫ u
t ∂xµ(t,p̂s,γ̂s)ds π′(p̂u)du

∣∣∣∣Ft] .
In other words, γ̂ is the solution to Equation (19), which ends the proof.

Remark 2. We can consider an alternative problem with finite horizon T > 0 and introduce the
effective cumulative emission process up to time t as Γt :=

∫ t
0 γsds. It is then possible to incorporate

a final regulation for the cumulative emission compared to the target Et =
∫ t
0 esds at the horizon

time. The objective function is then defined as

JT (γ) := E

[∫ T

0
e−rt (π(Pt)− C(γt)− `1(γt − et)) dt− e−rT `2 (ΓT − ET )

]
, (22)

where `1 and `2 are two loss functions and the optimization problem becomes

ĴT = sup
γ∈AT

JT (γ), (23)

where AT is the admissible strategy set such that for any T > 0, E[Γ2
T ] < +∞, and that for any

x ≥ 0,
∫ T
0 |µ (t, x, γt)|2 dt < +∞ almost surely. Similar as Proposition 2, the solution of the finite

time horizon can be characterized as below. The difference lies in the extra terminal constraint.
More precisely, let

Y 1
t (γ) = E

[∫ T

t
e−ru+

∫ u
t ∂xµ(t,ps,γs)ds π′(pu)du

∣∣∣∣Ft] .
If γ̂ is an optimal solution to (23) then it must satisfy

e−rt
(
C′(γ̂t) + `′1

(
γ̂t − et

))
+ E

[
e−rT `′2

(
Γ̂T − ET

)
|Ft
]

= ∂yµ (t, p̂t, γ̂t)Y
1
t (γ̂). (24)
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2.3 Credit risk under emission transition

In this section, we study the credit risk of the firm induced by the transition towards the low-
carbon emission and production pattern. We use the effective production obtained in the previous
optimization problem to deduce the firm’s value process and then compute the default probability
in a structural modelling approach.

2.3.1 Firm’s value process

In the classical structural credit models such as Merton [26] and Black-Cox [5] models, a default
event is triggered when the firm’s value no longer allows to cover the reimbursement of the debt. In
the following, we describe the value process of the firm by using the discounted cash flow approach
which traces back to Keynesian economics. More precisely, let the firm’s value V γ = (V γ

t , t ≥ 0) be
defined as the conditional discounted value of all future cash flows including the global production
income deduced by the cost and penalty depending on the effective emission γ, that is

V γ
t = E

[∫ ∞
t

e−r(u−t) (π(Pu)− C(γu)− `(γu − eu)) du|Ft
]
. (25)

At the initial time when t = 0, we have V γ
0 = J(γ). The firm would produce according to the optimal

production quantity associated to the emission strategy γ̂ which are obtained from the maximization
procedure in Propositions 1 or 2.

For any ν ∈ A and any t ≥ 0, the firm’s dynamic optimal value (viewed at time t) is given by

V̂t(γ) = ess sup
γ∈A(t,ν)

V γ
t = ess sup

γ∈A(t,ν)
E

[∫ ∞
t

e−r(u−t) (π(pu)− C(γu)− `(γu − eu)) du|Ft
]

(26)

where the set A(t, ν) := {γ ∈ A such that γ·∧t = ν·∧t} represents all controls which coincide with
ν up to time t. By the dynamic programming principle in El Karoui and Quenez [12], for any
γ ∈ A, the process

(
V̂t(γ) +

∫ t
0 e
−r(u−t) (π(pu)− C(γu)− `(γu − eu)) du, t ≥ 0

)
is a supermartin-

gale. In particular, for an optimal γ̂,
(
V̂t(γ̂) +

∫ t
0 e
−r(u−t)(π(p̂u)− C(γ̂u)− `(γ̂u − eu)

)
du, t ≥ 0

)
is

a martingale. The value process associated to γ̂ by Propositions 1 or 2 corresponds to the firm’s
optimal value.

Proposition 3. Let γ̂ be an optimal emission strategy which solves (3). The following equality holds
for any t ≥ 0:

E[V̂t(γ̂)] = E[Vt
γ̂ ]. (27)

Proof. By definition of the essential supremum in (26), we have E[V̂t(γ̂)] ≥ E[Vt
γ̂ ] for any t ≥ 0. To
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prove the converse inequality, fix t ≥ 0 and for any γ ∈ A(t, γ̂),

E

[
V γ
t +

∫ t

0
e−r(u−t) (π(pu)− C(γu)− `(γu − eu)) du

]
= E

[∫ ∞
0

e−r(u−t) (π(pu)− C(γu)− `(γu − eu)) du

]
≤ E

[∫ ∞
0

e−r(u−t) (π(p̂u)− C(γ̂u)− `(γ̂u − eu)) du

]
where the last inequality stems from the optimality of γ̂ in the optimization problem (3). By the
definition of A(t, γ̂), it holds γ̂s = γs for any s ≤ t, we then obtain from the above inequality

E[V γ
t ] ≤ E

[∫ ∞
t

e−r(u−t) (π(p̂u)− C(γ̂u)− `(γ̂u − eu)) du

]
= E[V γ̂

t ], (28)

since

E

[∫ t

0
e−r(u−t) (π(pu)− C(γu)− `(γu − eu)) du

]
= E

[∫ t

0
e−r(u−t) (π(p̂u)− C(γ̂u)− `(γ̂u − eu)) du

]
.

Note by (26) that E[V̂t(γ̂)] = E[ess supγ∈A(t,γ̂) V
γ
t ]. By using a measurable selection argument (see

e.g. [35]), for any ε > 0, there exists γε ∈ A(t, γ̂) such that

ess sup
γ∈A(t,γ̂)

V γ
t ≤ V

γε
t + ε.

We then have from (28) that

E
[

ess sup
γ∈A(t,γ̂)

V γ
t

]
≤ E [V γε

t ] + ε ≤ E[V γ̂
t ] + ε.

From the arbitrariness of ε > 0, we obtain the following inequality

E
[
V̂t(γ̂)

]
= E

[
ess sup
γ∈A(t,γ̂)

V γ
t

]
≤ E[V γ̂

t ]

and hence the required equality (27).

2.3.2 Structural credit model and default probability

In a structural credit model, the firm is considered to default when its value process gets below a
default threshold. We let the default barrier be described by a deterministic function L(t) which
depends on time and represents the minimal level of the firm’s liability payment such as the debt
reimbursement together with labor and other functioning costs (as the operational and capital ex-
penditure) at time t. When the firm’s value is higher than the threshold, then it is in a financially
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sustainable situation and can function normally. In the contrary case, the firm encounters fiscal
difficulty and a default event may be triggered. We are interested in the default probability (PD in
short) at a certain date t, which is given by

PDt = P
(
V γ̂
t ≤L(t)

)
. (29)

This corresponds to the classic Merton model where the default-or-not state of the firm is determined
by the instantaneous value of the firm’s value and of the default threshold. From the regulation point
of view, financial and insurance institutions are required by the Solvency II Directive to evaluate
their solvency risk and associated default probability at certain given time. From the computation
viewpoint, the default probability depends on the distribution of the firm’s value process V γ̂ at the
time t. In the next section, we give quasi-explicit formulas for PDt in the model of Proposition 1,
in particular as a function of the SSP describing the scenario of target emission (et)t.

In other cases such as the Black-Cox model, the default event depends on the trajectory of the
value process. At a given time t, the firm is considered in default if its value has crossed the threshold
during the period [0, t], that is,

PDt = P
(
∃s ∈ [0, t], such that V γ̂

s ≤L(s)
)

(30)

This corresponds to a random default time τ which is a first-hitting-time given as

τ := inf{t ≥ 0, V γ̂
t ≤ L(t)}, (31)

with convention inf ∅ =∞. Then τ is a stopping-time with respect to the filtration F. In this case,
we are concerned with a passage time to the curved boundary which is a deterministic function on
time. Such problems are studied in probability theory and applications with different approaches in
literature (see for example the book of [23]). Since explicit expressions for probability density of the
passage time can be obtained only in very particular cases, computational approach is often adopted
either to approximate the density function, e.g., [11], or to simulate directly the first passage time,
e.g. [17, 19].

3 Numerical illustrations

3.1 SSPs scenarios and optimal emission

We consider the following CO2 emission scenarios which correspond to different socioeconomic refer-
ence pathways provided by CMIP6: SSP1-2.6, SSP2-4.5, SSP3-LowNTCF, SSP4-6.0, and SSP5-3.4-
OS. These scenarios are illustrative pathways adopted by the IPCC in the sixth Assessment Report
indicating the CO2 concentrations in atmosphere from lowest (SSP1) to highest (SSP5). In other
words, SSP1 and SSP5 describe respectively economic growth pattern via sustainable and fossil-fuel
pathways. We choose two sectors: Transportation (Figure 2) and Industrial (Figure 3) sectors for
which the year 2015 is our starting point. For each sector, we consider the above five SSPs including
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two baseline scenarios (Tier 1, c.f. [24]): SSP1-2.6 which is the most mitigated scenario corre-
sponding approximately to the previous scenario generation Representative Concentration Pathway
(RCP) 2.6, and SSP2-4.5 with is a moderate scenario similar to RCP-4.5. We also consider three
(Tier 2) supplementary scenarios: SSP3-LowNTCF (Near-Term Climate Forcing) which provides a
comparison scenarios with high NTCF emissions (notably SOx and methane), SSP4-6.0 focusing on a
socio-economic context of inequality, and SSP5-34-OS (OverShoot) which allows for large overshoot
by mid-century followed by substantive policy tools in the latter half of the century.

The numerical computations are based on the explicit model of Proposition 1. We start with
the transportation sector. The different emission benchmarks (left) t 7→ et are normalized so that
e0 = γ̂0 = c

r−b(= γ). The associated optimal emission (right) are provided by (9) which is equal to
γ if the benchmark is above and is given as an affine function of et in the contrary case. As one can
observe, for both sectors, the scenario SSP1-2.6 is the hardest benchmark which imposes immediate
reduction from the beginning 2015. For the transportation sector, the scenario SSP4-6.0 imposes no
emission constraints that the optimal emission remains constant at level γ. The situation is similar
for the scenario SSP3-LowNTCF in the industrial sector. Other scenarios correspond to relatively
soft emission constraints with overshoot where the reduction may begin from a later date. Figure
4 shows the impact of the parameter ω. More precisely, the optimal emission is decreasing with
respect to the penalty force. In other words, a stronger penalty policy will induce larger emission
reduction from the firm.

Figure 2: Transportation sector: SSPs emission scenarios v.s. associated optimal emission.

3.2 Default probability for different sectors

We now present the emission-related default probability in the explicit case and analyze the impact
of carbon emission reduction given different SSPs benchmarks. We still consider the explicit model
in Proposition 1 and use a slightly different definition for the value process associated to the optimal
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Figure 3: Industrial sector: SSPs emission scenarios v.s. associated optimal emission .

emission V γ̂ . More precisely, instead of choosing a logarithmic function, we let the profit of the firm
be given directly as the average price N > 0 multiplied by the total production and write the firm’s
value process V̂ as

V̂t = E

[∫ ∞
t

e−r(u−t)
(
NP̂u − C(γ̂u)− `(γ̂u − eu)

)
du

∣∣∣∣Ft] . (32)

The Default Probability is given by (29). Suppose that V̂0 > L(0). We aim to compute the firm’s
value (32) by specifying a benchmark et. Note that if the benchmark is given as a deterministic
function such as a SSP scenario, then it is also the case for the optimal emission γ̂ from (9). We
then have

V̂t = N

∫ ∞
t

e−r(u−t)E
[
P̂u|Ft

]
du−

∫ ∞
t

e−r(u−t)(C(γ̂u) + `(γ̂u − eu))du. (33)

From (7) and (8), the optimal log-production rewrites as

p̂u = eb(u−t)p̂t +
a

b
(eb(u−t) − 1) + c

∫ u

t
eb(u−v)γ̂vdv + σ

∫ u

t
eb(u−v)dWv.

Hence for every u ≥ t ≥ 0, conditionally on Ft, the optimal log-production p̂u is Gaussian with
mean

eb(u−t)p̂t +
a

b
(eb(u−t) − 1) + c

∫ u

t
eb(u−v)γ̂vdv =: eb(u−t)p̂t +mu,t,

and variance

σ2u,t :=
σ2

2b

(
e2b(u−t) − 1

)
.
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Figure 4: Industrial sector: different optimal emissions w.r.t. ω for scenarios SSP1-26 and SSP4-60.

Therefore, concerning the optimal production P̂ , we have

E[P̂u|Ft] = exp

(
eb(u−t)p̂t +mu,t +

σ2u,t
2

)
.

From (33), the firm’s value with an optimal emission is thus given by

V̂t = N

∫ ∞
t

e−r(u−t) exp

(
eb(u−t)p̂t +mu,t +

σ2u,t
2

)
du−

∫ ∞
t

e−r(u−t)

2
(γ̂2u + ω

(
(γ̂u − eu)+)2

)
du

=: h(t, p̂t). (34)

We can then compute the emission-related default probabilities with the explicit form of the firm’s
value V̂ according to Merton model. Here, the default probability rewrites as

PDt = P
(
V̂t ≤ L(t)

)
= P

(
p̂t ≤ (h(t, ·))−1(L(t))

)
= Φ

((h(t, ·))−1(L(t))− ebtp0 −mt,0

σt,0

)
, (35)

where Φ is the cumulative distribution function of a standard normal random variable.
For our experiments, the default boundary L(t) is determined as follows. We consider the firm’s

default probability without climate concern (that is, ω = 0) as a baseline where the default intensity
λref is supposed to be a fixed reference value in our numerical tests and is set at 3%. More precisely,
we let

P
(
V̂ ref
t ≤ L(t)

)
= 1− e−λref t,

where V̂ ref
t corresponds to the optimal value without any emission constraint, i.e., ω = 0, so that

the value of L(t) is obtained. We have by (34) that

L(t) = h

(
t,Φ−1(1− e−λref t)σt,0 +

ebt − 1

b

(
a+

c2

r − b
)

+ ebtp0

)
,
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using that mt,0 = ebt−1
b

(
a+ c2

r−b
)
when ω = 0 and σt,0 is independent of et.

In Figures 5 and 6, we plot for the two sectors Transportation and Industrial the default prob-
ability PDt given by (35) and the respective intensity t 7→ λt for the the different scenarios. The
intensity λt is computed as

P(V̂t ≤ L(t)) = 1− exp

(
−
∫ t

0
λsds

)
.

The integral
∫ t
0 λsds is approximated with a left-point rectangle scheme, i.e., between two times

0 ≤ si−1 < si ≤ t, we have

λsi−1 =
1

si − si−1
log

(
P(V̂si−1 > L(si−1))

P(V̂si > L(si))

)
.

As expected the initial value of the intensity coincides with the prefixed value λ0 = 3%. When time
evolves, the more constrained scenarios are associated to larger default probabilities and higher in-
tensities. The SSP1-2.6 scenario is the most impacted one, which is quite natural given its immediate
and hard reduction strategy. The scenario which follows is SSP5-3.4-OS: although this benchmark
allows for a large overshoot up to 2060, the relatively strict mitigation during the latter period makes
the default probability and intensity increase significantly. Observe that SSP4-6.0 corresponds to a
fixed intensity of λ0 = 3% in the Transportation sector and the same phenomenon appears for the
SSP3-LowNTCF scenario in the Industrial sector, as the optimal emission is unconstrained in these
two cases. We note that in this study we only investigate the transition risk related to the firm’s
mitigation strategy and ignore the possible physical risks under each scenario for example the more
frequent damage and natural catastrophes under scenarios with higher temperature increase such
as a SSP5 scenario (see for example [1] for more discussions). Although physical climate risk is not
the main modeling concern of this work, it could easily incorporated consistently with our approach,
by adding a suitable physical climate damage contribution in the firm’s value (32)-(34), in order to
broadly account for climate risks.

Figure 7 illustrates the default intensity for Industrial sector under the impact of the parameter
c representing the dependence of the firm on emission and ω representing the penalty force. We
consider the hardest scenario SSP1-2.6 and a moderate one SSP4-6.0. For both scenarios, the increase
of one of the two parameters implies a higher default intensity and this phenomenon is particularly
accentuated when the firm’s production is highly dependent on the CO2 emission (when c is large).
For such a firm, a strong penalty policy together with a hard mitigation scenario such as SSP1-2.6
(left) could have a significant impact on the firm’s default probability.

We finally present in Figure 8 the default intensity obtained in the path-dependent Black-Cox
model (30) in comparison with the Merton model (29): since in the Black-Cox approach the default
event is monitored throughout a given period and not only at the end, this naturally gives rise to
a more important measure of credit risk. For our experiments, the default event is considered at
annual intermediate dates, and the default probability is then computed as a discrete approximation
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Figure 5: Transportation sector: default probability and associated intensity.

Figure 6: Industrial sector: default probability and associated intensity.

of (30) given by the following definition of default probability:

t 7→ P
(
∃s = t0, t1, ..., tn ∈ [0, t] : V̂s ≤ L(s)

)
= PDt.

The Black-Cox default intensity is then obtained as

1− PDtk+1
= (1− PDtk) exp (−λtk(tk+1 − tk)) .

The two scenarios in Figure 8 are SSP1-2.6 and SSP5-3.4-OS for Industrial sector which are the most
impacted scenarios by mitigation strategy (as shown in Figure 6). As expected, we observe that
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Figure 7: Industrial sector: intensity surface at 2030 for the scenarios SSP1-26 and SSP4-60

the possibility to include intermediate default will induce a gap – for both scenarios – between the
default probabilities and intensities obtained in the two credit models. Anyway, choosing a Merton
or Black-Cox approach is up to the end-user of credit risk; in our "SSP emission-to-firm production"
modeling both are possible and allow in all cases to bridge a projected transition scenario and the
credit risk of a company in a given sector.

Figure 8: Industrial sector: Black–Cox default probability and associated intensity for the industrial
sector.
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4 Conclusion

This paper focuses on a firm’s transition risk towards low-carbon production and shows how to
quantify the credit risk embedded in the CO2 emission mitigation strategy. We consider a profit
maximization problem under some loss constraints (related to CO2 emission) and then use the
obtained optimal emission to construct the firm’s value process and investigate default probabilities
and intensities under different SSPs scenarios. An explicit model of production is proposed to derive
closed-form computation for related quantities: this is a valuable building block in the climate
risk-credit risk nexus.

We conclude that loss penalty imposed on over-emission compared to benchmark may induce
the firm to decrease its effective CO2 emission. The adopted strategy depends on the relevant SSP
scenario and also on the production characteristics of the firm. A suitable choice of loss function such
as incorporating award upon under-emission appears to stimulate more efficiently the firm to achieve
the carbon-neutral objective. Concerning credit risk, the more constrained mitigation scenarios are
associated with higher default probability and intensity, especially for firms whose production is
closely related to emission and when the penalty force is strong. A higher value of penalty force
enforces the firm to perform larger emission reduction but increases its default risk.

In this work, we do not investigate the physical risk related to different SSPs scenarios and its
impact on the credit quality and default probability: however, the model we have proposed could be
adapted to analyze the presence of joint impact by both physical and transition risks, see remarks
in Section 3. Moreover, in the numerical examples we have presented, we consider the reference
intensity to be constant for illustration, it could be extended in a straightforward manner to account
for credit intensity curve. A more comprehensive default model including stochastic intensity could
also be more realistic. These points are left to future works.
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