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We introduce an index based on information theory to quantify the stationarity of a stochastic
process. The index compares on the one hand the information contained in the increment at the
time scale τ of the process at time t with, on the other hand, the extra information in the variable
at time t that is not present at time t− τ . By varying the scale τ , the index can explore a full range
of scales. We thus obtain a multi-scale quantity that is not restricted to the first two moments of
the density distribution, nor to the covariance, but that probes the complete dependences in the
process. This index indeed provides a measure of the regularity of the process at a given scale. Not
only is this index able to indicate whether a realization of the process is stationary, but its evolution
across scales also indicates how rough and non-stationary it is. We show how the index behaves
for various synthetic processes proposed to model fluid turbulence, as well as on experimental fluid
turbulence measurements.

I. INTRODUCTION

Many if not most real-world phenomena are intrinsically non-stationary, while most if not all classical tools such
as Fourier analysis and power spectrum, correlation function, wavelet transforms, etc., are only defined for—and
hence supposed to operate on—signals which are stationary. The assumption that a signal or a stochastic process
is stationary can either be strict, as in the most formal approaches, or made weaker, as a pragmatic adaptation
to the tools used during analysis. The strict stationarity assumption requires all statistical properties, including the
probability density function and the complete dependence structure, to be time-invariant. The weak-sense stationarity
assumption most commonly used in practice requires the first two moments of the probability distribution to exist
and to be time-invariant, as well as the auto-covariance function that is required to be time-translation invariant,
which leads to the definition of the correlation function.

The weak stationarity hypothesis is commonly used to analyze data obtained in various physical, natural, medical
or complex systems, in order to apply classical techniques involving the correlation function. While sometimes very
well adapted to the data, it may in other situations be a little far-stretched. Let us consider two typical situations
which arise, for example, in weather and climate data series: trends and periodic evolutions, which are known for
leading towards long-range dependences [1], and hence possible non-stationarity. For non-stationary signals which
present a drift or a trend, a very common and elegant technique consists of time-deriving the signal, and hoping or
hypothesizing that the resulting quantity is stationary. If the original trend is not linear in time, a residual trend
may still be present in the time-derivative; one can then imagine time-deriving again, iteratively, until the required
stationarity assumption is satisfied. Unfortunately, this modus operandi has a drawback, in that it amplifies noise
at larger frequencies or smaller scales where it strongly perturbs the power spectrum. As a consequence, it may be
difficult to confirm a posteriori whether the iterative time-derivation really gives a stationary process. For signals that
present periodic components, one can restrict the analysis to short time-intervals (examining the weather changes,
e.g., temperature fluctuations, over the course of a week should not be impaired by seasonal variations), or on the
contrary to long time-intervals (averaging temperature over the course of a year, or heavily sub-sampling in order to
remove any seasonal variation [2]). Unfortunately, this may be extremely reductive and may result in dropping a lot
of interesting information located at small scales.

It therefore seems interesting to suggest that the notion of stationarity may depend on the scale at which one
is considering the process. Whether one is dealing with epidemiology [3], climate [4], meteorology [2] or animal
populations [5] among an immense number of possible fields, one might be interested in quantifying the non-stationarity
of a dataset depending on the observation scale.

Identifying and characterizing non-stationarity has always been of utmost importance [6, 7]. Since then, many
rigorous techniques have been developed to analyze specific long-range dependences’ properties, as can be seen, for
example, in [1] for a recent review. To more specifically gauge and quantify non-stationarity, various approaches have
been proposed [8–13] that are based on testing the hypothesis that the process (or sometimes its time-derivative) is
stationary with an either positive or negative answer. Depending on the very stationarity hypothesis that is tested,
various kinds of non-stationarity are then considered. Other approaches have suggested using the roughness of the
process, computed in sliding windows, to quantify the order of its non-stationarity [14]. We proposed following such
an approach, but generalizing it on the full range of scales, without restricting it to an appropriate time window.
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The roughness or regularity of a signal is described by its Hurst exponent H, which can be defined when the power
spectrum density of the signal behaves as a power-law of the frequency with an exponent α by asserting α = −(2H+1).
For example, according to the Kolmogorov K41 theory [15], the power spectrum of the Eulerian velocity—the kinetic
energy spectrum —in an isotropic and homogeneous turbulent flow behaves as a power law with the exponent −5/3,
which corresponds to a Hurst exponent 1/3 [16]. As we discuss in this article, such a power law power spectrum cannot
exist in the full range of frequencies for a physical process and it is usually expected that at smaller frequencies—or
larger time scales—the process should be stationary. In that respect, one could use any method to assess the roughness
of a signal and estimate the Hurst exponent [17], e.g., using the multifractal formalism [18, 19].

In this article, we introduce an index based on information theory to quantify the stationarity of a signal. Not only
is this index able to indicate whether a realization of the process is stationary at a given scale—typically the size of
the realization—but its evolution across scales also indicates how rough and non-stationary the process is. This index
can be interpreted as measuring the extra information contained in the increment of size τ at time t of the process
that is not measured when instead considering the information in the variable at time t that is not present in the
variable at time t−τ . By varying the scale τ , the index can explore a full range of scales. As a consequence, the index
is a multi-scale quantity. Moreover, it is not restricted to the first two moments of the density distribution, nor to the
covariance, but probes the complete dependences in the process. We show how the index behaves for various synthetic
and real-world processes using fluid turbulence and its diverse landscapes with various scale-invariance properties as
the main illustrative theme across our numerical explorations.

This article is organized as follows. In Section II, we introduce the new stationarity index using information theory.
Within the general time-dependent framework and within an appropriately time-averaged framework, we introduce
all the building blocks that we then assemble to construct a non-stationarity index. In the limit case of processes
with Gaussian statistics and adequate stationarity, we derived analytical expressions for this index. In Section III,
we present our findings on fractional Gaussian noise (fGn), and successive time-integrations of the fGn, which are
increasingly non-stationary. We use these Gaussian scale-invariant processes with long-range dependence structures
as a set of benchmarks where numerical estimations can be compared with analytical results. In Section IV, we
focused on synthetic processes that were previously designed to satisfy important physical properties, namely to be
stationary at larger scales, as well as smooth enough at smaller scales. We explore how our index can characterize
non-stationarity depending on the scale on such realistic or physical processes. In Section V, we use our index to
analyze experimental datasets acquired in various fluid turbulence setups, and discuss how such complex real-world
data may differ from the synthetic signals of former sections. Finally, Section VI sums up our work and suggests
future perspectives.

II. A MEASURE OF STATIONARITY AND REGULARITY USING INFORMATION THEORY

This section introduces a novel measure based on information theory to probe the stationarity or the regularity of a
discrete-time signal X, viewed as a discrete-time stochastic process X = {xt}t∈N. After setting up our notations, we
recall definitions of time-dependent entropies in the general framework where statistics of the process are considered
at a fixed time t. We then present the more convenient and practical “time-averaged framework” [20] which is better
suited for real-world signals where the number of realizations may be very small. Within this practical framework,
entropies are defined using averages over a time window which represents, for example, the time duration of an
experiment. The new stationarity/regularity measure is then defined in both frameworks.

For a discrete-time stochastic process X = {xt}t∈N, we note pxt as its probability density function (PDF) at
any fixed time t, i.e., the PDF of the random variable xt. To access the temporal dynamics, we use the Takens
time-embedding procedure [21] and consider at a given time t the m-dimensional vector:

x
(m,τ)
t =

(
xt, xt−τ , · · · , xt−(m−1)τ

)
, (1)

where the time delay τ is the time scale that we are probing and the embedding dimension m controls the order of

the statistics which are explicitly involved. We note X(m,τ) = {x(m,τ)
t }t∈N as the corresponding stochastic process at

the time scale τ .
In addition to the time-embedding procedure, we also consider increments of the signal X at time-scale τ . At a

given time t, such an increment reads:

δτxt = xt − xt−τ , (2)

and we define the stochastic process δτX = {δτxt}t∈N at the time scale τ .
We use in this article the differential entropy for continuous processes, although all results presented here hold for

discrete processes, by using the Shannon entropy. Given a probability density function (PDF) p, the entropy is a
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functional of p:

H = −
∫
x∈R

p(x) ln(p(x))dx . (3)

Given a process X, we define below various entropies or combinations of entropies of various PDF of random
variables pertaining to either increments (2) or time-embedded vectors (1). The information theory quantities that
we discuss below for X thus depend on the time-scale τ ; varying the time-scale τ allows a multi-scale analysis of the
process dependences.

A. General Framework

We recall here how one can define entropies for any stochastic process X, whether X is stationary or non-stationary.
Because the PDF of the random variable xt a priori depends on time t, each random variable is considered separately.
Within this very general framework, different entropies are defined for the process X at each time step t.

1. Shannon Entropy of the Time-Embedded Process

We define Ht(X
(m,τ)), the entropy of the time-embedded process X(m,τ) at time t, using the entropy formula (3)

for the m-dimensional multivariate PDF p
x

(m,τ)
t

of the random variable x
(m,τ)
t :

Ht(X
(m,τ)) ≡ H(x

(m,τ)
t ) ≡ −

∫
Rm

p
x

(m,τ)
t

(x) ln(p
x

(m,τ)
t

(x))dx (4)

This quantity depends on the time t at which the process is considered, as well as on the time scale τ involved in

the embedding procedure. We simply note it H
(m,τ)
t (X) for the signal X under consideration.

The entropy H
(m,τ)
t (X) involves the complete PDF of the variable x

(m,τ)
t , including high-order moments. Therefore,

it depends on high-order statistics. Nevertheless, it does not depend on the first-order moment and any random
variable can be centered without altering its entropy.

For m = 1 (no embedding), the entropy does not depend on τ nor on the dynamics of the process X; in that specific

case, we simply note it Ht(X). As soon as m > 1, the entropy H
(m,τ)
t (X) depends on the complete dependence

structure of the components of the embedded vector x
(m,τ)
t , and hence, H

(m,τ)
t (X) probes the linear and non-linear

dynamics of the process at scale τ and time t.

2. Shannon Entropy of the Increments

We define Ht(δτX) ≡ H(δτxt) as the entropy of the increments process δτX at time t by applying the definition
(3) to the PDF of the random variable δτxt.

3. Entropy Rate

We define h
(m,τ)
t (X), the entropy rate of order m at time t and at time-scale τ of the process X, as the variation

of Shannon entropy between the random variables x
(m,τ)
t−τ and x

(m+1,τ)
t , i.e., the increase in information from two

successive time-embedded versions of the process X at time t:

h
(m,τ)
t (X) ≡ H(x

(m+1,τ)
t )−H(x

(m,τ)
t−τ )

= H
(m+1,τ)
t (X)−H(m,τ)

t−τ (X) (5a)

= Ht(X)− I(m,τ)
t (X) , (5b)
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where the auto-mutual information I
(m,τ)
t is the mutual information between the two random variables xt and x

(m,τ)
t−τ

which together form the m+ 1 time-embedded variable x
(m+1,τ)
t :

I
(m,τ)
t (X) ≡ H(xt) +H(x

(m,τ)
t−τ )−H(xt,x

(m,τ)
t−τ )

≡ Ht(X) +H
(m,τ)
t−τ (X)−H(m+1,τ)

t (X) . (6)

For non-stationary processes, I
(m,τ)
t offers a generalization of the auto-covariance. For stationary processes, I

(m,τ)
t

is independent on the time t and is a generalization of the auto-correlation function [22].

In the remainder of this article, we focus on the entropy rate of order m = 1, which we note h
(τ)
t .

B. Time-Averaged Framework

When a single realization of a process X is available, we assume some form or ergodicity and treat the set of values
xt as realizations of a stationary process. This crude assumption is indeed fruitful, and very convenient when a single
signal or a single time series is available. Let us note by [t0, t0 + T [ the time window of length T corresponding to
the available realization of X. We consider the probability density function p̄T,t0,x obtained by considering all data
points within the time window [20]. Since this quantity is a time-average, it does not explicitly depend on time t but
on the total duration T and on the starting time t0.

Considering the time-embedded process X(m,τ) = {x(m,τ)
t }t∈R, the time-averaged PDF can be expressed as

p̄T,t0,x(m,τ)(x) =
1

T

t0+T−1∑
t=t0

p
x

(m,τ)
t

(x) (7)

For a stationary process, p̄T,t0,x(m,τ) = p
x

(m,τ)
t

: the time-averaged PDF does not depend on T or t0 and matches

the stationary PDF of the process X. Using time-averaged PDFs for any process, we define ersatz versions of the
entropies presented in the previous section as follows.

1. Shannon Entropy

We define the ersatz entropy H̄
(m,τ)
T (X) of the signal X in the time window [t0, t0 + T [ as the entropy (3) of the

time-averaged PDF p̄T,t0,x(m,τ) of the time-embedded process X(m,τ):

H̄
(m,τ)
T (X) = −

∫
Rm

p̄T,t0,x(m,τ)(x) ln(p̄T,t0,x(m,τ)(x))dx (8)

This entropy H̄
(m,τ)
T (X) describes the complexity of the set of all successive values of the process X(m,τ) in the time

interval [t0, t0 +T [. It can be interpreted as the amount of information needed to characterize the available realization
of the process in the time interval [t0, t0 + T [. It depends on T and t0 but in order to simplify the notations, we drop
the index t0 in the following.

2. Entropy of the Increments

We define H̄T (δτX), the ersatz entropy of the increments of the signal X at the time scale τ in the time window
[t0, t0 + T [, as the entropy (3) of the time-averaged PDF of the increment process δτX.

3. Entropy Rate

We define the ersatz entropy rate h̄
(m,τ)
T (X) of the signal X in the time window [t0, t0 + T [ as the increase in

ersatz entropy when increasing the embedding dimension by +1. This is thus the same expression as in the general
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framework but using time-averaged probabilities along the trajectory of the process:

h̄
(m,τ)
T (X) = H̄

(m+1,τ)
T (X)− H̄(m,τ)

T (X) , (9a)

= H̄T (X)− Ī(m,1,τ)
T (X) (9b)

For non-stationary processes with centered stationary increments, t0 only influences the mean of the distribution;
all centered moments only depend on T , the size of the time-window. Therefore, in this case, all information quantities
only depend on T .

C. Towards a Measure of Regularity and Stationarity

Exploring the dynamics along scales τ of a signal, viewed as a stochastic process, can be achieved with information
theory in two distinct ways with the tools presented above. The first one is to consider the increments and compute
their entropy. The second one is to consider the time-embedding and hence use the entropy rate. Both naturally
introduce the time-scale τ and are able to probe the dependences between two variables of the process separated by
τ .

On the one hand, the entropy of the increments measures the uncertainty—or information—in the increment which
represents the variation between xt−τ and xt. This approach is appropriate for signals which are not stationary but
have stationary increments. It thus also offers a direct comparison with traditional tools which heavily rely on the
use of increments to analyze signals. For example, Ref. [23] used the entropy of the increments to examine a variety
of synthetic multi-fractal processes together with experimental velocity measurements in fully developed turbulence.

On the other hand, the entropy rate (h
(m,τ)
t or h̄

(m,τ)
T ) measures the amount of uncertainty—or new information—in

the extra variable xt that is not already accounted for when considering the variable xt−τ . As such, it can be viewed
as a measure of the dependences at scale τ . For example, in the case of stationary signals, the entropy rate can
be used to characterize the scale-invariance of fully developed turbulence [24] or to probe higher order dependences
beyond mere second-order correlations [22].

Both the entropy of the increments and the entropy rate can be computed in the time-averaged framework presented
in Section II B. Interestingly, for non-stationary processes with stationary increments, both measures are almost
stationary, i.e., they only weakly depend on the time-interval length T [20]. While this property is expected for the
entropy of the increments which are stationary—so HT (δτX) = Ht(δτX) does not depend on T or t—this is more
surprising for the entropy rate. This illustrates that the entropy of the increments and the entropy rate are not
identical at all, albeit both exploring the dynamics between xt − τ and xt. With this in mind, we propose using the
difference between these two information quantities as an index to finely probe the non-stationarity of a process.

1. Relation between h
(τ)
t (X) and Ht(δτX) in the General Framework

Given a non-stationary process X, we define the index:

∆τ
t (X) ≡ Ht(δτX)− h(τ)

t (X) . (10)

We can rewrite ∆τ
t by first expressing the entropy of X(2,τ) at time t:

H
(2,τ)
t (X) ≡ H(x

(2,τ)
t ) = H (xt, xt−τ )

= H (xt, δτxt) . (11)

This follows from writing xt as the sum δτxt + xt−τ and using chained conditioned probabilities. According to
Equation (5a), the entropy rate of order 1 then reads:

h
(τ)
t (X) ≡ H(2,τ)

t (X)−H(1,τ)
t (X)

= H(xt, δτxt)−H(xt)

= H(xt, δτxt)−H(xt)−H(δτxt) +H(δτxt)

= −MI(xt−τ , δτxt) +Ht(δτX) , (12)
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where MI(X,Y ) ≡ H(X) + H(Y ) − H(X,Y ) is the mutual information between the signals X and Y , here the
variable xt−τ and the increment δτxt leading from xt−τ to xt. This relation holds for any process; in particular, the
stationarity of the increments is not required. This leads to:

∆τ
t (X) = MI(xt−τ , δτxt) ≥ 0 . (13)

where ∆τ
t is a combination of three entropies that can be rewritten as a mutual information; therefore, it is always

greater than or equal to 0.
By definition, (10) ∆τ

t quantifies the extra information—or extra uncertainty—which is present in the increment
δτxt = xt − xt−τ but is not accounted for when measuring the increase in information between xt and (xt, xt−τ ).
Then, the rewriting into (13) shows that ∆τ

t also corresponds to the shared information between the walk X at time
t− τ and the next increment δτ that leads to the walk at time t. In other words, ∆τ

t is the difference between on the
one hand the sum of the information contained in xt and the information contained in the increment xt − xt−τ , and
on the other hand the information in the vector (xt, xt−τ ). Both interpretations clearly illustrate that, although the
information in the vectors (xt, xt−τ ) and (xt, δτxt) is the same (see Equation (11)), the information in xt cannot be
obtained by combining the information of the process at time t− τ together with the information in the increments
between the two times t− τ and t.

2. Definition of an Index in the Time-Averaged Framework

The two terms in the right-hand side of Equation (10) have counterparts in the time-averaged framework. We thus
define, for any process X indexed on a time-interval of length T :

∆̄τ
T (X) ≡ H̄T (δτX)− h̄(1,τ)

T (X) (14a)

= MIT (xt−τ , δτxt) . (14b)

We show in the following how this quantity can be used to probe the non-stationarity of a signal under realistic
conditions, i.e., when one can only compute entropies in the time-averaged framework, e.g., when a single realization
is available. We further refer to ∆̄τ

T (X) as the stationarity or regularity index.

3. Expression for a Stationary Process with Gaussian Statistics

All information quantities considered here do not depend on the first moment of the process, which we now consider
the zero-mean without loss of generality. For a process with Gaussian statistics, the dependence structure can be
expressed using only the covariance. As a consequence, all terms in Equation (14a) can be written in terms of the
covariance.

Further assuming a stationary process X, and noting σx and c(τ), its time independent standard deviation and
correlation function, we have:

H̄T (δτX) = Ht(δτX) =
1

2
ln(2πeσ2

δτ ) , (15)

h̄
(τ)
T (X) = h

(τ)
t (X) =

1

2
ln(2πeσ2

x) +
1

2
ln (|Σ|) , (16)

where Σ is the correlation matrix of the process X and σ2
δτ

= 2σ2
x(1− c(τ)) is the variance of its increments δτX at

scale τ . Using |Σ| = 1− c(τ)2 and plugging Equations (15) and (16) into Equation (14a) gives:

∆̄τ
T (X) = ∆τ

t (X) =
1

2
ln

(
2

1 + c(τ)

)
. (17)

Thus, the index ∆̄τ
T (X) of a stationary process X does not depend on the standard deviation of X.

In the specific case of an uncorrelated Gaussian process, the index takes the special value ∆̄τ
T = ln

√
2. For positive

correlations c(τ) ≥ 0, the index is smaller: ∆̄τ
T (X) ≤ ln

√
2 while for anti-correlations c(τ) ≤ 0 the index is larger

∆̄τ
T (X) ≥ ln

√
2. These results hold for any stationary Gaussian process.

When the correlation is small, c(τ)� 1, Equation (17) can be Taylor-expanded as

∆̄τ
T (X) = ln

√
2− c(τ)

2
. (18)
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If we further assume that the process exhibits some self-similarity such that the variance σ2
δτ

of its increments

behaves as a power law of the scale τ with the exponent ζ2, i.e., 1− c(τ) ∝ τ ζ2 , then taking the logarithm of Equation
(18) leads to ln ∆τ

T (X) ∝ ζ2 ln τ , up to an additive constant.

D. Estimation Procedures for Information Theory Quantities

All results reported in the present article were computed using nearest neighbors (k-nn) algorithms: from
Kozachenko and Leonenko [25] for the entropy, and from Kraskov, Stögbauer and Grassberger [26] for the mu-
tual information estimator in Equations (9b) and (14b). These estimators have small bias and small standard
deviation [20, 22, 26, 27]. Additionally, for each value of the time scale τ , we subsample the available data to
eliminate the contribution of dependences from scales smaller than τ [28].

To have a better comparison between various processes, we always use realizations of the same size T , and normalize
each realization so that the unit-time increments (τ = 1) have a standard deviation equal to 1. This removes the
trivial dependence of the entropy rate on the standard deviation, while it does not affect the index which does not
depend on the standard deviation of the process.

III. FGN AND FBM BENCHMARKS

We focus in this section on fractional Gaussian noise (fGn) and fractional Brownian motion (fBm) which we use
as benchmarks for our analysis. These two processes have Gaussian statistics and are hence easy to analytically
manipulate. They have well-known scale-invariant covariance structures [29] and are commonly used as toy models
for systems exhibiting self-similarity and long-range dependences [15], as observed in, e.g., the vicinity of the critical
point in phase transition, or geophysical processes [30].

Historically, the fBm was introduced prior to the fGn: the latter was studied as the derivative of the former [29].
The fBm is widely used in the literature as a prototype walk exhibiting self-similarity and as a natural generalization
of the Brownian motion. For clarity, we start our presentation with the fGn which is stationary, and introduce the
fBm as a time-integration of the fGn; we also present the process obtained by further time-integrating the fBm.

A. Definitions and Analytical Expressions

1. Fractional Gaussian Noise

The fGn W ≡ {wt}t∈N is a stationary stochastic process with Gaussian statistics and long-range dependences,
whose correlation function is expressed as

cW (τ) =
σ2

0

2

[
(τ − 1)2H − 2τ2H + (τ + 1)2H] , (19)

where the prefactor σ0 is the standard deviation of the fGn and 1 − H is the Hurst exponent [29] (this convention
allowing for a direct identification with the fBm defined below). Without loss of generality, we impose w0 = 0 so that
the first value is 0 at time t = 0.

Since the fGn is stationary with Gaussian statistics, its non-stationarity index ∆̄τ
T is straightforwardly given by

Equation (17) with the expression (19) of the correlation of the fGn.

2. Time Integration

Given a discrete-time stochastic process X ≡ {xt}t∈N with x0 = 0, we can define a new stochastic process Y ≡
{yt}t∈N = I(X) representing the integration of X over time as

yt =

t∑
t′=0

xt′ ∀t ≥ 1 . (20)

Y is the motion or walk built on X. In fact, the process constituted of the increments of Y at scale τ = 1 is nothing
but X.
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In all generality, for a continuous-time process, (20) is to be replaced by a continuous integration. Then, Y is
a non-stationary process which is more regular than X: if X is n-differentiable, then Y is (n + 1)-differentiable.
We also note that if X has no oscillating singularity and a Hurst exponent H, then Y has a Hurst exponent H +
1 [18, 19, 31]. Performing time-integration increases the Hurst exponent by +1 and gives a new process which is
“more non-stationary”.

3. Fractional Brownian Motion

The fBm B ≡ {bt}t∈N can be defined as the integration over time of the fractional Gaussian noise W as B = I(W ).
Although fBm with the Hurst exponent H is non-stationary, its power spectral density can be defined [32]; it is a
power law of the frequency with exponent −(2H+ 1). The covariance structure of the fBm is given by

E{btbt+τ} =
σ2

0

2

[
t2H + (t+ τ)2H − |τ |2H

]
, (21)

where σ0, the standard deviation of the fBm at unit-time t = 1 is the standard deviation of the fGn.
In the time-averaged practical framework: we separately consider the two terms

in (14a). The increments of the fBm are stationary and their standard deviation is σ0τ
H. We note H0 = 1

2 ln
(
2πeσ2

0

)
as the entropy of the fGn. The ersatz entropy of the increments of the fBm equals the entropy of the increments in
the general framework which is time-independent:

H̄T (δτB) = Ht(δτB) = H0 +H ln(τ) . (22)

The ersatz entropy rate cannot be simply expressed but it was shown [20] that in the limit τ � T :

h̄
(τ)
T (B) ' H0 +H ln τ − C

( τ
T

)
, (23)

where C
(
τ
T

)
is a correction in τ/T that depends on H. Subtracting (23) from (22), we deduce that the index ∆̄τ

T of
the fBm vanishes as τ/T when the duration T of the signal is increased or the time scale τ is reduced.

4. Time-Integrated fBm

We also present below results obtained for A = I(B), the process obtained by time-integrating the fBm with
Equation (20). Although the covariance structure of this non-stationary process with non-stationary increments is
out of the scope of the present paper, we note that its power spectral density is a power law with the exponent
−(2H+ 3) while its generalized Hurst exponent is H+ 1.

B. Numerical Observations

In this section, we report numerical measurements of ersatz entropies on an fGn, a fBm and a time-integrated fBm
obtained with Equation (20). For each of these three processes, 100 realizations with fixed T = 216 samples were
used. The time scale τ is varied from τ = 1 to τ = 29. For a given τ , the processes are sub-sampled and one sample
is kept for every τ samples. Consequently, the effective number of points used for the entropies’ estimation decreases
as T/τ so the bias and standard deviation are expected to increase with τ for a fixed T [20, 22].

Figure 1 presents our results for the three processes: fGn (first row), fBm (second row) and time-integrated fBm
(third row) for various Hurst exponents H in the range [0.1, 0.9]. For each process, the entropy of the increments
(first line of Figure 1) and the entropy rate (second line of Figure 1) exhibit similar behaviors when the time-scale
τ is varied. For the fGn, these two quantities converge to a constant value when τ is increased, but it can be seen
that the entropy of the increments converges from above when H < 1/2. For the fBm, the two quantities increase
linearly in ln τ , with a slope that is exactly the Hurst exponent H [23, 24]. For the time-integrated fBm, which has
a generalized Hurst exponent larger than 1, the two quantities also evolve linearly in ln τ , but with a constant slope
1 independent on H. This indicates that neither the entropy of the increments nor the entropy rate can be used to
estimate H ≥ 1.

The index ∆τ
T (third line of Figure 1) shows a different behavior when τ is increased. For the fGn (Figure 1c), it

converges to the constant value ln
√

2 (represented by a horizontal dashed line). This specific value corresponds to the
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one obtained for stationary Gaussian process that is uncorrelated, which is asymptotically the case for the fGn when
τ →∞. We note that ∆τ

T is exactly ln
√

2 for the random noise (fGn with H = 1/2, uncorrelated, in red in Figure 1c),

while ∆τ
T converges to ln

√
2 from above for H < 1/2 (negative correlation, curves between magenta and red) and

from below for H > 1/2 (positive correlation, longer range, curves between red and cyan). All these observations are
in perfect agreement with our findings in Section II C 3, and in particular with the expression (17).

For the fBm, ∆̄τ
T is very close to zero to most values of H, although a little increase is observed for H < 0.5. This

is in agreement with our findings in Section III A 3: the index ∆̄τ
T behaves as τ/T with a prefactor that depends on

H.
For the time-integrated fBm, ∆̄τ

T is constant and zero within the error-bars, which are large (Figure 1i). Larger
error-bars are expected on ersatz quantities of processes which are increasingly non-stationary: time-averages along a
single trajectory depend more and more on the trajectory. Nevertheless, for such processes, ∆̄τ

T ' 0 which suggests
that the quantity of information contained in the increment δτxt is roughly the same as the extra information in xt
with respect to the information in xt−τ .

FIG. 1. Scale-invariant processes. Entropy of the increments H̄T (δτX) (first line), entropy rate h̄
(τ)
T (X) (second line) and

index ∆̄τ
T (X) = H̄T (δτX)− h̄(τ)

T (X) (third line) for three scale-invariant processes X with various levels of stationarity: fGn
(first column), fBm (second column) and time-integrated fBm (third column). For each process, various Hurst exponents
H in the range [0.1, 0.9] are reported, with results colored in magenta for H = 0.1, in red for H = 0.5, in cyan for H = 0.9,
and in black for other values. In the third line, special values 0 and ln

√
2 for the index are represented with horizontal black

dashed lines.

IV. PHYSICAL STOCHASTIC PROCESSES WITH DISSIPATIVE AND INTEGRAL SCALES

The fractional Brownian motion, just as the traditional random walk, is not a physical process encountered “as is”
in nature, but a mathematical model with at least two drawbacks. Firstly, the power spectrum of the fBm behaves as
a power law with an exponent 2H+1, which implies that for H < 1/2, it has an infinite energy in the continuous limit.
This is not usually a problem with discrete time, as the sampling frequency is finite. Secondly, in many non-stationary
processes, the standard deviation diverges with time; this is for example the case if the process is scale invariant,
such as the fBm. This is again not a problem as any realization under consideration has a finite duration. These
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two drawbacks are indeed related to the assumption of a perfect scale-invariance of the process in an infinite range of
scales; whereas in a physical system, scale invariance is restricted to a finite range of scales only.

Introducing a high frequency cutoff or equivalently a small, or dissipative, scale ε is a common and natural way to
prevent the divergence of the power spectrum; we refer to such an introduction as “regularization” [33] in this article.
It also offers an interesting perspective to model the behavior of a physical system at smaller scales where the scale
invariance property does not hold anymore. Introducing a large, or integral, scale T is a natural way to prevent the
divergence of the standard deviation of the process. Interestingly, this also leads to a “stationarization” of the process
at scales equal to or larger than T [34] as we shall illustrate below. The goal of regularization and stationarization is
to solve the two drawbacks of scale-invariant processes, and hence offer a “more physical” model for processes such
as, e.g., fluid turbulence, to be compared with experimental data.

Fluid turbulence is an archetypal physical system that offers a perfect illustration. From the Kolmogorov 1941
perspective [15, 16], the Eulerian velocity field in homogeneous and isotropic turbulence presents a well-known scale-
invariance property—the power spectral density evolves as a power law of the wavenumber with an exponent -5/3—
within a restricted region called the inertial range. In any experimental realization, for a finite Reynolds number,
the inertial range corresponds to an interval of scales bounded from below by the dissipative scale and from above by
the integral scale. Within the inertial range, the scale-invariance of turbulent velocity is well described by a Hurst
exponent H = 1/3.

Several approaches have been proposed to synthesize a stochastic process that has the same properties as the
turbulent velocity, as can be seen for example in [35] and the references therein. Of particular interest for us is the
explicit introduction of both a dissipative and an integral scale in order to have a bounded inertial range, which can
be performed by implementing the convolution of a white noise in several ways. We choose in the following to analyze
two specific stochastic processes where a dynamical stochastic equation and explicit analytical comparison with fluid
turbulence are available: the first one is a regularized and stationarized fBm and the second one is a regularized
fractional Ornstein–Uhlenbeck process [34]. For consistency, we fix all along this section the small-scale ε = 4 and the
large-scale T = exp(9) = 8103. For each process under consideration, we first generate a very long realization with
223 data points and then divide it into segments of size T = 216 points over which we estimate our quantities using
scales τ in a logarithmic range between 1 and 210. In order to analyze larger scales, we also down-sample the initial
realization by a factor of 4, 16 and 64, and again perform the estimation on segments of the same size T = 216 points.

A. Regularized and Stationarized fBm

We present in this section the results obtained with the regularized and stationarized fBm Bε,T , a stochastic process
introduced in [33]. This process has Gaussian statistics and perfectly mimics an fBm—with a prescribed exponent
H —in a finite range of time-scales. However, contrary to the fBm, it has a finite second-order structure function
at the large scale, larger than T while its power spectrum behaves as a power law with exponent -3—corresponding
to a Hurst exponent 1 —at scales smaller than ε. This process is generated as the convolution of a Gaussian white

noise with the product:
(

t√
t2+ε2

)3/2−H
.WT (t) , where WT is a large-scale function that insures stationarization [33].

Among possible functions WT , we have used both the “bump” function WT (t) = 2T
a
√
π

exp(−t2/(T 2 − t2) for |t| < T ,

= 0 elsewhere, with a = U(1/2, 0, 1) ' 0.603 a particular value of the confluent hypergeometric function that ensures

the normalization of WT , and the Gaussian function WT (t) = 1/
√

2πT 2 exp(−t2/(2T 2)). Figure 2 shows our findings
for the two corresponding processes with H = 1/3.

The entropy rate h̄
(τ)
T evolution with the time scale τ (Figure 2a) reveals three different regimes, as would the power

spectrum [24]. Between the small and the large scales, indicated by vertical dashed lines, the entropy rate evolves
linearly in ln τ with a slope H = 1/3, just as it would have for a traditional fBm: this is the inertial regime. For
smaller scales below the dissipative scale, the entropy rate evolves faster, signaling the effect of the regularization:
the slope is approximately +1 and the process is increasingly organized as the scale τ is reduced. For larger scales,
above the integral scale T , the entropy rate is maximal and does not evolve with τ : the process is then the most
disorganized. The transition from one regime to another is not sharp and it is difficult to recover the dissipative and
integral scales by looking at the curve: both the effects of the regularization and of the stationarization invade the
inertial region.

The index ∆̄τ
T offers a deeper insight into the evolution of the dynamics of the process across the scales. For smaller

scales, ∆̄τ
T = 0, as if the process was highly non-stationary as a time-integrated fBm would be. For larger scales

above T , ∆̄τ
T ' ln

√
2, the value obtained for uncorrelated stationary processes such as a Gaussian random noise, i.e.,

an fGn with H = 1/2. In the inertial range, the index evolves non-monotonically between these two regimes, with

a noticeable excursion above ln
√

2 as if there are negative correlations at scales about the integral scale T , before
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correlations vanishes at scales larger than the integral scale.
The evolution of the index ∆̄τ

T thus suggests that the process evolves from a highly non-stationary process at a
smaller scale to a stationary process at larger scales. Again, the transition between regimes is not sharp, but the
effects of regularization and the stationarization are clearly visible, especially in comparison to the set of results for
the fGn, fBm and time-integrated fBm presented in Figure 1.
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FIG. 2. Regularized and stationarized fBm. Entropy rate h̄
(τ)
T (a) and index ∆̄τ

T (b) for two regularized and stationarized
fBm with the same Hurst exponent H = 1/3 but with two different large-scale windows: bump (black dots with error bars) and
Gaussian (red dots with error bars). The blue continuous curves (without error bars) are approximations obtained by using
only the correlation function (numerically estimated on the realizations) and Formulas (16) and (17). The dashed vertical lines
correspond to the dissipative scale ε = 4 and the integral scale T = exp(9) = 8103 used to synthesize the process. The dotted
straight lines in (a) are guides for the eyes with slopes 1 and 1/3. The horizontal dashed lines in (b) correspond to the special
values 0 and ln

√
2.

B. Regularized Fractional Ornstein–Uhlenbeck Process

In this section, we present the results obtained with a regularized fractional Ornstein–Uhlenbeck process [34]. This
Gaussian process is an extension of the Ornstein Ulhenbeck process which exhibits scale invariance with a Hurst
exponent H in a range of time scales. The relaxation coefficient 1/T in its stochastic equation defines the integral
scale T while an ad hoc regularization is introduced at small scale ε [34]. For scales smaller than ε, the power spectrum
of the process behaves as a power law with exponent -2, corresponding to a Hurst exponent 1/2.

Figure 3 reports our findings for such a process with H = 1/3. Because the process is Gaussian, and its increments

are Gaussian at all scales τ , we can also estimate its entropy rate h̄
(τ)
T and its index ∆̄τ

T using Equations (16) and
(17) in which we insert a numerical estimation of its correlation function; the corresponding estimations are reported
in blue in Figure 3. We note that both the entropy rate and the index are very well estimated using the correlation
function only when compared to the full estimation involving combinations of entropies.

The evolution of the entropy rate h̄
(τ)
T with ln τ (Figure 3a) is very similar to the one observed for the regularized

and stationarized fBm (Figure 2a), albeit the slope in the small scales region is different: it is close to +1/2, as
expected, instead of +1 as for the fBm. The slope in the inertial range is again given by H = 1/3, and a constant
value is reached for scales larger than the integral scale, albeit a little lower than the one for the stationarized fBm.

The index ∆̄τ
T presents a behavior similar to that of the stationarized fBm: it increases from 0 to ln

√
2, but the

increase seems monotonic for the Ornstein–Uhlenbeck, or with a much smaller overshoot before reaching the constant
value ln

√
2.

V. FULLY DEVELOPED FLUID TURBULENCE

In this section, we analyze the experimental fluid turbulence in various experimental setups. As evoked in Section IV,
fluid turbulence is the physical archetypal system where a power law spectrum is observed in an inertial range, in
between a dissipative scale and an integral scale. While the fBm (Section III) with the Hurst exponent 1/3 is a



12

-10 -8 -6 -4 -2 0 2
-2

-1

0

1

2

-10 -8 -6 -4 -2 0 2

0

0.1

0.2

0.3

0.4

FIG. 3. Regularized fractional Ornstein–Uhlenbeck. Entropy rate h̄
(τ)
T (a) and index ∆̄τ

T (b) for a regularized Ornstein–
Uhlenbeck process with H = 1/3. The black dots and error bars are obtained by directly computing the information theory
quantities on realizations of the process, while the blue continuous curves are obtained by using analytical Formulas (16) and
(17) using only the correlation function, which was numerically estimated for the same realizations of the process. The dashed
vertical lines correspond to the dissipative scale ε = 4 and the integral scale T = 8103 used in the construction of the process.
The dotted straight lines in (a) are guides for the eyes with slopes 1/2 and 1/3. The horizontal dashed lines in (b) correspond
to the special values 0 and ln

√
2.

classical model for the inertial range only [15, 16], regularized and stationarized fBm as well as regularized fractional
Ornstein–Uhlenbeck process (Section IV), both offer more realistic models by including the dissipative and integral
scales in addition to the inertial range. We now want to compare these two models with experiments, especially with
regard to our new index.

We use two sets of Eulerian longitudinal velocity measurements which have been previously characterized in detail.
The first dataset was obtained in a grid setup, in the Modane wind tunnel [36]. The sampling frequency of the setup
was 25 kHz, the mean velocity of the flow is 〈v〉 = 20.5 m/s, and the Taylor-scale based Reynolds number of the flow is
approximately Rλ = 2700, large enough for the flow to be considered as exhibiting fully developed turbulence. For this
dataset, we use the Taylor frozen turbulence hypothesis [16] in order to interpret temporal variations as spatial ones
and we can then use the Bachelor model to estimate the larg- scale L = 0.74 m corresponding to a large temporal
scale T ≡ L/ 〈v〉 = 36 ms. The second dataset was obtained from a helium jet setup [37]. It consists of several
experiments for various Taylor-scale based Reynolds numbers Rλ = 89, 208, 463, 703 and 929. For each experiment,
we computed the integral scale T as the scale for which the index reaches the value corresponding to an uncorrelated

Gaussian process, i.e., ∆̄
(τ=T )
T = ln

√
2. We checked that this integral time scale T is in perfect agreement with the

spatial integral time scale L obtained from a fit of the Bachelor model, within the usual error bars, as reported in [37].

To characterize the velocity datasets, we computed their entropy rate h̄
(τ)
T as well as their index ∆̄τ

T , as the functions
of the scale expressed with the non-dimensional ratio τ/T . The results are presented in Figure 4 for the Modane
experiment and in Figure 5 for the helium jet experiments.

We first examined the Modane experiment which has a large Reynolds number. In
Figure 4a, we clearly see that the entropy rate reveals the three domains of scales described by the Kolmogorov

theory [15]. h̄
(τ)
T behaves as a power law with an exponent close to 1 in the dissipative domain, and with an ex-

ponent close to 1/3 in the inertial domain, while it reaches a plateau when entering the integral domain. Vertical
dashed lines in Figure 4a indicate the dissipative and integral scales as obtained with the Bachelor model [38]. In

Figure 4b, we see that the index ∆̄τ
T evolves smoothly and monotonically from 0 at small scales, up to ln

√
2—the

value for a stationary an uncorrelated Gaussian process—at large scales.
It thus seem that, although the behavior of the entropy rate of the experimental fluid turbulence (Figure 4a) is

better described by the regularized and stationarized fBm model (Figure 2a), the behavior of the index (Figure 4b)
bears greater resemblance to that of the fractional Ornstein–Uhlenbeck process (Figure 3b).

We then examined the influence of the Reynolds number by studying the helium jet experiments. In Figure 4,

we see that both the entropy rate h̄
(τ)
T (Figure 5a) and the index ∆̄τ

T (Figure 5b) both behave as in the Modane
experiment.

Let us first describe the evolution of the entropy rate with ln(τ/T ) from the large scales down to the smaller scales.

For all Reynolds numbers, h̄
(τ)
T is maximal and constant in the integral domain, while it linearly decreases with a
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FIG. 4. Experimental grid turbulence at Rλ = 2500. Entropy rate h̄
(τ)
T (a) and index ∆̄τ

T (b) for Modane experimental
velocity measures. Black dots with error bars correspond to the complete information theory measure with Equation (14b),
while blue lines correspond to the estimates (17) only involving the correlation function. The vertical dashed lines correspond
to the dissipative ε = 5 and integral T = 2530 scales obtained by a fit of the Bachelor model [38]. The dotted straight lines
in (a) are guides for the eyes with slopes 1 and 1/3. The horizontal dashed lines in (b) correspond to the special values 0 and
ln
√

2.
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FIG. 5. Experimental jet turbulence at various Rλ. Entropy rate h̄
(τ)
T (a) and index ∆̄τ

T (b), for the experimental velocity
measures of (helium) jet turbulence at Reynolds 929 (black), 703 (blue), 463 (red), 208 (magenta) and 89 (cyan). The velocity
signals are normalized (σ = 1). The dotted straight lines in (a) are guides for the eyes with slopes 1 and 1/3. The horizontal
dashed lines in (b) correspond to the special values 0 and ln

√
2.

slope 1/3 in the inertial range. For smaller scales below the dissipation scale, the entropy rate linearly decreases with
a slope of approximately 1. As expected, when the Reynolds number is increased, the dissipation scale is smaller, and
the inertial range is thus wider [16].

We now describe the evolution of the index ∆̄τ
T with ln(τ/T ). Again, the index varies from 0 at small scales to

ln
√

2 at large scales, but all curves for all Reynolds numbers now seem to overlap. In particular, the dissipative
scale does not seem to play a particular role in the behavior of the index. This may suggest that this quantity only
probes the transition from the inertial range to the integral domain, i.e., the changes in the stationarity at the scale τ .
Interestingly, we see that the index ∆̄τ

T slightly overshoots the value ln
√

2 around the integral scale, before converging
to this value from above for larger values of τ . This behavior is more pregnant in experiments at Rλ = 208 (magenta)

and Rλ = 703 (dark blue), and less obvious in the other ones. The transition of the index from 0 to ln
√

2 may not
be monotonic, and thus similar to what was observed for the regularized and stationarized fBm (Figure 2b) and the
regularized fractional Ornstein–Uhlenbeck process (Figure 3b); but in that respect, the behavior of the experimental
jet data bear greater resemblance to that of the regularized fractional Ornstein–Uhlenbeck process.

In order to better apprehend what occurs around the integral scale and around the dissipative scale, we plot in
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Figure 6 the logarithm of the index ∆̄τ
T , as a function of ln(τ/T ), for the fractional Ornstein–Uhlenbeck process and

experimental longitudinal velocity measurements.
Together with the estimation using the information theoretical definition (14b) (black dots), we also plot the

simpler estimation that only uses the correlation function and formula (17) (blue line). This last measurement is
only supposed to match the real estimation when the process is Gaussian and stationary, which is the case for the
fractional Ornstein–Uhlenbeck: as can be seen in Figure 6a), both estimates are indeed very close for all time scales.
For experimental data, the agreement is very good at larger scales, from the inertial domain up to the integral domain,
but a very noticeable deviation appears at smaller scales.
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FIG. 6. Dependences of several processes. Logarithm ln
(
∆̄τ
T

)
of the index for the fractional Ornstein–Uhlenbeck process

(a), grid turbulence in the Modane wind-tunnel (b), helium jet turbulence at smaller (c) and larger (d) Reynolds numbers.
Thick black dots represent the complete information theory measure from Equation (14b), while blue lines correspond to the
estimate (17) only involving the correlation function. The horizontal dashed line corresponds to ∆̄τ

T = ln
√

2. The vertical
dashed lines correspond to the dissipative ((a,b) only) and integral scales. The thick dashed line is a guide for the eye with a
slope 2H = 2/3.

Let us first focus on the Modane experiment, which has the largest Reynolds number, to describe what happens
at smaller scales. As observed in Figure 4a), the entropy rate is very well approximated for all scales by Equation
(16) which uses the correlation only. For the index, the discrepancies at smaller scales may thus be expected to arise
from the entropy of the increments according to Equation (14a). It is important to remember that the statistics
of the increments are Gaussian at larger scales only, about the integral scale and larger, while they are more and
more non-Gaussian at smaller scales; this phenomena is referred to as the intermittency of turbulence. The deviation
from Gaussian statistics has previously been studied [23] by measuring the extra information in the entropy of the
increments, with respect to the entropy that can be estimated by assuming purely Gaussian statistics and using the
standard deviation only. The presence of intermittency therefore leads to a larger value of the index compared to what
can be estimated using only the correlation function. The difference between the two estimates should correspond
to the Kullback–Leibler divergence introduced in [23]. We note that only the index—in its complete information
theoretical form —probes higher-order statistics and the full dependences of the process, whereas the correlation
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estimate (17) only takes into account the second-order moment and correlations.
Looking at the behavior of the index for smaller scales, we also observe that there is no clear influence of the

dissipative scale. Even after taking the logarithm—so even when enlarging the perspective on the smallest values of
the index—the index seems to behave exactly the same in the inertial range and in the dissipative range, as a power
law of the scale. The exponent of the power law can be derived, using the approximation (18) for small correlation
and assuming a Gaussian process with a power-law scaling of the variance of the increments; we then expect the
exponent of the power law to be ζ2 = 2H for a scale-invariant process. The thick dashed black line in all panels of
Figure 6 represents this exponent 2H = 2/3 and shows that it offers a good approximation for all the processes under
study here.

It is worth recalling that turbulence data are usually considered stationary, but this consideration is made at larger
scales. A very local observation, i.e., considering smaller scales or examining a short portion of the velocity field,
usually reveals a non-stationary process, in the form of local trends that eventually compensate when averaged over
many short portions, hence over longer scales. This scale-dependent non-stationarity is measured by the index, and
we interpret the difference between the index and its Gaussian approximation as an increase in non-stationarity due
to the full dependence structure of the process.

VI. DISCUSSION AND CONCLUSIONS

Using information theory, we proposed an index ∆̄τ
T (X) which is a good candidate to quantify the non-stationarity

of a process at a given scale τ . This index is defined for a discrete-time process {xt}t∈N as the difference between
the information contained in the increment δτxt = xt − xt−τ at scale τ and the new information in xt that was not
already present in xt−τ . By varying the scale τ , the index allows a multi-scale characterization of the process.

The index takes real positive values. For Gaussian processes, a value of ln
√

2 indicates stationarity, and lower
values indicate some non-stationarity. The index saturates at zero for non-stationary processes, so the non-stationarity
degree cannot be measured directly. Nevertheless, we showed using the fGn and its successive time-integrations that
iteratively time-deriving the signal (or iteratively taking time-increments) and counting the number of iterations

required to obtain values of the index close to ln
√

2 should be enough to infer the integer part of the non-stationary
degree. This methodology holds for non-Gaussian processes, although the very value ln

√
2 for the constant might

depend on the shape of the large-scale probability density function; we are currently investigating such processes
which are not Gaussian at larger scales, and correspond to non-physical processes within our approach.

We showed that, for physically sound processes which are stationary at larger scales, the index is not only able to
reveal at which scales larger or about the integral scale T the process is indeed stationary, but also to quantify how
the process becomes non-stationary when the scale τ is reduced. Using synthetic data as well as experimental velocity
recordings in fluid turbulence, we showed that the index contains information that is not grasp by the correlation
function alone, and because of its very definition, the index probes the full dependence structure of the process.
We thus note that for a process to qualify as stationary, its index at larger scales (corresponding to the size of the

observation time-window) must approach the value ln
√

2, which implies that not only the correlations but also all
dependences are vanishing while the distribution becomes more and more Gaussian when the scale is increased. It
is worth noting that using the criterion ∆̄τ=T∆

T = ln
√

2 to define the (large) scale T∆ at which all dependences have
vanished leads to an integral scale estimation that is always larger than the integral scale T imposed in synthetic
processes (Figures 2 and 3), or larger than the integral scale T obtained from a fit of the Bachelor model (Figure 4b).
This is not surprising as the integral scale T indicates the typical location of the boundary between the inertial and
integral domains, and so it corresponds to a region where both inertial and integral behaviors are overlapping, and
some remaining dependences from the inertial range are expected to exist.

Additionally, the index does not distinguish between the inertial and dissipative domains, whereas the correlation
and the power spectrum density both do. For scale-invariant processes with stationary increments and noting H the
Hurst exponent, the behavior of the index ∆̄τ

T (X) with the scale τ is very close to a power law with the exponent
2H. We suggested that this property generalizes to multifractal processes where we expect the index to behave as a
power law with the exponent ζ2.

As illustrated with scale-invariant processes, the non-stationarity is directly related to the roughness measured

by the Hurst exponent H. The ersatz entropy rate h̄
(τ)
T also offers a way to assess the Hurst exponent—which

can be estimated as the slope of the linear evolution of h̄
(τ)
T with ln τ—but this requires a process with stationary

increments [20], so 0 < H < 1, as can be seen in the second line of Figure 1 where it only works for the fBm.

For processes with H ≥ 1, the slope of the linear evolution of h̄
(τ)
T with ln τ saturates at the value 1, and successive

time-derivation are then required to measure the (non-integer part of the) Hurst exponent. On the contrary, the index

can be estimated on any process, and the comparison with the special value ln
√

2 always holds, albeit eventually
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following the iterative recipe above. Because the presence of a dissipative range changes the slope of h̄
(τ)
T with ln τ ,

whereas it does not appear to change the slope of ln ∆̄τ
T (X), it suggests that the index is a better tool to probe the

non-stationarity.
The index is closely related to both the ersatz entropy rate [20] and the Kullback–Leibler divergence [23]. Just like

these two quantities, the index offers a novel perspective on fluid turbulence or on any stochastic process by providing
a new insight on its regularity and stationarity properties, as a function of the scale. Future work is required to fully
understand how these three information theoretical quantities quantitatively relate in the time-averaged framework
for non-stationary processes.
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