
HAL Id: hal-03458255
https://hal.science/hal-03458255v1

Submitted on 4 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficiency of sympagic-benthic coupling revealed by
analyses of n-3 fatty acids, IP25 and other highly

branched isoprenoids in two filter-feeding Arctic benthic
molluscs: Mya truncata and Serripes groenlandicus

Rémi Amiraux, Philippe Archambault, Brivaela Moriceau, Mélanie Lemire,
Marcel Babin, Laurent Memery, Guillaume Massé, Jean-Eric Tremblay

To cite this version:
Rémi Amiraux, Philippe Archambault, Brivaela Moriceau, Mélanie Lemire, Marcel Babin, et al.. Ef-
ficiency of sympagic-benthic coupling revealed by analyses of n-3 fatty acids, IP25 and other highly
branched isoprenoids in two filter-feeding Arctic benthic molluscs: Mya truncata and Serripes groen-
landicus. Organic Geochemistry, 2021, 151, pp.104160. �10.1016/j.orggeochem.2020.104160�. �hal-
03458255�

https://hal.science/hal-03458255v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 1

Efficiency of sympagic-benthic coupling revealed by analyses of n-3 fatty 1 

acids, IP25 and other highly branched isoprenoids in two filter-feeding 2 

Arctic benthic molluscs: Mya truncata and Serripes groenlandicus 3 
 4 

 5 
Rémi Amirauxa, b*, Philippe Archambaulta,c, Brivaela Moriceaub, Mélanie Lemired, Marcel 6 

Babina, Laurent Memeryb, Guillaume Masséa, Jean-Eric Tremblaya 7 
 8 

a Takuvik International Research Laboratory, Québec Océan, Laval University (Canada) - 9 

CNRS, Département de biologie and Québec-Océan, Université Laval, Québec, Québec, 10 

Canada 11 
b Laboratoire des Sciences de l'Environnement MARin (LEMAR), UMR 6539 

12 

CNRS/Ifremer/IRD/UBO, Institut Universitaire Européen de la Mer (IUEM), 
13 

Technopôle Brest-Iroise, Plouzané, France 
14 

 
15 

c ArcticNet, Québec Océan, Département de Biologie, Université Laval, Quebec, QC, Canada 16 
 17 

d Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de 18 

Québec, Université Laval, Québec, Canada 19 

 20 

*Correspondence to: R. Amiraux (remi.amiraux@takuvik.ulaval.ca); Tel.: +1 418 440 3276  21 

© 2020 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0146638020301959
Manuscript_3b336ea779abb380cc93ef97122b8853

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0146638020301959


 2

Abstract 22 
 23 

The aim of this work was to determine the impact of sympagic (ice-associated) algal 24 

primary production on the quality of Arctic filter-feeding bivalves. For this purpose, we 25 

investigated the sea ice production of lipids (including omega−3 polyunsaturated fatty acids 26 

(n-3 PUFA) and highly branched isoprenoids (HBI)), as well as their subsequent 27 

incorporation into the truncate softshell clam (Mya truncata) and the Greenland cockle 28 

(Serripes groenlandicus) during the melting periods of two consecutive years in Baffin Bay. 29 

Lipid and primary production exhibited seasonal variability and overall contrasts between the 30 

two years as a result of distinct physical forcings and the ensuing biological responses. Whilst 31 

less productive in terms of total lipids or chlorophyll a, Spring 2016 was more productive 32 

than Spring 2015 for n-3 PUFA, which are essential for benthic fauna. The sea ice diatom 33 

HBI biomarker IP25 was quantified in sea ice from both years. Interestingly, such production 34 

was preceded by a production of the hitherto ‘pelagic’ biomarker, HBI III, in sea ice. In 35 

bivalves, HBI contents and correlations confirmed the tightness of the Arctic sympagic-36 

benthic coupling and highlighted that S. groenlandicus can be used as a sentinel species for 37 

assessing the degree of this coupling. The confirmation that bivalves incorporate sea-ice 38 

derived HBI III and not only IP25, may introduce uncertainties into the use of some HBI-based 39 

indices. Monitoring of the fatty acid contents of bivalves allowed identification of their 40 

spawning periods and suggests that M. truncata did not store enough n-3 PUFA to sustain its 41 

reproductive effort.  42 

 43 

 44 

 45 
 46 
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1. Introduction 50 
 51 

Arctic marine food webs are classically viewed as being supported by two ecologically 52 

distinct types of primary production effected in sequence by sympagic (ice-associated) algae 53 

and pelagic (water column) algae or phytoplankton (Gosselin et al., 1997; Horner and 54 

Schrader, 1982; Pabi et al., 2008; Wassmann et al., 2011). Among the essential organic 55 

molecules produced by algae, omega-3 polyunsaturated fatty acids (n-3 PUFA), such as 56 

eicosapentaenoic acid (EPA) 20:5(n-3) and docosahexaenoic acid (DHA) 22:6(n-3), are 57 

considered as highly relevant indicators of nutritional value for consumers (Hendriks et al., 58 

2003). These specific lipids are produced almost exclusively by algae and are necessary for 59 

the whole food web, from primary consumers (e.g., bivalves) to top predators and even 60 

human populations. As algal species differ in their lipid production and more specifically in 61 

their PUFA contents (Leonardos and Lucas, 2000; Napolitano et al., 1990; Volkman et al., 62 

1989), it is not surprising that EPA and DHA derive from different sources of primary 63 

production. Indeed, EPA is mostly produced by diatoms, a dominant taxon of both sympagic 64 

and pelagic algae (Kelly and Scheibling, 2012; Poulin et al., 2011; Viso and Marty, 1993), 65 

while DHA is associated with dinoflagellates, a mostly pelagic taxon (Kelly and Scheibling, 66 

2012; Poulin et al., 2011; Søreide et al., 2008).  67 

Sympagic and pelagic contributions to total primary production are highly variable 68 

depending on the season and the region, but it is generally admitted that sympagic algae 69 

contribute less than phytoplankton to annual primary production (Dupont, 2012; Fernández-70 

Méndez et al., 2015). In contrast, sympagic primary production is recognized as an important 71 

contributor of carbon (C) exported towards the seafloor (Boetius et al., 2013; McMahon et al., 72 

2006). This strong contribution results from the high sinking rates of ice-algal cells or 73 

aggregates (Boetius et al., 2013; Riebesell et al., 1991) and their good preservation during 74 

transit (Amiraux et al., 2017; Amiraux et al., 2020). In contrast, phytoplankton have a longer 75 



 4

residence time in the water column due to their slow sinking rates (van der Loeff et al., 2002), 76 

which can lead to higher bacterial degradation and can reduce the quality of algal material 77 

reaching the seafloor (Morata and Renaud, 2008; Roy et al., 2015). It is therefore not 78 

surprising that the essential fatty acid content of this material is relatively high when it derives 79 

from sea ice (Falk-Petersen et al., 1998; McMahon et al., 2006; Sun et al., 2009; Wang et al., 80 

2014). On this basis, sympagic algae are considered as a prime food source for benthic 81 

consumers that depend on these fatty acids for growth and reproduction (Lovvorn et al., 2005; 82 

McMahon et al., 2006; North et al., 2014).  83 

Determining the impact of each primary production source on the quality of food for the 84 

benthic community requires an estimation of their relative contributions. Several approaches 85 

have been employed for estimating these contributions (e.g., stable isotopes and fatty acid 86 

biomarkers; Gaillard et al., 2017; Gaillard et al., 2015). Among these, quantification of highly 87 

branched isoprenoid (HBI) alkenes has provided robust estimates of the relative share of 88 

different microalgal primary production sources in consumer biomass (Brown et al., 2017; 89 

Brown and Belt, 2012). In recent years, the development of HBI-based proxies has 90 

highlighted the relatively high source-specificity of a number of these molecules. Among 91 

these, IP25 (Ice Proxy with 25 carbon atoms; Belt et al., 2007) is a mono-unsaturated C25 HBI 92 

(Fig. 1) which seems to be produced exclusively by certain Arctic sympagic diatoms (e.g., 93 

Pleurosigma stuxbergii var. rhomboides (Cleve in Cleve & Grunow) Cleve, Haslea kjellmanii 94 

(Cleve) Simonsen, Haslea spicula (Hickie) Lange-Bertalot; Brown et al., 2014c; Limoges et 95 

al., 2018). A close structural analogue of IP25, but with an additional double bond in its 96 

structure, is known as HBI IIa (Fig. 1) and this co-occurs with IP25 in Arctic sea ice and 97 

associated sediments. In a recent study, Belt et al. (2016) identified HBI IIa in the Southern 98 

Ocean and showed it to be produced by the sympagic diatom Berkeleya adeliensis (Medelin). 99 

The authors proposed the term IPSO25 (ice proxy for the Southern Ocean with 25 carbon 100 
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atoms) for this biomarker, at least when detected in this ocean (Belt et al., 2016). Finally, a 101 

third (at least) HBI has been identified in several Rhizosolenia spp. isolated from polar and 102 

sub-polar locations (Belt et al., 2017) and has been linked with pelagic primary production 103 

under ice-free conditions in both the Arctic and the Antarctic (Belt, 2018; Belt et al., 2015; 104 

Collins et al., 2013; Massé et al., 2011). As a common constituent of marine settings (Belt et 105 

al., 2000), this tri-unsaturated HBI, sometimes referred to as HBI III (Fig. 1), has shown 106 

potential as a proxy of pelagic production for the spring marginal ice zone (MIZ) in polar seas 107 

(Belt et al., 2019; Collins et al., 2013; Köseoğlu et al., 2018; Smik et al., 2016a; Smik et al., 108 

2016b). More recently, HBI III has also shown potential as a proxy for pelagic productivity 109 

associated with arctic sea fronts (Harning et al., 2020). 110 

It is commonly accepted that a large proportion of the sympagic algal biomass released 111 

during sea ice melt, sinks to the seafloor, where it provides an important initial C and n-3 112 

PUFA source for benthos growth and reproduction after the food limited winter (McMahon et 113 

al., 2006; North et al., 2014). However, to the best of our knowledge, no studies have jointly 114 

monitored the temporal evolution of primary production quality (n-3 PUFA) and source 115 

(HBIs) in sea ice and the benthic filter-feeders underneath. In order to enhance our 116 

understanding of pelagic-benthic coupling in the Arctic, the present study monitored the 117 

temporal evolution of n-3 PUFAs and HBIs in sea ice and two benthic filter-feeder bivalve 118 

molluscs (Mya truncata and Serripes groenlandicus) during two melting periods in southwest 119 

Baffin Bay. Our objectives were: (i) to determine the seasonal and interannual variability of 120 

sea ice high-quality lipid production in sea ice, (ii) to determine the seasonal and interannual 121 

enrichment of these lipids in the two bivalve species and (iii) to confirm the use of M. 122 

truncata and S. groenlandicus as indicators of the tightness of pelago-benthic coupling. This 123 

study will enhance our understanding of the Arctic pelagic-benthic coupling, as well as 124 
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highlight the seasonal and annual influences of sea ice lipid production on the quality of 125 

bivalves and of their reproductive capacity.  126 

 127 

2. Materials and Methods  128 
2.1 Study site and sampling 129 
 130 

Sampling was conducted in 2015 and 2016 at a landfast-ice station located near 131 

Qikiqtarjuaq Island (Fig. 2) in southwest Baffin Bay (Canadian Arctic) within the framework 132 

of the GreenEdge project. Sea ice sampling was conducted every 2-3 days from 24 April to 24 133 

June 2015 and from 16 May to 08 July 2016 (67°28.766’N; 63°47.579’W; water column 134 

depth: 350 m; Fig. 2). Bivalves (mean wet mass ± SE= 53.3 ± 3.5 and 42.4 ± 3.0 g for the 135 

truncate softshell clam (Mya truncata) and the Greenland cockle (Serripes groenlandicus) 136 

respectively; Table S1), were collected every 2–3 weeks from 18 January to 11 June 2015 137 

and from 07 January to 19 June 2016, by scuba diving, at the closest coastal area from the sea 138 

ice sampling location (ca. 7.5 km west; 67°29.07'N; 63°57.92'W; Fig. 2).  139 

Sea ice, sampled using a Kovacs Mark V 14 cm diameter corer focusing on the 140 

bottommost three centimeters of the core, where the bulk of ice biota occur (Smith et al., 141 

1990), was retained for subsequent analyses of particulate organic matter (POM). To 142 

compensate for the horizontal heterogeneity of ice-algal biomass, which is typical of sea ice 143 

(Gosselin et al., 1986), sections from three or four equivalent cores were pooled in isothermal 144 

containers for each sampling. Pooled sea-ice sections were then melted with 0.2 μm filtered 145 

seawater (FSW; 3 parts of FSW to 1 part of melted ice) to minimize osmotic stress on the 146 

microbial community during melting (Bates and Cota, 1986; Garrison and Buck, 1986) and 147 

subsequently filtered for the several analyses (i.e., lipids, Chl a; Sections 2.2–2.3). Sea ice 148 

core parameters (e.g., snow thickness, air temperature and photosynthetically active radiation 149 

(PAR) estimated at the bottom of sea ice) were collected during both 2015 and 2016 150 

campaigns and have already been published elsewhere (Amiraux et al., 2019; Massicotte et 151 
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al., 2019; Oziel et al., 2019). Briefly, for each sampling date, 5–8 snow depth measurements 152 

were made with a ruler. Air temperature records were made with a meteorological station: an 153 

automated Meteo Mat equipped with temperature sensor (HC2S3; Campbell Scientific) sensor 154 

positioned near (< 100 m) the sea ice station. Photosynthetically active radiation (PAR) below 155 

the sea ice was estimated at 1.3 m using the multispectral data collected with a Compact – 156 

Optical Profiling System (C-OPS; version IcePRO; Biospherical instruments Inc.; Oziel et al., 157 

2019). To reduce the effect of sea ice surface heterogeneity on irradiance measurements (e.g., 158 

Katlein et al., 2015), the vertical attenuation coefficients of PAR were calculated by fitting a 159 

single exponential function on PAR profiles between 10 and 50 m, then used to estimate PAR 160 

at 1.3 m (more details are given by Massicotte et al., 2018). Note that 1.3 m corresponds to 161 

the highest average ice thickness measured during the two field campaigns and therefore to 162 

the first measurement under the ice (122.1 and 129.9 cm in 2015 and 2016 respectively). 163 

After collection, bivalve samples were kept frozen (< –20°C) at the shore laboratory, 164 

before further treatment at the university laboratory. At Université Laval, bivalve individuals 165 

were freeze-dried and subsequently crushed (with exception of the shell), homogenized and 166 

kept frozen (< –20°C) prior to analysis. 167 

 168 

2.2 Chlorophyll a 169 
 170 

At the shore laboratory and within 24 h of sampling, sea ice samples originating from 171 

the pooled ice cores melted in isothermal containers were filtered in duplicates for chlorophyll 172 

a (Chl a) analyses through Whatman GF/F glass fiber filters. The Chl a retained on the filters 173 

was measured using a TD-700 Turner Design fluorimeter, after 18–24 h extraction in 90% 174 

acetone at 4°C in the dark (Parsons et al., 1984). The fluorimeter was calibrated with 175 

commercially available Chl a (Anacystis nidulans, Sigma). 176 

 177 
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2.3 Lipid analyses  178 
 179 

At the shore laboratory, sea ice samples originating from pooled ice cores in isothermal 180 

containers were filtered in duplicate for lipid analyses through Whatman GF/F glass fiber 181 

filters (porosity 0.7 μm, pre-combusted 4 h at 450°C) and stored at –20°C before further 182 

treatment at the university laboratory. At Université Laval, extraction of lipids was carried out 183 

in duplicate on the algal filters (ca. 50–2500 mL filtered) and on bivalves (ca. 0.5 g dry mass). 184 

To enable HBI and fatty acid quantification, two or three internal standards were added to 185 

each sample prior to extraction. For HBI quantification, 7-hexylnonadecane (7-HND; 0.01 186 

µg) was added to sea ice samples, while 9-octylheptadecene (9-OHD; 0.02 µg) was added to 187 

bivalve samples. For fatty acid quantification, 100 µg and 500 µg of 5β-cholanic acid were 188 

added to sea ice and bivalve samples respectively. Samples were saponified (5% KOH; 90°C, 189 

120 min; 4 mL) in a flask, then extracted three times with hexane to recover HBI fractions 190 

and subsequently collected using open column silica chromatography (ca. 1 g silica; 6–7 mL 191 

hexane; Belt et al., 2012). The remainder of the flask was acidified with HCl to pH 1 and 192 

extracted again three times with hexane (6–7 mL hexane). The combined hexane extracts 193 

were dried over anhydrous Na2SO4, filtered and concentrated to obtain the fatty acid fraction 194 

and methylated for further detection by gas chromatography-mass spectrometry (GC-MS). 195 

Analysis of lipids was carried out using GC–MS in selected ion monitoring (e.g., SIM, m/z 196 

350 (IP25), 348 (HBI IIa, b) and 346 (HBI III, IV); Fig. 1) mode using an Agilent 7890A 197 

series gas chromatograph (DB5MS fused silica column; 50 m x 0.25 mm i.d., 0.25 μm film 198 

thickness) coupled to an Agilent 5975C mass spectrometric detector (Belt et al., 2012). HBIs 199 

were identified by comparison of retention indices (RIDB5-MS) and mass spectra to those of 200 

authentic standards (Belt, 2018; Belt et al., 2000; Tesi et al., 2020; Tesi et al., 2017). 201 

Quantification of HBIs was carried out by comparing mass spectral intensities of molecular 202 

ions to that of the internal standard and normalizing for differences in mass spectral 203 
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fragmentation efficiency and volume/mass sampled. Fatty acid quantification was made in a 204 

similar manner to that of HBIs, although using different standards (Supelco® 37 Component 205 

FAME Mix, Supelco). 206 

 207 
2.4 Statistical analyses 208 
 209 
2.4.1 Sea ice  210 
 211 

Principal Component analysis (PCA) biplots of the environmental variables was used to 212 

reduce the dimensionality of the dataset using the “FactoMineR” package (Pagès, 2004). 213 

Environmental variables used into the PCA were total fatty acid (TFA), polyunsaturated fatty 214 

acid (PUFA), air temperature, PAR, snow thickness and Chl a, to describe the 28 and 23 sea 215 

ice sampling dates from 2015 and 2016, respectively. Wilcoxon tests were performed to test 216 

the effect of year (fixed with two levels: 2015 and 2016) on sea ice fatty acid (TFA, 217 

monounsaturated fatty acid (MUFA), PUFA, saturated fatty acid (SFA)) and HBI (IP25, HBI 218 

IIa, IIb, III and IV) contents. Spearman’s rank order correlation (r) was used to infer the 219 

strength of associations between HBI variables and correlation significance was determined at 220 

p-value < 0.01.  221 

 222 

2.4.2 Bivalves 223 
 224 

Non-metric multidimensional scaling (nMDS), based on the Euclidean distance on 225 

normalized lipid data, was employed to graphically represent the position of the 75 bivalve 226 

specimens on the ordination diagram.  227 

3. Results 228 
3.1 Sea ice 229 
 230 

On average, Chl a concentration in sea ice was ca. 6 times higher in 2015 than in 2016 231 

(mean ± SE = 646.7 ± 69.4 µg L-1 and 119.8 ± 17.4 µg L-1, respectively; Fig. 3). A unique Chl 232 

a peak in production was observed in 2015 (May 31st; 1661.8 µg L-1) while two peaks were 233 
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observed in 2016 (317.3 and 306.9 µg L-1 on June 1st and 13rd respectively). TFA content in 234 

sea ice was ca. 5 times higher in 2015 than 2016 (mean ± SE = 57.9 ± 14.0 mg L-1 and 11.0 ± 235 

2.7 mg L-1, respectively; Fig. 3, Table 1). In 2015, the TFA maximum was observed on 15 236 

June (332.0 mg L-1; Fig. 3, Table S2) i.e., 15 days after the Chl a peak, while in 2016 it 237 

occurred on 20 June (35.2 mg L-1) i.e., 7 days after the second Chl a peak. Fatty acid profiles 238 

of sea ice samples were dominated in both 2015 and 2016 by C16:1∆7 (palmitoleic; 68.9 and 239 

53.6% respectively) and C16:0 (palmitic; 26.1 and 30.8% respectively) acids; they also 240 

exhibited smaller proportions of C14:0 (4.7 and 4.2% respectively), C18:1∆9 (oleic; 5.4 and 0.3% 241 

respectively), EPA (0.4 and 10.3% respectively) and DHA acids (0.0 and 1.2% respectively; 242 

Table 1). Among the TFA, the contribution of SFA (C14:0 and C16:0) was relatively similar in 243 

2015 and 2016 (mean ± SE = 30.7 ± 1.9 % and 35.0 ± 2.8 %, respectively). Contributions of 244 

MUFA (palmitoleic and oleic acids) were higher in 2015 than in 2016 (mean ± SE = 68.9 ± 245 

2.0 % and 53.6 ± 3.2 %, respectively), while the PUFA (n-3 PUFA EPA and DHA) 246 

contribution was lower in 2015 than 2016 (mean ± SE = 0.4 ± 0.3 % and 11.4 ± 1.9 %, 247 

respectively; Table 1). Absolute concentrations of the different lipid classes were 248 

significantly different between the years (Wilcoxon test; p-value < 10-4). Although the 2016 249 

Spring was less productive than 2015 Spring in terms of TFA, MUFA and SFA, the PUFA 250 

content was higher (mean ± SE = 0.9 ± 0.2 % and 0.2 ± 0.1 mg L-1, respectively; Table 1). To 251 

unravel how sea ice sampling dates (variables) could be described by their environment (Chl 252 

a, snow thickness (snow), PAR, air temperature (Temperature), TFA and PUFA), a biplot 253 

PCA was performed (Fig. 4). The PCA accounted for 64.1% of the total variation among sea 254 

ice sampling dates (Axis 1: 44.2% and Axis 2: 19.9%). The sea ice stations (variables) are 255 

displayed according to their contribution (in %) to the dimensions of the biplot. The quality of 256 

the contribution is colored. In Fig. 4, contributions higher than 15 are considered as good 257 

(orange, indicator length of arrows). The analysis revealed that TFA, PAR, snow and Chl a 258 
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are key environmental factors for describing the sea-ice sampling dates, while air temperature 259 

and PUFA are of less importance. Overall, the 2015 sea-ice sampling stations were 260 

characterized by high snow thickness, Chl a and TFA concentrations associated with low 261 

PAR, air temperature and PUFA content. Conversely, the 2016 sea-ice sampling period was 262 

characterized by relatively low snow thickness and concentrations of Chl a and TFA 263 

associated with high PAR, air temperature and PUFA content (Fig. 4). 264 

HBIs were detected during both sampling years. Because of the slightly different 265 

analytical methodology employed for the analysis of HBIs in sea-ice and bivalves, no 266 

comparison of absolute HBIs values can be made between the two types of samples. A 267 

Wilcoxon test on the different HBIs investigated showed no significant differences between 268 

2015 and 2016 (p-value > 0.05). During both years, IP25 and HBI IIa were well correlated in 269 

sea ice (Spearman’s r = 0.92, p-value < 0.01, n = 51) as well as HBI IIa, III and IV 270 

(Spearman’s r ranged from 0.87 to 0.94, p-value < 0.01, n = 51) (Table 2). Conversely, IP25 271 

and HBI IIa were not well correlated with HBI IIb, III or IV (Table 2). 272 

 273 

3.2 Bivalves 274 
 275 

We monitored HBIs in M. truncata and S. groenlandicus from winter to summer 2015 and 276 

2016 (Fig. 6). With the exception of the  four last 2015 and two last 2016 sampling dates, M. 277 

truncata presented higher IP25 contents than S. groenlandicus (Fig. 5A, B). However, the 278 

mean IP25 content of S. groenlandicus was higher than that of M. truncata in both 2015 (mean 279 

± SE = 127.9 ± 63.9 and 57.0 ± 15.9 ng g-1 dry mass, respectively) and 2016 (mean ± SE = 280 

86.5 ± 52.0 and 37.3 ± 8.0 ng g-1 dry mass, respectively). The IP25 contents of S. 281 

groenlandicus collected in 2015 and 2016 presented similar seasonal trends, i.e., an 282 

exponential-like curve with low values observed from January to early May, followed by 283 

increasing values from May to late June (Fig. 5A, B). These increases in S. groenlandicus 284 
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IP25 content corresponded to the sea ice production period of IP25. IP25 content in M. truncata 285 

followed the same trend as S. groenlandicus during both years, although the trend was not as 286 

clear (Fig. 5A, B). Similarly to IP25, S. groenlandicus HBI III content was higher than in M. 287 

truncata in both 2015 (mean ± SE = 19.3 ± 4.4 and 5.3 ± 0.8 ng g-1 dry mass, respectively) 288 

and 2016 (mean ± SD = 6.8 ± 3.2 and 3.0 ± 0.5 ng g-1 dry mass, respectively). The HBI III 289 

contents of S. groenlandicus collected in 2015 and 2016 presented similar seasonal trends, 290 

i.e., low values observed from January to April/May followed by increasing values from May 291 

to late June (Fig. 5A, B). In both instances, the increase of S. groenlandicus HBI III occurred 292 

after HBI III production in sea ice and before IP25 accumulation in S. groenlandicus. Although 293 

the general trend of low HBI III values from January to April/May followed by increasing 294 

values from May to late June was also observed for M. truncata (at least for 2016; Fig. 5D), 295 

the increase did not clearly precede that of IP25; nor did it occur after sea-ice HBI production.  296 

A strong correlation was observed between IP25 and HBI IIa in S. groenlandicus over the 297 

two years (Spearman’s r = 0.99, p-value < 0.01, n = 38; Table 2). This correlation was also 298 

present, but weaker, in sea-ice POM and M. truncata (r = 0.92 and 0.44, respectively). 299 

Correlations between HBI IIb, III and IV were strong for sea-ice POM, moderate in S. 300 

groenlandicus (r ranged from 0.70 to 0.87) and relatively weak in M. truncata (r ranged from 301 

0.21 to 0.70). 302 

Non-metric multidimensional scaling (nMDS) of bivalve lipid data (i.e., fatty acid and 303 

HBI contents) showed that M. truncata samples were well grouped, at both seasonal and 304 

interannual scales. In contrast, S. groenlandicus samples formed a more diffusive group at 305 

those same scales (Fig. 6). The fatty acid profiles of bivalves were similar to those of sea-ice 306 

POM, but occurred in different proportions (Tables 1, 3, Table S2–S4). For instance, S. 307 

groenlandicus samples during both 2015 and 2016 were dominated by EPA (mean ± SE = 308 

44.9 ± 4.1 and 35.3 ± 5.9% respectively), C16:0 (mean ± SE = 20.7 ± 1.0% and 25.6 ± 2.7% 309 
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respectively) and C16:1∆7 acids (mean ± SE = 15.8 ± 1.3% and 20.0 ± 2.9% respectively), 310 

while exhibiting lower proportions of DHA (mean ± SE = 8.5 ± 0.5% and 6.8 ± 1.0% 311 

respectively), C14:0 (mean ± SE = 5.7 ± 0.4 and 6.9 ± 0.6% respectively) and C18:1∆9 acid 312 

(mean ± SE = 4.3 ± 0.3% and 5.3 ± 0.8% respectively; Table 3). The M. truncata samples 313 

during both 2015 and 2016 were dominated by EPA (mean ± SE = 42.7 ± 5.9% and 37.4 ± 314 

6.0% respectively), C16:0 (mean ± SE = 23.8 ± 2.5% and 30.2 ± 3.4% respectively), C16:1∆7 315 

acids (mean ± SE = 12.0 ± 1.7% and 16.5 ± 3.0% respectively) and DHA (mean ± SE = 16.2 316 

± 1.4% and 9.3 ± 0.8% respectively). They also exhibited smaller proportions of C18:1∆9 (mean 317 

± SE = 4.3 and 3.8 ± 0.7% respectively) and C14:0 acids (mean ± SE = 1.9 ± 0.3% and 2.7 ± 318 

0.5% respectively; Table 3). TFA contents were higher in S. groenlandicus than in M. 319 

truncata during both 2015 (mean ± SE = 233.5 ± 19.7 and 40.1 ± 5.0 mg g-1 dry mass, 320 

respectively) and 2016 (mean ± SE = 167.6 ± 25.2 and 54.6 ± 5.0 mg g-1 dry mass, 321 

respectively). Among the TFA, the contribution of SFA was relatively similar for the two 322 

species during 2015 (mean ± SE = 25.7 ± 2.8 % and 26.4 ± 1.4 %, respectively) and 2016 323 

(mean ± SE = 32.9 ± 3.8 % and 32.5 ± 3.7 %, respectively), while the contribution of  MUFA 324 

was slightly lower in M. truncata than in S. groenlandicus during 2015 (mean ± SE = 15.2 ± 325 

2.2 % and 20.1 ± 1.6 %, respectively) and 2016 (mean ± SE = 20.3 ± 3.7 % and 25.3 ± 3.7 %, 326 

respectively; Table 3). Conversely, the contribution of PUFA was slightly higher in M. 327 

truncata than in S. groenlandicus during 2015 (mean ± SE = 58.9 ± 7.2 % and 53.5 ± 4.6 %, 328 

respectively) and 2016 (mean ± SE = 46.7 ± 6.8 % and 42.2 ± 6.9 %, respectively). 329 

The temporal evolution of palmitoleic/palmitic acid ratios and of the TFA and PUFA 330 

contents of bivalves were monitored during both 2015 and 2016 (Fig. 7; Table S3, S4). 331 

Values were seasonally steady in M. truncate, but for TFA in S. groenlandicus, declined from 332 

a seasonal maximum at the beginning of sampling (Fig. 7). The importance of diatoms for 333 

bivalve diet was assessed here with the palmitoleic/palmitic acid ratio, which increases with 334 
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the contribution of diatoms to animal biomass (Pedersen et al., 1999; Reuss and Poulsen, 335 

2002). During both years, the ratios of S. groenlandicus were higher early in the sampling 336 

period (0.98 from 18 January to 21 March 2015 and 0.96 from 07 January to 10 May 2016) 337 

than afterwards (0.56 from 03 May to 26 June 2015 and 0.58 from 30 May to 19 June 2016). 338 

These low ratios corresponded to the period when bivalve consume sympagic algae (Fig. 7A, 339 

B). The TFA and PUFA contents of S. groenlandicus followed similar qualitative trends. TFA 340 

contents were highest early in the season (304.8 and 196 mg g-1 dry mass in 2015 and 2016, 341 

respectively) and lowest afterwards (108.9 and 82.1 mg g-1 dry mass in 2015 and 2016). For 342 

PUFA, the values declined from 180.5 and 82.7 in early 2015 and 2016, respectively, to 47.1 343 

and 34.7 mg g-1 dry subsequently (Fig. 7C–F). 344 

4. Discussion 345 
 346 
4.1 Sea ice seasonal and inter-annual lipid productivity 347 

 348 

A Principal Component Analysis (PCA) biplot of environmental variables was used to 349 

reduce the dimensionality of the sea ice samples (Fig. 4). This highlighted that in 2015 the 350 

snow cover was thicker than in 2016, which resulted in reduced under-ice PAR.  In terms of 351 

biomarkers, the 2015 sea ice was characterized by higher Chl a concentrations and TFA 352 

contents than in 2016, associated with lower PUFA (EPA and DHA) contents. The great 353 

difference in Chl a productivity may derive from the contrasted atmospheric forcings present 354 

during the winters preceding each sampling period. Indeed, the winter of 2014–2015 was 355 

colder and with less snowfall than the 2015–2016 winter. As a consequence, twice the amount 356 

of light was transmitted to the bottom ice prior to sampling, which could in large part explain 357 

the average six times larger sympagic production of Chl a in 2015 than 2016 (Oziel et al., 358 

2019; Fig. 3). Since larger sympagic Chl a biomass was observed in 2015 than 2016, it is not 359 

surprising to also observe the largest total fatty acid production in 2015 (Figs. 3, 4; Table 1). 360 
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Interestingly, a mismatch between TFA and Chl a peaks was observed over the two years 361 

(Fig. 3). This result has already been pointed out by Amiraux et al. (2020) during the 2016 362 

melting season in the same area. Those authors attributed this phenomenon to the 363 

photoacclimation of sympagic algae to higher light intensities (derived from snow melting) 364 

and the consequent reduction of their Chl a content per cell, resulting in a mismatch between 365 

Chl a and fatty acid peaks. Thus, based on the observation of Chl a and fatty acid peak 366 

mismatches over the two years, we suggest that this particular feature is probably common to 367 

sea ice melt. 368 

The fatty acid profiles of the sea-ice POM obtained in southwest Baffin Bay were similar 369 

to those previously reported during spring in Svalbard and the Barents Sea (Henderson et al., 370 

1998; Leu et al., 2011; Leu et al., 2010). However, the relative contribution of different lipid 371 

classes somewhat differed from the proportions found in the literature. PUFA contributions 372 

were notably low here (0.4 and 11.4% in 2015 and 2016 respectively) relative to those 373 

measured in Svalbard and the Barents Sea (> 17%). While the threshold percentage at which 374 

the relative contribution of a fatty acid is accounted for differ among fatty acid studies (e.g., 1 375 

or 3%; 3% in the present study) and may have contributed to this contrast, the most likely 376 

explanation is a regional or annual difference in the relative production of fatty acids. 377 

Absolute concentrations of the different fatty acid classes greatly differed between the 378 

sampling years with higher TFA, MUFA and SFA concentration in Spring 2015 than 2016 379 

(Table 1). Conversely, sympagic algae collected in Spring 2016 presented higher PUFA 380 

absolute concentrations than those of 2015 (mean ± SE = 0.9 ± 0.2 and 0.2 ± 0.1 mg L-1 in 381 

2016 and 2015 respectively; Table 1; Fig. 4). While the total algal biomass that reaches the 382 

seafloor is important for the feeding ecology of bivalves, the nutritional value of this biomass 383 

is determined by the essential fatty acids EPA and DHA (Hendriks et al., 2003; Lane, 1987). 384 

These PUFAs are essential because most bivalve species are unable to synthesize them from 385 
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shorter chain precursors (Chu and Greaves, 1991; Delaunay et al., 1993). Thus, we suggest 386 

that, although sympagic production was higher in 2015 than 2016 (as attested by e.g., Chl a 387 

and TFA content), the 2016 sea ice was more useful for bivalves (at least for essential fatty 388 

acids) than the 2015 production. 389 

In a previous investigation, Amiraux et al. (2019) conducted the first analysis of the 390 

temporal evolution of IP25 and other HBIs during the 2016 melting season in the same area. In 391 

the present study, sea ice HBI analysis was performed on both 2015 and 2016 samples with a 392 

different methodology and filters to those reported by Amiraux et al. (2019) in their studies. 393 

Belt et al. (2014) warned the ‘HBI scientific community’ that the absolute quantification of 394 

HBIs obtained from different laboratories and/or using different methodologies (e.g., 395 

standard: 9-OHD or 7-HND) may be relatively different. Thus, in order to prevent this bias, 396 

the present study only discusses the absolute values obtained by the same method, or else the 397 

relative values obtained from different methods (e.g., biomarker correlations).  398 

Overall, we confirmed the general findings of Amiraux et al. (2019) for sea-ice POM; 399 

namely, the co-occurrences of: (i) IP25 and HBI IIa, which is consistent with a single source 400 

(sympagic) for the two compounds (Brown et al., 2014a; Brown et al., 2014b; Limoges et al., 401 

2018), and (ii) HBIs IIb, III and IV (Table 2). The latter was most likely attributed to a 402 

pelagic production at the early sea ice melts stages and within sea ice, by the tube-dwelling 403 

diatom Berkeleya rutilens (Amiraux et al., 2019). In recent years, numerous HBI-based 404 

proxies have been developed (Belt, 2018). Among them, the so-called PIP25 index 405 

(phytoplankton marker-IP25; Müller et al., 2011) has provided, in some cases, more detailed 406 

descriptions of palaeo Arctic sea-ice conditions in sediment records than using IP25 alone 407 

(e.g., Belt, 2018; Berben et al., 2014; Fahl and Stein, 2012; Müller and Stein, 2014; Müller et 408 

al., 2012). On the other hand, the HBI biomarker-based ‘H-print’ has provided valuable 409 

estimates of the relative contributions of sympagic- and pelagic-derived primary production in 410 
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a variety of Arctic animals (Brown, 2018; Brown et al., 2018; Brown et al., 2014d). The 411 

robustness of these proxies depends on whether the markers are unequivocally specific to 412 

sympagic and pelagic growth environments, or not. Although IP25 appears to represent a 413 

suitable sympagic biomarker, due to its source specificity (Brown et al., 2014c), identification 414 

of the most suitable pelagic counterpart remains challenging (Belt, 2018). In recent studies, 415 

the use of some other HBIs (including HBI III) has been suggested as preferable pelagic 416 

counterparts to IP25, owing to their apparently greater source specificity (Belt, 2018; Belt et 417 

al., 2018; Belt et al., 2019; Köseoğlu et al., 2018; Smik, 2016). However, data from the 418 

current study confirm the findings of Amiraux et al. (2019); namely, that HBI III can occur in 419 

sea ice and is not as specific of the pelagic environment as originally believed (Fig. 5C, D).  420 

HBI production in sea-ice (including IP25) did not significantly differ between years 421 

(Wilcoxon test; p-value > 0.05). Since IP25-producing species are normally only present as 422 

minor components of the ice-algal assemblage (typically 1–5%; Brown et al., 2014c), the 423 

combination of a nearly stable  IP25-production in years with reduced ice-algal production (as 424 

indicated by the Chl a or TFA; Fig. 3) indicates a relatively high contribution of  IP25-425 

producing species in 2016.  426 

  427 

4.2. Efficiency of benthic-pelagic coupling 428 
 429 

Pelagic–benthic coupling is known to be particularly tight on Arctic shelves (Ambrose 430 

and Renaud, 1997; Clough et al., 2005; Hobson et al., 1995; Renaud et al., 2008; Olivier et 431 

al., 2020), with a large portion (48 to 96%) of the carbon produced in the water column falling 432 

to the seafloor each year (Wassmann, 1991). Although the relative contribution of sympagic 433 

algae and phytoplankton to total marine primary production varies with ice cover and water 434 

column productivity, it has been shown that a significant fraction of the carbon reaching the 435 

seafloor derives from sympagic algal material (Belt, 2018). The joint monitoring of the sea-436 
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ice proxy IP25 in both sea ice and the bivalves beneath, allowed us to determine the efficiency 437 

of the benthic-pelagic (and more precisely: benthic-sympagic) coupling for two years (Fig. 5). 438 

Both M. truncata and S. groenlandicus presented depleted IP25 concentrations during winter 439 

months, followed by days of rapid enrichment once IP25 was produced in sea ice (Fig. 5 A, 440 

B). This pattern confirms that benthos rapidly responded to the influx of sympagic organic 441 

matter (days to weeks; Graf, 1989; Renaud et al., 2008). Similarly, bivalves presented 442 

depleted HBI III concentrations in winter, followed by a rapid enrichment from ca. April/May 443 

(Fig. 5). From its presupposed pelagic origin in the marginal ice zone (Belt et al., 2015; 444 

Collins et al., 2013; Köseoğlu et al., 2018; Smik, 2016; Smik et al., 2016b), HBI III has only 445 

been reported in phytoplankton collected during summer and autumn (Belt et al., 2017). Thus, 446 

the enrichment of HBI III in bivalves observed from ca. April/May unlikely derived from 447 

open water production. Moreover, in sea ice, the production of HBI III has been reported to 448 

occur before that of IP25 (Fig. 5; Amiraux et al., 2019). Thus, the earlier HBI III enrichment in 449 

bivalve flesh compared to IP25 strongly supports the notion that these animals ingest sea ice-450 

derived HBI III. Consequently, we suggest that in coastal regions at least, HBI III derived 451 

from sea ice reaches the seafloor and contributes to the diet of arctic animals, potentially 452 

lowering the robustness of the PIP25 and H-print indices. 453 

For both years, IP25 and HBI III concentrations were more than twice higher in S. 454 

groenlandicus than in M. truncata. Moreover, the response of M. truncata to sympagic POM, 455 

as identified by their HBI enrichment (IP25 and HBI III) was less evident than for S. 456 

groenlandicus (Fig. 5). An explanation may be found in the size of the organisms collected. 457 

Indeed, it has been shown that bivalve filtration rate is to some extent a function of their body 458 

size (Riisgård and Møhlenberg, 1979; Riisgård and Seerup, 2003; Sylvester et al., 2005). It 459 

follows that the consumption of large-sized sympagic algae by small bivalves should be 460 

relatively weak, resulting in a low and more variable HBI enrichment than in large bivalves. 461 
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In the present study however, this argument is countered by the heavier mass of M. truncata 462 

samples compared to S. groenlandicus (Table S1). A more likely explanation lies in the 463 

feeding behaviors of these two bivalves. Indeed, although S. groenlandicus and M. truncata 464 

are both slow-mobile burrowing suspension feeders (Gulliksen and Svensen, 2004; Huber, 465 

2010; McTigue and Dunton, 2014; Shojaei, 2016), their bioturbation affinity differs. Unlike S. 466 

groenlandicus, M. truncata induces diffusive mixing bioturbation (Lacoste et al., 2018), and 467 

is expected to ingest a variable and non-negligible quantity of buried sediment. Although M. 468 

truncata had higher IP25 content than S. groenlandicus during winter months (Fig. 5A, B), its 469 

IP25 content was half that of S. groenlandicus over the entire season. This result supports the 470 

notion that sediment represents a non-negligible part of the diet in M. truncata. Indeed, the 471 

higher IP25 content of M. truncata compared to S. groenlandicus in winter suggests that 472 

sediment POM represents a better source of IP25 than primary production during this season. 473 

Conversely, the higher spring IP25 content in S. groenlandicus compared to M. truncata 474 

suggests that primary production is the better source of IP25 during this season. Moreover, 475 

since unsaturated lipids (including HBIs) are susceptible to degradative processes in the upper 476 

centimeters of the sediment (Rontani and Belt, 2019; Rontani et al., 2018), the consumption 477 

of sediment POM by M. truncata should provide less and more variable lipid contents 478 

(including HBI) than the supposed strict diet of sympagic and pelagic material in S. 479 

groenlandicus. Lipid contents (Fig. 5, 7) and the positive correlations between different HBIs 480 

support this interpretation (Table 2). Indeed, the correlations between different HBIs in S. 481 

groenlandicus (i.e., Spearmans’r = 0.99 for IP25 and HBI IIa; r ranged from 0.70 to 0.87 for 482 

HBI IIb, III and IV; Table 2) were as strong as those observed in sea ice, which attests to the 483 

almost exclusive contribution of sympagic algae to their diet during the sampling period. By 484 

contrast, the relatively weak correlations among HBIs in M. truncata (i.e., spearmans’r = 0.44 485 
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for IP25 and HBI IIa; r ranged from 0.21 to 0.70 for HBI IIb, III and IV) imply a reduced 486 

sympagic contribution to their diet. 487 

 488 

4.3. Effectiveness of essential fatty acid transfer from sea ice to bivalve 489 
 490 

Based on lipid data, nMDS was employed to graphically represent the position of the 75 491 

bivalves by year and species (Fig. 6). Unlike for S. groenlandicus, data for M. truncata 492 

samples were well clustered, suggesting low lipid variability among seasons or years. Indeed, 493 

M. truncata samples were distinguished from those of S. groenlandicus by relatively constant 494 

and lower fatty acid contents (ca. 6 and 3 times lower in 2015 and 2016 respectively; Table 495 

3). This general pattern is reminiscent of that of the HBIs (as previously discussed) and 496 

reinforces the interpretation that M. truncata relies to a greater extent than S. groenlandicus 497 

on sedimentary organic matter for feeding. 498 

Although the absolute quantities of lipid classes differed between years and bivalve 499 

species, their relative contribution was somewhat similar, with a mean PUFA (herein n-3 500 

PUFA EPA and DHA) contribution to TFA above 40%, irrespective of species and sampling 501 

year (Table 3). This contribution is similar to those observed in other Arctic bivalves such as 502 

Astarte elliptica or Bathyarca glacialis (Gaillard et al., 2017; Gaillard et al., 2015) and 503 

underscores the strong accumulation of these essential plant-derived molecules in benthic 504 

filter feeders. The benthos is known to respond rapidly to the influx of sympagic organic 505 

matter (days to weeks; Graf, 1989; Renaud et al., 2008), principally due to its relatively high 506 

content in n-3 PUFAs (Arrigo and Thomas, 2004). We confirmed, through HBI analysis, that 507 

sympagic material was quickly assimilated by M. truncata and S. groenlandicus after 21 April 508 

in 2015 and after 10 May in 2016 (Fig. 5A, B).  509 

Since we argued previously that sympagic/pelagic-benthic coupling is relatively weak for 510 

M. truncate, we will hereafter focus on S. groenlandicus to assess the impact of sympagic 511 
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fatty acid deliveries on the quality of bivalve flesh. Diatoms represent the dominant taxon of 512 

sympagic algae (Amiraux et al., 2019; Brown et al., 2016; Ratkova and Wassmann, 2005) and 513 

are known as good producers of EPA (Kelly and Scheibling, 2012; Viso and Marty, 1993), 514 

which was  the main n-3 PUFA present in our bivalve samples (Table 3). It is therefore not 515 

surprising that the palmitoleic/palmitic acid ratio, as well as the TFA and PUFA contents, 516 

were similar during both sampling years (Fig. 7). S. groenlandicus harvested before the 517 

period of peak algal production were then characterized by relatively high 518 

palmitoleic/palmitic ratios consistent with relatively strong diatom contribution to their lipid 519 

reserves. By contrast, these ratios were low in S. groenlandicus specimens feeding on 520 

sympagic algae (as attested by HBI measurements), at or near the apogee of the productive 521 

period in sea ice (Table 3; Fig. 7). While this apparent diminution of the diatom signal is 522 

unexpected at a time when ice algal deliveries to the sea floor increase, prior studies have 523 

shown that the deposition of sympagic algal biomass onto the seafloor is particularly 524 

important early in the spring when the intake of C and n-3 PUFA is required to jumpstart 525 

benthic growth and reproduction after the food limited winter (McMahon et al., 2006; North 526 

et al., 2014). Thus, these seemingly low sympagic POM intakes by bivalves result most likely 527 

from their quick utilization of this organic matter (newly delivered or previously stored), 528 

rather than from a low contribution. 529 

The reproduction of intertidal bivalves includes gametogenesis, development and 530 

metamorphosis, all of which are energy-consuming processes (Martinez et al., 2000). The 531 

success of these processes depends on the overall physiological condition and especially the 532 

pre-spawning condition of the adults. The larger the build-up of storage material, the more 533 

weight loss the animal can incur at spawning without endangering its subsequent survival and 534 

growth (Beukema et al., 2001). In the present study, we identified the spawning period from 535 

the intake of sympagic material by the bivalves (indicated by IP25 enrichment; Fig. 5) and the 536 
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steep concurrent decrease in their fatty acid content (Fig. 7). Although the pre-spawning 537 

conditions were different among years and bivalve species (e.g., the initial PUFA dry mass of 538 

S. groenlandicus was two-fold higher from 18 January to 21 April 2015 and from 07 January 539 

to 10 May 2016 respectively), on the last sampling day of both years the two species 540 

presented similar n-3 PUFA contents, but differed in their TFA contents (Table S3, S4). This 541 

pattern suggests that the n-3 PUFA content observed at the end of the sampling period 542 

represents the residual amount necessary to ensure organism survival once it has completed 543 

its spawning effort. The fact that pre-spawning n-3 PUFA and TFA contents in M. truncata 544 

were lower than their post-spawning values in 2015 (Fig. 7), suggests that the animals were 545 

then unable to acquire enough essential fatty acids for the reproductive effort, which may 546 

have been delayed or suppressed in that year. 547 

Conclusion  548 
 549 

We examined the contents of n-3 PUFA and HBIs of sea ice POM and two different filter-550 

feeding bivalve species during two Arctic melting seasons that took place in southwest Baffin 551 

Bay. The results underscored a relatively strong seasonal and interannual variability in the 552 

production of organic matter (whether fatty acid or chlorophyll a) and biomarkers in sea ice, 553 

due to different conditions of air temperature, snow deposition and transmitted PAR. The sea 554 

ice nevertheless shared many common characteristics during the two melting seasons, 555 

including (i) a similar productivity of IP25, (ii) a production of the so-called HBI pelagic 556 

biomarker HBI III that seasonally preceded that of IP25, (iii) a temporal mismatch between 557 

chlorophyll a and fatty acid production peaks. Although Spring 2015 was the most productive 558 

for nearly all the parameters analyzed (e.g., TFA, Chl a), Spring 2016 was the most 559 

productive in terms of the lipids considered essential (the n-3 PUFAs EPA and DHA) for the 560 

growth and reproduction of bivalves. By tracking the different HBIs, their levels and the 561 

correlations between each of those, we (i) confirmed that sympagic-benthic coupling is tight 562 
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on Arctic shelves (ii) showed that unlike M. truncata, S. groenlandicus can be used as a 563 

responsive sentinel of pelagic-benthic coupling, and (iii) confirmed that HBI III is present in 564 

sea ice, which may weaken the robustness of some HBI-based proxies. By monitoring the 565 

fatty acid content of bivalves from winter to late spring, we (i) showed that these animals 566 

greatly accumulate essential fatty acids (mean relative contributions exceeding 40%), (ii) 567 

identified their pre-spawning and post-spawning periods, and (iii) proposed that M. truncata 568 

may fail to store enough essential fatty acids to support its reproductive effort in some years. 569 
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Figure caption 617 
 618 
Figure 1: Numbering system used to describe structural characteristics of highly branched 619 
isoprenoids (I) and structures of some common C25 highly branched isoprenoids (IP25 – IV). 620 

 621 
Figure 2: Map of the study area with location of the station investigated in southwest Baffin 622 
Bay. 623 
 624 
Figure 3: Time series of chlorophyll a and total fatty acid concentration in the bottom 0–3 cm 625 
sea ice section from (A) 25 April to 24 June 2015 and from (B) 16 May to 8 July 2016 at the 626 
sampling location in southwest Baffin Bay (Fig. 2). 627 
 628 
Figure 4: Principal Component analysis (PCA) biplot representing the distribution of sea ice 629 
samples collected at different sampling time and year according to the environmental core 630 
variables: chlorophyll a (Chl a), snow thickness (Snow), air temperature (Temperature), 631 
photosynthetically active radiation (PAR). total fatty acid (TFA) and polyunsaturated fatty 632 
acid content (PUFA). The PCA accounts for 64.1% of the total variation among sea ice 633 
sampling dates (Axis 1: 44.2% and Axis 2: 19.9%). The environmental variables are 634 
displayed according to their contribution (%) to the dimensions of the biplot. The quality of 635 
the contribution is colored (good contribution should be higher than 15: orange, indicator 636 
length of arrow). 637 
 638 
Figure 5: Time series of IP25 (A, B) and HBI III (C, D) in sea ice (watermark) and bivalve 639 
collected from (A, C) 25 April to 24 June 2015 and from (B, D) 16 May to 8 July 2016 at the 640 
sampling location in southwest Baffin Bay (Fig. 2). 641 
 642 
 643 
Figure 6: Non-metric multidimensional scaling (nMDS), based on the Euclidean distance on 644 
normalized lipid data (HBI and fatty acids) representing the position of the 75 bivalves 645 
collected species (Mya truncata or Serripes groenlandicus) and sampling year (2015 or 2016) 646 
on the ordination diagram. 2D stress = 0.06. 647 
 648 
Figure 7: Time series of palmitoleic/palmitic acid ratio (A, B), total fatty acid (C, D) and 649 
polyunsaturated fatty acid content (E, F) in Mya truncata and Serripes groenlandicus 650 
collected from (A, C, E) 25 April to 24 June 2015 and from (B, D, F) 16 May to 8 July 2016 651 
at the sampling location in southwest Baffin Bay (Fig. 2). 652 
 653 
 654 
Table 1: Mean fatty acid composition, expressed as mass % of total fatty acids (TFA), of 655 
POM collected in the 0–3 cm of sea ice in Davis strait between 24 April to 24 June 2015 and, 656 
16 May to 8 July 2016. Fatty acids above > 3% in at least one of the sea ice sampling 657 
investigated were included. TFA = total fatty acids expressed in mg L-1; SFA = saturated fatty 658 
acid; MUFA = monounsaturated fatty acid; PUFA = polyunsaturated fatty acid. Values are 659 
means (SE). 660 
 661 
Table 2: Correlation coefficients between chlorophyll a (Chl a) and HBI biomarkers in sea 662 
ice POM, Serripes groenlandicus and Mya truncata collected in 2015 and 2016 in southwest 663 
Baffin Bay (Fig. 2). 664 
 665 
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Table 3: Mean fatty acid composition, expressed as mass % of total fatty acids (TFA), of (A) 666 
Serripes groenlandicus and (B) Mya truncata collected in Davis strait between January and 667 
June 2015 and between January and June 2016. Fatty acids above >3% in at least one of the 668 
bivalve sampling investigated were included. TFA = total fatty acids expressed in mg g-1 dry 669 
mass; SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA = 670 
polyunsaturated fatty acid. Values are mean (SE). 671 
 672 
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Table 1: Mean fatty acid composition, expressed as mass % of total fatty acids (TFA), of POM 

collected in the 0–3 cm of sea ice in Davis strait between 24 April to 24 June 2015 and, 16 May 

to 8 July 2016. Fatty acids above > 3% in at least one of the sea ice sampling investigated were 

included. TFA = total fatty acids expressed in mg L-1; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid. Values are mean (SE). 
 

Fatty acid Sea ice sampling year 

  2015 2016 
   

14:00 4.7 (0.4) 4.2 (0.3) 

16:00 26.1 (1.9) 30.8 (2.8) 

∑SFA 30.7 (1.9) 35.0 (2.8) 

16:1ω7 68.9 (2.0) 53.6 (3.2) 

18:1ω9 5.4 (0.1) 0.3 (0.1) 

∑MUFA 68.9 (2.0) 53.6 (3.2) 

EPA 0.5 (0.3) 10.3 (1.7) 

DHA 0.0 (0.0) 1.2 (0.3) 

∑PUFA 0.4 (0.3) 11.4 (1.9) 

TFAa 57.9 (14.0) 11.0 (2.7) 
 

a Expressed in mg L-1 

 



 

Table 2: Correlation coefficients between chlorophyll a (Chl a) and HBI biomarkers in sea ice 

POM, Serripes groenlandicus and Mya truncata collected in 2015 and 2016 in Davis Strait 

(Figure 2). 

 

        

Sample type Factor Chl a IP25 HBI IIa HBI IIb HBI III 

Sea ice POM Chl a 1 –b – – – 

(n = 51) IP25 0.58*a 1 – – – 

 HBI IIa 0.61* 0.92* 1 – – 

 HBI IIb n/ac 0.27 0.34 1 – 

 HBI III 0.39* 0.32 0.39* 0.88* 1 

  HBI IV 0.45* 0.41* 0.47* 0.87* 0.94* 

Serripes groenlandicus IP25 n/a 1 – – – 

(n = 38) HBI IIa n/a 0.99* 1 – – 

 HBI IIb n/a 0.74* 0.79* 1 – 

 HBI III n/a 0.62* 0.64* 0.72* 1 

  HBI IV n/a 0.69* 0.72* 0.70* 0.87* 

Mya truncata IP25 n/a 1 – – – 

(n = 38) HBI IIa n/a 0.44* 1 – – 

 HBI IIb n/a 0.60* 0.39* 1 – 

 HBI III n/a 0.71* 0.15 0.60* 1 

  HBI IV n/a 0.37* 0.71* 0.70* 0.21* 
 aAsterisk indicates significant correlation: p < 0.01. 
bRepetition of value. 
cNot applicable. 

 

 



Table 3: Mean fatty acid composition, expressed as mass % of total fatty acids (TFA), of (A) 

Serripes groenlandicus and (B) Mya truncata collected in Davis strait between January and 

June 2015 and between January and June 2016. Fatty acids above >3% in at least one of the 

bivalve sampling investigated were included. TFA = total fatty acids expressed in mg g-1 dry 

mass; SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA = 

polyunsaturated fatty acid. Values are mean (SE). 
 

Fatty acid Mya truncata sampling year Serripes groenlandicus sampling year 
 2015 2016 2015 2016 

          

14:00 1.9 (0.3) 2.7 (0.5) 5.7 (0.4) 6.9 (0.6) 

16:00 23.8 (2.5) 30.2 (3.4) 20.7 (1.0) 25.6 (2.7) 

∑SFA 25.7 (2.8) 32.9 (3.8) 26.4 (1.4) 32.5 (3.3) 

16:1ω7 12.0 (1.7) 16.5 (3.0) 15.8 (1.3) 20.0 (2.9) 

18:1ω9 3.3 (0.5) 3.8 (0.7) 4.3 (0.3) 5.3 (0.8) 

∑MUFA 15.3 (2.2) 20.3 (3.7) 20.1 (1.6) 25.3 (3.7) 

EPA 42.7 (5.9) 37.4 (6.0) 44.9(4.1) 35.3 (5.9) 

DHA 16.2 (1.4) 9.3 (0.8) 8.5 (0.5) 6.8 (1.0) 

∑PUFA 58.9 (7.2) 46.7 (6.8) 53.5 (4.6) 42.2 (6.9) 

TFAa 40.1 (5.0) 54.6 (11.0) 233.5 (19.7) 167.6 (25.2) 
 

a Expressed in mg L-1 

 




