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ABSTRACT
For various forms of skin lesion, many different feature extraction methods have been inves-
tigated so far. Indeed, feature extraction is a crucial step in machine learning processes. In
general, we can distinct handcrafted and deep learning features. In this paper, we investigate
the efficiency of using 17 commonly pre-trained convolutional neural networks (CNN) architec-
tures as feature extractors and of 24 machine learning classifiers to evaluate the classification of
skin lesions from two different datasets: ISIC 2019 and PH2. In this research, we find out that
a DenseNet201 combined with Fine KNN or Cubic SVM achieved the best results in accuracy
(92.34% and 91.71% ) for the ISIC 2019 dataset. The results also show that the suggested method
outperforms others approaches with an accuracy of 99% on the PH2 dataset.

1. Introduction
Skin lesions are defects located on the surface of the skin or under the skin. They can be classified into two cate-

gories. First: benign skin tumors, that are lesions such as moles (nevi) or cysts, that are not particularly dangerous for
the body. Second: malignant tumors, that refer to cancerous skin lesions such as melanoma, squamous cell carcinoma,
basal cell carcinoma, etc. Skin lesions are widespread but it is complicated to characterize them, and the automatic
recognition of malignant tumors from dermoscopy images is still a challenging task. This is why an effective machine-
learning method is necessary for the identification of dermoscopic lesions. In recent years, deep learning has gained
popularity in many image classification tasks since features can be learned from data automatically. The application
of deep learning to skin lesion detection is an active area of research Celebi, Codella and Halpern (2019). Therefore,
it is possible to acquire state-of-the-art performance by using deep trained models.

Deep learning roots in neuroscience. Inspired by neurons in the human brain, its concept comes from Artificial
Intelligence (AI) techniques derived from machine learning (Goodfellow, Bengio and Courville, 2016). Deep learning
proposes a learning method made of multiple layers of neurons interconnected with different weights and activation
functions to model the relationship between input and output data. Deep learning is very interesting to acquire new
feature representations on large amounts of data with a deep architecture having many hierarchical hidden layers with
nonlinear modules. This enables to transform the raw input data with a suitable higher representation and to achieve
feature extraction as well as classification. Deep learning layers are arranged into three types: the input layer presents
the input data, the hidden layers transform the information, and the final layer of the network will then bring together
the different information to deduce an answer. Deep learning has several architectures: Convolutional Neural Networks
(CNNs), Long Short Term Memory Networks (LSTMs), Recurrent Neural Networks (RNNs), Generative Adversarial
Networks (GANs), Multilayer Perceptrons (MLPs), Deep Belief Networks (DBNs), Restricted Boltzmann Machines
(RBMs), Autoencoders (AE). Themost widely known are convolutional neural networks (CNN). Convolutional Neural
Networks known as ConvNets or CNNs were reported by (LeCun, Jackel, Bottou, Cortes, Denker, Drucker, Guyon,
Muller, Sackinger, Simard and Vapnik, 1995). It is a deep learning architecture based on a feedforward multi-layers
hierarchical neural network. It uses a mathematical operation called convolution, that permits to extract features from
an image with trainable filters. CNN is composed of two main components:
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• Hierarchical feature extraction component: divided intomultiple layers where each layer learns from the previous
layer. The convolutional feature extraction layers aims at detecting local features in input images. They are
followed by non-linear layers, that apply an activation function. Then, pooling layers used to reduce the feature
space at each level of the architecture. One can also use specific layers to enhance the learning such as dropout
layers.

• The classification component is used to yield response. It consists of one or more fully connected layers and a
final softmax layer.

Deep learning has recently received much interested in skin lesion classification. Indeed, skin lesion classification
methods usually needed the extraction of specific handcrafted features such as statistical pixel-level features, shape
features, texture features, and relational features from the images. A limitation of these traditionally employed fea-
ture extraction approaches is their dependence to a priori information on the classification task, making their design
very complex. Many researchers have demonstrated deep learning efficiency as a feature extraction method in recent
years (Kraus, Grys, Ba, Chong, Frey, Boone and Andrews, 2017). Moreover, many works in different tasks (Govin-
daswamy, Montague, Raicu and Furst, 2020), (Wang, Zhang and Hao, 2019), (Basly, Ouarda, Sayadi, Ouni and Alimi,
2020), (Alzubaidi, Fadhel, Al-Shamma, Zhang and Duan, 2020),(Aurelia, Rustam, Wibowo and Setiawan, 2020),
(Mu and Qiao, 2019), (Suganthi and Sathiaseelan, 2020), (Oltu, Güney, Dengiz and Ağıldere, 2021),(Bodapati and
Veeranjaneyulu, 2019), (Karungaru, Dongyang and Terada, 2021), (Öznur Özaltın and Özgür Yeniay, 2021) show the
effectiveness of using ML classifier to classify the data based on features extracted through deep CNN compared to
end-to-end deep learning.

Convolutional neural networks (CNN) have beenwidely applied, leading to improved classification. However, deep
trained models were not used in an end-to-end manner, but only to extract features. The feature extraction process can
be explained as a transition from raw images into N-dimensional vectors, where N is a hyper-parameter. The major
difference between convolutional neural networks and conventional machine learning methods is that CNNs learn
image features directly without manual feature extraction.

How to define the efficiency of classifiers is a challenge that affects which features are important for describing the
interest patterns and skin lesion recognition is no exception to this rule.

The benefit of using a feature extractor is the ability to choose whichever classifier will best fit the data considering
the problem, as well as the ability to combine the CNN with the different classifiers and the integration of innumerable
characteristics.

CNN is considered as a feature extractor solution from images due to the difficulty of combining the image data with
classifiers. The main reason to consider CNN as the best feature extractor is that the CNN obtains more characteristics
compared to other methods. It has the ability to capture the higher quality and powerful features from images data and
a large volume of raw data as well as the improvement of accuracy in less time. Choosing the right classifier and the
right CNN architecture as feature extractors have always been a challenging task.

The answer to this question is the aim of writing this article, trying to acquire the features of dermoscopic images
with a pre-trained CNNmodel and injecting the obtained characteristics into several classifiers. Extracted features will
be classified using various algorithms: k-nearest neighbor (KNN), decision tree, Linear Discriminant, Naive Bayes,
hybrid kernel-based SVM and finally ensemble classifiers. We have used 17 commonly pre-trained CNN architectures
as feature extractors and 24 machine learning classifiers to evaluate the classification of skin lesions from two different
datasets ISIC 2019 and PH2.

The next section exposes some works that supports the two-step pipeline of deep-learning feature extraction fol-
lowed by classifier.

In (Govindaswamy et al., 2020), the authors employed a CNN for predicting physician gaze, where they focused
on comparing the hand-crafted features and CNN-features extractor, in addition to analyzing the impact of feature
extraction and fully connected layers in an end-to-end CNNmodel. The authors used the VGG16 as a feature extractor
and a K-Nearest Neighbor and a Random Forest (RF) as a classifier. They concluded that the CNN features extractor
showed a significant improvement over hand-crafted features with high-level features from the last convolutional layer
of the CNN, also that the power of CNN comes from the features extraction part than the fully connected layers which
can be replaced by another classifiers depending on the application.

In (Wang et al., 2019), the authors proposed to combine the CNN and the Extreme Learning Machine (ELM)
algorithm to recognize Synthetic Aperture Radar (SAR) images The CNN model is considered as the feature extractor
due to its high degree of invariance in extracting complex features of images, regardless any forms of deformation of
Benyahia et al.: Preprint submitted to Elsevier Page 2 of 24
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the image, and the ELM as a recognizer. The experiment result shows that the algorithm can alleviate the overfitting
problem, speed up the convergence of the network, and reduce the time of the experiment.

The authors in (Basly et al., 2020) used a pre-trained CNN ResNet architecture as feature extractor combined with
SVM classifier for human activity recognition task where they achieved a good recognition performance compared to
state-of-art methods.

The authors in (Alzubaidi et al., 2020) have utilized three deep learning models as features extractor with multiclass
SVM classifier. Where they obtained a high degree of accuracy with the proposed deep learning features extractor
model compared to other classifiers.

In (Aurelia et al., 2020), the authors proposed a research for the performance of Convolutional Neural Network,
and Convolutional Neural Network-Support Vector Machine with several kernel functions for classification of colon
cancer. The results obtained show the performance of CNN-SVM Linear Kernel with the best accuracy compared to
CNN.

The authors in (Mu and Qiao, 2019) proposed a method of image classification based on CNN and SVM. They
extracted vital features and reduced redundant by preprocess the original images by using CNN. The extracted features
will be injected to an optimized SVM model and evaluated on a mixed image set taken from Caltech image archive.
The experimental results demonstrate the effectiveness of CNN features extractor with SVM classifier.

In (Suganthi and Sathiaseelan, 2020), the authors proposed a comparative study for the efficiency for classifying
the image with different aspects of machine learning and CNN. They concluded that researches from different fields
consider the combination of CNN model with different ML is more efficient than the normal CNN.

The authors in (Oltu et al., 2021) proposed a study for diagnosing a tuberculosis disease using CXR images based
on VGG16, MobileNet networks as feature extractors and SVM is used as the classifier. The obtained results have
outperformed most of the previous results.

The authors in (Bodapati and Veeranjaneyulu, 2019) used CNN for two different tasks. In task one, they proposed
to use CNN for feature extraction and classification. Contrariwise, in task two they proposed to use CNN for features
extraction then using SVM for classification. From the experimental studies, they observed that the performance of
SVM classification based on CNN features is better than the results obtained from using CNN for feature extraction
and classification.

In (Karungaru et al., 2021), the authors proposed a vehicle detection and classification using an improved AlexNet
architecture. From comparative results of three methods, original Alexnet, improved Alexnet with fully connected
layer, and improved Alexnet as a feature extractor with SVM, the last model performs better than the full-connected
network.

The authors in (Öznur Özaltın and Özgür Yeniay, 2021) proposed an hybrid CNN algorithm with 34 layers to
perform a feature extraction automatically with SVM for classifying Electrocardiogram (ECG) signals. A comparison
results indicated that proposed model represent the most successful result.

The rest of the paper is organized into four main sections. Section "Related work" presents the recent state-of-
the-arts. Section "Methodology and materials" exhibits the proposed methodology for skin image classification and
datasets used. Section "Experimental results and discussion" addresses the results and discussion. Finally, Section
"Conclusion" concludes the research.

2. Related works
In the last decade, several automatic classification approaches for skin lesion images have been proposed. CNN

approaches have completely dominated the skin lesion classification process and this related works will be just a drop
in the bucket.

In (Yu, Chen, Dou, Qin and Heng, 2017), the authors proposed a framework with two-stage for melanoma recog-
nition by employing a convolutional neural network (CNNs) to acquire discriminative features. First, a fully con-
volutional residual network incorporates multi-scale feature representations for the segmentation stage, then the last
segmentation results are integrated into a residual network for the classification stage.

In (Mahbod, Ecker and Ellinger, 2019), the authors proposed a comparative study of the diagnosis of pigmented
melanocytic lesions according to the accuracy between a proposed combined CNNs and medical personnel expert in
dermoscopy. The proposed CNN combines the outputs of two CNNs trained on two different datasets, one with 7895
dermoscopic images and the other with 5829 clinical close-up skin lesion images. The study proves the efficiency of
the CNN to classify dermoscopic images like experts in the field.
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In (Tschandl, Rosendahl, Akay, Argenziano, Blum, Braun, Cabo, Gourhant, Kreusch, Lallas, Lapins, Marghoob,
Menzies, Neuber, Paoli, Rabinovitz, Rinner, Scope, Soyer, Sinz, Thomas, Zalaudek and Kittler, 2019), a hybrid ap-
proach for skin lesion classification is proposed by using a deep feature generator from three deep learning pre-trained
models: AlexNet, VGG16, and ResNet-18. A combination of multiple support vector machine classifiers is used in
the last stage.

In (Jadhav, Ghontale and Shrivastava, 2019), authors extracted features of lesions using CNN, and then an SVM
is used for classification. Without any preprocessing, the CNN eliminates the need for hand crafted features, and has
been utilized in the proposed method for feature extraction.

Three classifiers are used in (Patil and Dongre, 2020) to detect melanoma images from a collection of PH2 der-
moscopic images. For training and testing purposes, KNN, Naive Bayes, and SVM classifiers are used. The highest
precision of the classifier with de-duplication techniques is shown by SVM.

In (Murugan, Nair and Kumar, 2019), to extract features from skin cancer images, the authors used three different
approaches and classifiers. Shape, ABCD rule, and GLCM are the characteristics extracted. The kNN (k Nearest
Neighbor), Random Forest, and SVM classifiers used are (Support Vector Machine).

In (Arora, Dubey, Jaffery and Rocha, 2020b), authors extracted shape, texture, and color features from skin lesions.
The classification was made by binary a support vector machine (SVM). Patients with melanoma have been classified
and differentiated from cases with non-melanoma.

In (Melbin and Raj, 2021), authors present an integrated approach based on modified ABCD features, and Support
Vector Machine (SVM) has been used to detect and classify skin lesion images. Authors have taken three skin diseases,
namely melanoma, seborrheic keratosis, and lupus Erythematosus, from three different three datasets. They obtained
a better precision only for these three classes, but they do not consider the other classes.

An approach to identifying skin lesions most frequently found in a clinical environment was proposed by Robert
et al. (Fisher, Rees and Bertrand, 2019). Using a K-nearest neighbor classifier, they used a mix of standardized and
hand-crafted features, feature selection from a vast pool of possible features, and a hierarchical decision tree.

Surówka et al. (Surówka and Ogorzalek, 2019) have extracted wavelet features appropriate for the classification
of dermoscopy images into two classes: pigment skin cancer (melanoma) and dysplastic (atypical but benign) skin
lesion. In their work for feature extraction, the wrapper method will be used for classification with the Naive Bayes.

In (Mporas, Perikos and Paraskevas, 2020), authors present an architecture to classify pigmented skin lesions from
dermatoscopic images. The color-based features have been extracted and the classifier used is AdaBoost with random
forest. Zhou et al.

Yu and Zhuoyi (2013) investigated the use of multiple binary decision trees in the computer-assisted diagnosis of
melanoma. The experimentation has been carried out on a dataset containing only 235 samples (125 benign and 110
malignant).

Massimo et al. (Aria, D´ Ambrosio, Iorio, Siciliano and Cozza, 2020) proposed a dynamic classification tree for
malignant melanoma identification in skin lesion dermoscopic images.

In (Dhivyaa, Sangeetha, Balamurugan, Amaran, Vetriselvi and Johnpaul, 2020), the authors used decision trees
and random forest algorithms for skin lesion classification. They tested their approach on HAM10000 and ISIC 2017.
Decision tree algorithms and random forests help generate better outcomes reasoning, making it a good goal to deal
with the issues that also impact other regions. The findings result are considered to be superior to those that are similar
in the literature.

In (Perez, Avila andValle, 2019), authors proposed an evaluation study of the factors that affect the choice of the best
CNN architecture for skin lesion analysis, and the evaluation of performance of simple ensemble models contrasting
single models, based on the evaluate of 13 factors over nine architectures on the ISIC 2017 dataset. Obtained results
was between 84% and 91%.

In (Valle, Fornaciali, Menegola, Tavares, Bittencourt, Li and Avila, 2020) authors explored 10 choices faced by
researchers: use of transfer learning, model architecture, train dataset, image resolution, type of data augmentation,
input normalization, use of segmentation, duration of training, additional use of SVMs, and test data augmentation.
They concluded that advancing research on automated skin lesion analysis requires curating larger public datasets. En-
sembles of models are a cost-effective alternative to the expensive full-factorial and to the unstable sequential designs.

In (Ozkan andKoklu, 2017), authors classified a PH2 datasets into three groups as normal, abnormal andmelanoma
using four different machine learning classifier: ANN, SVM, KNN and decision tree. They achieved 92.50%, 89.50%,
82.00% and 90.00% for ANN, SVM, KNN and decision tree respectively.
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In (Ghalejoogh, Kordy and Ebrahimi, 2020a), authors proposed a stacking ensemble method based on the meta-
learning algorithm for classifying skin lesions. The model used four classifiers: KNN, SVM, ENN, and MLP. Seg-
mentation step used for different feature extraction is based on the shape, color and texture. They achieved 98.5% for
melanoma and non-melanoma classes on PH2 dataset.

In (Chakravorty, Liang, Abedini and Garnavi, 2016), authors proposed a combination of three vectors feature ex-
traction, based on the segmentation to capture the asymmetric distribution of shape, color and structure. The Geometry
Features to captures the various shape related to the lesion, the Color Features using Kullback-Leibler to capture the
divergence of the color distribution, and the Structural Features to capture the contrast and the difference in luminance.
Obtained results was 83% for PH2 dataset.

In (Salido and Ruiz, 2018), authors used a preprocessing technique to remove the unwanted artifacts, and a convolu-
tional neural network AlexNet for the classification. They tested the classifier using both preprocessed and unprocessed
images on the PH2 dataset. They obtained an accuracy of 93% for two classes, and an accuracy of 67.5% for three
classes.

In (P.V. Asha Deepika and R, 2020), authors used the preprocessing technique followed by segmentation and finally
two machine learning classifier SVM and KNN for the classification. In addition, they used the image enhancement,
CLAHE for the spatial domain and SWT for the frequency domain then CNN architecture as feature extractor followed
by the SVM classifier. Obtained accuracy was 92.80% on PH2 dataset.

Khalid et al. proposed a fine-tuning AlexNet architecture by replacing the last layer with a softmax to classify the
lesion on three different classes from the PH2 dataset (Hosny, Kassem and Foaud, 2018). Obtained result was 98.61%
on PH2 dataset.

In (Ahmed, Yanikoglu, Göksu and Aptoula, 2020), authors proposed a fusing and fine-tuning Xception, Inception-
ResNet-V2, and NasNetLarge architecture on the ISIC2019 dataset and achieved an accuracy of 93.70%.

3. Methodology and Materials
This paper investigates the efficiency of using convolutional neural networks (CNN) architectures as feature ex-

tractors and many machine learning classifiers to evaluate the classification of skin lesions from two different datasets.
Figure 1 depicts the proposed method’s flowchart.

The process is made up of four successive parts. The first component is the input of dermoscopic images, the second
is the feature extraction part with 17 commonly pre-trained convolutional neural networks (CNN) architectures. From
the features obtained, two bases are created: a learning database and a test database. The third component of the system
is the learning step by a set of classifiers, each one is performed individually. Finally, the last is the validation step
from the test dataset.

There are three kinds of extracted features with the skin lesions dataset in the first section of the flowchart:
1. Extract features using the original dataset.
2. Extract features using the original dataset with image preprocessing.
3. Extract features with the augmented dataset.

3.1. Conventional Neural Networks Architectures
Several CNN architectures have been developed, like GoogLeNet, DarkNet, AlexNet, ResNet, NasNet beside oth-

ers. Some of these architectures are available as pre-trained models that were initially trained on huge natural images.
Now, in this section, we present a brief overview of some of the most widely used CNNs. We will use them as

extractor of features from skin lesion images.
3.1.1. GoogleNet

GoogleNet was implemented by Szegedy et al. (Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke
and Rabinovich, 2015), also known as Inception-V1. GoogleNet aims at reducing the computation complexity com-
pared to the traditional CNNs. It achieved a top-5 with an error rate of 6.67% and won the ILSVRC competition in
2014. GoogleNet uses an essential module called the inception block. These modules present optimized variants of
the classic convolution layers with various scales in order to avoid problems alignment of patches. Inception modules
introduce partial connections inside a convolutional layer to reduce its dimensionality. These modules use variable size
filters (1x1, 3x3, and 5x 5), which are applied on the same convolutional layer then the feature-maps results are stacked
Benyahia et al.: Preprint submitted to Elsevier Page 5 of 24
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Figure 1: Proposed method’s flowchart.

to form the next convolutional layer. GoogleNet presents a wide architecture with 22 total layers and seven million pa-
rameters with nine inception modules, four convolutional layers, four max-pooling layers, three average pooling layers,
five fully-connected layers, and three softmax layers. In addition, it uses dropout regularization in the fully-connected
layer and applies ReLU activation in all of the convolutional layers. Place365GoogLeNet is a pre-trained model with
the same architecture as GoogLeNet but trained on the Places365 dataset, which classifies images into 365 different
categories.
3.1.2. InceptionV3

InceptionV3 is an optimized version of the Inception-V1 network (Szegedy, Vanhoucke, Ioffe, Shlens and Wojna,
2016) with 24 million parameters. The idea of inception-V3 was the update of the inception module with tweaks
in symmetric and asymmetric building blocks. It offers two techniques of factorization to optimize computational
complexity and reduce the number of multiplications for the variants inception blocks. The first technique is the
factorization of convolutions associated with large filters to reduce the number of parameters proposed and the size
of the filters from 5x 5 and 7x7 to 3x3. The second technique is the spatial factorization in asymmetric convolutions.
The architecture proposes to replace the classic convolutions (NxN) with asymmetric convolutions (Nx1 and 1xN) in
scope to reduce the computational cost.
3.1.3. ResNet

ResNet is an advanced version of a convolutional neural network based on residual blocks proposed by He et al. in
2015 (He, Zhang, Ren and Sun, 2016). This architecture aims at solving the issue of gradient degradation, that appears
in very deep networks, where the accuracy begins to be saturated; thereafter, it degrades rapidly due to the decrease in
gradient values. In order to solve this problem, ResNet introduces the concept of residual blocks by including shortcut
connections between layers to increase the accuracy without increasing network depth and prevents corruption while
the CNN deepens. ResNet was learned with a network depth of 152 layers and over eleven million parameters. It uses a
3x3 convolution filter, global average pooling, residual blocks, batch normalization followed by the classification layer.
In order to reduce the computational cost and accelerate the training of ResNet, the bottleneck blocks defined with 3x3
convolution are replaced by 1x1 convolution followed by 3x3 convolution and another 1x1convolution. ResNet pro-
poses several variations with a different number of layers, ResNet18, ResNet34, ResNet50, ResNet101 and ResNet152.
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ResNet-152 won the ILSVRC competition in 2015 and achieved a top-5 with an error rate of 3.57%.
3.1.4. SqueezeNet

Squeeze and Excitation Network (SE-Network) was proposed by Iandola et al. (Iandola, Moskewicz, Ashraf, Han,
Dally and Keutzer, 2017). It offers dimensionality reduction techniques by adding a new block to select feature-maps
known as SE-block before the convolution layer. SE block is based on two operations: squeeze and expand. Squeeze
operation is used to get a global view of feature-maps by suppressing spatial information in the convolved input in order
to reduce dimensionality and the depth of the maps; the excitation operation is used to capture spatial information. A
fire module comprises a squeeze convolution layer with a convolution filter of 1x1 feeding into an expand layer which
a mix of 1x1 and 3x3 convolution filters. SqueezeNet is composed of two standard convolutions, eight fire modules,
three max-pooling layers, and one global average pooling followed in the end by a softmax layer.
3.1.5. DarkNet

DarkNet is a faster and accurate convolutional neural network used for object detection (Redmon, Divvala, Gir-
shick and Farhadi, 2016). It presents the features extractor from YOLO architecture images with different versions of
Darknet-19 (Redmon and Farhadi, 2017) DarkNet-53 (Redmon and Farhadi, 2018). The DarkNet-19 consists of 19
convolutional layers, 5 max-pooling layers, global average pooling layer, and softmax. It uses the identity mapping
and 3x3 convolution filters instead of fully connected layers, a global average pooling to make predictions in front
of the softmax layer. Batch normalization is used to regularize the model, speed up convergence, and stabilize the
training without using any residual blocks, up sampling or skip connections. Redmon et al. proposed DarkNet-53 in
2018 (Redmon and Farhadi, 2018). It consists of the improved version of DarkNet-19 with more layers and the use
of residual connections. It is composed of 53 layers with 3x3 and 1x1 convolution filters, five residual blocks to add
the previous output values to the output of the current layer and average-pooling layer, and one fully connected layer.
DarkNet-53 doesn’t use any max-pooling layers; instead, convolution layers are used. DarkNet-53 allows the detection
at three scales by down sampling input image dimensions by 32, 16, and 8.
3.1.6. DenseNet

Huang et al. proposed DenseNet (Huang, Liu and Weinberger, 2017). It is based on dense connections between
layers of convolution. DenseNet aims to solve vanishing gradient issue and reduces the number of input and parameters
as well as reinforcing features extraction. DenseNet architecture exploits the effects of shortcut connections where it
is composed of a set of dense blocks, which are linked by transition layers. Each block contains a set of convolution
layers, and each layer is connected to all preceding other layers belonging to the same block instead of adding them. All
feature-maps from previous layers are passed on to successive layers, making the network thinner and more compact.
DenseNet comprises convolution and pooling layers, transition layers, classification layers, and multiple dense blocks
in series. DenseNet proposes several variations with a different number of layers: DenseNet-121, DenseNet-169,
DenseNet-20, and DenseNet-246.
3.1.7. Xception

Chollet from Google proposed Xception in 2017 (Chollet, 2017). The Xception architecture consists of 36 convo-
lutional layers structured into 14 modules. It processes 23 million parameters based on inception blocks’ adaptation
by replacing them with depthwise separable convolutions layers. With residual connections, the depthwise separable
convolution consists of replacing the different spatial input dimensions (1x1, 5x5, 3x3) with a single dimension (3x3)
followed by a pointwise convolution 1x1.
3.1.8. Inception-ResNets

The Inception-ResNet is proposed by Szegedy et al. in 2017 (Szegedy, Ioffe, Vanhoucke and Alemi, 2017) with
56 million parameters. Inspired by Inception and ResNet module’s performance, it offers a hybridization between
modules introduced into the InceptionV3/InceptionV4 architectures and Residual connections. It consists of replacing
the Inception modules with Residual-Inception blocks. By adding convolution’s output in the layers of inception to the
input, to obtain the same dimensionality of the input and output, they use 1x1 convolutions after the original convo-
lutions. This combination aims to speed up the Inception network’s learning time and avoid the issue of degradation
gradient.
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3.1.9. Shufflenet
ShuffleNet is a convolutional neural network designed for mobile devices, introduced by Zhang et al. in 2017

(Zhang, Zhou, Lin and Sun, 2018). ShuffleNet is composed of stack ShuffleNet units grouped into three stages. The
architecture utilizes the pointwise group convolution and channel shuffle, where group convolutions replace the first
and second 1x1 convolutions, then a channel shuffle is applied after the first 1x1 convolution.
3.1.10. Mobilenet

MobileNet was proposed by Howard et al. in 2017 (Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto
and Adam, 2017). It is designed for mobile devices and integrated vision systems. This network is composed of 28
layers, including 13 depthwise convolutions and 13 pointwise convolutions. The main purpose of depthwise convolu-
tion modules is to reduce the dimension of the network. In MobileNet, all layers are followed by batch normalization
and ReLU, and the final layer is a fully connected layer that feeds to the softmax. The MobileNet network introduces
two hyperparameters to realize a compromise between the response period, storage space, and precision. These hy-
perparameters are the width multiplier and the resolution multiplier. The role of the width multiplier is to reduce the
number of feature maps in convolution layers. In contrast, the resolution multiplier reduces the computational cost by
decreasing the input image’s resolution, which automatically decreases the size of the convolution layers.
3.1.11. Nasnet

Nasnet is a scalable CNN architecture proposed by Google ML group (Zoph, Vasudevan, Shlens and Le, 2018).
It introduces the concept of an optimized network using the reinforcement-learning method. Nasnet consists of basic
building convolutional layers called cells repeated multiple times with an identical architecture and different weights.
Each cell in the architecture presents the concatenation of different small units known as blocks not fixed in the num-
ber of the convolutional cells and filters in the convolutional, type, weights, or regularization methods size of input
images. These blocks consist of regular convolutions, separable-convolutions, max-pooling, average pooling. Each
block creates a residual connection by mapping two inputs to a single output feature map. Nasnet has two types of
convolutional cells:

• Normal Cells return a feature map of the same dimension and contain three 3x3 convolution layers and two 5x5
depthwise separable convolutions,

• Reduction Cells that return a reduced feature map in the height and width by a factor of two. The Reduction
Cells contain one 3x3, two 5x5, and two 7x7 depthwise separable convolutions

3.1.12. EfficientNets
EfficientNets was introduced by Tan et al. in 2019 (Tan and Le, 2019). It is characterized by optimizing the accuracy

and efficiency by reducing parameter size compared to the other CNNs. The main idea of EfficientNets is about scaling
different dimensions of deep neural network methods by using fixed compound scaling coefficients (width, depth, and
image resolution) in a structured way. EfficientNets family contains eight different models, the baseline version B0
with 224x224 input size. The other version up to B7, derived from EfficientNet-B0 by increasing the resolution input
image, a number of feature maps for each layer (width), and the number of layers (depth).
3.2. Transfer learning

Unfortunately, we rarely have a large-scale imaging data set labeled to train CNN from randomly initialized param-
eters. In addition, the amount of processing time required to complete this learning task can be prohibitive. Transfer
learning presents the best way to tackle thess problems Tan, Sun, Kong, Zhang, Yang and Liu (2018).

Transfer Learning is a machine learning concept used in image classification tasks. It consists of reusing knowledge
extracted from a trained CNNmodel with good results in the source domain. This trained model’s weights are obtained
on large labeled datasets such as ImageNet. Therefore, it was trained on million tagged training images with a high
number of classes, on several high power computing facilities and for several days. Once the model has been trained,
one can apply obtained weights to another specific image dataset in the new target domain. Transfer Learning can be
used as a model of extracted convolutional features, where we take off the last fully connected layers (the output layer),
and we considered the rest of the CNN as a "feature extractor" for the smaller dataset. Therefore, transfer learning will
be used to classify skin lesion images since they are natural images. We can therefore use a pre-training on ImageNet
and transfer the learned parameters.
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Table 1
Overview of different CNNs architectures.

Architecture Year Number of
Parameters

Number of
features

Developed by Depth Input image Layers

Googlenet 2014 4M 1024 Szegedy et al. 22 224x224 144
InceptionV3 2015 23.8M 2048 Szegedy et al. 159 299x299 316
ResNet18 2015 11.17M 512 He et al. - 224x224 72
ResNet50 2015 25.6M 2048 He et al. 168 224x224 177
ResNet101 2015 44.7M 2048 He et al. - 224x224 347
SqueezeNet 2016 1.2M 1000 Iandola et al. 152 227x227 68
Darknet-19 2016 15.7M 1000 Redmon et al. - 256x256 64
Darknet-53 2018 61.5M 1000 Redmon et al. - 256x256 184
InceptionResNet 2017 55.8M 1536 Szegedy et al. 572 299x299 824
Xception 2017 22.9M 2048 Chollet 126 299x299 171
MobileNet 2017 4.2M 1280 Howard et al. 88 224x224 154
DenseNet201 2017 20.2M 1920 Huang et al. 201 224x224 709
Shufflenet 2017 3.4M 544 Xiangyu Zhang - 224x224 173
NASNetMobile 2018 5.3M 1056 Zoph et al. - 224x224 914
NASNetLarge 2015 88.9M 4032 Zoph et al. - 331x331 1244
EfficientNetB0 2019 5.3M 1280 Mingxing and Le - 224x224 290

Figure 2: Transfer learning model.

Transfer Learning can also be used as fine-tune hyperparameters by freezing or unfreezing layers. Either by training
an architecture with random initial weights by adding a custom classifier according to a new dataset, or by retraining
the architecture weights only of some layers while freezing others.
3.3. Features extraction

A feature is described as "a relevant information for solving the different computational tasks related to a specific
application". Features are categorized into two standard categories: local features and global features (Salahat and
Qasaimeh, 2017). We generally base ourselves on a set of numerical criteria describing the object or phenomenon
observed in order to develop a classification rule (supervised or not).

Several techniques have been created for feature extraction, and their operating principles are quite distinct from
each other. However, no perfect feature extractor exists until today. Some of the elegant literature surveys are referred
in (Salahat and Qasaimeh, 2017), (Guyon, Gunn, M. and Zadeh, 2006), (Storcheus, Rostamizadeh and Kumar, 2015),
(Miksik and Mikolajczyk, 2012). Finding a suitable feature for skin lesion images is often a big challenge faced by
a lot of research (Barata, Celebi and Marques, 2019). Generally, we can distinguish handcrafted from deep learning
features (Barata et al., 2019). Different handcrafted features extraction methods have been suggested to detect skin
lesion diseases, such as the 7-point checklist method (Walter, Prevost, Vasconcelos, Hall, Burrows, Morris, Kinmonth
and Emery, 2013), ABCD rule, an acronym for Asymmetry, Border, Color and Dermoscopic structure (Nachbar,
Stolz, Merkle, Cognetta, Vogt, Landthaler, Bílek, Braun-falco and Plewig, 1994), (Abbasi, Shaw, Rigel, Friedman,
McCarthy, Osman, Kopf and Polsky, 2004), CASH algorithm (Henning, Dusza, Wang, Marghoob, Rabinovitz, Polsky
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Figure 3: Feature extraction with CNN.

and Kopf, 2007), and three-point checklist (Zalaudek, Argenziano, Soyer, Corona, Sera, Blum, Braun, Cabo, Ferrara,
Kopf, Langford, Menzies, Pellacani, Peris and Seidenari, 2006). These skin lesion detection methods are based on the
shape, geometry, color, texture, and structure of skin lesions.

Many researchers have demonstrated deep learning efficiency as a feature extraction method in recent years (Kraus
et al., 2017), (Wang, MacKenzie, Ramachandran and Chen, 2015). There are several variants of deep learning algo-
rithms to characterize visual features, including the convolutional neural network (CNN (Abbas and Celebi, 2019). To
use the convolutional neural network (CNN), there are two distinct ways. Firstly, it can be used as a classification model
and secondly, to extract features using Transfer Learning (Kassani and Kassani, 2019). CNNs learn image features
directly without additional manual feature extraction (Figure 3).

There are other studies focusing on the hybridization of handcrafted and deep learning features. Filali et al. (Filali,
Khoukhi, Sabri and Aarab, 2020) proposed a combination of handcrafted features (shape, skeleton, color, and texture)
and features derived from four pre-trained CNNs: AlexNet, VggNet, GoogLeNet, and ResNet. They followed the
process by a feature selection to keep only the best and relevant one using the genetic algorithm. Finally, based on the
new features, SVM classifies skin cancer from the Ph2 dataset into melanoma or non-melanoma. The result got an
accuracy of 87.8%.

In (Moura, Veras, Aires, Machado, Silva, Araújo and Claro, 2018), the proposed approach classifies skin lesions
using a hybrid descriptor obtained by combining features of color, shape, texture, and pre-trained CNN. The result was
found with a Multilayer Perceptron classifier with a 92.1% accuracy rate for PH2 and DermIS datasets.

Some of the recent literature surveys of features extraction in dermoscopy image analysis of skin lesion can be
found in (Javed, Rahim, Saba and Rehman, 2019), (Barata et al., 2019), (Kolkur and Kalbande, 2016), (Abuzaghleh,
Faezipour and Barkana, 2015).
3.4. Supervised classification and sets of classifiers

This section describes the machine learning classifiers we use to classify skin lesion images.
3.4.1. Decision Tree

A decision tree is a graph that uses branching methods to illustrate a course of action and various outcomes (Smith
and Koning, 2017). A decision tree works for both categorical and numerical variables since it doesn’t require an as-
sumption about the data distribution and classifier structure. Decision trees have the ability to accurately and efficiently
provide classifications for large datasets (Avellaneda, 2019).
3.4.2. Gaussian Naive Bayes

The Naive Bayesian classifier (Neapolitan, 2007) is a simple yet robust classification approach which is based on
Bayes’ Theorem that describes the probability of an event from prior knowledge of the condition that potentially related
to the event. The naive Bayes classifier calculates all the probabilities of all classes (values) for a target feature and
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selects the one with the highest probability. Furthermore, Gaussian Naive Bayes assumes that the values associated
with each class of each feature follow a Gaussian distribution. There exist multiple types of naive Bayes classifier. In
this study, we use Gaussian Naive Bayes and Kernel Naive Bayes.
3.4.3. Support Vector Machines

Support Vector Machines (SVM) is a supervised learning model used for classification (VapniK, 1998). Using the
kernel approach, it can perform a non-linear classification that implicitly maps input data into a high-dimensional space
of features. SVMs generally classify data by constructing a hyperplane which determines a straight line separating the
space into two zones as homogeneous as possible. The set of data points closest to the hyperplane are referred to as
the Support Vectors. When the data is linearly separable in a set, a linear SVM can only be utilized. When the data is
not linearly separable, a kernel function can be selected to map the data into a higher dimensional space. The goal of
this is to force the data points to become linearly separable if possible. We employed various SVM kernel functions:
Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, and Coarse SVM.
3.4.4. K-Nearest Neighbor Classifiers

K-Nearest Neighbor (KNN) algorithm classifies unlabeled data to the nearest most similar labeled data. Due to
its simplicity and efficiency, it is widely used to perform supervised classification in multivariate settings. The only
parameters associated with a KNN classifier are the number of nearest neighbours to be considered, K. It is common
to select K value between 3 and 10, to overcome the overfitting and the underfitting problems (Larose and Larose,
2014). There are many ways to measure the distance between the attributes in the testing set and the training set. The
most significant ones are the Euclidean and the Manhattan Distances. Depending on the number of neighbors, we
distinguish Fine (Xu, Zhu, Fan, Qiu, Chen and Liu, 2013), Medium, Coarse, Cosine, Cubic, and Weighted KNN.
3.4.5. Ensemble Methods

The two best-known classes of algorithms in the literature for building classifiers set are Boosting and Bagging.
These two types of algorithms build sets of the same type differentiated at the level of the examples handled during
training. On the other hand, at the "Characteristic" level, the most representative method is the "Random SubSpace"
method. It represents a method that mixes the two techniques. We present these different types of algorithms in the
following.

• Bagging ("bootstrap aggregating") (Breiman, 1996) consists of building a set of classifiers from different re-
samplings of the same set of training data. This algorithm uses a method called "bootstrapping" to generate
different sets. Bootstrapping (Efron and Tibshirani, 1993) is a resampling method with replacement. It consists
of choosing examples from the training sample to create new sets. These are called "bootstrap samples". After
generating "boostrap" samples, a set of classifiers will be constructed. Each elementary classifier will be trained
on one of the samples so that they are all trained on a different training set.

• "Boosting" (Schapire, 2005) designates a general learning principle making it possible to improve the precision
of a given learning algorithm. The general principle is to combine linearly the results of so-called "weak"
classifiers in order to construct a "strong" learning classifier from the original set and a method of combining
classifiers constructed from each new set. To define his new technique of "Boosting", Shapire has proposed the
idea that any weak classifier able to learn with a certain confidence and a classification error less than "0.5",
can be transformed into a more confident classifier and with as small a classification error as desired. At each
iteration, the algorithm seeks to find a weak classifier that can best correct the classifiers’ errors in the preceding
iterations. In the principle of "Boosting", this objective is achieved by means of a weighting of the training data.

• A Random Forest (Breiman, 2001) is the mixture of the two techniques of "Bagging" and "Random SubSpace"
applied to decision trees. At each iteration, a "boostrap" sample is chosen at random in order to build a binary
decision tree. The search space for the construction of the nodes of the tree is limited by P characteristics drawn
randomly. The performance of the method depends directly on the parameter P . A small value of P may degrade
the performance of the classifier. In (Breiman, 2001), the author showed empirically that the optimal value of P
is: P =

√

N , where N is the total number of characteristics. The random technique of the approach has shown
its relevance and efficiency, especially on high dimensional data (with a high number of characteristics). This
technique allows a better exploration of the representation space.
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Table 2
Number of ISIC 2019 samples for each class

Diagnostic Class Number
of Images

Percentage

Melanoma (MEL) 4522 17.85%
Melanocytic Nevus (NV) 12875 50.83%
Basal Cell Carcinoma (BCC) 3323 13.12%
Actinic Keratosis (AK) 867 3.42%
Benign Keratosis (BKL) 2624 10.36%
Dermatofibroma (DF) 239 0.94%
Vascular Lesion (VASC) 253 1.00%
Squamos Cell Carcinoma (SCC) 628 2.48%
None of the others (UNK) 0 0%
Total 25331

3.5. Dermoscopy images datasets
In this section, we will go through the datasets we have used: ISIC 2019 and PH2, as well as the pre-processing

and data augmentation methods that can be considered.
3.5.1. ISIC 2019 dataset

The ISIC 2019 dataset Tschandl, Rosendahl and Kittler (2018), Gutman, Codella, Celebi, Helba, Marchetti, Mishra
and Halpern (2018), Combalia, Codella, Rotemberg, Helba, Vilaplana, Reiter, Halpern, Puig and Malvehy (2019)
consists in 25331 dermoscopic images with labels for training. ISIC 2019 aims at classifying dermoscopic images
into nine distinct diagnostic classes: 1. Melanoma (MEL); 2. Melanocytic nevus (NV); 3. Basal cell carcinoma
(BCC); 4. Actinic keratosis (AK); 5. Benign keratosis (BKL); 6. Dermatofibroma (DF); 7. Vascular lesion (VASC);
8. Squamous cell carcinoma (SCC); and 9. None of the others (UNK). The distribution of samples for each class in
the training dataset is shown in table 2.
3.5.2. PH2 dataset

The Dermatology Service of Pedro Hispano Hospital in Portugal and the University of Porto collaborated to estab-
lish the Ph2 database Mendon¸can, Ferreira, Marques, Mar¸cal and Rozeira (2013). There are 200 dermoscopic images
in the PH2 database, with 80 common nevus, 80 atypical nevus, and 40 melanomas. These are 8-bit RGB color images
with a 768 x 560 pixel resolution. The images were obtained from Hospital Pedro Hispano 1.
3.5.3. Preprocessing

The preprocessing phase aims at ameliorating the dermoscopic images’ quality to ensure improved lesion detection
efficiency (Figure 4). Throughout image acquisition, the presence of artifacts such as hair, bad lighting, and other
noise can result in an imperfect diagnosis. There are common artifact removal algorithms such as DullRazor (Lee, Ng,
Gallagher, Coldman and McLean, 1997), which is used to extract hair artifacts. The algorithm uses morphological
filters to detect the position of the hair and replace the detected hair with its neighboring pixels. Adaptive median
filters are used to smooth out the final image. We can also apply various filters for removing noises (Hoshyar and
Al-Jumaily, 2014). In addition, to further improve the image quality, some image enhancement methods are also used.
The most important of them are color correction or calibration (Wighton, Lee, Lui, Mclean and Atkins, 2011). We
can found other techniques like illumination correction, contrast enhancement, and edge enhancement (Maglogiannis,
Zafiropoulos and Kyranoudis, 2006). Readers will find a summary of preprocessing methods related to dermoscopy
images in (Celebi, Wen, Iyatomi, Shimizu, Zhou and Schaefer, 2015).
3.5.4. Data augmentation

Many authors believe that increasing data is fundamentally important for improving the performance of convolu-
tional neural networks (Howard, 2014), (Krizhevsky, Sutskever and Hinton, 2012), (Wu, Yan, Shan, Dang and Sun,
2015). Data augmentation involves applying certain transformations to the initial training set to create new artificial

1https://www.fc.up.pt/addi/ph2%20database.html
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Figure 4: Example of skin image preprocessing.

examples. The applied transformations do not change the nature of the detected class and thus create new examples.
The increase in data makes it possible to create invariances of the final network artificially and makes it possible to
increase performance in generalization (Howard, 2014), (Wu et al., 2015). For skin lesion images, among the classic
operations used for data augmentation, we can find rotation, zooming, cropping, addition of noise, scaling, and trans-
lation. More advanced transformations such as changing the contrast or brightness of the image can also be added
depending on the user’s needs (Perez, Vasconcelos, Avila and Valle, 2018). Figure 5 depicts some examples of data
augmentation phase.

(a) (b)

(c) (d)

Figure 5: Example of data augmentation performed (a) original image; (b) rotation 180◦ (c) zoom (d) changing the
contrast.

4. Experimental results and discussion
All experiments are performed on a desktop computer equipped with a Core i9 processor, 32 GB DDRAM with

a GeForce GTX 1080 Ti NVIDIA GPU. CNN features extraction, and classifiers, training were carried out in x64-bit
MATLAB 2020.
4.1. Evaluation metrics

We use a variety of standard evaluation metrics to compare the performance of the machine learning classifiers
for skin lesions classification such as accuracy, sensitivity, specificity, precision, balanced accuracy and F-measure
Grandini, Bagli and Visani (2020).

Accuracy =
TP + TN

TP + FP + TN + FN
(1)
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Sensitivity =
TP

TP + FN
(2)

Specif icity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

Balanced accuracy =
Sensitivity + Specif icity

2
(5)

F − measure = 2 ×
precision × recall
precision + recall

(6)
Where TP , TN , FP , FN , and refer to true positive, true negative, false positive and false negative respectively.

4.2. ISIC 2019 dataset Experiments
In our work, we define three kinds of performed experiments with the ISIC 2019 dataset:
1. evaluate the proposed method using the original dataset.
2. evaluate the proposed method using the original dataset with image preprocessing.
3. evaluate the proposed method with the augmented dataset.
This section presents the experimental results obtained from the three scenarios with 17 pre-trained CNN models

and 24 classifiers. Based on ISIC 2019 dataset, where 80% is used for training and 20% is used for testing. The main
aim of experiments in our study was to compare the difference in performance between treating the base as it is, doing
preprocessing, and exploiting the data augmentation. In addition, to compare which is the best CNN architecture for
feature extraction and which is the best combination between various CNN extractors and various classifiers.

All classifiers, regardless of architecture, were trained using the same training set. To simplify the presentation
of results in a single table we limited to the first nine models in terms of accuracy. The performance analysis and
evaluation of all experiments were carried based on the most common evaluation measure (accuracy).
4.2.1. Original ISIC 2019 dataset Experiments

The dataset contains a total number of 25331 images divided into two parts. The first part was 80% equals to 20265
images of the dataset for training and the second part was 20% equals to 5066 images used for testing.

To establish the effectiveness of the model, each classifier was evaluated on the same test set containing original
images. Table 3 presents the accuracy results on the original ISIC 2019.

From the results of this experiment, when we compare the results obtained from each CNN separately with all 24
classifiers, we can observe that the precision obtained from the cubic SVM classifier is higher compared to all accuracy
obtained from the other classifiers. On the other hand, when we compare precision obtained from the different CNN
we observe that DenseNet201 obtain the highest accuracy with the best classifier. From the results for this experiment,
we can observe that the combination of DenseNet201 and cubic SVM perform the highest accuracy with 80.87%.
4.2.2. Preprocessing ISIC 2019 dataset Experiments

To improve the quality of the dermoscopy images by extracting the hair artifacts, we used a public program 2. The
second experiment was carried using 25331 improved images from ISIC 2019 dataset divided into two parts. The first
part was 80% equals to 20265 images of the dataset for training and the second part was 20% equals to 5066 images
used for testing.

To establish the effectiveness of the model, each classifier was evaluated on the same test set containing prepro-
cessing images. Table 4 presents the accuracy results on the preprocessed ISIC 2019.

We can observe in this experiment that the result obtained from the cubic SVMclassifier combinedwithDenseNet201
CNN is higher compared to all accuracy obtained from the other classifiers.

2https://github.com/sunnyshah2894/DigitalHairRemoval
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Table 3
Accuracy results on the original ISIC 2019

Metℎod
Model DenseNet201 Resnet18 Resnet50 Resnet101 Shufflenet Squeeznet Darknet53 Efficientb0 InceptionResnet

Fine Tree 59.24% 58.40% 59.60% 60.09% 58.40% 59.20% 57.50% 58.30% 57.70%
Medium Tree 58.53% 56.90% 59.30% 58.76% 56.90% 57.50% 56.90% 56.70% 56.40%
Coarse Tree 54.32% 55.10% 57.30% 54.70% 55.50% 54.30% 54.10% 53.60% 54.80%
Linear Discrimi-
nant

73.41% 66.50% 71.10% 71.97% 67.40% 67.40% 69.70% 69.40% 67.90%

Gaussian Naive
Bayes

48.14% 41.20% 42.00% 44.49% 34.20% 34.50% 38.50% 39.80% 42.60%

Kernel Naive Bayes 51.15% 54.60% 45.80% 42.01% 35.40% 38.60% 43.70% 51.70% 49.80%
Linear SVM 72.40% 68.00% 71.80% 73.31% 69.10% 67.60% 68.10% 71.30% 69.20%
Quadratic SVM 78.68% 72.70% 75.60% 77.22% 73.70% 72.90% 73.70% 75.40% 73.70%
Cubic SVM 80.87% 74.50% 77.30% 78.27% 75.50% 74.00% 75.30% 76.90% 75.40%
Fine Gaussian
SVM

51.00% 51.20% 51.00% 51.60% 52.30% 57.20% 53.00% 51.50% 51.70%

Medium Gaussian
SVM

75.40% 71.80% 73.60% 74.27% 72.00% 69.30% 71.60% 73.10% 72.00%

Coarse SVM 67.82% 64.80% 66.80% 68.22% 64.90% 64.30% 64.60% 66.30% 65.20%
Fine KNN 77.28% 72.30% 73.70% 73.88% 70.90% 69.20% 70.70% 73.60% 70.20%
Medium KNN 61.90% 66.80% 67.30% 69.50% 66.10% 66.30% 66.20% 67.60% 66.00%
Coarse KNN 64.10% 62.40% 63.20% 63.28% 61.00% 61.90% 61.10% 62.10% 61.60%
Cosine KNN 69.90% 67.50% 69.70% 71.33% 67.50% 66.00% 66.90% 68.00% 67.30%
Cubic KNN 68.23% 66.50% 67.50% 71.65% 65.30% 66.20% 65.90% 67.20% 65.90%
Weighted KNN 72.80% 71.00% 71.30% 68.61% 69.30% 69.50% 70.10% 71.90% 69.30%
Boosted Trees 61.00% 58.30% 61.00% 62.50% 59.20% 59.40% 59.20% 59.80% 58.70%
Bagged Trees 65.10% 63.60% 64.10% 67.53% 63.60% 65.20% 64.30% 65.00% 64.00%
Subspace Discrimi-
nant

72.60% 66.10% 70.30% 72.17% 66.60% 67.50% 68.50% 69.10% 68.60%

Subspace KNN 76.40% 73.70% 76.30% 74.00% 75.00% 69.20% 70.70% 75.10% 69.90%
RUSBoosted Trees 45.00% 43.10% 44.60% 46.88% 47.90% 40.00% 40.00% 41.80% 40.20%
Random Forest 65.77% 63.48% 64.17% 64.07% 63.11% 65.52% 64.88% 65.84% 64.8%

4.2.3. Augmented ISIC 2019 dataset Experiments
It is clearly remarkable that the number of images in each class of the ISIC 2019 dataset is significantly different.

There is a huge gap in the number of images in each class. The NV class contains 12875 images the contrary to
AKIEC, DF, VASC, and the SCC. For example, the NV class is 54 times greater than the DF class. With the intention
of increasing the number of training images and to reduce the negative effects of significant class imbalance and to
improve CNN’ efficiency, we have followed some of the augmentation techniques (section 3.5.4) such as rotations,
zooming, shearing, cropping, Flips (top-bottom, left-right), skew-left-right and corner, contrasting, adding random
color and random brightness.

Table 5 depicts the number of ISIC 2019 dataset samples before and after augmentation. After data augmentation
the size of the ISIC 2019 dataset increases by a factor 2.5 with a total 63661 images in total. In this third experiment,
we divided the new dataset obtained into two parts. The first part was 80% equals 50929 images of the dataset for
training and the second part was 20% equals 12732 images used for testing.

To establish the effectiveness of the model, each classifier was evaluated on the same test set containing augmented
ISIC 2019 images. Table 6 presents the accuracy results on augmented ISIC 2019.

When comparing the results obtained from each CNN separately with all 24 classifiers, we can observe that the
accuracy obtained from the Fine KNN combined with DenseNet201 CNN classifier is higher compared to all accuracy
obtained from the other classifiers.
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Table 4
Accuracy results on the preprocessed ISIC 2019

Metℎod
Model DenseNet201 Resnet18 Resnet50 Resnet101 Shufflenet Squeeznet Darknet53 Efficientb0 InceptionResnet

Fine Tree 60.70% 58.40% 60.40% 60.40% 58.20% 58.20% 58.70% 58.70% 57.40%
Medium Tree 58.30% 57.60% 58.60% 59.20% 57.00% 58.10% 57.10% 57.50% 56.80%
Coarse Tree 55.40% 55.40% 56.10% 55.70% 54.20% 55.30% 54.80% 55.20% 54.30%
Linear Discrimi-
nant

72.50% 66.10% 69.70% 70.00% 66.40% 66.80% 68.90% 69.80% 68.50%

Gaussian Naive
Bayes

50.50% 40.80% 42.50% 43.90% 35.10% 39.60% 40.30% 40.70% 40.10%

Kernel Naive Bayes 53.30% 54.40% 44.40% 42.00% 40.20% 39.30% 45.00% 51.80% 49.10%
Linear SVM 72.00% 67.70% 70.70% 71.60% 67.50% 67.20% 68.80% 70.90% 68.60%
Quadratic SVM 77.80% 71.90% 75.00% 75.30% 71.30% 71.40% 73.50% 75.90% 73.00%
Cubic SVM 79.50% 73.20% 75.90% 76.70% 72.10% 72.50% 75.50% 77.90% 74.10%
Fine Gaussian
SVM

67.40% 51.50% 51.10% 51.20% 52.70% 56.70% 52.80% 51.50% 51.50%

Medium Gaussian
SVM

75.00% 71.30% 72.40% 73.00% 69.70% 68.50% 72.20% 73.10% 70.70%

Coarse SVM 67.40% 65.10% 66.30% 66.70% 64.40% 63.50% 65.40% 66.30% 64.80%
Fine KNN 76.20% 71.90% 73.10% 72.80% 70.60% 68.20% 71.40% 71.80% 69.00%
Medium KNN 69.30% 66.70% 67.50% 67.50% 65.20% 65.50% 67.00% 67.20% 65.40%
Coarse KNN 65.20% 63.80% 64.60% 63.10% 62.50% 62.00% 63.00% 63.10% 61.90%
Cosine KNN 69.80% 67.80% 69.10% 68.50% 67.10% 65.20% 68.10% 68.50% 65.90%
Cubic KNN 69.30% 66.90% 67.40% 66.70% 64.40% 65.90% 67.00% 66.70% 64.90%
Weighted KNN 73.40% 70.00% 70.90% 70.30% 68.10% 68.90% 71.40% 71.30% 68.60%
Boosted Trees 61.30% 59.40% 60.50% 61.40% 59.40% 59.30% 60.00% 60.80% 59.00%
Bagged Trees 66.60% 63.60% 65.70% 66.60% 63.80% 64.80% 66.40% 65.40% 64.00%
Subspace Discrimi-
nant

71.90% 66.50% 69.10% 69.40% 65.80% 66.60% 68.10% 69.40% 68.00%

Subspace KNN 76.70% 73.50% 76.00% 74.40% 74.80% 67.40% 71.20% 73.70% 69.50%
RUSBoosted Trees 47.80% 44.70% 47.20% 45.50% 44.70% 42.10% 41.00% 43.5% 40.50%
Random Forest 68.18% 65.20% 67.24% 67.14% 65.54% 67.02 % 66.36% 66.84% 65.70%

Table 5
Number of ISIC 2019 dataset samples before and after augmentation

Original dataset Augmented dataset
MEL 4522 9044
NV 12875 10000
BCC 3323 6646
AK 867 7803
BKL 2624 7872
DF 239 7170
VASC 253 7590
SCC 628 7536
Total 25331 63661

4.2.4. Discussion on ISIC 2019 dataset Experiments
Figure 6 depicts the accuracy for 17 pre-trained CNN models combined with a Cubic SVM classifier for the three

scenarios used: treating the base as it is, doing a preprocessing and exploiting the data augmentation.
Through the evaluation results obtained (Table 3, Table 4 and Table 6), we find that the DenseNet201 model

combined with the fine KNN or cubic SVM classifiers achieved even better results. Consequently, Table 7 depicts the
accuracy according to DenseNet201 model and different classifiers on augmented ISIC 2019 dataset.
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Table 6
Accuracy results on augmented ISIC 2019

Metℎod
Model DenseNet201 Resnet18 Resnet50 Resnet101 Shufflenet Squeeznet Darknet53 Efficientb0 InceptionResnet

Fine Tree 41.11% 37.14% 41.43% 41.16% 40.84% 39.25% 37.46% 39.49% 37.62%
Medium Tree 35.46% 34.90% 37.7% 38.76% 34.8% 35.6% 34.97% 32.82% 34.42%
Coarse Tree 26.72% 26.3% 29.46% 26.37% 27.8% 26.4% 32.12% 26.14% 26.83%
Linear Discrimi-
nant

76.29% 60.34% 71.77% 72.31% 16.76% 61.02% 67.29% 69.82% 68.54%

Gaussian Naive
Bayes

48.6% 41.4% 42.3% 44.45% 34.6% 34.54% 38.71% 40% 42.76%

Kernel Naive Bayes 38.5% 42.2% 33.84% 29.4% 24.12% 26.86% 31.7% 39.3% 37.4%
Linear SVM 83.12% 79.52% 82.12% 84.2% 71.42% 71.67% 75.34% 81.62% 79.83%
Quadratic SVM 88.52% 79.82% 84.35% 84.10% 75.79% 79.68% 80.56% 85.65% 82.46%
Cubic SVM 91.71% 83.79% 86.87% 86.95% 81.06% 82.87% 84.98% 89.36% 86.86%
Fine Gaussian
SVM

52.3% 52.6% 51.62% 52.97% 53% 58.04% 53.6% 51.87% 52.43%

Medium Gaussian
SVM

76.52% 72.84% 74.62% 75.12% 72.94% 71.3% 72.07% 73.4% 72.9%

Coarse SVM 86.69% 81.04% 68.85% 80.1% 82.36% 80.7% 81.76% 80.71% 81.46%
Fine KNN 92.34% 87.49% 88.07% 88.01% 83.92% 86.24% 86.73% 89.63% 86.56%
Medium KNN 70.4% 74.8% 81.7% 77.5% 74.1% 77.2% 74.2% 75.6% 74%
Coarse KNN 73.24% 71.4% 76.3% 72.28% 70% 75.3% 70.1% 71.1% 70.6%
Cosine KNN 77.72% 74.5% 70.2% 78.33% 74.5% 68.9% 73.9% 75% 74.3%
Cubic KNN 78.03% 75.5% 78.7% 80.65% 74.3% 75% 74.9% 76.2% 74.9%
Weighted KNN 79.2% 77% 73.5% 74.61% 75.3% 72.2% 76.1% 77.9% 75.3%
Boosted Trees 69.4% 65.3% 78.3% 69.5% 66.2% 76.5% 66.2% 66.8% 65.7%
Bagged Trees 74.24% 72.60% 70% 76.53% 72.6% 68.4% 73.3% 74% 73%
Subspace Discrimi-
nant

73.22% 57.94% 79.45% 69.20% 59.47% 58.82% 63.53% 66.96% 65.94%

Subspace KNN 77.52% 75.64% 78.4% 74.62% 76.43% 71.55% 72.94% 76.00% 70.14%
RUSBoosted Trees 38.23% 37.11% 38.4% 40.01% 41.62% 34.1% 34.12% 35.65% 34.54%
Random Forest 70.5% 68.3% 69.54% 70.34% 68.74% 70.28% 68.56% 69.14% 68.1%

Table 8 shows that DenseNet201+Cubic SVM or DenseNet+Fine KNN are advantageous in comparison to a pure,
simple, properly fine-tuned DenseNet201. Therefore, the various experimental results we have proposed have demon-
strated that our approach can be able to improve the performance of a fine-tuned CNN.

Figure 7 depicts the accuracy of the ISIC 2019 dataset on the three scenarios experimented with according to the
DenseNet201 model and different classifiers. Through this figure, we notice that the increase in data considerably
improved the results for the SVM and KNN classifiers (with their different kernels). On the other hand, we remark
that the results are weak for the tree and Bayesian classifiers.

From Figure 7, the statistics show that classifiers belonging to the KNN family perform the highest in terms of
maximum classification accuracy of 92.34%. The SVM family is the second best in this domain, with a maximum
classification accuracy of 91.71%. In terms of maximum classification precision, neither the Bayesian nor the Tree
families show any improvement (44.61%, 41.11%).

Table 9 depicts the comparison of the proposed approach with the state-of-the-art models in terms of accuracy for
the ISIC2019 dataset. It is obvious that our proposed approach achieves the best classification accuracy.

The results obtained by Zadeh et al. Alizadeh andMahloojifar (2020) exceed ourmeasurements because the authors
validate their model on two classes while we validate our approach on eight classes. The obtained result in the work
of Kassem et al. Kassem, Khalid Hosny and Fouad (2020) was 94.92% for 10% of the dataset only taken as a test but
in our study we have used 20% and we obtain 92.34%.
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Figure 6: Accuracy according to different CNN model and Cubic SVM classifier.

Figure 7: Accuracy according to DenseNet201 model and classifiers.

4.3. Ph2 dataset Experiment
By taking advantage of the previous experience carried out on the ISIC 2019 dataset, we applied several classifiers

on the basis of the features obtained by the pre-trained DenseNet201 model. Table 10 presents the evaluation in terms
of accuracy.

On the other side of our experiments, Table 11 depicts the results of the proposed approach compared to recent
approaches for the PH2 dataset. The maximum classification accuracy obtained by previous works on the PH2 dataset
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Table 7
Summary of different accuracy on augmented ISIC 2019 dataset according to DenseNet201
model and different classifiers

Metℎod
Metric Precision Recall Specificity F1-score Balanced

Accuracy
Accuracy

Fine Tree 39.38% 39.83% 91.18% 37.8% 39.83% 41.11%
Medium Tree 36.6% 34.13% 90.01% 33.28% 34.13% 35.46%
Coarse Tree 11.38% 25.24% 89.5% 14.94% 25.24% 26.72%
Linear Discriminant 71.61% 76.38% 94.83% 73.12% 76.38% 76.29%
Gaussian Naive
Bayes

41.95% 43.93% 91.53% 42.56% 43.93% 44.61%

Kernel Naive Bayes 43.59% 39.55% 90.91% 39.09% 39.55% 41.3%
Linear SVM 72.24% 77.89% 94.72% 73.62% 77.89% 77.74%
Quadratic SVM 81.99% 88.86% 96.12% 84.09% 88.86% 88.52%
Cubic SVM 84.82% 92.04% 96.4% 86.82% 92.04% 91.71%
Fine Gaussian SVM 66.92% 49.6% 91.17% 46.65% 49.6% 51.29%
Medium Gaussian 84.18% 91.82% 96.26% 86.02% 91.82% 91.56%
Coarse SVM 31.33% 76.69% 80.75% 44.49% 86.93% 86.69%
Fine KNN 85.22% 92.75% 96.38% 86.96% 92.75% 92.34%
Medium KNN 19.43% 76.52% 69.29% 30.99% 43.63% 45.53%
Coarse KNN 34.38% 27.01% 88.51% 18.31% 27.01% 29.12%
Cosine KNN 75.4% 81.43% 95.8% 77.31% 81.43% 80.97%
Cubic KNN 72.11% 77.11% 94.89% 73.58% 77.11% 76.96%
Weighted KNN 74.47% 60.74% 92.77% 58.11% 60.74% 62.43%
Boosted Trees 37.89% 38.75% 91.08% 37.93% 38.75% 39.96%
Bagged Trees 68.65% 73.15% 94.85% 70.34% 73.15% 73.04%
Subspace Discrimi-
nant

68.79% 73.18% 94.46% 70.18% 73.18% 73.22%

Subspace KNN 69.82% 74.53% 94.54% 71.2% 74.53% 74.4%
RUSBoosted Trees 36.68% 37.92% 90.81% 36.92% 37.92% 38.23%

Table 8
Comparison between DenseNet201 (Fine-tuned), DenseNet201+Cubic SVM and
DenseNet201+Fine KNN on augmented ISIC 2019

Metℎod
Metric Precision Recall Specificity F1-score Balanced

Accuracy
Accuracy

DenseNet201 (Fine-
tuned)

88.22% 80.30% 98.19% 84.07% 91.33% 91.10%

DenseNet201+Cubic
SVM

84.82% 92.04% 96.4% 86.82% 92.04% 91.71%

DenseNet201+Fine
KNN

85.22% 92.75% 96.38% 86.96% 92.75% 92.34%

using ABCD rule and artificial neural networks is 96.00%, whereas it is 99.00% using our proposed methodology.

5. Conclusion
In order to harness the power of deep models for the extraction of the features from skin lesion images we carried

out several experiments by different classifiers. in this paper, we have proposed to use 17 commonly pre-trained
convolutional neural networks (CNN) architectures as feature extractors and 24 machine learning classifiers to evaluate
the classification of skin lesions from two different datasets ISIC 2019 and PH2. Three scenarios were used for the
processing of the dataset: treating the base as it is, doing a preprocessing and finally exploiting the data augmentation.

Various experiment results have demonstrated that the DenseNet201 model combined with the fine Knn or cubic
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Table 9
Results of the proposed approach compared to various approaches for ISIC 2019 dataset

Authors Method No. of
classes

Accuracy

Alizadeh et al. Alizadeh and Mahloojifar (2020) CNN, texture features 2 96.30%
EL Khatib et al. El-khatib, Popescu and Ichim
(2020)

Decision fusion, features based CNN, SVM 2 93.00%

Kassem et al. Kassem et al. (2020) GoogleNet+ SVM 8 94.92%
Pacheco et al. Pacheco, Ali and Trappenberg
(2019)

Ensemble of 13 CNNs 8 89%

Ahmed et al. Sara Atito Ali Ahmed and Goksu
(2020)

Ensembles (Xception, Inception-ResNet-V2,
and NasNetLarge)

8 90.6%

Guissous Guissous (2019) Ensemble models (DenseNet201 and Inception
V3)

8 91.00%

Proposed method DenseNet201, Cubic SVM 8 91.71%
Proposed method DenseNet201, Fine KNN 8 92.34%

Table 10
Summary of results on PH2 dataset

Method Accuracy
Fine Tree 90.00%
Medium Tree 90.00%
Coarse Tree 90.00%
Linear Discriminant 98.00%
Gaussian Naive Bayes 80.00%
Kernel Naive Bayes 88.00%
Linear SVM 97.00%
Quadratic SVM 99.00%
Cubic SVM 99.00%
Fine Gaussian SVM 90.00%
Medium Gaussian SVM 95.00%
Coarse SVM 90.00%
Fine KNN 95.00%
Medium KNN 88.00%
Coarse KNN 95.00%
Cosine KNN 90.00%
Cubic KNN 90.00%
Weighted KNN 88.00%
Boosted Trees 90.00%
Bagged Trees 83.00%
Subspace Discriminant 93.00%
Subspace KNN 93.00%
RUSBoosted Trees 88.00%

SVM classifiers is able to improve the performance of a fine-tuned DenseNet201.
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Table 11
Results of the proposed approach compared to various approaches for PH2 dataset

Authors Method No. of
classes

Accuracy

Ballerini et al. Ballerini, Fisher, Aldridge and Rees
(2013)

Color and texture, K-NN 5 74.00%

Situ et al. Situ, Yuan, Chen and Zouridakis (2008) Color histogram, Gabor filter, BoVW, K-NN 2 82.20%
Mikos et al. Mikos, Sioulas, Sidiropoulos, Kalatzis
and Cavouras (2012)

GLCM, PNN neural network 2 69.50%

Wadhawan et al. Wadhawan, Situ, Hu, Lancaster,
Yuan and Zouridakis (2011)

Color histogram, Haar wavelet, SVM 2 76.40%

Upadhyay and Chandra Upadhyay and Chandra
(2019)

GLOH, HSVcolor, BoVW, SVM 6 78.00%

Arora et al. Arora, Dubey, Jaffery and Rocha
(2020a)

BoF, SURF, SVM 2 85.70%

Majumdera and Ullaha Majumder and Ullah (2019) ABCD rule, ANN 2 98.00%
Pereira et al. Pereira dos Santos and Ponti (2018) MobileNet, Linear SVM - 95.00%
Alizadeh et al. Alizadeh and Mahloojifar (2020) CNN, texture features 2 97.50%
Ghalejoogh et al. Ghalejoogh, Kordy and Ebrahimi
(2020b)

Hierarchical Structure, Stacking Approach 2 96.00%

EL Khatib et al. El-khatib et al. (2020) Decision fusion, features based CNN, SVM 2 95.00%
Proposed method DenseNet201, Cubic SVM 2 99.00%
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