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Digital Twin for production systems: a literature 
perspective 

Ksenia PYSTINA, Aicha SEKHARI, Lilia GZARA, Vincent CHEUTET 

Abstract. Digital Twin is one of the key enabling technologies of the fourth in-
dustrial evolution. Alongside with the cyber-physical systems it is expected to 
widen the perspectives of smart manufacturing development and for production 
systems in particular. For these systems on-going state monitoring, simulation 
and prediction of manufacturing operations are crucial to improve the production 
efficiency and flexibility. Moreover, through the principles of system engineer-
ing, Digital Twin establishes interconnection and interoperability between cyber 
and physical environments allowing a human to act confidently based on accu-
rately analysed data and verified simulation models. In order to design and im-
plement Digital Twin the architecture and main components must be identified.  

Keywords: Digital Twin, architecture, cyber-physical systems, smart manufac-
turing, production systems 

1 Introduction 

Current trends in industry require quality, cost and maintenance control for products 
and manufacturing facilities. In the current “Industry 4.0” approach, to use accurately 
the increasing amount of data from each lifecycle stage it is important to implement 
and maintain digital thread of the same data from design and manufacturing to sales 
and services [1]. It is where the concept of Digital Twin (DT) enters the industrial stage 
[2, 3], especially for production systems. It is used to cover and to test various scenarios 
on models of physical objects in virtual environments to gain in their quality and related 
parameters. These models based on accurate real-time data can help to predict behav-
iour of the physical twin. Moreover, the efficiency of DT can be tracked during the 
whole system lifecycle.  

Nevertheless, the concept of DT for production systems still lacks of maturity, as 
we can observe in one hand the the variety of use cases and related DT architectures 
and techniques for implementation and in the other hand the very few examples of im-
plantation success story in industry. The purpose of this paper is so to review current 
state-of-art on tools and developments of DT for production systems, discuss ex-
isting architectures of DT in this area and propose potential architecture compo-
nents to develop the DT regarding on its application. 

To achieve this objective, the paper starts with recent developments on the concept 
from the overview of existing DT applications (Section 2). This is followed by the re-
search development on the DT architectures within smart manufacturing in Section 3, 
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highlighting how DT will incorporate existing information systems. Section 4 high-
lights and discusses the emerging scientific issues related to DT.  

2 DT paradigm 

2.1 DT concept definition and evolution 

The evolution of DT definition provided by [2] has gone from asset simulation and 
virtual replica to an idea of multi-technological environment or platform converging 
physical object and virtual space [3]. Regardless of its application, DT concept differs 
from digital model or digital shadow by precision and integration level of the asset 
virtual representation [4]. Authors define digital model (DM), digital shadow (DS) and 
digital twin (DT) by the level of automatic data transfer and up-date between physical 
and virtual counterparts. In DM real part is a source of manual data assignation for its 
virtual twin. Also, in DM and DS virtual object linked with its physical counterpart by 
manual data flow, whereas in DT between real object and virtual object data-flow is 
automated bi-directionally forming the digital thread of different types of data. The 
static data or past data is not supposed to change after it is collected. Helping to identify 
assets, static data can include design and manufacturing files, operation and installation 
manuals, maintenance schedules, warranty information and certificates or any other re-
lated information from corporate database management systems. Dynamic or present 
data – is the constantly changing data from sensors monitoring state of production sys-
tems or products also known as industrial Internet of Things and providing assets per-
formance feedback. Industrials also distinguish future data as a machine learning results 
and possible engineering inputs.  

A DT is a high-fidelity representation of the operational dynamics of its physical 
counterpart, enabled by near real-time synchronization between the cyberspace and 
physical space [5]. Consequently, DT as a technology has its own accuracy that depends 
of the precision of data it is built on. For production systems DT is defined from the 
angle of its implementation purposes [6]. DT should include all the functionalities that 
the asset can perform in the real world on various tasks that later can be used for simu-
lation and reconfiguration [7]. An up-to-date definition development is tracked in [3] 
and states that DT is a “set of adaptive models that emulate the behaviour of a physical 
system in a virtual system getting real time data to update itself along its life cycle. The 
digital twin replicates the physical system to predict failures and opportunities for 
changing, to prescribe real time actions for optimizing and/or mitigating unexpected 
events observing and evaluating the operating profile system”. At the same time the [8] 
refers to the ISO/DIS 23247 series which establish the definition of DT from its refer-
ence architecture to integration framework for manufacturing including functional en-
tities attributes and exchange protocols. 

Since the beginning of DT introduction numerous attempts are being made to define 
and specify more accurately the meaning of the concept, yet there is no unique defini-



tion accepted by the scientific community. Clearly, that because DT can be imple-
mented using various technologies and for various purposes, it is possible to determine 
it on applications. Thereby, [9] try to explain the DT by providing the usage-driven 
classification. 

Another challenge lays in correlation between DT concept and cyber-physical sys-
tems (CPS) [10]. Authors show that the difference between these two concepts lays in 
their so-called nature: CPS are more akin to a scientific category because they represent 
a fundamental organization rather than implementation of technologies or applications. 
To compare with CPS, DT is more an engineering category as it implies various engi-
neering applications such as IoT or sensors. Authors define structural similarity in their 
hierarchical models on a level of magnitude: unit level, system level, and system of 
systems (SoS) level. Unit-level of DT relates to a DT of the product, system level of 
DT is arranged of multiple unit-level DTs, SoS DT is an amalgamation of the various 
stages of a system life-cycle. Oppositely, [11] affirm that the core of CPS is an embed-
ded system that process information of physical environment. With this in mind DT can 
contain CPS as a unit that interacts with physical twin connecting to its programmable 
logic controllers (PLC), sensors and actuators. Cyber-physical production system 
(CPPS) is an extension of CPS in manufacturing environment as mentioned in [12]. 
[13] understands DT from opposite point of view that DT is a part of CPPS defining a 
DT based cyber-physical system. From this angle CPPS seems to be a main component 
in smart manufacturing paradigm. [14] admit that these two concepts differ in core el-
ements and application but are also related to each other. Clearly, both are polyvalent 
and there is a direct relationship between them, as well as a reversal of roles on the time 
axis. The two are engineering categories used by different communities of design and 
operation domains.  

In a scientific paradigm regardless of the DT use-case, [3] propose to answer to the 
questions where (industrial domain), when (lifecycle stage), why (DT functions or 
roles) and how (architecture and components) DT will be implemented. Consequently, 
this methodology could be used for manufacturing domain in addition to existing auto-
mation principles, product lifecycle management perspective, model-based system en-
gineering (MBSE) and other approaches.  

2.2 DTs in smart manufacturing production systems 

In [15] applications for smart manufacturing are selected by the DT precision level 
and from system engineering point of view. Authors define 3 types of DT applications: 

─ on equipment level: diagnosis, controlling, and optimizing the running mode of real 
equipment by interoperability between digital twin models;  

─ on manufacturing system level: planning and optimizing more accurately the opera-
tion of real production line by building and simulating digital twin of the production 
line; For example, [16] presents the method to optimize existing or planned produc-
tion lines using a DT and CPS. In addition, [17] provides an example of DT for 
production line that covers also the designing stage; 
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─ on system of system level: to achieve smart operations, simulation, control, and op-
timization of product manufacturing in the smart shop floor and smart factory, 
namely [8], [15], [18]. 

DT role is not limited by its definition to mirror its physical counterpart. [12] sum-
marize three main functions of DT: prediction – execution of studies ahead of the sys-
tem run, safety – monitoring and control of the system state in terms of a continuous 
prediction during the system run and diagnosis – analysis of unpredicted disturbances 
during the system run. Other purpose is to control it throughout lifecycle as it is men-
tioned in [4], [6], [19]–[27]. Additionally, some functions result from DT sub-compo-
nents capabilities, technologies which are used to implement DT into a CPPS. For ex-
ample, with the help of IIoT to provide real-time data transfer and data acquisition into 
a cloud-based depository and machine learning algorithms to analyze and detect anom-
alies, it is possible to implement DT to ensure predictive maintenance for production 
systems [28]. Earlier [29] defined a continuous production system evaluation and plan-
ning using automatic data acquisition. However, the biggest attention is offered to 
maintenance including evaluation methods and data management. With the augmenting 
data flows the challenges increase in highly volatile industrial environments. In this 
case DT serves as an instrument for better decision choice. For instance, [25] classifies 
various roles of DT for CPPS in the fields of aeronautics, space, robotics, manufactur-
ing and informatics and that can be divided into three main groups by the types of de-
cision to make: 

1. On-going state and behaviour analysis “for improved maintenance activity and plan-
ning”. For example, anomalies, physical deformation, cracks monitoring and prod-
uct/system reliability modelling; 

2. Long-term behaviour analysis and digital mirroring of activity for predictive mainte-
nance, data management through the lifecycle and virtual commissioning; 

3. Support for decision making through engineering and statistical analyses in all 
phases of product/system lifecycle, for example, optimization of system present and 
future behaviour. 

Based on the previous examples it is possible to classify decisions which could be 
done with the help of DT depending also on company’s size. While in small and me-
dium sized enterprises (SME) the focus is on near real-time production control appli-
cations [29], big companies progress, for instance, in virtual commissioning and pre-
dictive maintenance for production systems [28], [30], [31]. As it is stated in [29], for 
many SME looking to increase their level of automation for production processes the 
main interest relate to data acquisition and “working space layouts” optimization.  

[8] provide summary of DT for typical applications in manufacturing: 

• On-line/off-line analytics digital twins; 
• Real-time control digital twins that monitor and control physical twins in real-time; 
• Equipment health check digital twins; 
• Scheduling and routing digital twins; 
• Virtual commissioning digital twins; 



• Predictive maintenance digital twins; 
• Product digital twins. 

Similarly, to the definition, there is no unique DT for any application, however it is 
possible to form multiple DT systems integrating products, processes, production sys-
tems. By all these means DT helps a company to sustain in business by maintaining its 
competitive advantage and serve to interconnect value chain actors supporting win-win 
relationship in industrial operations during the manufacturing and after-sale services as 
concluded in [19].  

3 DT architectures analysis 

Considering the fact that DT is a defining technology for Industry 4.0, its deploy-
ment requires a certain level of intelligence of the components, product or production 
system. Model Based System Engineering (MBSE) defines smart component as an in-
telligent component with data transfer and acquisition features. Moreover, building a 
DT requires multi-criterial approach in order to cover all functionalities of physical 
object. Therefore, the first step in DT deployment is to identify the architecture and its 
relevant functionalities. To do this, certain criteria are proposed based on the existing 
use-cases in manufacturing from aforementioned sources (Table 1). 

• Physical twin: The type of the physical object for which DT aimed to be created. 
Due to the fact that some of the selected papers refer to product engineering and 
manufacturing while the others to production system engineering and manufacturing 
or their combination, the types of physical twin defined hereafter are: product, pro-
cess or production system or their combination. 

• Approach/Architecture/Framework/Model: DT is often explained from different ap-
proaches e.g., model-based system engineering, product engineering or product 
lifecycle management perspective including specificities of use-cases. For this the 
DT is understood as a number of components interconnected and interrelated in spe-
cific order. 

• Features/Functionalities: The relevant abilities or functions that DT possesses in or-
der to ensure its roles fulfilment.  

• Deployment strategy/methodology/operating flow/approach: A supposed order of 
DT deployment or any relevant experience how to realize DT on practice.  

• Structure (approach integration/interoperability): Tools or features to ensure the con-
nection between DT functionalities. 

• DT Intelligence: A certain level of intelligence related to decision-making, the deci-
sion presence and placement in DT architecture or any related DT’s characteristic 
connected to its level of independence from human decisions proclaimed by authors. 
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Table 1. DT generic criteria 

 

№ 
 
  

Physi-
cal 
Twin 

Ap-
proach/Ar
chitec-
ture/Fram
ework/Mo
del 

Features/Functionali-
ties 

Deployment strat-
egy/methodol-
ogy/operating 
flow/approach 

Structure (ap-
proach inte-
gration/in-
teroperability) 

DT Intelligence  

[32] Pro-
duction 
system 

Modular 
DT frame-
work/Data
-oriented 
architec-
ture/ in-
dustrial 
IoT plat-
form ar-
chitecture   

Digital module (data 
part with data pro-
cessing (including 
modelling)); connec-
tion (data transfer) and 
DT intelligent module 
(service module with 
digital dashboard ar-
chitecture) 

1.Diagnosis of the 
machine 2.Require-
ments for the dash-
board 3.Defining a 
template for the 
dashboard 4.Assur-
ing the existence of 
necessary resources 
5.Implementation, 
evaluation and im-
provement 

HMI: Modbus 
TCP/IP, Ether-
net protocol 

Real-time deci-
sion support 

[33] Prod-
uct 

Data-
driven ar-
chitecture, 
ontology-
based data 
model  

Data collection and 
control, digital model-
ling and visualisation, 
simulation” 

1.System deploy-
ment on a physical 
object 2.Data cap-
ture 3.Model recon-
figuration 4.Operat-
ing data-based sim-
ulation 5.Topology 
optimization 

Arduinio 
MEGA, STEP, 
PTC, Creo plat-
form, opera-
tional data man-
ually added to 
the virtual envi-
ronment 

Simulation 

[18] Prod-
uct, 
process 
and 
pro-
duction 
system 

MBSE ap-
proach/ 
DT-CPPS 
frame-
work/ DT 
model 

4 Modules: DT simula-
tion, real-time data 
processing, manufac-
turing operations exe-
cution and responsive 
production decision-
making. 
Smart resources; net-
work connectivity; log-
ical mapping; data 
storage; data compu-
ting tool; advanced an-
alytics 

1.Information writ-
ing on RFID  
2.DT model simula-
tion of manufactur-
ing and machine se-
quencing  
3.Verification of 
current manufactur-
ing statuses with 
simulated ones  
4.The smart product 
as a result of the 
smart manufacturing 

Logical and 
cyber-physical 
mapping 
OPC-UA 

Autonomous 



 

№ 
 

Physi-
cal 
Twin 

Ap-
proach/Ar
chitec-
ture/Fram
ework/Mo
del 

Features/Functionali-
ties 

Deployment strat-
egy/methodol-
ogy/operating 
flow/approach 

Structure (ap-
proach inte-
gration/in-
teroperability) 

DT Intelligence 

[15] Prod-
uct, 
process 
and 
pro-
duction 
system 

MBSE ap-
proach/DT
-driven 
product 
manufac-
turing sys-
tem frame-
work 

Layers: Physical; 
Model; Information 
processing; System 
(manufacturing service 
platform system and 
DT application subsys-
tem). 

1.MBD-based de-
sign model 2.MBD-
based process model 
3.Machining model 
of the product 
4.MBD-based qual-
ity model 5.Quality 
inspection model 
6.Finished fan blade 
model 7.MBD-
based simulation 
model 

Manufacturing 
service platform 
(integration of 
MES, PLM, 
ERP…) 
OPC-UA  

Simulation, op-
timization 

[17] Pro-
duction 
line 

MBSE ap-
proach/ 
simula-
tion-based 
solution 
using data-
exchange   

Upper-level calculation 
system and lower-level 
simulation platform. 
The control system 
(J2EE programming 
architecture) with in-
telligent multi-objec-
tive optimization algo-
rithm on the simulation 
platform 

1.The rapid individ-
ualized design based 
on the predefined 
reference models 
and interfaces 
2.The distributed 
simulation of equip-
ment and production 
line assembly 
3.The multi-objec-
tive optimization, 
calculation on 
schemes and plans 

Four-tuple se-
mantic data 
model (static at-
tributes, motion 
script, control 
scheme, and 
communication 
interface) 
OPC-UA, 
Ethernet Proto-
col, API, MES 

Simulation, op-
timisation 

[34] Pro-
duction 
system 
(manu-
factur-
ing 
cell) 

MBSE ap-
proach, 
connec-
tion-based 
architec-
ture 

Layers: Physical twin 
and sensors/actuators; 
PLC; Local Data Re-
positories (OPC-UA 
server, local data 
base); IoT Gateway 
(with GUI); Cloud-
based databases; Emu-
lations and simulations 

- OPC-UA Simulation 
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№ 
 

Physi-
cal 
Twin 

Ap-
proach/Ar
chitec-
ture/Fram
ework/Mo
del 

Features/Functionali-
ties 

Deployment strat-
egy/methodol-
ogy/operating 
flow/approach 

Structure (ap-
proach inte-
gration/in-
teroperability) 

DT Intelligence 

[8] Ob-
serva-
ble 
Manu-
factur-
ing El-
ement 
(OME)  

DT refer-
ence 
model 

Data Collection and 
Device Control Entity; 
Operation and Man-
agement Sub-Entity, 
Application and Ser-
vice Sub-Entity, and 
Resource Access and 
Interchange Sub-Entity 
for digitally represent-
ing and maintaining 
OME; User Entity (hu-
man, MES, ERP or 
other DT) 

Selection of stand-
ards and technolo-
gies for each layer  

MTConnect, 
STEP, and Core 
Manufacturing 
Simulation Data 
(CMSD) 

- 

[35] Pro-
duction 
system 

RAMI 
4.0/ISA-
95 

Layers: Asset (Physi-
cal world); Integration; 
Communication (data 
standards); Informa-
tional; Functional; 
Business  

- OPC-UA, MES, 
ERP 

Real-time deci-
sion support 

[36] Prod-
uct, 
pro-
cess, 
system 
or fac-
tory 

MBSE ap-
proach, 
simula-
tion-based 
architec-
ture 

Connectivity Module; 
Data Storage Module; 
Visualisation and 
Monitoring Module; 
Simulation Module; 
Human Interface Mod-
ule 

1.Modbus, MQTT 
and OPC DA proto-
cols; 2.Node-RED; 
3.FlexSim software 
tool 

Modbus, MQTT 
and OPC DA 

Real-time deci-
sion support 

[37] Pro-
duction 
system  

MBSE ap-
proach/au-
tomation 
framework 

Physical Layer; CPS; 
Modelling; Discrete 
event simulation 

 OPC-UA Real-time deci-
sion support 

[38] Prod-
uct, 

MBSE ap-
proach/de-

Resource layer, 
data/model integration 

Implementation 
mechanism in prod-
uct lifecycle level; 

Cloud service 
bus 

Real-time deci-
sion support, 
prediction 



 
From the previous examples the structure and main components of the DT architec-

ture for production system are identified. Firstly, the MBSE approach alongside with 
automation framework is appropriate to build the DT using multilayered DT model. 
This DT model should contain the following layers forming DT functionalities: physi-
cal (asset/physical twin including IIoT); communication (standardized data acquisition 
and control); information (data storage, management and analytics); configuration 
(physical asset models and representations); simulation (emulations and simulations, 
intelligent multi-objective algorithms); advanced analytics and data computing tools 
(simulation feedback and decision support). Secondly, to implement DT on the physical 
environment, the standards and technologies for each layer must be identified [40]. The 
series of standards ISO/DIS 23247 establish the following steps:  

1. Data collection and processing;  
2. Interface development for control and translating commands;  
3. Data communication and control command communication  
4. Digital representations of the OME (selection, development and integration of func-

tional entities)  
5. Communication between user and DT (MES, CAD, ERP etc).  

However, the DT design process could be started with the definition of purposes and 
scenarios to be simulated and verified and therefore could be reversed. This can be 
assured by the interoperable models and technologies allowing bi-directional integra-
tion between layers with the help of, for example, Modbus TCP/IP, Ethernet protocol, 
OPC-UA or MES. Finally, the level of intelligence depends on the analytic tools and 
therefore include not only simulation and optimization capabilities but also the real-
time decision support and predictions.  

pro-
cess, 
pro-
duction 
system 

sign engi-
neering 
ap-
proach/au-
tomation 
frame-
work/II 
reference 
framework 

layer, ontology of in-
teroperability layer, 
business logic layer 
and presentation layer  

Implementation 
mechanism at intra-
enterprise level 

[39] Pro-
duction 
system, 
factory 

Holonic 
architec-
ture ARTI 

Decision making tech-
nologies; Situation-
specific decision mak-
ing 

- Syntactic (data 
formats, interac-
tion protocols) 
and semantic 
(understanding 
of the data) in-
teroperability 

Real-time Deci-
sion support and 
autonomous DT  
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4 Conclusion 

 
There is a lack of understanding of the implementation of DT concept and its real 

benefits for manufacturing systems. For now, the main idea of DT concept is to join all 
needed technologies from different automation layers and on different lifecycle stages 
to maintain digital thread based on real-time reliable data and provide a constant sup-
port for human. This study shows that DT could be built using various approaches and 
technologies from different industrial domains, however distinguished by specific un-
derlying principles, functionalities and related features. Regarding the content, compar-
ison and their complexity, this work is the first comprehensive step to define the DT 
concept and its architecture for production systems. As a perspective, an architecture 
of DT will be proposed to tackle all the aforementioned components for a smart manu-
facturing systems, with a modular perspective to ensure a practical implementation. 
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