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1.  Uncertainty calculations: concentration of LysK in the solution
The general formula used for the uncertainty calculation of a measured quantity (m) can be written as: 

𝑢(𝑚) = (𝑢𝑅𝐵

3 )2

+ (𝑠(𝑚)
𝑁 )2

Eq. S1

The first term under square root, , is linked to the accuracy of the instrument, and it corresponds to the 𝑢𝑅𝐵

so called type-B uncertainty. Regarding the electronic balance used in this work for the preparation of the 
sampled solutions, is equal to 0.1 mg.𝑢𝑅𝐵 
The second term consists in a type-A uncertainty, a statistical term related to the repeatability of the 
measurement. It is expressed by the so called standard error of the mean, given as the ratio between the 
estimate standard deviation ( ) and the square root of the number of repeated measurements ( ). In 𝑠(𝑚) 𝑁
this work N=3 and the standard deviation is estimated as it follows:

𝑠(𝑚) =
1

𝑁 ― 1 ∗
𝑁

∑
𝑘 = 1

(𝑚𝑖,𝑘 ― 𝑚𝑖)2 Eq. S2

Where  is the single measured value and  is the average of the 3 different repetitions.𝑚𝑖,𝑘 𝑚𝑖

When a quantity, for instance the mass of L-lysine , is the result of two different 𝑚𝐿𝑦𝑠 = 𝑚𝑓𝑙𝑎𝑠𝑘 + 𝑚𝑓𝑙𝑎𝑠𝑘 + 𝐿𝑦𝑠

measured values (  and ), the following formula is used to estimate the propagation of the 𝑚𝑓𝑙𝑎𝑠𝑘 𝑚𝑓𝑙𝑎𝑠𝑘 + 𝐿𝑦𝑠

error and, consequently, the combined uncertainty:

𝑢𝑐𝑜𝑚𝑏(𝑚𝐿𝑦𝑠) =
𝑘
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∂𝑃𝑖
∗

∂𝑚𝐿𝑦𝑠

∂𝑃𝑗
∗ 𝑢(𝑃𝑖,𝑃𝑗) + (𝑚𝐿𝑦𝑠 ∗ 𝑢𝑝𝑢𝑟𝑖𝑡𝑦(𝐿𝑦𝑠))2 Eq. 
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Where  are the quantities from which  is estimated. Often, , which is the covariance of  and 𝑃𝑗  𝑚𝐿𝑦𝑠 𝑢(𝑃𝑖,𝑃𝑗) 𝑃𝑗

, is equal to zero because they can be assumed to be uncorrelated, therefore the combined uncertainty is 𝑃𝑖

usually expressed just by the first term.
The term refers to the uncertainty resulting from the purity of the chemical used, and it has been 𝑢𝑝𝑢𝑟𝑖𝑡𝑦

calculated with Eq. S4:
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𝑢𝑝𝑢𝑟𝑖𝑡𝑦 =
(1 ― 𝑃𝑢𝑟𝑖𝑡𝑦%)

3
Eq. S4

What has been said so far has been used to calculate the uncertainty on the total mass of the single 
compound (L-Lys or KOH) added in the solution. The equimolar amount has been achieved by weight 
measurements: a residual amount of unreacted Lys/KOH was present in the final solutions, but when it was 
quantified during calculations it ended up being irrelevant (order of magnitude very low) in the final 
uncertainty value.
The final concentration level in the aqueous solution is estimated by:

𝑤% =
𝑚𝐿𝑦𝑠𝐾

𝑚𝐻2𝑂 𝑎𝑑𝑑𝑒𝑑 + 𝑚𝐻2𝑂 𝑓𝑜𝑟𝑚𝑒𝑑 + 𝑚𝐿𝑦𝑠𝐾
Eq. S5

The formula written above represents the mass fraction concentration, but the concept is the same even for 
a molality basis (molLysK/kgH2O). The related combined standard uncertainty ( ) is calculated via the 𝑢𝑐𝑜𝑚𝑏(𝑤%)
following expression:

𝑢𝑐𝑜𝑚𝑏(𝑤%) =

 ( ∂𝑤%

∂𝑚𝐿𝑦𝑠𝐾)2
∗ 𝑢2(𝑚𝐿𝑦𝑠𝐾) + ( ∂𝑤%

∂𝑚𝐻2𝑂 𝑓𝑜𝑟𝑚𝑒𝑑)
2

∗ 𝑢2(𝑚𝐻2𝑂 𝑓𝑜𝑟𝑚𝑒𝑑) + ( ∂𝑤%

∂𝑚𝐻2𝑂 𝑎𝑑𝑑𝑒𝑑)
2

∗ 𝑢2(𝑚𝐻2𝑂 𝑎𝑑𝑑𝑒𝑑)
Eq. S6

2. Uncertainty calculations: CO2 loading in solution
The CO2 loading of the solution is defined as the number of moles of carbon dioxide divided by the number 
of moles of LysK. The procedure to obtain the targeted number of CO2 moles in solution is described in section 
2.1 of the article, and it is calculated with the following formula:

𝑛𝐶𝑂2 = 𝑉𝑣𝑒𝑠𝑠𝑒𝑙 ∗ (𝜌1 ― 𝜌2) ∗
1

𝑀𝑀𝐶𝑂2

Eq. S7

The uncertainty on this quantity basically depends on the error attributable to the values of the density of 
CO2, which can be found from the equation of state employed. Therefore, the uncertainty on the moles of 
CO2 is calculated as follows:

𝑢(𝑛𝐶𝑂2
) = (∂𝑛𝐶𝑂2

∂𝜌1 )
2

∗ 𝑢(𝜌1)2 + (∂𝑛𝐶𝑂2

∂𝜌2 )
2

∗ 𝑢(𝜌2)2 Eq. S8

Then, adding the uncertainty on the moles of LysK, derived in 1, it is possible to calculate the combined 
uncertainty on the CO2 loading of the solution with the formula already introduced in 1.
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3. Results of the Flucon QVis 01/L quartz viscometer
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Figure S1: Plot of residuals (ε = lnμexp - lnμcalc) for the different frequency values encountered during the quartz viscometer calibration

Table S1: Numerical values of the quantities (density and viscosities) and parameters (frequency) used to develop the frequency – 
viscosity calibration for the quartz viscometer. The values of u(T), u(P), u(f), u(ρ) and u(μ) represent respectively the standard 
uncertainty on temperature [K], pressure [kPa], frequency [Hz], density [gcm-3] and viscosity [mPas].

 
Temperature 

[K]
Resonance 

Frequency [Hz]
Density 
[gcm-3]

Experimental 
Viscosity [mPas]

Calculated 
Viscosity [mPas]

293.15 56778.53 1.09906 2.89 3.00
298.15 56780.77 1.09461 2.53 2.56
303.15 56782.10 1.09022 2.19 2.21
308.15 56784.13 1.08644 1.95 1.93
313.15 56785.46 1.08274 1.71 1.70
318.15 56786.90 1.07963 1.55 1.51
323.15 56788.13 1.07663 1.38 1.36
328.15 56789.38 1.07419 1.26 1.23
333.15 56790.11 1.07190 1.15 1.12
338.15 56791.04 1.07009 1.05 1.04

28.3% 
LysK mass
fraction

343.15 56791.65 1.06855 0.97 0.96
293.15 56776.96 1.10076 2.96 3.1428.5% 

LysK mass 298.15 56778.48 1.09616 2.59 2.69
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303.15 56780.61 1.09190 2.23 2.30
308.15 56782.57 1.08797 1.99 2.00
313.15 56784.09 1.08439 1.74 1.76
318.15 56785.68 1.08115 1.58 1.56
323.15 56786.52 1.07825 1.40 1.40
328.15 56788.02 1.07569 1.29 1.26
333.15 56788.71 1.07348 1.16 1.15
338.15 56789.94 1.07159 1.07 1.06

fraction

343.15 56790.66 1.07005 0.98 0.98
293.15 56769.97 1.15187 7.07 6.96
298.15 56773.40 1.14682 5.92 5.74
303.15 56776.08 1.14199 5.00 4.84
308.15 56778.74 1.13762 4.30 4.13
313.15 56781.02 1.13360 3.71 3.58
318.15 56783.14 1.13003 3.25 3.15
323.15 56784.87 1.12681 2.86 2.80
328.15 56786.37 1.12404 2.55 2.52
333.15 56787.72 1.12162 2.27 2.29
338.15 56788.78 1.11961 2.05 2.10

43.7% 
LysK mass
fraction

343.15 56789.71 1.11798 1.85 1.95
293.15 56766.75 1.15594 7.63 7.78
298.15 56769.79 1.15073 6.38 6.42
303.15 56772.83 1.14585 5.35 5.35
308.15 56775.61 1.14146 4.59 4.53
313.15 56778.04 1.13740 3.95 3.90
318.15 56780.29 1.13382 3.45 3.40
323.15 56782.25 1.13057 3.02 3.01
328.15 56783.96 1.12779 2.68 2.70
333.15 56785.47 1.12535 2.39 2.44
338.15 56786.77 1.12334 2.15 2.23

45.0% 
LysK mass
fraction

343.15 56787.87 1.12171 1.94 2.06
Standard uncertainties u(T) = 0.03 K, u(P) = 0.4 kPa, u(f) = 0.05 Hz, u(ρ) = 0.00052 gcm-3, u(μ) = 
0.06 mPas

4. Uncertainty analysis of the experimental data
The calculated uncertainty on the measured densities and viscosities is composed of two terms, a type B and 
a type A uncertainty. As already indicated, is equal to 0.000005 gcm-3 for the Anton Paar densimeter and 𝑢𝑅𝐵 
to the 0.5% of the measured value for the LOVIS viscometer. The second term is the standard deviation ( ) 𝑠
of the average of three different measurement cycles (N=3). Therefore, the uncertainty is determined with 
the following formula:

𝑢 = (𝑢𝑅𝐵

3 )2

+ ( 𝑠
𝑁)2

Eq. S9
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When just one cycle of measurements is performed, the uncertainty on the experimental data corresponds 
with the uncertainty of the instrument used ( ).𝑢𝑅𝐵

Uncertainty of viscosity for CO2 loaded solutions is the combination of two different terms: 

𝑢 = 𝑢1
2 + 𝑢2

2 Eq. S10

The first term ( ) concerns the calibration with the experimental data coming from the LOVIS viscometer, 𝑢1

and it is expressed as the combination of the uncertainty on the experimental data measured with the LOVIS 
viscometer used for the calibration ( ) and the deviation between the latters and the values predicted 𝑢𝑒𝑥𝑝𝑑𝑎𝑡𝑎

from the model ( ):∆𝑢

𝑢1 = 𝑢𝑒𝑥𝑝𝑑𝑎𝑡𝑎
2 + ∆𝑢2 Eq. S11

The second term ( ) is related with the uncertainty of the correlation parameters for the model described 𝑢2

by Eq. S12: 

𝑙𝑛(𝜇/𝑚𝑃𝑎𝑠) = 𝐴 +
𝐵
𝑇 + 𝐶 ∗ 𝑓 + 𝐷 ∗ 𝑓6 + 𝐸

𝜌 Eq. S12

Therefore, the uncertainty in this correlation can be determined as the combined uncertainty of all the 
parameters ( ) on which viscosity depends:𝑃𝑗

𝑢(𝑙𝑛𝜇) = ∑
𝑗
(∂𝑙𝑛𝜇

∂𝑃𝑗 )2

∗ 𝑢(𝑃𝑗)2 Eq. S13

Where  include both the correlation parameters ( ) and the physical quantities  and .𝑃𝑗 𝐴, …, 𝐸 𝑇, 𝑓 𝜌

5. Uncertainty analysis on the model parameters
The uncertainty estimates for the correlation parameters can be determined from the variance-covariance 
matrix (V). The elements on the matrix diagonal represent the square of the standard deviation (variances) 
of the model parameters (Pj), whereas the elements outside the diagonal are the covariances:

𝑉𝑗,𝑗 = 𝑣𝑎𝑟(𝑃𝑗),𝑉𝑗,𝑘 = 𝑐𝑜𝑣(𝑃𝑗,𝑃𝑘)     𝑗,𝑘 = 1,…, 𝑛 Eq. S14

The variance-covariance matrix of the model parameters is usually calculated from the Hessian matrix (H) of 
the likelihood function  at the optimum determined point. For instance, when the objective is to fit 𝑣
experimental data on viscosities, the function can be expressed as:𝑣 

𝑣 = ∑
𝑖
𝑣𝑖 = ∑

𝑖
(𝜇𝐸

𝑖 ― 𝜇𝐶
𝑖)

2 Eq. S15

Where i represents each experimental point obtained,  is the value of the measurements and  is the 𝜇𝐸
𝑖 𝜇𝐶

𝑖

predicted value from the model. The Hessian is the matrix (nxn) of the second-order partial derivatives:

𝐻 = [∑𝑖( ∂
∂𝑃𝑗( ∂𝑣𝑖

∂𝑃𝑘))]
𝑗,𝑘

Eq. S16

The variance-covariance matrix is then determined from the product between the inverse of the Hessian 
matrix and the value of the maximum likelihood function divided by the number of degrees of freedom 
(df=number of exp. points – number of model parameters):

𝑉 =
1

𝑑𝑓 ∗ 𝑣 ∗ 𝐻 ―1 = [ 𝜎2(𝑃𝑗) 𝑐𝑜𝑣2(𝑃𝑗,𝑃𝑘) ⋯
𝑐𝑜𝑣2(𝑃𝑘,𝑃𝑗) ⋱ ⋮

⋮ ⋯ 𝜎2(𝑃𝑛)] Eq. S17
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Taking the square root of the values on the diagonal one can obtain the standard deviations of the 
parameters Pj.


