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FROM BOLTZMANN EQUATION FOR GRANULAR GASES TO A MODIFIED

NAVIER-STOKES-FOURIER SYSTEM

RICARDO J. ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

ABSTRACT. In this paper, we give an overview of the results established in [3] which provides the first rigorous

derivation of hydrodynamic equations from the Boltzmann equation for inelastic hard spheres in 3D. In particular,

we obtain a new system of hydrodynamic equations describing granular flows and prove existence of classical

solutions to the aforementioned system. One of the main issue is to identify the correct relation between the

restitution coefficient (which quantifies the rate of energy loss at the microscopic level) and the Knudsen number

which allows us to obtain non trivial hydrodynamic behavior. In such a regime, we construct strong solutions to the

inelastic Boltzmann equation, near thermal equilibrium whose role is played by the so-called homogeneous cooling

state. We prove then the uniform exponential stability with respect to the Knudsen number of such solutions, using

a spectral analysis of the linearized problem combined with technical a priori nonlinear estimates. Finally, we prove

that such solutions converge, in a specific weak sense, towards some hydrodynamic limit that depends on time

and space variables only through macroscopic quantities that satisfy a suitable modification of the incompressible

Navier-Stokes-Fourier system.

Keywords: Inelastic Boltzmann equation; Granular flows; Nearly elastic regime; Long-time asymptotic; Incom-

pressible Navier-Stokes hydrodynamical limit; Knudsen number.

1. INTRODUCTION

In this paper, we report on some recent results obtained in [3] about the problem of deriving rigorously

some hydrodynamic limit from the Boltzmann equation for inelastic hard spheres with small inelasticity. Our
aim here is to give an account of the main aspects of our work [3] in a shorter – reader-friendly – version

that includes the main results as well as the main ideas and arguments. We shall only sketch the proofs of

our results, referring the reader to [3] for complete versions and details.

1.1. The problem.

The kinetic model. We consider here the (freely cooling) Boltzmann equation which provides a statistical
description of identical smooth hard spheres suffering binary and inelastic collisions:

∂tF + v ·∇xF = Qα(F, F ) (1.1)

supplemented with initial condition F (0, x, v) = F in(x, v), where F = F (t, x, v) is the density of granular

gases having position x ∈ Td
ℓ and velocity v ∈ Rd at time t > 0. We consider here for simplicity the case of

flat torus

T
d
ℓ = R

d/(2π ℓZ)d (1.2)
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for some typical length-scale ℓ > 0. The so-called restitution coefficient α belongs to (0, 1] and the collision
operator Qα is defined in weak form as

ˆ

Rd

Qα(g, f)(v)ψ(v) dv =
1

2

ˆ

R2d

f(v) g(v∗) |v − v∗|Aα[ψ](v, v∗) dv∗ dv, (1.3)

where

Aα[ψ](v, v∗) :=

ˆ

Sd−1

(ψ(v′) + ψ(v′∗)− ψ(v)− ψ(v∗)) b(σ · q̄) dσ, (1.4)

and the post-collisional velocities (v′, v′∗) are given by

v′ = v +
1 + α

4
(|q|σ − q), v′∗ = v∗ −

1 + α

4
(|q|σ − q),

where q = v − v∗, q̄ = q/|q|.
(1.5)

Here, dσ denotes the Lebesgue measure on Sd−1 and the angular part b = b(σ · q̄) of the collision kernel
appearing in (1.4) is a non-measurable mapping integrable over Sd−1. There is no loss of generality assuming

ˆ

Sd−1

b(σ · q̄) dσ = 1, ∀ q̄ ∈ S
d−1.

Notice that one can also give a strong formulation of the collision operator Qα (see [3, Appendix A]). This

strong formulation is simpler in the elastic case (α = 1), we here give it for later use:

Q1(g, f)(v) =

ˆ

Rd×Sd−1

(g(v′∗)f(v
′)− g(v∗)f(v)) |v − v∗| b(σ · q̄) dσ dv∗. (1.6)

The true definition actually involves pre-collisional velocities and not post-collisional velocities v′ and v′∗ but

they match in the elastic case, which explains the formula (1.6).
The fundamental distinction between the classical elastic Boltzmann equation and the associated to gran-

ular gases lies in the role of the parameter α ∈ (0, 1), the coefficient of restitution that we suppose constant.

This coefficient is given by the ratio between the magnitude of the normal component (along the line of
separation between the centers of the two spheres at contact) of the relative velocity after and before the

collision. The case α = 1 corresponds to perfectly elastic collisions where kinetic energy is conserved. How-

ever, when α < 1, part of the kinetic energy of the relative motion is lost since

|v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −1− α2

4
|q|2 (1− σ · q̄) 6 0.

Notice that the microscopic description (1.5) preserves the momentum

v′ + v′∗ = v + v∗

and, taking ψ = 1 and then ψ = v in (1.3) yields the following conservation of macroscopic density and bulk

velocity defined as

R(t) :=

ˆ

Td
ℓ
×Rd

F (t, x, v) dv dx and U(t) :=

ˆ

Td
ℓ
×Rd

vF (t, x, v) dv dx,

for some solution F (t, x, v) to (1.1):

d

dt
R(t) =

d

dt
U(t) = 0.

Consequently, there is no loss of generality in assuming that

R(t) = R(0) = 1, U(t) = U(0) = 0, ∀ t > 0.

The main contrast between elastic and inelastic gases is that in the latter the granular temperature,

T (t) :=
1

|Td
ℓ |

ˆ

Rd×Td
ℓ

|v|2F (t, x, v) dv dx
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is constantly decreasing
d

dt
T (t) = −(1− α2)Dα(F (t), F (t)) 6 0,

where Dα( · , · ) denotes the normalised energy dissipation associated to Qα, see [16], given by

Dα(g, g) :=
γb
4

ˆ

Td
ℓ

dx

|Td
ℓ |

ˆ

Rd×Rd

g(x, v)g(x, v∗)|v − v∗|3 dv dv∗, (1.7)

where γb is a positive constant depending only on the angular kernel b.

The problem of hydrodynamic limits. To capture some hydrodynamic behaviour of the gas, we need to

write the above equation in nondimensional form introducing the dimensionless Knudsen number which

is proportional to the mean free path between collisions. We then introduce the classical Navier-Stokes
rescaling of time and space (see [5]) to capture the hydrodynamic limit and introduce the particle density

Fε(t, x, v) := F

(
t

ε2
,
x

ε
, v

)

, t > 0. (1.8)

In this case, we choose for simplicity ℓ = ε in (1.2) which ensures now that Fε is defined on R+ × Td × Rd

with Td := Td
1. Under such a scaling, Fε satisfies the rescaled Boltzmann equation

ε2∂tFε + ε v ·∇xFε = Qα(Fε, Fε) on T
d × R

d, (1.9a)

supplemented with the initial condition

Fε(0, x, v) = F in
ε (x, v) := F in(xε , v). (1.9b)

Conservation of mass and density is preserved under this scaling, if Fε solves (1.9a), then

d

dt
Rε(t) =

d

dt
Uε(t) = 0

where Rε(t) :=
´

Td×Rd Fε(t, x, v) dv dx and Uε(t) :=
´

Td×Rd Fε(t, x, v)v dv dx, whereas the cooling of the

granular gas is given by the equation

d

dt
Tε(t) = −1− α2

ε2
Dα(Fε(t), Fε(t)), (1.10)

where Tε(t) := 1
|Td|

´

Td×Rd |v|2Fε(t, x, v) dv dx and we recall that Dα is defined in (1.7). The conservation

properties of the equation imply that there is no loss of generality assuming that

Rε(t) = 1, Uε(t) = 0, ∀ ε > 0, t > 0.

In order to understand the free-cooling inelastic Boltzmann equation (1.9a)-(1.9b), we perform a self-

similar change of variables, which allows us to introduce an intermediate asymptotic and ensures that our

equation has a non trivial steady state (see [15, 16, 17] for more details). After this change of variables, we

are led to study the equation

ε2∂tfε + εv ·∇xfε + (1− α)∇v · (vfε) = Qα(fε, fε), (1.11)

with initial condition

fε(0, x, v) = F in
ε (x, v).

Note that the drift term acts as an energy supply which prevents the total cooling down of the gas. It has
been shown that there exists a spatially homogeneous steady state Gα to (1.11). More specifically, there

exists α0 ∈ (0, 1) (where α0 is an explicit threshold value) such that for α ∈ (α0, 1), there exists a unique

distribution Gα = Gα(v) satisfying

(1 − α)∇v · (v Gα) = Qα(Gα, Gα) with

ˆ

Rd

Gα(v)

(
1
v

)

dv =

(
1
0

)

. (1.12)

Moreover, there exists some constant C > 0 independent of α such that

‖Gα −M‖L1
v(〈v〉

2) 6 C(1 − α) (1.13)
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where M is the Maxwellian distribution

M(v) := (2πϑ1)
−d/2 exp

(

−|v|2
2ϑ1

)

, v ∈ R
d, (1.14)

for some explicit temperature ϑ1 > 0. The Maxwellian distribution M is a steady solution for α = 1 and its

prescribed temperature ϑ1 (which ensures (1.13) to hold) will play a role in the rest of the analysis.
It is important to emphasize that, in all the sequel, all the threshold values on ε and the various constants

involved are actually depending only on this initial choice.

In order to reach some incompressible Navier-Stokes type equation in the limit ε → 0, we introduce the
following fluctuation hε around the equilibrium Gα:

fε(t, x, v) = Gα(v) + ε hε(t, x, v).

Our problem boils down to look at the following equation on hε:






∂thε +
1

ε
v ·∇xhε =

1

ε2
Lαhε +

1

ε
Qα(hε, hε)

hε(t = 0) = hinε :=
1

ε
(F in

ε −Gα),

(1.15)

where Lα is the linearized collision operator (local in the x-variable) defined as

Lαh := Qα(Gα, h) +Qα(h,Gα)− (1− α)∇v · (vh). (1.16)

We also denote by L1 the linearized operator around G1 = M, that is,

L1h := Q1(M, h) +Q1(h,M). (1.17)

From now on, we will always assume that

ˆ

Td×Rd

F in
ε (x, v)





1
v
|v|2



 dv dx =





1
0
Eε



 with Eε > 0 and
Eε − dϑ1

ε
−−−→
ε→0

0. (1.18)

The choice of prescribing as initial energy some constant Eε > 0 satisfying ε−1(Eε − dϑ1) → 0 as ε → 0 for
our problem is natural because dϑ1 is the energy of the Maxwellian M introduced in (1.14) and as we shall

see later on, the restitution coefficient α is intended to tend to 1 as ε goes to 0 in our analysis (see (1.22)).
It is also worth noticing that assumption (1.18) and (1.12) result in

ˆ

Td×Rd

hinε (x, v)

(
1
v

)

dv dx =

(
0
0

)

.

Moreover, equation (1.15) preserves mass and vanishing momentum since, if hε solves (1.15), then one
formally has

d

dt

ˆ

Td×Rd

hε(t, x, v)v dv dx =

ˆ

Td×Rd

∇v · (vhε(t, x, v))v dv dx = −
ˆ

Td×Rd

hε(t, x, v)v dv dx. (1.19)

Consequently, there is no loss of generality assuming that
ˆ

Td×Rd

hε(t, x, v)

(
1
v

)

dv dx =

(
0
0

)

, ∀ t > 0. (1.20)

Relation between the restitution coefficient and the Knudsen number. The central underlying assumption

in our study is the following relation between the restitution coefficient and the Knudsen number.

Assumption 1.1. The restitution coefficient α( · ) is a continuously decreasing function of the Knudsen number

ε satisfying the scaling behaviour

α(ε) = 1− ε2(λ0 + η(ε)) (1.21)

with λ0 > 0 and some function η( · ) that tends to 0 as ε goes to 0. If λ0 = 0, we assume furthermore that there

exists ε⋆ > 0 such that η( · ) is positive on (0, ε⋆).
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Notice that under this assumption, the hypothesis made on the energy of the initial data in (1.18) implies
that

ˆ

Td×Rd

hinε (x, v) |v|2 dv dx −−−→
ε→0

0. (1.22)

Indeed, using (1.18) and Assumption 1.1 combined with (1.13), we obtain
ˆ

Td×Rd

hinε (x, v)|v|2 dv dx =
1

ε

ˆ

Td×Rd

(
F in
ε (x, v)−Gα(ε)(v)

)
|v|2 dv dx

=
Eε − dϑ1

ε
+

1

ε

ˆ

Td×Rd

(
M(v)−Gα(ε)(v)

)
|v|2 dv dx −−−→

ε→0
0.

Still under Assumption 1.1, we formally obtain that if ε → 0 in (1.15), then hε → h with h ∈ KerL1

where L1 is defined in (1.17). We recall that when seeing L1 as an operator acting only on velocity on the

space L2
v(M−1/2), then

KerL1 = Span{M, v1M, · · · vdM, |v|2M}
and the projection π0 onto KerL1 is given by

π0(g) :=

d+2∑

i=1

(
ˆ

Rd

gΨi dv

)

ΨiM, (1.23)

where

Ψ1(v) := 1, Ψi(v) :=
1√
ϑ1
vi−1, i = 2, . . . , d+ 1 and Ψd+2(v) :=

|v|2 − dϑ1

ϑ1
√
2d

. (1.24)

We deduce formally that h takes the following form

h(t, x, v) =

(

̺(t, x) + u(t, x) · v +
1

2
θ(t, x)(|v|2 − dϑ1)

)

M(v)

with

̺(t, x) :=

ˆ

Td×Rd

h(t, x, v) dv, u(t, x) :=
1

ϑ1

ˆ

Td×Rd

h(t, x, v)v dv,

θ(t, x) :=

ˆ

Td×Rd

h(t, x, v)
|v|2 − dϑ1

ϑ21d
dv. (1.25)

It is worth mentioning that a careful spectral analysis of the linearized collision operator Lα defined
in (1.16) shows that unless one assumes 1−α at least of order ε2, the eigenfunction associated to the energy

dissipation would explode and prevent some exponential stability for (1.15) to hold true (see Theorem 2.1).

Actually, in our study, we will require λ0 to be relatively small with respect to the spectral gap associated to
the elastic linearized operator to ensure stability in the inelastic case. If one assumes λ0 = 0 (for example,

one could assume 1−α of order εq with q > 2), the effect of the inelasticity is too weak in the hydrodynamic

scale and the expected model is the classical Navier-Stokes-Fourier system. In short, we are left with two
cases:

Case 1: If λ0 = 0, the expected model is the classical Navier-Stokes-Fourier system.

Case 2: If 0 < λ0 < ∞ is small enough (compared to some explicit quantities), the cumulative effect of

inelasticity is visible in the hydrodynamic scale and we expect a different model to the Navier-

Stokes-Fourier system accounting for that.

In this nearly elastic regime, the energy dissipation rate in the system happens in a controlled fashion

since the inelasticity parameter is compensated accordingly to the number of collisions per time unit. Other
regimes can be considered depending on the rate at which kinetic energy is dissipated; for example, an

interesting regime is the mono-kinetic one which considers the extreme case of infinite energy dissipation

rate. In this way, the limit is formally described by enforcing a Dirac mass solution in the kinetic equation
yielding the pressureless Euler system (corresponding to sticky particles). Such a regime has been rigorously
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addressed in the one-dimensional framework in the interesting contribution [11]. It is an open question
to extend such analysis to higher dimensions since the approach of [11] uses the so-called Bony functional

which is a tool specifically tailored for 1D kinetic equations.

1.2. Notations and definitions. Let us introduce some useful notations for functional spaces. For any

nonnegative weight function m : Rd → R+, we define, for all p > 1 the space Lp(m) through the norm

‖f‖Lp(m) :=

(
ˆ

Rd

|f(ξ)|pm(ξ)p dξ

)1/p

,

We also define, for p > 1

W
k,p(m) =

{

f ∈ Lp(m) ; ∂βξ f ∈ Lp(m) ∀ |β| 6 k
}

with the usual norm, i.e., for k ∈ N:

‖f‖p
Wk,p(m)

=
∑

|β|6k

‖∂βξ f‖
p
Lp(m).

For m ≡ 1, we simply denote the associated spaces by Lp and W
k,p. Notice that all the weights we consider

here will depend only on velocity, i.e. m = m(v). We will also use the notation 〈ξ〉 :=
√

1 + |ξ|2 for ξ ∈ R
d.

On the complex plane, for any a ∈ R, we set

Ca := {z ∈ C ; Re z > −a}, C
⋆
a := Ca \ {0} (1.26)

and, for any r > 0, we set

D(r) = {z ∈ C ; |z| 6 r}.
We also introduce the following notion of hypo-dissipativity in a general Banach space (X, ‖ · ‖). A closed

(unbounded) linear operator A : D(A) ⊂ X → X is said to be hypo-dissipative on X if there exists a norm,
denoted by ||| · |||, equivalent to the ‖ · ‖–norm such that A is dissipative on the space (X, ||| · |||), that is,

|||(λ−A)h||| > λ |||h|||, ∀λ > 0, h ∈ D(A).

Given two Banach spaces X and Y , we denote with ‖ · ‖X→Y the operator norm on the space of B(X,Y )
linear and continuous operators from X to Y .

Note also that in what follows, for two positive quantities A and B, we denote by A . B if there

exists a universal positive constant C (which is in particular independent of the parameters α and ε) such

that A 6 CB.

1.3. Main results. The main results are both about the solutions to (1.15). The first one is the following

Cauchy theorem regarding the existence and uniqueness of close-to-equilibrium solutions to (1.15). The
functional spaces at stake are L1

vL
2
x-based Sobolev spaces E1 →֒ E defined through

E := W
k,1
v W

m,2
x (〈v〉q), E1 := W

k,1
v W

m,2
x (〈v〉q+1) with m > d, m− 1 > k > 0, q > 3. (1.27)

Theorem 1.2. Under Assumption 1.1, for ε, λ0 and η0 sufficiently small (with explicit bounds), if hinε ∈ E is

such that

‖hinε ‖E 6 η0,

then the inelastic Boltzmann equation (1.15) has a unique solution

hε ∈ C
(
[0,∞); E

)
∩ L1

(
[0,∞); E1

)

satisfying for any r ∈ (0, 1),

‖hε(t)‖E 6 C η0 exp (−(1− r)λε t) , ∀ t > 0

for some positive constant C = C(r) > 0 independent of ε and where λε ∼
ε→0

λ0 + η(ε) with λ0 and η = η(ε)

that have been introduced in Assumption 1.1.
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Remark 1.3. It is worth pointing out that the close-to-equilibrium solutions we construct are shown to decay

with an exponential rate as close as we want to λε ∼ 1−α(ε)
ε2 (which is the energy eigenvalue of the linearized

operator, see Theorem 2.1 hereafter). The rate of convergence can thus be made uniform with respect to the

Knudsen number ε (notice that if λ0 = 0, we obtain a rate of decay as close as we want to η(ε), we thus obtain

a uniform bound in time but not a uniform rate of decay).

The estimates on the solution hε provided by Theorem 1.2 are enough to prove that the solution hε(t)
converges towards some hydrodynamic solution h which depends on (t, x) only through macroscopic quanti-
ties (̺(t, x), u(t, x), θ(t, x)) which are solutions to a suitable modification of the incompressible Navier-Stokes

system. This is done under an additional assumption on the initial datum that is lightly restrictive. Before

stating our main convergence result, we introduce the notation

Wℓ :=
(
W

ℓ,2
x

(
T
d
))d+2

, ℓ ∈ N

and we furthermore assume that in the definition of the functional spaces (1.27), the following conditions

are satisfied:

m > d, m− 1 > k > 1, q > 5.

Theorem 1.4. We suppose that the assumptions of Theorem 1.2 are satisfied. We assume furthermore that there

exists (̺0, u0, θ0) ∈ Wm such that

lim
ε→0

‖π0h
ε
in − h0‖L1

vW
m,2
x (〈v〉q) = 0,

where we recall that π0 is the projection onto the kernel of L1 defined in (1.23) and

h0(x, v) :=

(

̺0(x) + u0(x) · v +
1

2
θ0(x)(|v|2 − dϑ1)

)

M(v). (1.28)

Then, for any T > 0, the family of solutions {hε}ε constructed in Theorem 1.2 converges in some weak sense to

a limit h = h(t, x, v) which is such that

h(t, x, v) =

(

̺(t, x) + u(t, x) · v +
1

2
θ(t, x)(|v|2 − dϑ1)

)

M(v), (1.29)

where

(̺, u, θ) ∈ C ([0, T ] ; Wm−1) ∩ L2 ((0, T ) ; Wm)

is solution to the following incompressible Navier-Stokes-Fourier system with forcing






∂tu− ν
ϑ1

∆xu+ ϑ1 u ·∇x u+∇xp = λ0u,

∂t θ − γ
ϑ2
1
∆xθ + ϑ1 u ·∇xθ =

λ0 c̄

2(d+ 2)

√
ϑ1 θ,

divxu = 0, ̺+ ϑ1 θ = 0,

(1.30)

subject to initial conditions (̺in, uin, θin) defined by

uin := Pu0, θin :=
d

d+ 2
θ0 −

2

(d+ 2)ϑ1
̺0, ̺in := −ϑ1θin (1.31)

where P is the Leray projection on divergence-free vector fields and (̺0, u0, θ0) have been introduced in (1.28).

The viscosity ν > 0 and heat conductivity γ > 0 are explicit and λ0 > 0 is the parameter appearing in Assump-

tion 1.1. The parameter c̄ > 0 is depending on the collision kernel b( · ).

Remark 1.5. The data that we consider here are actually quite general. Indeed, the assumption that we make

only tells that the macroscopic projection of hinε converges towards some macroscopic distribution and we do not

make any assumption on the macroscopic quantities of this distribution. Namely, we do not suppose that the

divergence free and the Boussinesq relations are satisfied by (̺0, u0, θ0), the initial layer that could be created

by such a lack of assumption is actually absorbed in our notion of weak convergence, the precise notion of

which being very peculiar and strongly related to the a priori estimates used for the proof of Theorem 1.2 (see

Theorem 4.2 for more details on the type of convergence).
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To prove Theorem 1.4, our approach is reminiscent of the program established in [5, 6, 9, 19] but
simpler because our solutions are stronger than the renormalized ones that are used in [9]. It is based on

computations and compactness arguments that were already used in the elastic case. Let us point out that

in our case, additional terms appear due to the inelasticity and they can be handled in the framework of
Assumption 1.1. In Section 4, we present the proof but only mention its main steps and arguments (details

can be found in [3, Section 6]).

2. STUDY OF THE KINETIC LINEARIZED PROBLEM

2.1. Main result on the linearized operator. The first step in the proof of Theorem 1.2 is the spectral

analysis of the linearized problem associated to (1.15). To that end, we introduce

Gα,εh := −1

ε
v ·∇xh+

1

ε2
Lαh.

We are going to state our main result on Gα,ε in the space E defined in (1.27) but our analysis actually allows
to treat even larger spaces (namely, we can obtain the same result under the softer constraints m > k > 0
and q > 2) but we only state the linear result in this case because it is the only one that will be used in the

rest of the paper. Let us also recall that, in any reasonable space (in particular in E and Yj for j = −1, 0, 1
defined in (2.6)-(2.8)), the elastic operator has a spectral gap: there exists µ⋆ > 0 such that

S(G1,ε) ∩ Cµ⋆
= {0} (2.1)

where 0 is an eigenvalue of algebraic multiplicity d+ 2 of G1,ε associated to the eigenfunctions

{M, v1M, . . . , vdM, |v|2M}

(recall that Cµ⋆
is defined in (1.26)). This can be proven by an enlargement argument due to [10] based on

the fact that in the Hilbert space

H := W
m,2
x,v (M−1/2), m > d (2.2)

a result of hypocoercivity has been proven in [7] (the constraint m > 1 would actually be enough but we

will only make use of this result for m > d in the sequel). More precisely, introducing the other Hilbert space

H1 := W
m,2
x,v (M−1/2〈v〉1/2), (2.3)

there exists µ⋆ > 0 and a norm equivalent to the usual one uniformly in ε (we still denote it by ‖ · ‖H
and 〈 · , · 〉H its associated scalar product to lighten the notations) such that

〈G1,εh, h〉H 6 −µ⋆

ε2
‖(Id− π0)h‖2H1

− µ⋆‖h‖2H1
. (2.4)

As we shall see in the following result, the scaling (1.21) in Assumption 1.1 is precisely the one which
allows to preserve exactly d+ 2 eigenvalues in the neighborhood of zero for Gα,ε. Let us now state our main

spectral result (see Figure 1 for an illustration where we have denoted λε := −λd+2(ε)):

Theorem 2.1. Assume that Assumption 1.1 is met. For µ close enough to µ⋆ defined in (2.1) (in an explicit

way), there are some explicit ε > 0 and λ > 0 depending only on χ := µ⋆ − µ such that, for all ε ∈ (0, ε)
and λ0 ∈ [0, λ), the linearized operator Gα(ε),ε has the following spectral property in E:

S(Gα(ε),ε) ∩ Cµ = {λ1(ε), . . . , λd+2(ε)}, (2.5)

with

λ1(ε) = 0, λj(ε) =
1− α(ε)

ε2
, j = 2, . . . , d+ 1,

and

λd+2(ε) = −1− α(ε)

ε2
+O(ε2) as ε→ 0.
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O

D(µ⋆ − µ)

χ

χ

−µ⋆ −µ Reλ

Imλ

−λε

Cµ \ D(µ⋆ − µ)

FIGURE 1. The set Cµ \ D(µ⋆ − µ) and the eigenvalue −λε.

Remark 2.2. It is worth noticing that the eigenvalue λ1(ε) = 0 corresponds with the property of mass conserva-

tion of the operator Gα(ε),ε. Concerning the intermediate eigenvalues λj(ε) for j = 2, . . . , d+1, as one can see on

their definition, they may be positive, this is due to the fact that the collision operator Qα preserves momentum

while the drift operator ∇v(v · ) does not. However, using (1.19), one can prove that the vanishing momentum is

preserved by the whole operator Gα(ε),ε, consequently, those eigenvalues won’t affect the long-time analysis of our

problem. Finally, the eigenvalue λd+2(ε) is directly linked to the non-preservation of energy property of Gα(ε),ε.

We are going to prove Theorem 2.1 in two stages. First, we perform a perturbative argument (reminiscent

of [21]) in a L2
v,x-based Sobolev space, namely in

Y := W
s,2
v W

ℓ,2
x (〈v〉r), ℓ ∈ N, s ∈ N

∗, ℓ > s+ 1, r > r⋆ + κ+ 2 (2.6)

where

r⋆ := 4

√
σ1
σ0

+
3

2

with σ0 and σ1 defined in (2.9) and κ > d/2. The key point of our approach is to see Gα,ε as a perturbation of

the elastic linearized operator G1,ε. We then use an enlargement argument (from [10]) to extend the result

from Y to the space E defined in (1.27).

Several remarks are in order:

(i) First, let us remind that the global equilibrium of our equation Gα defined in (1.12) has some

exponential fat tail and in particular, decays more slowly than a standard Maxwellian distribution

(see [17]). As a consequence, we can not rely on classical works on the elastic linearized operator

which are developed in spaces of type L2
v,x(M−1/2) with M defined in (1.14). To overcome this

difficulty, we exploit results coming from [10] in which an enlargement theory has been carried

out. The results proven in [10] include a spectral analysis of the elastic Boltzmann operator G1,1

in larger spaces (in particular of type L2
v,x) with “soft weights” that can be polynomial or stretched

exponential. In the same line of ideas, these results have been extended to the rescaled elastic

operator G1,ε in [8].
(ii) Let us also point out that the perturbation at stake does not fall into the realm of the classical

perturbation theory of unbounded operators as described in [12] because the perturbation is not

relatively bounded. Indeed, the domain of G1,ε in Y is given by Ws+1,2
v Wℓ+1,2

x (〈v〉r+1) while if one
wants to be sharp in terms of rate, the best estimate in terms of functional spaces that we are able
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to get is

‖Gα,ε − G1,ε‖Yj→Yj−1 =
1

ε2
‖Lα − L1‖Yj→Yj−1 .

1− α

ε2
, j = 0, 1, (2.7)

where the spaces Yj are defined through

Y−1 := W
s−1,2
v W

ℓ,2
x (〈v〉r−κ−2), Y0 := Y, Y1 := W

s+1,2
v W

ℓ,2
x (〈v〉r+κ+2) (2.8)

with κ > d/2. These estimates (whose proofs can be found in [3, Lemma 3.3]) are a generalization

and optimisation of estimates obtained in [17] and are sharp in terms of rate, this sharpness being
needed in our analysis since it allows us to deal with the case λ0 > 0 in Assumption 1.1.

(iii) As a consequence, we have to use refined perturbation arguments whose key insights come from [21].
Note however that we drastically simplify the analysis performed in [21] by remarking that the dif-

ference operator Gα,ε − G1,ε does not involve any spatial derivative and that we “only” need to

develop a spectral analysis of Gα,ε without being able to obtain decay properties on the associated
semigroup. As a consequence, we don’t need to use a spectral mapping theorem, nor do we need

to use an iterated version of Duhamel formula and this is crucial in order to reach the optimal

scaling (1.21) for our restitution coefficient.
(iv) Let us finally mention that we perform our perturbative argument in Y which is a L2

v,x-based Sobolev

space instead of performing it in E (which is L1
vL

2
x-based) directly. This intermediate step seems

necessary because even if Lα − L1 satisfies nice estimates in L1
v, the use of Fubini theorem is

actually crucial to get the rate (1− α)/ε2 in estimates of type (2.7).

2.2. Elements of proof of Theorem 2.1. As mentioned above, the basis of the proof of this theorem is to
see Lα as a perturbation of L1.

We start by giving a splitting of it into two parts: one which has some good regularizing properties (in

the velocity variable) and another one which is dissipative. For any δ > 0, one can write L1 = A(δ) + B(δ)
1

with A(δ) and B(δ)
1 defined through an appropriate mollification-truncation process (see [10, Section 4.3.3]

and [3, Section 2.2] for the details). The elastic collision operator L1 writes (see the strong formulation
of Q1 in (1.6)):

L1g =

ˆ

Rd×Sd−1

b(σ · q̄)|v − v∗|(M′
∗g

′ +M′g′∗ −Mg∗) dσ dv∗ −
ˆ

Rd

M∗|v − v∗| dv∗g

where we have used the shorthand notations g = g(v), g∗ = g(v∗), g
′ = g(v′), g′∗ = g(v′∗). We define

A(δ)g :=

ˆ

Rd×Sd−1

Θδ b(σ · q̄)|v − v∗|(M′
∗g

′ +M′g′∗ −Mg∗) dσ dv∗

B(δ)
1 g :=

ˆ

Rd×Sd−1

(1−Θδ) b(σ · q̄)|v − v∗|(M′
∗g

′ +M′g′∗ −Mg∗) dσ dv∗ − g

ˆ

Rd

M∗|v − v∗| dv∗

where Θδ = Θδ(v, v∗, σ) is an appropriate truncature function. The dissipativity property of B(δ)
1 comes from

the fact that the truncature function Θδ is defined so that the first term is small as δ goes to 0 and the fact
that there exist σ0 > 0 and σ1 > 0 such that

σ0〈v〉 6
ˆ

Rd

M∗|v − v∗| dv∗ 6 σ1〈v〉, v ∈ R
d. (2.9)

As a consequence, B(δ)
1 is going to be dissipative for δ small enough. This leads to the following decomposi-

tion of Lα:

Lα = B(δ)
α +A(δ) , where B(δ)

α := B(δ)
1

︸︷︷︸

dissipative

+ [Lα − L1]
︸ ︷︷ ︸

small as α → 1

(2.10)

and then the following decomposition of Gα,ε:

Gα,ε = A(δ)
ε + B(δ)

α,ε , where A(δ)
ε :=

1

ε2
A(δ), B(δ)

α,ε :=
1

ε2
B(δ)
α − 1

ε
v ·∇x . (2.11)



FROM BOLTZMANN EQUATION FOR GRANULAR GASES TO SOME MODIFIED NAVIER-STOKES-FOURIER SYSTEM 11

Our analysis of this splitting and then of the spectrum of Gα,ε relies on several elements: the nice proper-

ties of the above-mentioned splitting of L1 = A(δ) + B(δ)
1 coming from [10], some refined bilinear estimates

on the collision operator coming from [1], new estimates on Gα−M that are reminiscent of estimates proven

in [4] (see [3, Lemma 2.3]) and also new estimates on Qα −Q1 (see [3, Lemmas 2.1 and 2.2]). Concerning
the latter point, we exploit ideas developed in [17] but our situation is more involved because we work

in polynomially weighted spaces whereas in [17], the authors were working with stretched exponential

weights.
In the following lemma, we provide some regularization and hypodissipativity results on the splitting

Gα,ε = A(δ)
ε + B(δ)

α,ε (see [3, Lemma 2.7 and Proposition 2.9]):

Lemma 2.3. There holds:

(1) For any k ∈ N and δ > 0, there are two positive constants Ck,δ, Rδ > 0 such that supp
(
A(δ)g

)
⊂ B(0, Rδ)

and

‖A(δ)g‖
W

k,2
v (Rd) 6 Ck,δ‖g‖L1

v(〈v〉)
, ∀ g ∈ L1

v(〈v〉). (2.12)

(2) There exist δ0, α0, ν0 such that for all α ∈ (α0, 1) and δ ∈ (0, δ0),

B(δ)
α,ε + ε−2ν0 is hypo–dissipative in E and Yj , j = −1, 0, 1,

where we recall that the spaces E and Yj are respectively defined in (1.27) and (2.8).

In what follows, we suppose that Assumption 1.1 is satisfied. We introduce ε0 which is such that α(ε0) =
α0 (and thus α(ε) ∈ (α0, 1) for all ε ∈ (0, ε0)) and consider δ ∈ (0, δ0), ε ∈ (0, ε0). We will denote Gε :=

Gα,ε as well as Aε := A(δ)
ε and Bε := B(δ)

α,ε but do not change the notations G1,ε and B1,ε. The following

corollary states immediate consequences of the previous lemma (we denote by R( · ,Bε) the resolvent of the

operator Bε):

Corollary 2.4. There holds:

(1) For any i, j ∈ {−1, 0, 1}, we have

‖Aε‖Yi→Yj
.

1

ε2
.

(2) If ν > 0 is fixed, then for ε small enough (in terms of ν0 and ν) and j = −1, 0, 1,

‖R(λ,Bε)‖Yj→Yj
.

1

Reλ+ ε−2ν0
. ε2, ∀Reλ > −ν .

The second keypoint to develop our perturbative argument is to have a good understanding of the spec-

trum of the operator G1,ε. We here give some estimates on the associated resolvent that are a consequence of

a result of decay of the associated semigroup (see[3, Theorem 2.12] which gives an improved version of [8,
Theorem 2.1]):

Lemma 2.5. There exists ε1 ∈ (0, ε0) such that for j = −1, 0, 1, for any λ ∈ C⋆
µ⋆

and any ε ∈ (0, ε1),

‖R(λ,G1,ε)‖Yj→Yj
. max

(
1

|λ| ,
1

Reλ+ µ⋆

)

where µ⋆ has been defined in (2.1).

Let us now explain how we develop our perturbative argument to prove Theorem 2.1. The following

proposition (which is an adaptation of [21, Lemma 2.16]) is the first step in the development of the pertur-

bative argument and its proof relies on Corollary 2.4 and Lemma 2.5.

Proposition 2.6. For all λ ∈ C⋆
µ⋆

, let

Jε(λ) = (Gε − G1,ε)R(λ,G1,ε)Aε R(λ,Bε).

Then, for any µ ∈ (0, µ⋆) and λ ∈ Cµ \ D(µ⋆ − µ), there exists ε2 ∈ (0, ε1) such that for any ε ∈ (0, ε2),

‖Jε(λ)‖Y→Y
.

1

µ⋆ − µ

1− α(ε)

ε2
. (2.13)
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In addition, there exists ε3 ∈ (0, ε2) and λ3 > 0 such that for ε ∈ (0, ε3) and λ0 ∈ [0, λ3) (where λ0 is defined in

Assumption 1.1), Id− Jε(λ) and λ− Gε are invertible in Y with

R(λ,Gε) = Γε(λ)(Id − Jε(λ))
−1, λ ∈ Cµ \ D(µ⋆ − µ), (2.14)

where Γε(λ) := R(λ,Bε) +R(λ,G1,ε)Aε R(λ,Bε). Finally, we have for ε ∈ (0, ε3),

‖R(λ,Gε)‖Y→Y .
1

µ⋆ − µ
, λ ∈ Cµ \ D(µ⋆ − µ). (2.15)

Sketch of the proof. The estimate on Jε(λ) can be easily deduced from (2.7), Corollary 2.4 and Lemma 2.5.
First, fix µ ∈ (0, µ⋆) and notice that from Corollary 2.4, we clearly have that there exists ε2 ∈ (0, ε1) (which

depends on ν0 and µ) such that for any Reλ > −µ, we have:

‖Aε R(λ,Bε)‖Y→Y1
. 1.

We can then deduce that for µ ∈ (0, µ⋆), for any Reλ > −µ, |λ| > µ⋆ − µ,

‖Jε(λ)‖Y→Y
6 ‖Gε − G1,ε‖Y1→Y

‖R(λ,G1,ε)‖Y1→Y1 ‖Aε R(λ,Bε)‖Y→Y1

6 C
1− α(ε)

ε2
max

(
1

|λ| ,
1

Reλ+ µ⋆

)

6 C
1− α(ε)

ε2
1

µ⋆ − µ

(2.16)

for some C > 0. Moreover, one can choose ε3 ∈ (0, ε2) and λ3 > 0 depending on the difference χ = µ⋆ − µ,

so that if λ0 ∈ [0, λ3) (recall that λ0 is defined in Assumption 1.1 and is such that (1−α(ε))ε−2 ∼ λ0 + η(ε))

ρ(ε) :=
C

µ⋆ − µ

1− α(ε)

ε2
< 1, ∀ ε ∈ (0, ε3). (2.17)

Under such an assumption, one sees that, for all λ ∈ Cµ \ D(µ⋆ − µ), Id− Jε(λ) is invertible in Y with

(Id− Jε(λ))
−1 =

∞∑

p=0

[Jε(λ)]
p
, ∀ ε ∈ (0, ε3).

Let us fix then ε ∈ (0, ε3) and λ ∈ Cµ \D(µ⋆ −µ). The range of Γε(λ) is clearly included in D(Bε) = D(G1,ε).
Then, writing Gε = Aε + Bε, we easily get that

(λ− Gε)Γε(λ) = Id− Jε(λ)

i.e. Γε(λ)(Id−Jε(λ))
−1 is a right-inverse of (λ−Gε). To prove that λ−Gε is invertible, it is therefore enough

to prove that it is one-to-one, which can be done up to reducing the value of ε3 using (2.7), Lemmas 2.3
and 2.5. Thus, for ε ∈ (0, ε3), Cµ \ D(µ⋆ − µ) is included into the resolvent set of Gε and this shows (2.14).

To estimate now ‖R(λ,Gε)‖B(Y), one simply notices that

‖(Id− Jε(λ))
−1‖Y→Y 6

∞∑

p=0

‖Jε(λ)‖pY→Y
6

1

1− ρ(ε)
, ∀λ ∈ Cµ \ D(µ⋆ − µ) (2.18)

from which, as soon as λ ∈ Cµ \ D(µ⋆ − µ),

‖R(λ,Gε)‖Y→Y 6
1

1− ρ(ε)
‖Γε(λ)‖Y→Y .

One checks, using the previous computations, that for λ ∈ Cµ \ D(µ⋆ − µ),

‖Γε(λ)‖Y→Y . ε2 + ‖A‖Y→Y‖R(λ,G1,ε)‖Y→Y (2.19)

and deduces (2.15). This achieves the proof. �
A first obvious consequence of Proposition 2.6 is that, for any µ ∈ (0, µ⋆), there is ε3 > 0 depending only

on χ = µ⋆ − µ such that

S(Gε) ∩Cµ ⊂ D(µ⋆ − µ), ∀ ε ∈ (0, ε3).

We denote by Pε (resp. P0) the spectral projection associated to the set

S(Gε) ∩ Cµ = S(Gε) ∩ D(µ⋆ − µ) (resp. S(G1,ε) ∩ Cµ = {0}).
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One can deduce then the following lemma whose proof is similar to [21, Lemma 2.17].

Lemma 2.7. For any µ ∈ (0, µ⋆) such that Cµ ⊂ D(µ⋆ − µ), there exist ε4 ∈ (0, ε3) and λ4 ∈ (0, λ3) depending
only on χ = µ⋆ − µ such that if λ0 ∈ [0, λ4) (where λ0 is defined in Assumption 1.1),

‖Pε −P0‖Y→Y
< 1, ∀ ε ∈ (0, ε4).

In particular,

dimRange(Pε) = dimRange(P0) = d+ 2, ∀ ε ∈ (0, ε4). (2.20)

Sketch of the proof. Let µ ∈ (0, µ⋆) be close enough to µ⋆ so that D(µ⋆ − µ) ⊂ Cµ and 0 < r < χ = µ⋆ − µ.

One has D(r) ⊂ C⋆
µ. We set γr := {z ∈ C ; |z| = r}. Recall that by definition

Pε :=
1

2iπ

˛

γr

R(λ,Gε) dλ, P0 :=
1

2iπ

˛

γr

R(λ,G1,ε) dλ.

For λ ∈ γr, set

Zε(λ) = R(λ,G1,ε)AεR(λ,Bε)

so that Γε(λ) = R(λ,Bε) + Zε(λ). Recall from (2.14) that, for λ ∈ γr,

R(λ,Gε) = R(λ,Bε)(Id − Jε(λ))
−1 + Zε(λ)(Id − Jε(λ))

−1

= R(λ,Bε) +R(λ,Bε)Jε(λ)(Id− Jε(λ))
−1 + Zε(λ)(Id − Jε(λ))

−1

where we wrote (Id− Jε(λ))
−1 = Id+ Jε(λ)(Id − Jε(λ))

−1 to get the second equality. One also has

R(λ,G1,ε) = R(λ,B1,ε) +R(λ,G1,ε)Aε [R(λ,B1,ε)−R(λ,Bε)] + Zε(λ).

One can then obtain (see the proof of [3, Lemma 3.8] for the details)

Pε −P0 =
1

2iπ

˛

γr

Γε(λ)Jε(λ)(Id − Jε(λ))
−1 dλ+

1

2iπ

˛

γr

R(λ,G1,ε)Aε [R(λ,Bε)−R(λ,B1,ε)] dλ.

The first part is estimated thanks to (2.16), (2.18) and (2.19) combined with Lemma 2.5:

‖Γε(λ)Jε(λ)(Id − Jε(λ))
−1‖Y→Y .

1

r2
1

1− ρ(ε)

1− α(ε)

ε2
.

For the second part, notice first that from Lemma 2.5,

‖R(λ,G1,ε)Aε [R(λ,Bε)−R(λ,B1,ε)]‖Y→Y
.

1

r
‖AεR(λ,Bε)−AεR(λ,B1,ε)‖Y→Y

.

Then, for λ ∈ γr, we have

AεR(λ,Bε)−AεR(λ,B1,ε) = AεR(λ,Bε) [Bε − B1,ε]R(λ,B1,ε)

which implies that

‖AεR(λ,Bε)−AεR(λ,B1,ε)‖Y→Y
6 ‖AεR(λ,Bε)‖Y−1→Y ‖Bε−B1,ε‖Y→Y−1 ‖R(λ,B1,ε)‖Y→Y .

1− α(ε)

ε2
.

Proceeding as in the proof of Lemma 2.6, one can conclude that for any 0 < r < χ = µ⋆ − µ,

‖Pε −P0‖Y→Y 6
C

r

1− α(ε)

ε2

(
1

r(1 − ρ(ε))
+ 1

)

:= ℓ(ε). (2.21)

Thanks to Assumption 1.1, one can find ε4 and λ4 depending only on χ such that ℓ(ε) < 1 for any ε ∈ (0, ε4)
and λ0 ∈ [0, λ4). In particular, we deduce (2.20) from [12, Paragraph I.4.6]. �

With Lemma 2.7, we can now end the proof of Theorem 2.1.

Sketch of the proof of Theorem 2.1. The structure of S(Gε) ∩ Cµ in the space Y comes directly from Lemma
2.7 together with Proposition 2.6. To describe more precisely the spectrum, one first remarks that

S(Lα(ε)) ∩ Cµ ⊂ S(Gε) ∩ Cµ.
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This comes from the fact that for each eigenvalue of Lα(ε), the eigenfunction depends only on v and thus
remains an eigenfunction for the operator Gε. Since, for ε small enough, the same perturbative argument

that we developed above implies that the spectral projection ΠLα(ε)
associated to S(Lα) ∩ Cµ satisfies

dim(Range(ΠLα(ε)
)) = dim(Range(ΠL1)) = d+ 2 = dim(Range(Pε)),

we get that

S(Lα(ε)) ∩ Cµ = S(Gε) ∩ Cµ , (2.22)

that is, the eigenvalues λj(ε) are actually eigenvalues of Lα(ε). The development of the energy eigenvalue

λd+2(ε) comes from [17]. The conservation of mass gives us that 0 is an eigenvalue for our problem. The

intermediate eigenvalues λj(ε) for j = 2, . . . , d+ 1 are obtained thanks to the fact that
ˆ

Rd

Lα(ε)ϕ(v) vi dv = −1− α(ε)

ε2

ˆ

Rd

vi∇ · (vϕ(v)) dv =
1− α(ε)

ε2

ˆ

Rd

vi ϕ(v) dv.

Notice that all this allows us to find eigenfunctions (that depend only on v) in L2
v,x(〈v〉r). Using once more

the splitting Lα = A(δ)+Bδ
α defined in (2.10) and the regularizing properties of A(δ), one can actually prove

that our eigenfunctions lie in Y, which yields the conclusion of Theorem 2.1 in the space Y. To extend the

result to the space E , we use an enlargement argument coming from [10], we omit the details here and just

mention that this argument is based on the splitting Gε = Aε + Bε introduced in (2.11). �

3. STUDY OF THE KINETIC NONLINEAR PROBLEM

Let us recall that the spaces E and E1 are defined in (1.27). In this section, we assume that Assumption 1.1

is met and consider ε ∈ (0, ε), λ0 ∈
[
0, λ

]
where ε and λ are defined in Theorem 2.1. As in Section 2, to

lighten the notations, we write Gε = Gα(ε),ε as well as Bε = Bα(ε),ε.

3.1. Splitting of the nonlinear inelastic Boltzmann equation. Now that the spectral analysis of the lin-

earized operator Gε in the space E has been performed, in order to prove Theorem 1.2, we are going to
prove several a priori estimates for the solutions to (1.15). The crucial point in the analysis lies in the

splitting of (1.15) into a system of two equations mimicking a spectral enlargement method from a PDE per-

spective (see [18, Section 2.3] and [8] for pioneering ideas on such a method). More precisely, using (2.11),
the splitting amounts to look for a solution of (1.15) of the form

hε(t) = h0ε(t) + h1ε(t)

with h0ε solution to






∂th
0
ε = Bεh

0
ε +

1
εQα(ε)(h

0
ε, h

0
ε) +

1
ε

[

Qα(ε)(h
0
ε, h

1
ε) +Qα(ε)(h

1
ε, h

0
ε)
]

+
[

Gεh
1
ε − G1,εh

1
ε

]

+ 1
ε

[

Qα(ε)(h
1
ε, h

1
ε)−Q1(h

1
ε, h

1
ε)
]

,

h0ε(0, x, v) = hinε (x, v) ∈ E ,

(3.1)

and h1ε solution to






∂th
1
ε = G1,εh

1
ε +

1
εQ1(h

1
ε, h

1
ε) +Aεh

0
ε,

h1ε(0, x, v) = 0.
(3.2)

In order to lighten the notations, in this section, we will write hin, h, h0 and h1 instead of hinε , hε, h
0
ε

and h1ε. The goal is to obtain nice nested a priori estimates on h0 and h1. Notice first that our splitting
is more complicated than the one of [8] because it relies on perturbative considerations around the elastic

case that come out in the equation satisfied by h0. As a consequence, our a priori estimates are more

intricate and require the use of non standard Gronwall lemma. Notice also that since the initial datum
of h1 is vanishing, we can study the equation on h1 in any functional space. In particular, we can study it

in the Hilbert space H = Wm,2
x,v

(
M−1/2

)
in which we have a good understanding of the elastic linearized
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operator G1,ε. Indeed, in this type of spaces, the symmetries of the collision operator Q1 allow to get some
nice hypocoercive estimates (see (2.4)).

Remark 3.1. In [10], the authors treat the elastic case (α = 1) of the non-rescaled equation (ε = 1) and they
do not resort to such a splitting method to study the nonlinear equation, their approach is based on the use of

a norm which is equivalent to the usual one and is such that G1,1 is dissipative in this norm in large spaces.

Such an approach is no longer usable when one wants to deal with rescaled equations and obtain uniform

in ε estimates. Indeed, the definition of the equivalent norm in [10] does not take into account the different

behaviors of microscopic and macroscopic parts of the solution with respect to ε: typically, the microscopic part

of the solution vanishes as ε → 0 whereas the macroscopic one does not. Conversely, in the splitting method,

the equation that defines h1 is treated thanks to hypocoercivity tricks that allow to distinguish microscopic and

macroscopic behaviors.

3.2. Estimating h0. Concerning h0, let us first mention that the dissipativity properties of Bε stated in

Lemma 2.3 can actually be improved a bit. More precisely, one can show that there exist norms on the
spaces E and E1 that are equivalent to the standard ones (with multiplicative constants independent of ε)
that we still denote ‖ · ‖E and ‖ · ‖E1 and that satisfy:

d

dt
‖SBε

(t)g‖E 6 −ν0
ε2

‖SBε
(t)g‖E1 (3.3)

where we have denoted by (SBε
(t))t>0 the semigroup generated by Bε and ν0 is defined in Lemma 2.3. Let

us also introduce the Banach space E2

E2 := W
k+1,2
v W

m,2
x (̟q+2κ+2), κ >

d

2

which satisfies the following continuous embeddings: H →֒ E2 →֒ E1 (recall that E1 is defined in (1.27)).

Let us point out that the spaces E1 and E2 allow us to get the following estimates (see [3, Remark 3.5]

and [1, 2]):

‖(Qα −Q1)(g, f)‖E . (1 − α)‖g‖E2‖f‖E2 and ‖Qα(g, f)‖E . ‖g‖E‖f‖E1 + ‖g‖E1‖f‖E (3.4)

where the multiplicative constants are uniform in α. One can then obtain the following proposition:

Proposition 3.2. Assume that h0 ∈ E , h1 ∈ H are such that

sup
t>0

(
‖h0(t)‖E + ‖h1(t)‖H

)
6 ∆0 <∞.

For ν ∈ (0, ν0) (where ν0 is defined in Lemma 2.3), there exists an explicit ε5 ∈ (0, ε) (where ε is defined in

Theorem 2.1) such that:

‖h0(t)‖E . ‖hin‖E e−
ν

ε2
t + λε

ˆ t

0

e−
ν

ε2
(t−s)‖h1(s)‖H ds (3.5)

where we recall that λε ∼
ε→0

1−α(ε)
ε2 is defined in Theorem 2.1.

Sketch of the proof. Using (3.3) as well as (3.4) and recalling that h0 solves (3.1), we can compute the
evolution of ‖h0(t)‖E and estimate it:

d

dt
‖h0(t)‖E 6 −ν0

ε2
‖h0(t)‖E1 +

C

ε

(
‖h0(t)‖E + ‖h1(t)‖E1

)
‖h0(t)‖E1

+ C
1− α(ε)

ε2
‖h1(t)‖E2 + C

1− α(ε)

ε
‖h1(t)‖2E2

. (3.6)

Using that the embedding E2 →֒ H is continuous, recalling that h0(0) = hin and choosing ε5 small enough
so that C ε5 ∆0 6 ν0 − ν, we obtain

‖h0(t)‖E . ‖hin‖E e−
ν

ε2
t + λε

ˆ t

0

e−
ν

ε2
(t−s)‖h1(s)‖H ds+ ε λε

ˆ t

0

e−
ν

ε2
(t−s)‖h1(s)‖2H ds.

We conclude to (3.5) by assuming furthermore that ε5∆0 6 1. �
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3.3. Estimating h1. We now comment and study the equation satisfied by h1. Let us point out that getting
estimates on h1 is trickier than in [8], indeed, in the latter paper, the idea is to estimate separately P0h

1

and (Id−P0)h
1 where P0 is the projector onto Ker(G1,ε) defined by

P0g :=

d+2∑

i=1

(
ˆ

Td×Rd

gΨi dv dx

)

ΨiM (3.7)

where the functions Ψi have been defined in (1.24), and thanks to the properties of preservation of mass,
momentum and energy of the whole equation, one could write that P0h = 0 so that P0h

1 = −P0h
0 and

directly get an estimate on P0h
1 from the one on h0. In our case, the energy is no longer preserved which

induces additional difficulties. However, we keep the same strategy and start by estimating P0h
1 (see

Remark 3.4 for a comment on this choice of strategy).

For the sequel, we also introduce

P0h =

d+1∑

i=1

(
ˆ

Td×Rd

hΨi dv dx

)

ΨiM , Π0h =

(
ˆ

Td×Rd

hΨd+2 dv dx

)

Ψd+2M. (3.8)

Notice that thanks to Cauchy-Schwarz inequality in velocity, one can easily prove that we have P0 ∈ B(E ,H).
One can then obtain the following proposition:

Proposition 3.3. Assume that h0 ∈ E , h1 ∈ H are such that

sup
t>0

(
‖h0(t)‖E + ‖h1(t)‖H

)
6 ∆0 <∞.

For ε ∈ (0, ε5) (ε5 is defined in Proposition 3.2),

‖P0h
1(t)‖E . ‖h0(t)‖E + ‖hin‖E e−λεt + λε

ˆ t

0

e−λε(t−s)
(
‖h0(s)‖E + ‖(Id−P0)h

1(s)‖H
)
ds

+ ελε

ˆ t

0

e−λε(t−s)‖h1(s)‖H ds (3.9)

where λε = λε +O(1− α(ε)) with λε ∼
ε→0

1−α(ε)
ε2 defined in Theorem 2.1.

Sketch of the proof. Due to the properties of preservation of mass and vanishing momentum of our equation,

we have P0h = 0 which implies that P0h
1 = −P0h

0. Consequently, we easily get an estimate on P0h
1 using

that P0 ∈ B(E ,H):
‖P0h

1(t)‖H . ‖h0(t)‖E . (3.10)

It now remains to estimate Π0h
1. To this end, we first notice that

Π0h
1 = P0h

1 − P0h
1 = P0h−P0h

0 − P0h
1 = Π0h−P0h

0 − P0h
1

where we used that P0h = Π0h due to the preservation of mass and vanishing momentum so, using (3.5)

and (3.10), we only need to estimate Π0h to get an estimate on P0h
1. To this end, we start by computing

the evolution of Π0h:

∂t(Π0h) = Π0(Gεh) +
1

ε
Π0Qα(ε)(h, h).

By direct inspection, using the definition of Π0 given in (3.8) and the dissipation of energy (1.7) (see [3,
Lemmas 4.2 and 4.5]), we obtain: as ε→ 0,

Π0(Gεh) = −λεΠ0h+O

(
1− α(ε)

ε2
‖(Id−P0)h‖E

)

with

λε = λε +O(1− α(ε)) ∼
ε→0

λε.

Similarly, we have by direct computation that

|Π0Qα(ε)(h, h)| = (1− α2)|Dα(ε)(h, h)|Ψd+2M
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so that, using Minkowski’s inequality to estimate Dα(ε)(h, h), we obtain

‖Π0Qα(ε)(h, h)‖E . ε2‖h‖2E . (3.11)

Gathering previous estimates, we are able to deduce that

‖P0h
1(t)‖E . ‖h0(t)‖E + ‖hin‖Ee−λεt + λε

ˆ t

0

e−λε(t−s)
(
‖h0(s)‖E + ‖(Id−P0)h

1(s)‖H
)
ds

+ ελε

ˆ t

0

e−λε(t−s)
(
‖h0(s)‖2E + ‖h1(s)‖2H

)
ds.

With this, inequality (3.9) holds by using ε5∆0 6 1 from the proof of Proposition 3.2. �

Remark 3.4. A natural approach would have been to adapt the method of [8] by applying Pε (the projector

associated to the eigenvalues λj(ε) for j = 1, . . . , d+2 of Gε around 0 that have been exhibited in Theorem 2.1)

to our equation instead of P0. It implies that one would have had to estimate Πεh where Πε is the projector

associated to the energy eigenvalue −λε = λd+2(ε) defined in Theorem 2.1. On the one hand, it simplifies the

approach because ΠεGεh = −λεΠεh by definition. On the other hand, this projector is not explicit contrary to

Π0 and when applying Πε to the equation satisfied by h

∂th = Gεh+
1

ε
Qα(ε)(h, h),

nothing guarantees that Πε

[
ε−1Qα(ε)(h, h)

]
remains of order 1 with respect to ε whereas we have seen in (3.11)

that due to the dissipation of kinetic energy, Π0

[
ε−1Qα(ε)(h, h)

]
is actually of order ε. This explains our choice

of strategy.

Let us now focus on the estimate of (Id −P0)h
1. We can proceed similarly as in [8], using in particular

that P0Q1 = 0. Another crucial point is that the source term Aεh
0 can be bounded in H using the fact

that Aε ∈ B(E ,H) (see Lemma 2.3). Moreover, it is important to mention that the fact that the bound

on Aε induces a rate of ε−2 will be counterbalanced by the fact that the semigroup associated with Bε has

an exponential decay rate of type e−νt/ε2 (see (3.3)). We recall that the Hilbert space H1 is defined in (2.3)

and is such that

‖Q1(g, g)‖H . ‖g‖H‖g‖H1. (3.12)

Proposition 3.5. Assume that h0 ∈ E , h1 ∈ H are such that

sup
t>0

(
‖h0(t)‖E + ‖h1(t)‖H

)
6 ∆0 <∞.

For µ ∈ (0, µ⋆) (where µ⋆ is defined in (2.1)) and for ∆0 small enough, we have that:

‖(Id−P0)h
1(t)‖2H . ∆2

0

ˆ t

0

e−µ(t−s)‖h1(s)‖2H ds+
1

ε2

ˆ t

0

e−µ(t−s)‖h1(s)‖H‖h0(s)‖E ds. (3.13)

Sketch of the proof. From (3.2), the fact that P0Q1(g, g) = 0 and the fact that P0 commutes with G1,ε, we
can compute the evolution of Φ(t) := (Id−P0)h

1:

∂tΦ = G1,εΦ+
1

ε
Q1(h

1, h1) + (Id−P0)Aεh
0.

We now use the hypocoercive norm on H for G1,ε introduced in (2.4) and also denote by Φ⊥ the microscopic

part of Φ, namely Φ⊥ := (Id−π0)Φ where we recall that π0 is the projection onto the kernel of L1 that has

been introduced in (1.23). We compute the evolution of ‖Φ(t)‖2H:

1

2

d

dt
‖Φ(t)‖2 = 〈G1,εΦ(t),Φ(t)〉H +

1

ε
〈Q1(h

1(t), h1(t)),Φ⊥(t)〉H + 〈(Id −P0)Aεh
0(t),Φ(t)〉H.

Notice that we have been able to replace Φ by Φ⊥ in the second term due to the conservation laws satis-
fied by Q1 and the fact that π0 is orthogonal in H. Then, from the properties of the hypocoercive norm



18 RICARDO J. ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

(see (2.4)), using (3.12) and the facts that P0 ∈ B(H), A ∈ B(E ,H) (from Lemma 2.3) as well as Cauchy-
Schwarz inequality, we obtain that

1

2

d

dt
‖Φ(t)‖2H 6 −µ⋆

ε2
‖Φ⊥(t)‖2H1

− µ⋆‖Φ(t)‖2H1
+
C

ε
‖h1(t)‖H‖h1(t)‖H1‖Φ⊥(t)‖H +

C

ε2
‖h0(t)‖E‖Φ(t)‖H.

Making an appropriate use of Young inequality to treat the third term, we obtain that for µ ∈ (0, µ⋆),

1

2

d

dt
‖Φ(t)‖2H 6 − µ

ε2
‖Φ⊥(t)‖2H1

− µ⋆‖Φ(t)‖2H1
+ C‖h1(t)‖2H‖h1(t)‖2H1

+
C

ε2
‖h0(t)‖E‖Φ(t)‖H

6 −µ⋆‖Φ(t)‖2H1
+ C‖h1(t)‖2H‖h1(t)‖2H1

+
C

ε2
‖h0(t)‖E‖Φ(t)‖H.

In the second term, we decompose h1 into two parts: h1 = P0h
1 + Φ and use that P0 = P

2
0 together with

the fact that P0 ∈ B(E ,H) to obtain

‖h1(t)‖2H‖h1(t)‖2H1
. ∆2

0

(
‖h1(t)‖2H + ‖Φ(t)‖2H1

)
.

We can thus conclude the proof by taking ∆0 small enough and integrating the above differential inequality.
Notice that the inequality stated in the Proposition holds for the equivalent “hypocoercive norm” introduced

above and thus also holds for the usual norm on H because of the equivalence (uniformly in ε) between

those two norms. �
Combining estimates from Propositions 3.2 and 3.5, one can obtain that

Corollary 3.6. Assume that h0 ∈ E , h1 ∈ H are such that

sup
t>0

(
‖h0(t)‖E + ‖h1(t)‖H

)
6 ∆0 <∞.

For µ ∈ (0, µ⋆) (where µ⋆ is defined in (2.4)), for ∆0 small enough and for any δ > 0, we have that:

‖(Id−P0)h
1(t)‖2H .

1

δ
‖hin‖2E e−µt + (∆2

0 + δ + λε)

ˆ t

0

e−µ(t−s)‖h1(s)‖2H ds. (3.14)

Remark 3.7. The fact that we are able to obtain a multiplicative constant that can be chosen small in front of

the second term is very important to recover a decay for h1. Indeed, in Proposition 3.3, in the estimate of P0h
1,

the term

λε

ˆ t

0

e−λε(t−s)‖(Id−P0)h
1(s)‖H ds

is problematic when applying Gronwall lemma if one hopes to recover some decay in time but the extra small

constant that appears in the estimate of (Id−P0)h
1 in (3.14) allows us to circumvent this difficulty.

In the end, we are able to prove the following proposition:

Corollary 3.8. Let r ∈ (0, 1). Assume that h0 ∈ E , h1 ∈ H are such that

sup
t>0

(
‖h0(t)‖E + ‖h1(t)‖H

)
6 ∆0 <∞

where ∆0 is small enough so that the conclusion of Corollary 3.6 holds. There exists ε6 ∈ (0, ε5) (where ε5 is

defined in Proposition 3.2) and λ6 ∈ (0, λ4) (where λ4 is defined in Lemma 2.7) such that for any ε ∈ (0, ε6)
and any λ0 ∈ [0, λ6) (where λ0 is defined in Assumption 1.1),

‖h1(t)‖H 6 C ‖hin‖H e−(1−r)λεt

where λε has been introduced in Proposition 3.3 and the constant C depends on r, ∆0, µ⋆ (defined in (2.4))
and ν0 (defined in Lemma 2.3).
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3.4. Estimates on the kinetic problem. Combining the previous corollary with Proposition 3.2, we are able
to get our final a priori estimates on h in the space E:

Proposition 3.9. Let r ∈ (0, 1). Assume that h0 ∈ E , h1 ∈ H are such that

sup
t>0

(
‖h0(t)‖E + ‖h1(t)‖H

)
6 ∆0 <∞

where ∆0 is small enough so that the conclusion of Corollary 3.6 holds. There exists ε† ∈ (0, ε6), λ
† ∈ (0, λ6)

(where ε6 and λ6 are defined in Proposition 3.8) such that for any ε ∈ (0, ε†) and any λ0 ∈ [0, λ†) (where λ0 is

defined in Assumption 1.1),

‖h(t)‖E 6 C ‖hin‖E e−(1−r)λεt and

ˆ t

0

‖h(s)‖E1 ds 6 C ‖hin‖E min

{

1 + t, 1 +
1

λε

}

where λε ∼
ε→0

(1− α(ε))/ε2 has been defined in Theorem 2.1 and the constant C depends on r, ∆0, µ⋆ (defined

in (2.1)) and ν0 (defined in Lemma 2.3).

Remark 3.10. Notice that for a fixed ε > 0, the second a priori estimate shows that h = hε belongs to the

space L1([0,∞), E1). If one is interested in getting bounds on the family {hε}ε, then we obtain that if λ0 > 0 (in

Assumption 1.1), then the family is bounded in L1([0,∞), E1) and if λ0 = 0, then for any T > 0, the family is

bounded in L1([0, T ), E1).

Thanks to the above a priori estimates, we can prove Theorem 1.2 by introducing a suitable iterative
scheme that is stable and convergent. We refer to [3, Section 5] for the details of the proof. We can actually

prove the following more precise estimates (which will be useful in what follows) on h0ε and h1ε that are

respectively solutions to (3.1) and (3.2):

‖h0ε‖L∞([0,∞) ; E) . 1 and ‖h0ε‖L1([0,∞) ; E1) . ε2 (3.15)

as well as

‖h1ε‖L∞([0,∞) ;H) . 1 and ‖h1ε‖L2([0,∞) ;H1) . 1 (3.16)

where we recall that the spaces H and H1 are respectively defined in (2.2) and (2.3). Notice that in the
previous inequalities, the multiplicative constants only involve quantities related to the initial data of the

problem and are independent of ε.

4. DERIVATION OF THE FLUID LIMIT SYSTEM

The Cauchy theory developed in the previous results give all the a priori estimates that will allow to prove
Theorem 1.4. To this end, we make additional assumptions in the definition of the spaces E and E1, namely,

in this section, those spaces are defined through:

E := W
k,1
v W

m,2
x (〈v〉q), E1 := W

k,1
v W

m,2
x (〈v〉q+1) with m > d, m− 1 > k > 1, q > 5. (4.1)

We assume that Assumption 1.1 is met, consider ε, λ0 and η0 sufficiently small so that the conclusion of

Theorem 1.2 holds in those spaces and consider {hε}ε a family of solutions to (1.15) constructed in this
theorem that splits as hε = h0ε + h1ε with h0ε and h1ε defined in Section 3. We also fix T > 0 for the rest of the

section.

4.1. Weak convergence. We start by the following lemma which in particular tells that the microscopic part

of hε vanishes in the limit ε→ 0:

Lemma 4.1. For any 0 6 t1 6 t2 6 T , there holds:
ˆ t2

t1

‖(Id− π0)hε(τ)‖E dτ . ε
√
t2 − t1, (4.2)

where we recall that π0 is the projection onto the kernel of L1 defined in (1.23).



20 RICARDO J. ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

Proof. We first remark that

ˆ t2

t1

‖(Id− π0)hε(τ)‖E dτ .

(
ˆ t2

t1

‖(Id− π0)h
0
ε(τ)‖2E dτ

)1/2 √
t2 − t1

+

(
ˆ t2

t1

‖(Id− π0)h
1
ε(τ)‖2H1

dτ

)1/2 √
t2 − t1.

The first term is estimated thanks to (3.15), which gives:

ˆ t2

t1

‖(Id− π0)h
0
ε(τ)‖2E dτ . ‖(Id− π0)h

0
ε‖L∞((0,T ) ; E)‖(Id− π0)h

0
ε‖L1((0,T ) ; E1) . ε2.

Concerning the second one, we perform similar computations as in the proof of Proposition 3.5. We recall

that h1ε solves (3.2) and consider ‖ · ‖H an hypocoercive norm on H (see (2.4)). We then have for µ ∈ (0, µ⋆):

1

2

d

dt
‖h1ε(t)‖2H 6 − µ

ε2
‖(Id− π0)h

1
ε(t)‖2H1

− µ⋆‖h1ε(t)‖2H1
+ C‖h1ε(t)‖2H‖h1ε(t)‖2H1

+
C

ε2
‖h0ε(t)‖E‖h1ε(t)‖H

from which we deduce that

1

ε2

ˆ t2

t1

‖(Id− π0)h
1
ε(τ)‖2H1

dτ . ‖h1ε(t1)‖2H

+

ˆ t2

t1

‖h1ε(τ)‖2H‖h1ε(τ)‖2H1
dτ +

1

ε2

ˆ t2

t1

‖h0ε(τ)‖E‖h1ε(τ)‖H dτ . 1

where we used (3.15) and (3.16) to get the last estimate. Therefore, as for h0ε one has

ˆ t2

t1

‖(Id− π0)h
1
ε(τ)‖2H1

dτ . ε2

and this allows to conclude to the wanted estimate. �

Using estimates (3.15), (3.16) and (4.2), one can prove the following result of weak convergence (we
refer to [3, Theorem 6.4] for more details on the proof):

Theorem 4.2. Up to extraction of a subsequence, one has






{
h0ε

}

ε
converges to 0 strongly in L1((0, T ) ; E1),

{
h1ε

}

ε
converges to h weakly in L2 ((0, T ) ;H) ,

(4.3)

where h = π0(h). In particular, there exist

̺ ∈ L2
(
(0, T ); Wm,2

x (Td)
)
, u ∈ L2

(

(0, T );
(
W

m,2
x (Td)

)d
)

, θ ∈ L2
(
(0, T ); Wm,2

x (Td)
)
,

such that

h(t, x, v) =

(

̺(t, x) + u(t, x) · v +
1

2
θ(t, x)(|v|2 − dϑ1)

)

M(v) (4.4)

where M is the Maxwellian distribution introduced in (1.14).

Remark 4.3. Recall that (̺, u, θ) can be expressed in terms of h through the following equalities:

̺(t, x) =

ˆ

Rd

h(t, x, v) dv, u(t, x) =
1

ϑ1

ˆ

Rd

h(t, x, v)v dv, θ(t, x) =

ˆ

Rd

h(t, x, v)
|v|2 − dϑ1

ϑ21d
dv. (4.5)
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4.2. Limit system. As mentioned in the introduction, the path that we use to derive the limit system follows
the same lines as in the elastic case. The main idea is to write equations satisfied by averages in velocity of hε
and to study the convergence of each term. It is worth mentioning that with the notion of weak convergence

at hand presented above, we can adopt an approach which is reminiscent of the program established in [5, 6]
but simpler. In particular, we can adapt some of the main ideas of [9] regarding the delicate convergence of

nonlinear terms. The detailed computations and arguments are included in [3, Section 6], we only mention
the main steps and keypoints of the proof hereafter. In what follows, we will use the following notation:

for g = g(x, v),

〈g〉 :=
ˆ

Rd

g( · , v) dv.

Local conservation laws. We introduce

A(v) := v ⊗ v − 1

d
|v|2Id and pε :=

〈1

d
|v|2hε

〉

(4.6)

so that
〈

v ⊗ v hε

〉

=
〈

Ahε

〉

+ pε Id. We integrate in velocity equation (1.15) multiplied by 1, vi,
1
2 |v|2, to

obtain

∂t

〈

hε

〉

+
1

ε
divx

〈

v hε

〉

= 0, (4.7a)

∂t

〈

v hε

〉

+
1

ε
Divx

〈

Ahε

〉

+
1

ε
∇xpε =

1− α(ε)

ε2

〈

v hε

〉

, (4.7b)

∂t

〈
1
2 |v|

2hε

〉

+
1

ε
divx

〈
1
2 |v|

2v hε

〉

=
1

ε3
Jα(ε)(fε, fε) +

2(1− α(ε))

ε2

〈
1
2 |v|

2hε

〉

, (4.7c)

where we recall that fε = Gα(ε) + εhε and where we have introduced

Jα(f, f) :=

ˆ

Rd

[Qα(f, f)−Qα(Gα, Gα)] |v|2 dv.

The goal is to study the convergence of each term in (4.7a)-(4.7b)-(4.7c). A first important remark to

address this point is that thanks to the estimates recalled in (3.15)-(3.16), one can prove that for any
function ψ = ψ(v) satisfying the bound |ψ(v)| . 〈v〉q, we have the following convergence in the distributional

sense:

〈ψ hε〉 −−−→
ε→0

〈ψ h〉 in D ′
t,x (4.8)

where h is defined in (4.4) (see [3, Lemma 6.6]).

Roughly speaking, the convergence of the terms in the LHS of (4.7a)-(4.7b)-(4.7c) is treated as in the

elastic case. The RHS is going to be handled as a source term which takes into account the drift term and the
dissipation of kinetic energy at the microscopic level. In this regard, using (4.8), we first remark that under

Assumption 1.1,
1− α(ε)

ε2

〈

v hε

〉

−−−→
ε→0

ϑ1λ0u in D ′
t,x, (4.9)

since λ0 = limε→0+ ε
−2(1 − α(ε)) and from the definition of u in (4.5). We then present a result of conver-

gence for ε−3Jα(ε)(fε, fε) in the following lemma in the proof of which there are not major difficulties. The

said proof is thus omitted, we just mention that it is based on Assumption 1.1, on the estimates on hε coming
from (3.15)-(3.16) and involves the dissipation of energy (1.7), we refer to [3, Lemma 6.9] for more details.

Lemma 4.4. It holds that
1

ε3
Jα(ε)(fε, fε) −−−→

ε→0
J0 in D ′

t,x,

where

J0(t, x) := −λ0 c̄ ϑ
3
2
1

(

̺(t, x) +
3

4
ϑ1 θ(t, x)

)

for some positive constant c̄ depending only on the angular kernel b( · ) and d and where λ0 is defined in Assump-

tion 1.1.
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Incompressibility condition and Boussinesq relation. Using (4.8) in the equations (4.7a)-(4.7b), using also
that the restitution coefficient satisfies Assumption 1.1, we can easily obtain the incompressibility condition

as well as the Boussinesq relation:

divx u = 0 and ∇x(̺+ ϑ1θ) = 0 (4.10)

where we recall that ̺, u and θ are defined in (4.5). Using furthermore that the global mass of hε vanishes
(see (1.20)), we have that

0 =

ˆ

Td×Rd

hε(t, x, v) dv dx −−−→
ε→0

ˆ

Td

̺(t, x) dx in D ′
t

and thus that
´

Td ̺(t, x) dx = 0. It implies that we have the following strengthened Boussinesq relation: for

almost every (t, x) ∈ (0, T )× Td,

̺+ ϑ1(θ − E) = 0 with E = E(t) :=

ˆ

Td

θ(t, x) dx. (4.11)

Remark 4.5. Notice here that the derivation of the strong Boussinesq relation ̺+ ϑ1θ = 0 is not as straightfor-

ward as in the elastic case. In the elastic case, the classical Boussinesq relation ∇x(̺+ϑ1θ) = 0 straightforwardly

implies the strong form of Boussinesq because the two functions ̺ and θ have zero spatial averages. This cannot

be deduced directly in the granular context due to the dissipation of energy and we will see later on how to obtain

it (see Proposition 4.8).

Equations of motion and temperature. In order to identify the equations satisfied by u and θ, as in the

elastic case, we start by studying the convergence of quantities that are related to

̺ε(t, x) :=

ˆ

Rd

hε(t, x, v) dv, uε(t, x) :=
1

ϑ1

ˆ

Rd

hε(t, x, v)v dv, θε(t, x) :=

ˆ

Rd

hε(t, x, v)
|v|2 − dϑ1

ϑ21d
dv.

(4.12)

More precisely, we inverstigate the convergence of

uε := exp

(

−t1− α(ε)

ε2

)

Puε and θε :=
〈

1
2 (|v|

2 − (d+ 2)ϑ1)hε

〉

where P is the Leray projection on divergence-free vector fields. Notice that if we compare our approach to

the elastic case, we have added the exponential term in the definition of uε in order to absorbe the term in
the RHS in (4.7b). We compute the evolution of uε and θε (by applying the Leray projector P to (4.7b) and

by making an appropriate linear combination of (4.7a) and (4.7c)) and obtain:

∂tuε = − exp

(

−t1− α(ε)

ε2

)

P
(

ϑ−1
1 Divx

〈
1
εAhε

〉)

(4.13)

where A is defined in (4.6) and

∂tθε +
1

ε
divx

〈

bhε

〉

=
1

ε3
Jα(ε)(fε, fε) +

2(1− α(ε))

ε2

〈
1
2 |v|

2hε

〉

with b(v) :=
1

2

(
|v|2 − (d+ 2)ϑ1

)
. (4.14)

The study of the limit ε→ 0 in those equations is more favorable because compared to (4.7a)-(4.7b)-(4.7c),

the gradient term in (4.7b) has been eliminated thanks to the Leray projector and also because A and b

belong to the range of Id − π0 so that thanks to Lemma 4.1, we know that the quantities ε−1Divx

〈

Ahε

〉

and ε−1divx

〈

bhε

〉

are bounded in W
m−1,2
x . Then, applying a precised version of Aubin-Lions lemma [20,

Corollary 4], we are able to prove that up to the extraction of a subsequence, {uε}ε and {θε}ε converge

strongly in L1
(
(0, T ) ; Wm−1,2

x

)
respectively towards

Pu = u and θ0 :=
〈

1
2 (|v|

2 − (d+ 2)ϑ1)h
〉

=
dϑ21
2
E − d+ 2

2
ϑ1̺ (4.15)
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where we used the incompressibility condition and the strong Boussinesq relation given in (4.10)-(4.11).
We refer to [3, Lemma 6.10] for more details.

About initial data. Recall that, in Theorem 4.2, the convergence of hε to h given by (4.4) is known to hold

only for a subsequence and, in particular, at initial time, different subsequences could converge towards

different initial datum and therefore (̺, u, θ) could be different solutions to the same system. In Theorem 1.4,
the initial datum is prescribed by ensuring the convergence of π0h

ε
in towards a single possible limit where π0

is defined in (1.23) (recall that the initial data for (̺, u, θ) is defined in (1.31)).
Using Lemma 4.1, one can apply Arzelà-Ascoli theorem to get that Puε and θε converge strongly in

C
(
[0, T ] ; Wm−1,2

x

)
towards respectively u and θ0 defined in (4.15) that also belong to C

(
[0, T ] ; Wm−1,2

x

)
.

We refer to [3, Proposition 6.19] for more details.

Limit equations. To get the limit equations, we need to study the convergence of the terms ε−1PDivx

〈

Ahε

〉

and ε−1divx

〈

bhε

〉

in (4.13) and (4.14). To this end, our approach relies on arguments coming from [9]

(in particular, the tricky convergence of the nonlinear terms is treated thanks to a compensated compactness

argument coming from [13]), the main difference being that we force the elastic collision operator to appear

in our computations, we thus introduce terms that involve differences between the elastic and the inelastic
collision operators. Those remainder terms vanish in the limit ε → 0 thanks to Assumption 1.1. We refer

to [3, Lemmas 6.12-6.13-6.14] for more details. In the end, writing PDivx(u⊗ u) = Divx(u⊗ u) + ϑ−1
1 ∇xp

(see [14, Proposition 1.6]), we obtain the following result:

Proposition 4.6. There are some constants ν > 0 and γ > 0 such that the limit velocity u = u(t, x) in (4.4)
satisfies

∂tu− ν

ϑ1
∆xu+ ϑ1Divx (u⊗ u) +∇xp = λ0u (4.16)

where λ0 is defined in Assumption 1.1, while the limit temperature θ = θ(t, x) in (4.4) satisfies

∂tθ −
γ

ϑ21
∆xθ + ϑ1 u ·∇xθ =

2

(d+ 2)ϑ21
J0 +

2dλ0
d+ 2

E +
2

d+ 2

d

dt
E, (4.17)

where we recall that J0 is defined in Lemma 4.4 and E is defined in (4.11).

Remark 4.7. The viscosity and heat conductivity coefficients ν and γ are explicit and fully determined by the
elastic linearized collision operator L1 (see [3, Lemma C.1]). Notice also that, due to (4.10), Divx(u ⊗ u) =
(u ·∇x)u and (4.16) is nothing but a reinforced Navier-Stokes equation associated to a divergence-free source

term given by λ0u which can be interpreted as an energy supply/self-consistent force acting on the hydrodynam-

ical system because of the self-similar rescaling.

To end the identification of the limit equations, we go back to the strong Boussinesq equation (4.11) and
prove the following result:

Proposition 4.8. It holds that

E(t) = 0, t ∈ [0, T ],

where E = E(t) is defined in (4.11). Consequently, the limiting temperature θ(t, x) in (4.4) satisfies

∂t θ −
γ

ϑ21
∆xθ + ϑ1 u ·∇xθ =

λ0 c̄

2(d+ 2)

√

ϑ1 θ. (4.18)

where γ is defined in Proposition 4.6, λ0 in Assumption 1.1 and c̄ in Lemma 4.4. Moreover, the strong Boussinesq

relation holds true:

̺+ ϑ1θ = 0 on [0, T ]× T
d. (4.19)

Proof. Using Lemma 4.4 and averaging in position the equation (4.17), it is easy to prove that

d

dt
E(t) = c̄0E(t)
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for some some constant c̄0 ∈ R. Moreover, on the one hand, from (1.31), we have

E(0) =

ˆ

Td

θ(0, x) dx = − 1

ϑ1

ˆ

Td

̺(0, x) dx. (4.20)

On the other hand, from the definition of θ0 in (4.15), we also have

E(0) =
2

ϑ21d

ˆ

Td

θ0(0, x) dx+
2

ϑ1d

ˆ

Td

̺(0, x) dx. (4.21)

We also know that θε converges towards θ0 in C
(
[0, T ] ; Wm−1,2

x

)
. Consequently, we deduce that

ˆ

Td

θ0(0, x) dx = lim
ε→0

ˆ

Td

〈
|v|2−(d+2)ϑ1

2 hε(0, x)
〉

dx = lim
ε→0

ˆ

Td

〈
1
2 |v|

2hε(0, x)
〉

dx

where we used (1.20) to get the last equality. From (1.22), we deduce that
ˆ

Td

θ0(0, x) dx = 0.

Coming back to (4.20)-(4.21), we deduce that

E(0) = − 1

ϑ1

ˆ

Td

̺(0, x) dx =
2

ϑ1d

ˆ

Td

̺(0, x) dx

which implies that E(0) = 0. This concludes the proof. �

Gathering the results we obtained in Propositions 4.6 and 4.8, we are able to end the proof of Theo-
rem 1.4.
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