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Highlights

Improved Time Series Clustering Based on New Geometric Frameworks

Clément Péalat, Guillaume Bouleux, Vincent Cheutet

• We use the geometrical information of the time series via Takens’ embedding.

• We analyze the geometrical information obtained by the embedding on the
Stiefel, the unit sphere and the Rn×p manifolds.

• We point out the gain obtained by such an embedding with respect to tradi-
tional time series clustering approaches.

• We analyze over 79 times series databases different frameworks

• The advocated framework is the Stiefel embedding followed by the UMAP and
HDBSCAN algorithms.
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Abstract

Most existing methods for time series clustering rely on distances calculated from the
entire raw data using the Euclidean distance or Dynamic Time Warping distance.
In this work, we propose to embed the time series onto higher-dimensional spaces
to obtain geometric representations of the time series themselves. Particularly, the
embedding on Rn×p, on the Stiefel manifold, and on the unit sphere are analyzed
for their performances with respect to several yet well-known clustering algorithms.
The gain brought by the geometrical representation for the time series clustering is
illustrated through a large benchmark of databases. We particularly exhibit that,
firstly, the embedding of the time series on higher dimensional spaces gives better
results than classical approaches and, secondly, that the embedding on the Stiefel
manifold, in conjunction with UMAP and HDBSCAN clustering algorithms - is the
recommended framework for time series clustering.

Keywords:
Clustering, Time series, Delayed coordinate embedding, Embedding, Stiefel
Manifold, UMAP, HDBSCAN

1. Introduction

Clustering is one of the most famous unsupervised machine learning methods
[45]. This set of data mining techniques gives insight of the structure of the data.
The goal is to determine from data with multiple unlabeled observations, groups
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(clusters) of elements with the closest behaviour. In order to do that, the clustering
algorithms create clusters aiming to maximize similarities for the elements inside
the same cluster while minimizing similarities between elements of different clus-
ters. The similarities obtained are closely related to the specific characteristics of
the data. The datasets studied in this work are one-dimensional time series. This
data structure is studied in several domains such as aviation [25], meteorology [27],
industry [16], speech or music processing [8], mechanical diagnosis [4], healthcare
[6, 10] and many others. The time series clustering corresponds to the application of
the clustering methods to this special kind of data. One way to do it is to directly
apply clustering algorithms to the raw data [22, 44]. Most of the studies that work
directly on raw data use Dynamic Time Warping distance [30] or Euclidean distance
[46]. But, in some cases, it does not give accurate results, as it was the case in one of
our precedent works on medical data [33]. Some works have studied clustering with
other distances but from the angle of high-dimensional time series. For example, the
motion of a rigid body over time [38] which is characterized by a vector of R3 evolving
over time, can be modeled by high-dimensional time series. In this case, it has been
demonstrated in the literature that manifold learning and subspace-based clustering
methods give both an accurate description of the data and an improved clustering
with respect to Euclidean distances [24, 42, 11]. If the literature is vast concerning
the clustering of high-dimensional data, such as clustering of images, or rigid body
trajectories to name a few, there is a huge gap applying manifold-based approaches
for one-dimensional data clustering. For example, reviews on one-dimensional time
series clustering [44, 2, 19] do not address these approaches at all. Consequently, the
present work explores and evaluates some well-known manifold-based approaches in
the case of one-dimensional time series and aims to bridge the gap between one-
dimensional data and their higher-order geometrical features useful for improving
the clustering.
Extracting intrinsic geometrical properties from a time series can be processed in
different ways. We will quote for example the class of works that use second order
statistics [31], the class of works that propose a direct description of the time series
on a Lie group [9, 5] or finally the class of works that use the famous delay coordinate
embedding [29, 40, 39] in order to obtain a description of the time series in the phase
space. Obviously these classes do not represent the exhaustiveness of the approaches
for the geometrical characterization of time series, but the references given may help
the reader, or at least help him to start, to enrich his state of the art.
In this work, we want to cluster time series via the extraction of geometrical charac-
teristics obtained by the delay coordinate embedding. This so-familiar embedding is
intimately relied with the Takens’ theorem. The idea behind this theorem [29, 40, 39]
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is to consider a time series as a measure of a hidden dynamic system of larger di-
mension. It states that it is possible to recover an accurate representation of the
hidden system once some parameters, the delay and the dimension embedding, have
been estimated. Embedding a time series in such a way leads to describing the time
series by its trajectory on the phase space. The induced geometry of the system (of
the trajectory) may be therefore studied with several ways [31, 12] by considering
the matrix associated with the trajectory. In order to fully exploit the geometrical
information brought by those matrices, we propose here to project them onto three
manifolds, directly Rn×p, the Stiefel manifold and the unit sphere. This way, well-
known clustering algorithms can be adapted to account for the distance defined on
these manifolds. In particular, we propose to compare the clustering performances of
the agglomerative hierarchical method, and K-means algorithm when they perform
the clustering on the three manifolds proposed. Based on the good results obtained
in [32], we have also decided to test the HDBSCAN algorithm [7] enhanced by UMAP
[26].
Our point of view being to use the geometrical information of time series trajectories
obtained by the delay coordinate embedding, we have first tested the relevance of
such a hypothesis through time series generated from dynamic systems well known in
the literature. Afterwards, we have tested all the couples (manifold-type, clustering
algorithm) on 79 databases available in the UCR Time Series Classification Archive,
where the ’true’ labels of the time series are known. This process is summarized in
fig.1.
The paper organizes as follow. In section 2, we present the delay coordinate embed-
ding and the resultant embedding into the manifolds. Section 3 introduces important
notions of Riemannian geometry that allows to determine the distances as well as the
Fréchet means of each manifolds in section 4. In section 5, the clustering algorithms
are presented in detailed and in section 6, we present the clustering results obtained
on known time series models. Next, an exhaustive analysis of the frameworks pro-
posed in this work are displayed in section 7 with the application of the frameworks
on the ’UCR time series’. Finally, a conclusion as well as elements of perspectives
are given in the section 8.

Notations

– D is a database of time series of length l : D = (Yi(t), t = 0, ...l − 1, i =
0, ..., n− 1), with each time series characterised by a label.

– O(n) is the orthogonal group of dimension n defined by O(n) = {A ∈ Rn×n :
ATA = In} with In the identity matrix of dimension n.
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– Vn,p = O(n)/O(n− p) is the Stiefel manifold. It is a subspace of Rn×p defined
by Vn,p = {A ∈ Rn×p : ATA = Ip}

– Sn is the unit sphere of Rn.

– TXM is the tangent space at X of the manifold M

Figure 1: Summary of our benchmark. For a database, 16 clustering results are obtained depending
on both the geometrical representation and the clustering algorithm. Then, using the v-measure-
score, those results are compared to the expected labels.

2. Representation Manifold

One-dimensional time series can be seen as a discrete measurement (observation)
of a dynamic system. The underlying dynamic system is in most situations of large
dimension, obviously unknown a priori. Takens’ theorem [39, 29, 40] states that it is
possible, from this observation, to reconstruct the trajectory (the attractor) of the
dynamic system by a basic delay coordinate embedding of the time series. From a
time series y = (y(0), ..., y(l − 1)), we subdivide it into vectors of size m defined by
(y(k), y(k + τ), ..., y(k + (m− 1)τ)), k = 0, . . . , l − 1− (m− 1)τ . By concatenating
those vectors for all k, we obtained a trajectory matrix [43, 31] Ty of the time series
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y defined as:

Ty =



y(0) y(τ) · · · y((m− 1)τ)

y(1) y(2 + τ)
...

...
...

...

y(k) y(k + τ) · · · y(k + (m− 1)τ)
...

...
...


(1)

Each row of the trajectory matrix represents a state of the time series in the embed-
ded space which is now of larger dimension. Moreover, the trajectory matrix is an
element of Rn×p with n = l−1− (m−1)τ and p = m. From the previous relation, it
is clear how the two parameters, m, the dimension of embedding and τ , standing for
the delay, have a great importance in the geometric characterisation of the attractor
for the time series.
Once the trajectory matrices have been determined from the time series, several
possibilities exist to treat those elements of Rn×p. We studied here three geometric
representations: a direct one (Rn×p), the Stiefel manifold, and the unit sphere which
allows to deal with Stiefel manifolds of different dimensions.
By treating basically the trajectory matrix Ty of (1) as an element of Rn×p leads to
straightforwardly consider the Frobenius norm defined by the following

d(A,B) = (
n−1∑
k=0

p−1∑
l=0

(ak,l − bk,l)2)
1
2 ∀ A,B ∈ Rn×p.

as the distance between the different trajectory matrices. In this context, the mean
admits the basic expression A = 1

k

∑k
i=1Ai,∀ A1, ..., Ak ∈ Rn×p.

If we now go a little further in the information carried by the trajectory matrix,
instead of using the Euclidean distance between the matrices, i.e. the Frobenius
distance, we propose to measure the distance between the trajectory matrices by the
distance of the subspace they span. This is equivalent to projecting the trajectory
matrices on the Stiefel manifold.
The Stiefel manifold is a subspace of Rn×p defined by Vn,p = {A ∈ Rn×p : ATA = Ip}.
For sufficiently small values of m and τ , we have directly p < n. It is thus enough
to orthogonalize, via a QR decomposition, the trajectory matrices to see them as
elements of Vn,p. We precise that we only dealt with the p < n case. However,
we can note that in the p > n case, it is possible to apply a dimension reduction
to return to p < n [33]. So far we have deliberately not discussed the values of m
and τ , which we have implicitly assumed to be equal for each of the embedded time
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series (inside a database). Of course, in order to make the best use of the geometric
information of the time series attractor, these values may vary and thus be different
for each of the trajectory matrices to be compared. To cope with this, the trajectory
matrices can be projected onto the unit sphere [41]. Let U1, U2, ..., Uk be elements
of (Vn,p1 × Vn,p2 ... × Vn,pk). To compare those elements, we compute the projection
matrix PUi

= UiU
T
i which then becomes an element of Rn×n with the particularity

to be a symmetric matrix. This matrix is then embedded as a vector of Rn(n+1)/2

composed of all the different elements of the symmetric matrix only once. To fix the
ideas, in R2×2, we have: (

a b

b d

)
→

ab
d

 . (2)

Thanks to the orthogonality of the matrix Ui, i = 0, ..., k, all the associated vector
vi of R(n(n+1)/2) are on the same sphere of a radius r and center c in R(n(n+1)/2) . To
simplify, the vector on the unit sphere of R(n(n+1)/2) is put back using v′i = vi−c

||vi−c|| .

Thus, we can determine the distance and the mean using the geometry of S(n(n+1)/2).
This will be discussed in section 2.
The Stiefel manifold and the unit sphere are particular spaces. They are not flat
spaces like the euclidean space is. To determine the distance and the mean with
respect to these manifolds, we propose in the next part a presentation of the Rie-
mannian geometry tools.

3. Generalities about Riemannian geometry

A manifold is a set of points that only locally looks like a Euclidean space.
Without going too much into the abstract details of the definition of a manifold, we
will nevertheless place ourselves in the case where the manifold is a subspace of a
larger ambient Euclidean space. For example, the circle is a one-dimensional manifold
which can be represented on R2. This manifold is locally similar to a straight line
and thus, similar to R1; this explains the dimension of the circle manifold. A little
more rigorously we still need to have the existence of a diffeomorphic map, i.e. a
function f which is Ck (with f−1 also Ck), realizing a bijection between the local
part of the manifold and the smaller Euclidean space.

3.1. Tangent Space

We consider a smooth parametric curve γ : R → M passing by p at an initial
time t0. We can define a tangent vector v of γ at p by v = dγ

dt
)t0 . The tangent space
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TpM at the manifold M at p is given by all the tangent vectors at p coming from all
the smooth parametric curve passing by p. The tangent space allows us to determine
the metric on a manifold.

3.2. Riemannian metric

For each point p of the manifold M , we define the function gp : TpM ×TpM → R
as the inner product between elements of the tangent space. This defines g as the
family of inner product of the tangent space at the different points of the manifold.
Considering g invariant allows to defined it as the Riemannian metric and (M, g)
becomes a Riemannian manifold. Then, a distance can be defined with respects to
this metric.

3.3. Distance

Let’s call γ : [a; b]→M a smooth curve on the Riemannian manifold (M, g). The

length of this curve is defined by L(γ) =
∫ b
a

√
g(γ′(t), γ′(t) dt =

∫ b
a
||γ′(t)|| dt. Let

X,Y be two elements of the manifold M. The distance between X and Y is defined
by the minimization of L(γ) with γ such that γ(0) = X and γ(1) = Y . The curve
γ realizing the minimization is called the geodesic. In fig.2, from [42], the several
elements of the Riemannian geometry are summarized.
Those notions of Riemannian geometry allow us to define the distance between the
time series with respect to the geometrical representations used.

Figure 2: Illustration of the Riemannian geometry on the sphere manifold in R3.
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3.4. Riemannian exponential and logarithm

From a starting point X on a manifold M , the Riemannian exponential (or ex-
ponential map) runs along the geodesic of origin X with respect to the direction of
an element of the tangent space. For an element X of the manifold M , and Y an
element of the tangent space TXM of M at X, we have only one geodesic γ that
verifies such as γ(0) = X and

.
γ(0) = Y . Then, the Riemannian exponential function

is defined by ExpX(Y ) = γ(1). Thus, the Riemannian logarithm function is defined
as the inverse function of the Riemannian exponential. For example, on Rn×p, the
geodesic γ such as γ(0) = X and

.
γ(0) = Y is directly defined by γ(t) = X + tY and

ExpX(Y ) = X + Y . Thus, LogX(Y ) = Y −X
In fig.2, from [42], two tangent vectors at P are projected into the manifold using

the Riemannian exponential. We note Exp (resp. Log) the Riemannian exponential
(resp. logarithm) function and exp ((resp. log) is the classic exponential (resp.
logarithm) for scalars and matrices.
The Riemannian exponential and logarithm are useful tools to determine a mean on
a manifold.

Figure 3: Riemannian Exponential on the sphere manifold in R3. We determine ExpP (V1) from
the value of the geodesic, that starts from P in the direction of V1, after one unit of time.

3.5. Karcher mean

Once the distance is defined, a mean with respect to this distance, must be also
defined. It is the Karcher mean, defined by

U = arg min
X∈M

n∑
i=1

dM(X,Ui)
2, ∀ U1, ...Un ∈M. (3)
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To determine this mean, we can use a gradient descent algorithm. To do so, we
derive the equation (3), as proposed by [20], and we obtain a new definition for the
karcher mean X:

n∑
i=1

LogX(Xi) = 0, ∀X1, ...Xn ∈M. (4)

This equation uses the Riemannian logarithm, the inverse function of the Riemannian
exponential.

Algorithm 1: Karcher means

Input : X1, X2, ...XN ∈M ;
µ0 = X1

while µk 6= µk+1 do

∆µ = 1
N

∑N
i=1 Logµk(Xi);

µk+1 = Expµk(∆µ);

end
Output : µ

With this equation (4), we can deduce our gradient descent algorithm (see al-
gorithm 1). In fig.4, an example of the Gradient descent algorithm for four el-
ements is illustrated. The function Log gives us the direction to follow on the
tangent space, and the Exp function put this vector back on the manifold. For
example, on Rn×p, we directly have the classic mean of the section 2.2 on the
first iteration. Indeed, for X1, X2, ..., XN ∈ Rn×p, ∆µ = 1

N

∑N
i=1(Xi − µ0). Then,

µ1 = µ0 + 1
N

∑N
i=1(Xi − µ0) = 1

N

∑N
i=1Xi = X.

4. Geometry of the proposed manifolds

4.1. Geometry of the Stiefel manifold

We can notice that for two elements A,B of Vn,p, an element C of O(n) (the
orthogonal group of dimension n) exists such as CA = B. Moreover, if A,B represent
the same space, an element O of O(n− p) (the orthogonal group of dimension n− p)
exists such as AD = B. This allows us to see the Stiefel manifold as an homogeneous
space defined as Vn,p ' O(n)/O(n− p).
Two metrics can be used, they are defined on the tangent space of Vn,p with either
the euclidean metric [47]:

< A,B >= Tr(ATB) (5)
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Figure 4: Example of one iteration of the gradient descent algorithm. The tangent vectors (in
black) from Xk to the four elements are summed and give the resultant tangent vector (in blue).
Then, the Riemannian exponential of this tangent vector put back on the manifold and gives the
next value Xk+1 of the estimated mean

.

coming from the definition of Vn,p as a submanifold of Rn×p and the canonical metric
for Q ∈ Vn,p:

< A,B >= Tr

(
AT
(
I − 1

2
QQT

)
B

)
(6)

coming from the homogeneous space definition of Vn,p. The benefice of using the
Stiefel manifold embedding is the correspondence of these two metrics regarding the
geodesic distance between the points of Vn,p. Indeed, both yields to the same geodesic
distance given by the principal angles of their subspaces in such a way that for any
A,B ∈ Vn,p, we have:

distance(A,B) =

(
d∑
i

θ2i

) 1
2

(7)

Figure 5 illustrates an example of the distance between two elementsA = (a1|a2), B =
(b1|b2) of V3,2. A base of the subspace R(A) spanned by A is defined by the two vec-
tors of R3 a1, a2 (in green in the figure). For B, the subspace R(B) is defined by the
two vectors b1, b2 (in red in the figure). Then, the two principal angles θ1, θ2 between
A,B are defined by θ1 = (a1, b1), θ2 = (a2, b2).

As we have seen, p rotations (so p angles) are needed for Vn,p to go from one
element to another. To ensure that we deal with principal angles, we look for the
rotations of smallest energy. To do so between two elements A,B of Vn,p [28], we com-
pute the singular values λi, i = 1, .., p of ATB. Then, for i in 1, ...p, θi = arccos(λi)
are the principal angles between A and B. The quick algorithm 2 gives the compu-
tational point of view of the distance on the Stiefel manifold.
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Figure 5: Example of Principal Angle between two elements A and B of V3,2. The principal angles
characterize the distance between the subspaces spanned by the columns of A and B, defined as
R(A) and R(B) respectively. Only two rotations of angles θ1 and θ2 are needed to go from R(A)
to R(B).

Algorithm 2: Computation distance on the Stiefel manifold

Input : A,B ∈ Vn,p
ATB = UΣV (Singular Value Decomposition)
θi = arccos(λi), i = 1, . . . , p

Output : d(A,B) = (
∑p

i=1 θ
2
i )

1
2
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Using this distance, we can apply agglomerative hierarchical, HDBSCAN and
UMAP algorithms, but we need the associated average to use the K-means algorithm.
The algorithms 3 and 4 from [48] allow us to compute those two functions.

Algorithm 3: Stiefel Exponential

Input : U ∈ Vn,p, ∆ ∈ TUVn,p
Decomposition of ∆: ∆ = UUT∆ + (I − UUT )∆
Decomposition QR of (I − UUT )∆: ∆ = UA+QERE[
M

NE

]
= exp

([
A −RT

E

RE 0

])[
Ip

0

]
Output : ExpSU t(∆) = UM +QENE ;

Algorithm 4: Stiefel Logarithm

Input : U ∈ Vn,p, U ∈ Vn,p, threshold τ ;
Initialization :
M = UTU
QN = U − UM

V0 =

[
M X0

N Y0

]

log(V0) =

[
A0 −BT

0

B0 C0

]
while ‖Ck‖2 ≤ τ do

φk = exp(−Ck) Vk+1 = VkWk where Wk =

[
Ip 0

0 φk

]
end

Output : LogStU (U) = UAk +QBk

4.2. Geometry of Sn

The unit sphere [15] on Rn is defined by Sn = {X ∈ Rn : XTX = 1}. For a
point X of Sn, the tangent space at X is all the vectors of Rn perpendicular at X.
So, TXS = {U ∈ Rn :< U,X >= UTX = 0}. The distance between X, Y of Sn is
defined by

d(X, Y ) = arccos(XTY )
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Table 1: Different computational formulas for each manifold

Geometry Vn,p Sn Rn×p

Distance See algo 2 d(X, Y ) = arccos(XTP ) d(X, Y ) = (
∑n−1

k=0

∑p−1
l=0 (xk,l − yk,l)2)

1
2

Karcher mean Gradient descent algorithm (algo 1) X1, ..., Xn ∈ Rn×p,X = 1
k

∑k
i=1Xi

Riemannian exponential See algo 3 ExpX(v) = cos(|v|)× x+ sin(|v|)
|v| × y ExpX(v) = X + v

Riemannian logarithm See algo 4 LogX(Y ) = d(X,Y )√
1−(XTY )2

(Y − (XTP )X LogX(Y ) = Y −X

We can also remark that : for all (X,H) ∈ Sn × Rn, < X,H −XTHX >= XTH −
(XTX)(XTH) = 0. So, the projector into the tangent space of X is defined by
PX(H) = H −XTH, for all H ∈ Rn.
For (X,U) ∈ Sn × TXSn, we define the smooth curve γ on [0, 1] by γ(t) = cos(t‖U‖)X+
sin(t‖U‖)
‖U‖ U . We can remark that for all t, γ(t)Tγ(t) = 1 (so, it is on the manifold)

and γ(0) = X, γ′(0) = U . So, we know from the definition that the Riemannian
exponential is defined by:

ExpX(U) = γ(1) = cos(‖U‖)X +
sin(‖U‖)
‖U‖

U

Moreover, as the inverse function, we have

∀X, Y ∈ Sn, LogX(Y ) =
d(X, Y )

‖PX(Y −X)‖
PX(Y −X)

We can then determine the mean on the sphere using the same algorithm that we
use for the Stiefel manifold.
We propose on the table 1, a summary of the different elements needed to apply the
clustering algorithms for each manifold.

5. Clustering Algorithm

Once the distances and the means on the different geometrical representations
have been determined, clustering algorithms are applicable. To determine the clus-
ters, we proposed to use HDBSCAN (density-based clustering algorithm) [7] en-
hanced by UMAP [26], K-means and Agglomerative Hierarchical clustering.
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5.1. K-means and Agglomerative Hierarchical Clustering

K-means is one of the most famous algorithms of clustering. It needs beforehand
to determine the number of clusters. For a set of n time series (Yi, i = 1, ..., n),
the K-means algorithm initializes randomly a number k of center-clusters (k is the
number of clusters) and each time series is assigned to its closest center clusters.
All time series are affected to one and only one cluster. The center-clusters are
then recalculated with the new composition of the clusters, they become the mean
of the time series in a cluster. This iteration is repeated until the composition of
the clusters stop changing [18]. The Agglomerative Hierarchical algorithm [17] is an
other classic algorithm of clustering. It starts by considering each time series as one
distinct cluster. Then, the distance between each cluster is calculated (according
to the distance used). The nearest clusters to each other are then merged together
to form a new cluster. So, the distance between each cluster needs to be updated.
Some methods exist to tackle this problem and we chose to use the average method
(one of the most popular choice). The average method defines the distance between
two clusters as the mean of the distances between each pair of observations of the
clusters. The iteration goes on until all the time series have been merged in the same
cluster. The final result is a dendogram where each merging corresponds to a node
[14].
For both clustering algorithms, the number of clusters needs to be determined be-
forehand. To do so, we propose to use the Silhouette score [21].

5.1.1. Silhouette score

From a clustering results, the silhouette score is calculated using the mean intra-
cluster distance (ai) and the mean nearest-cluster distance (bi) for the time series
xi. The silhouette score is determined by 1

n

∑n
i=1

bi−ai
max(ai,bi)

. The silhouette score is
also a indicator of the performance of the algorithm, it is bounded between −1 for
incorrect clustering and 1 for good clustering.
So, we can use it to determine the correct number of cluster [36]. Indeed, we compute
the results of the K-means and Agglomerative Hierarchical algorithms for several
values of number of clusters k. We keep the value of k such that the silhouette score
is maximized.

5.2. HDBSCAN

HDBSCAN is a prolongation of the clustering algorithm Density-Based Spatial
Clustering of Applications with noise (DBSCAN). We start by explaining DBSCAN
[37, 23].
DBSCAN is one of the most used density-based clustering algorithms. A cluster
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determined by this kind of clustering concurs to a region of high density on the data
surrounded by region of low density [23]. Moreover, DBSCAN has the ability to
detect noise points. Two parameters must be chosen beforehand: the threshold ε
and the number of neighbors m. A point A of the data is density reachable from an
other point B, if a path from A and B through the elements of the data exists such
that the distance between two elements of the path is smaller than ε. For each point
of the datasets, DBSCAN determines its category:

• Core point: If a point of the dataset has in its ε-neighbourhood more than m
other points of the dataset, it is a core point.

• Border point: A point of the dataset is a border point if it is not a core point
and is density reachable by at least one core point.

• Noise point: A point is considered as noise if it is neither core point nor border
point

Then, the clusters are defined such that there is at least one core point, and all the
elements are density reachable from one another. Figure 6, from [37], is an example
of DBSCAN clustering with m (number of neighbors) equal to two. The core points
in red creates a cluster. B and C are not core points (not enough neighbors), but are
density reachable from the red points, so they belong to the same cluster. N is not
reachable, so it is a noise point.

However, in this algorithm, the threshold ε is chosen by the user, and there is
no correct answer on how to choose the threshold on real data. Moreover, if for two
groups of our dataset, the densities are not the same, ε can consider a valid group
as noise. To tackle this problem, we use the HDBSCAN algorithm. This algorithm
computes the results of DBSCAN for all thresholds in the range of ]0; +∞[. The
clustering starts with one big cluster (meaning a high value of ε). Then, when ε
decreases, the cardinal of a cluster is diminishing until it splits into two clusters or
when all the elements become noises. It gives us a birth and death of each cluster in
function of ε. So, for each cluster, a score of stability is given depending on the ε of
creation and the ε of disappearance. A cluster has a high score of stability if it exists
for a large range of value of ε. Then, the clusters with a good stability score are kept.
So, the HDBSCAN algorithm gives accurate clusters, even if there is a difference of
density, and the user does not have to chose the value of a threshold.
The values of the number of neighbors m is kept by default at 5 (value proposed on
https://hdbscan.readthedocs.io/en/latest/index.html).
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Figure 6: Example of clustering by DBSCAN. The dots corresponds to the elements of the datasets.
The ε-neighbourhood is the circles. The blue is for noise points, the red for core points, and yellow
for border points. A, B and C are in the same cluster.

5.3. HDBSCAN enhanced by UMAP

To increase the quality of the density algorithm of clustering, we use beforehand
Uniform Manifold Approximation and Projection (UMAP) [26]. This decision is
motivated by the fact that in some cases the density is not clear enough to use
directly HDBSCAN. Indeed, in a lot of our applications, lot of elements of the data
are considered as noise. The clustering algorithm decides that they are errors in
the dataset. So, UMAP allows, by embedding in a lower dimension the data, to
increase the gap between groups. There are still some concerns with this method
because UMAP does not completely keep the density of the data. So, it can create
pseudo-groups inside one ’true’ cluster. However, in [32], we have shown that a
reduction of dimension through UMAP improved the clustering performances of the
HDBSCAN algorithm on time series from real data. Using the databases available at
www.cs.ucr.edu/~eamonn/time_series_data/, we compared the clustering results
of 6 clustering algorithms on 85 databases and the combination UMAP+HDBSCAN
has clearly shown better results. UMAP realizes a reduction of dimension which
clarifies the structure of the data for HDBSCAN. For example, in the case of the
embedding into Stiefel manifold Vn,p, the time series belongs to an ambient space

of dimension dstiefel = pn − p(p+1)
2

. So, UMAP realizes a reduction dimension from
dstiefel to a selected dimension. We present more clearly below how UMAP works.
The theory behind this algorithm assumes that the data is uniformly distributed. It
is a strong assumption, but a correct choice of a parameter σ (see eq.(8)) allows to
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make it true. It starts by giving a graphical directed weighted representation. Each
element is a vertex, and the distance determines the edges. Indeed, for a given k,
and an element Y , the k-th closest neighbor Y1, ..., Yk (sorted out by distance d to Y )
are linked to Y . The weights, degrees of membership, are then computed between
Y and Y1, ..., Yk. The closest element Y1 to Y as a membership of 1. Let’s call λ the
distance between Y1 and Y . The weight between Y and Y0<i≤k is then defined by :

wi = exp(−d(Y, Yi)− λ
σ

)

The choice of this heat kernel for the weight is justified in [3]. The parameter σ is
defined by eq.(8). This parameter ensures that for each element Y of the data, the
density of the circle of center Y and of radius equal to the distance to the k-neighbors
are sensibly the same for each Y .

k∑
i=1

wi = log2(k) (8)

Once the graph G has been determined, the reduction of dimension into Rm is done.
To do so, the Laplacian eigenmaps is used. The i-th element of the data is represented
as a vector of Rm of coordinates (f1(i), ..., fm(i)) with f0, .., fm the eigenvectors of the
Laplacian associated with G (with the eigenvalues associated such that λ0 < λ1 <
... < λm). Then, it defines a graph G’ from the elements of Rm, the same way that
it did for G except for the weights. Indeed, the weight between Y, Y ′ ∈ Rm is now
defined by :

w(X, Y ) =
1

1 + a(‖Y − Y ′‖22)b

The parameters a and b are chosen such that the function ψ realizes a smooth
approximation of Ψ with ψ and Ψ defined by :

Rm × Rm → [0, 1]

ψ(X, Y ) =
1

1 + a(‖X − Y ‖22)b

Ψ(X, Y ) = exp(−‖X − Y ‖2)

This smooth approximation allows to derived the cross-entropy between G and G’.
This determines attractive and repulsive forces, and a forced directed graph layout
algorithm is computed. So, each element of Rm acts as a physical point under
those two forces until a physical equilibrium is obtained. The cross-entropy is now
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minimized between the two graphs G and G’. So, from the dataset lying on the
manifold M, UMAP returns elements of Rm with respect to the cross-entropy between
a graph on the manifold and a graph on Rm. To summarize :

• UMAP creates a graph G with respect to the distances on the manifold and to
the k-neighborhood of each element.

• A graph G’ on Rm is obtained by a Laplacian eigenmaps reduction of dimension.

• The graph G’ is modified by a forced directed graph layout algorithm so that
the cross-entropy between G and G’ is minimized.

To realize the clustering, a global view of the structure of the data is needed.
So, we fixed the parameters k (number of neighbors to determine the graph) at
30 throughout the rest of the article (or 10 if the concerned database has not
enough samples) and the dimension of reduction is fixed at 10 (values proposed
on https://umap-learn.readthedocs.io/en/latest/.

6. Clustering Results from known models

To get a first glimpse of the efficiency of the framework proposed in this work, we
used four known dynamic systems from which we selected one coordinate to obtain
a time series. We used then :

• The Lorenz system. it is defined by the system of equations (9), and is plotted
in figure 7a. This figure is the trajectory of a dot submitted by the equations
(9) with ρ = 28, σ = 10 and β = 8/3.

.
x(t) = σ(y(t)− x(t))
.
y(t) = x(t)(ρ− z(t))− y(t)
.
z(t) = x(t)y(t)− β.z(t)

(9)

• The Rössler system. It is a dynamic system of R3. The movement is determined
by a set of 3 coupled differential equations (10).

.
x(t) = −y(t)− z(t)
.
y(t) = x(t) + ay(t)
.
z(t) = b+ z(t)(x(t)− c)

(10)

The figure 7b is obtained with a = 0.1, b = 0.1 and c = 14.
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• The Henon system. This dynamic system is defined by the following equations{
xn+1 = yn + 1− a.x2n
yn+1 = b.xn

(11)

It is a two-dimensional system, and we traced the trajectory of 100 dots in
figure 7d with a = 1.4 and b = 0.3. We can notice that the equations are
discrete.

• The Ikeda system. It is initially a discrete-time dynamical system on the com-
plex map. A 2D example is given by the following equations

xn+1 = 1 + u(xn cos(θn)− yn sin(θn))

yn+1 = u(xn sin(θn) + yn cos(θn))

θn = 0.4− 6
1+x2n+y

2
n

(12)

The figure 7c is the trajectory of 100 dots, with random initial conditions and
u = 0.7.

We used next these dynamic systems for creating known time series clusters.

6.1. clustering results from a unique known model

In this scenario, we propose to create a first database from the Lorenz system.
Depending on the values of ρ, the trajectory obtained by the Lorenz equations is very
different. In the figure 8, we have plotted four trajectories got from four different
values of ρ, the other parameters remaining unchanged. For each value of ρ, 100
trajectories according to the coordinates x, y and z have been calculated. For that,
the differential equations have been discretized with a time step of 0.01. The dif-
ference between the trajectories comes from the initial conditions, randomly chosen
between 0 and 1. Then, we kept only the x component and we therefore built 400
one-dimensional time series each belonging to one of the four known cluster.

The delay parameter τ used for the delay coordinate embedding was kept to the
value 10 and we fixedm at the value 3. Then, the embedding into the Stiefel manifold,
via the QR decomposition, into the unit sphere and into Rn×p are computed as well as
the distance between the time series with respect to the geometrical representations.
Finally, the clustering was done by the UMAP and HDBSCAN clustering algorithm.
To check the quality of the results, we compared the results of the clustering to the
’true’ clusters generated. The relevance indicator we chose was the v-measure-score
[35]. It is an entropy-based clustering evaluation which realizes a harmonic mean
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(a) Lorenz attractor with ρ = 28, σ = 10,
β = 8/3

(b) Rössler attractor with a = 0.1, b =
0.1,c = 14

(c) Ikeda Map with a = 1.4,b = 0.3, tra-
jectories of 100 dots in R2

(d) Hénon Map with u = 0.7, trajectories
of 100 dots in R2

Figure 7: Representation of the four dynamic systems.
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(a) Lorenz system with ρ = 5 (b) Lorenz system with ρ = 13

(c) Lorenz system with ρ = 20 (d) Lorenz system with ρ = 28

Figure 8: Trajectory of the Lorenz system for several values of ρ
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between the completeness and homogeneity of the expected labels (true clusters)
and the clustering results. Homogeneity gives a best score of 1 when all the elements
of each cluster have the same ’true’ cluster. By symmetry, completeness is at a
maximum when all elements of each ’true’ cluster are in the same cluster. The
homogeneity and the completeness must be balance since if all the elements are in the
same cluster the completeness is maximized, and if each element has its own cluster
the homogeneity is maximized, hence the harmonic mean between homogeneity and
completeness.
For the scenario studied, we obtained a v-measure-score of 1 for the Stiefel and unit
Sphere manifolds embedding of the trajectory matrices and a v-measure-score of
0.721 when trajectory matrices are embedded in Rn×p. The lowest performance was
obtained by using the euclidean distance between the time series with a v-measure-
score of 0.648. For this toy example, we thus conclude that the Stiefel and the unit
sphere embedding seems to completely exploit the geometrical intrinsic properties of
the attractor of the time series, giving in conclusion the best performances with no
error at all.

6.2. Clustering Results across several known models

As we did in the previous section, we created a database of time series. For
that scenario, the time series are divided into four clusters according to the dynamic
system from which they are obtained. We computed for each dynamic system 100
trajectories with the same parameters as given previously, and the initial conditions
randomly chosen between 0 and 1. From this, we extracted the x coordinate of
the trajectories. It gave us a database of 400 one-dimensional time series evenly
distributed between four clusters. Alike the previous scenario, the parameters used
for the Lorenz system are fixed to τ = 10 and m=3. The delay parameter for the
Ikeda and Henon systems is fixed to τ = 1, whereas the delay parameter for the
Rössler system is fixed to τ = 100 . The embedding parameter m is kept equal to 3
for all the systems. The fixed parameters given have been estimated to fully retrieve
the geometrical properties of the associated attractors. We can notice that since the
values of τ are not the same across all the databases, the trajectory matrices are of
different dimensions, indeed p = m and n = l−(m−1)τ , l = 5000. Consequently, we
have decided to keep only the first l− 1− (m− 1)100 vectors of Rm. In this way, all
the matrices will belong to the same space Rn×p. We obtained a v-measure-score of
0.8456 for the Stiefel manifold, a v-measure-score of 0.837 for Sn, of 0.471 for Rn×p

and once again, the worst clustering performance was obtained by the Euclidean
distance on the raw data with a v-measure-score of 0.460.
This second scenario confirms the good capacities of the framework composed by a
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delay coordinate embedding followed by an embedding of the trajectory matrices on
the Stiefel manifold to cluster the time series. Even if the clustering results are less
exceptional than the previous scenario, a v-measure-score of near 0.85 is significant.
Clearly this preprocessing framework, as the first stage before employing clustering
algorithms, shows the importance of the intrinsic geometrical property of the time
series for the clustering. But, shows that the representation manifold of the time
series attractors needs to be carefully chosen as well.

7. Clustering Results on UCR Time Series Classification Archive datasets

To realize our benchmark, we used the 79 UCR Time Series Classification Archive
databases available at UCR Time Series Classification Archive. A brief summary of
those databases are presented in table 2. The number of clusters in a database varies
from two (only two labels) to 60. Moreover, some databases have a large number of
time series to cluster whereas others have a weaker one. For a given database, all
its time series have the same length. The length of the time series varies from 24
samples to a maximum of 2709 samples.

Table 2: Presentation of the databases

Number of databases 79

Min Mean Max
Nb of clusters 2 7.5 60
Nb of time series 16 432 8926
Length of time series 24 422 2709

7.1. How we did it

We recall and specify our methodology here to create the benchmark. From open
access databases, we have compared 4 different geometries and used 4 clustering
algorithms. This gave us 16 different clustering results per database which we then
compared to the expected labels (cf. fig.1). Three of our geometries were linked to the
delay coordinate embedding. The time series were then transformed into a trajectory
matrix which depended on two parameters m and τ (as already exposed in the
previous sections). After some exploratory works, we have found that the embedding
parameterm was not determinant and could be kept to a fixed value we chose equal to
5. On contrary, we found that the delay parameter τ was important for the clustering.
To determine it, we have decided to use the real database labels. We have varied
the values of τ between 1 and 20 and computed the distance matrix between each
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elements for each geometry. Then, from the distance matrix, the silhouette score
have been deduced with the true labels. For each of the three geometries, the τ
values which maximized the silhouette score was kept.
Two of our clustering algorithms needed to determine the number of clusters in
advance. For this, we have performed the clustering and computed the associated
silhouette score for a number of clusters varying between 2 and the number of labels
+ 10. The number of clusters that maximized the silhouette score was kept.

7.2. Analysis of the Clustering results

On table 3, we present:

• The mean of the v-measure-score for each method of clustering across the 79
databases

• The standard deviation of the v-measure-score

• The number of databases for which a method is the best one. For example,
K-means on Rn×p has the best results for 3 databases (among 79 databases).
We can notice that in some cases, the best score for a database is obtained by
several methods.

The complete results are available in the appendix.

Table 3: Main characteristics of the v-measure-score obtained. For 4 geometries and 4 clustering
algorithms, this table gives the mean and the standard deviation along the 79 databases. Also, the
number and percentage of databases for which a method is the best are given.

Geometry Rn×p Sn
Clustering algo. K-means Hier. HDB. UMAP+HDB. K-means Hier. HDB. UMAP+HDB.

Mean 0.240 0.224 0.217 0.300 0.303 0.254 0.227 0.322
Std 0.241 0.253 0.232 0.272 0.260 0.290 0.250 0.270

Times best results 3 2 3 9 7 10 6 12
Percentage best results 3.8% 2.5% 3.8% 11.4% 8.9% 12.7% 7.6% 15.2%

Geometry Vn,p Euclidean, Rl

Clustering algo. K-means Hier. HDB. UMAP+HDB. K-means Hier. HDB. UMAP+HDB.
Mean 0.245 0.220 0.190 0.376 0.281 0.242 0.215 0.293
Std 0.228 0.263 0.219 0.271 0.256 0.260 0.233 0.259

Times best results 7 5 4 21 8 6 3 4
Percentage best results 8.9% 6.3% 5.1% 26.6% 10.1% 7.6% 3.8% 5.1%

Analysing the results, the best method is clearly the application of UMAP and
HDBSCAN framework on the Stiefel manifold. Indeed, it presents the best average
v-measure-score (0.376) and gives the best results for 21 databases out of 79. It is
quite clearly superior to the second best average of 0.322 obtained for the combination
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UMAP+HDBSCAN on the unit Sphere which is the best method for 12 out of 79
databases. Overall, the other methods propose sightly inferior mean values, between
0.2 and 0.3.
From the point of view of the geometric representation, we have

• the Stiefel manifold which is the best geometrical representation for 46.9% of
the databases. This means that for 37 databases across the 79, one of the 4
clustering algorithms used on the Stiefel manifold gives the best results.

• The unit Sphere which is the best for 44.3% of the databases (35/79).

• The space Rn×p which is the best for 21.5% of the databases (17/79).

• The Euclidean on raw data which arrives at the last place with only 26.6% of
databases well clustered (21/79).

Euclidean on raw data is clearly a less efficient method than the metrics induced
by the Stiefel manifold or the unit sphere representations. It validates once again the
interest of using the delay coordinate embedding to obtain geometric features of the
time series through the trajectory matrix. Moreover, it is interesting to work on the
geometrical representation of this trajectory matrix rather than using directly the
Frobenius norm which places us on Rn×p. Indeed, the Stiefel manifold and the unit
sphere present much better results. Finally, the unit sphere is an interesting alter-
native to the Stiefel manifold, because it is only slightly less good as the Stiefel and
allows more flexibility by allowing to compare Stiefel manifold elements of different
dimensions.
Once the geometrical representation of the time series analyzed, we let the reader
gives itself an idea on which could be the best clustering framework to use on the
Stiefel manifold. In this view we have the following results

• UMAP+HDBSCAN is the best clustering framework for 58.2% of the databases
(46/79). It has the best v-measure-score average of 0.323.

• K-means is able to well clusters the databases in 31.6% of the cases (25/79)
and has a mean value performance of 0.267.

• hierarchical algorithm managed to cluster 29.1% of the databases (23/79) with
a mean v-measure-score value of 0.235.

• HDBSCAN alone obtained a ratio of 20.2% good clustering (16/79) with still
less mean value of 0.212.

25



Part of the conclusion is that the HDBSCAN algorithm alone seems to be the worst
clustering algorithm. We further point out that for nearly 16% of the databases
(13/79), all 4 HDBSCAN results are zero. However, using it with UMAP seems really
very interesting because the results are greatly improved. The use of UMAP as a
pre-processing step of the HDBSCAN algorithm therefore seems very important. We
can also notice that a few parameters are used for the UMAP+HDBSCAN clustering
algorithms. It was not possible to optimize those elements for all the databases, but
for a user with one database, those parameters can be manipulated to have better
clustering results depending on what the user is looking for.
To represent the results, we propose to compare two methods by plotting the v-
measure-score of one method in function of the v-measure-score of the other one.
The databases are represented by points, and the red line separates into two fields,
when one of the two methods is better than the other. The figure 9 gives a visual
representation of the good results obtained by UMAP+HBDSCAN on the Stiefel
manifold. Indeed, when plotted against a more classic method (K-means on raw
data), we clearly see the efficiency of the method.

Figure 9: Databases represented by v-measure-score with UMAP+HDBSCAN on the Stiefel in
function of v-measure-score with K-means on raw data

A large part of the databases are above the red line (when UMAP+HDBSCAN
on the Stiefel is better than K-means on raw data). Moreover, the blue points are
in general closer to the red line. Indeed, when K-means on raw data is better (this
is the case for 21 databases out of 79), it is for a small amount. In average on the
21/79 databases, K-means on raw data has a higher v-measure-score with 0.117. The
median is even lower with a value of 0.08.
The figure 10 gives an other visualisation of the efficiency of UMAP+HDBSCAN
on the Stiefel compared to K-means on raw data. For each databases, the relative
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gap e = vmax−vmethod

vmax
between the results of a given method (fig. 10a: K-means

on raw data, fig. 10b: UMAP+HDBSCAN. on the Stiefel) and the best results
across the 16 methods is computed. Then, for each interval of 10% of the relative
gap, the percentage of concerned databases is plotted. For example, for 10% of the
databases, K-means on raw data gives results far away from the best results possible
with a relative gap between 70% and 80%. This shows that UMAP+HDBSCAN on
the Stiefel manifold is much more often the best method (first column). Moreover,
when this method is not the best, it does not give completely wrong results either.
Indeed, the number of databases falls largely when the relative gap increases. On
the contrary, for the K-means method on raw data the number of databases with a
very high relative gap is important, i.e. 14% of databases for which K-means on raw
data is completely off.

(a) Comparison between the K-means on
raw data and the best method

(b) Comparison between the
UMAP+HDBSCAN on the Stiefel and the
best method

Figure 10: The relative gap between the clustering of a given method and the best results
is computed for each database. Then, the percentage of concerned databases by interval of
relative gap is plotted for two methods : K-means on raw data, and UMAP+HDBSCAN
on the Stiefel

The authors of [19] performed a similar benchmark work on the same databases.
They tested two distances, the euclidean distance and the Time Wrapping distance
as well as 5 clustering algorithms, the K-means, K-medoids, Fuzzy C-means, Density
Peaks and Agglomerative. In addition, in their work, the authors have fixed the
number of clusters of each databases with respect to the true labels given. The
K-means method with the euclidean distance on raw data appears to be the best
clustering method of their benchmark (see fig. 5). Since we show that the framework
UMAP+HDBSCAN on the Stiefel manifold clearly presents better results than K-
means on raw data, this framework outperforms the best one proposed in [19]. As a

27



conclusion, none of the clustering methods proposed and tested in [19] seem better
than the geometrical frameworks we propose in this work.

8. Conclusion

In this article, we were interested in one-dimensional time series clustering. More
precisely, we proposed to apply delay coordinate embedding methods to embed the
time series on a higher-dimensional space. We used for that the delay coordinate
embedding, also known Takens’ embedding, which extracts geometrical features of
the times series by representing them on the so-called phase space. The induced tra-
jectory matrices can next be analyzed under the cover of different geometries. Each
geometry leads to the definition of a particular distance and a particular mean which
respect the structure of this geometry. Once these elements had been determined,
clustering algorithms could be applied.
Since clustering is an unsupervised method, we thought it was important to carry
out a complete benchmark to determine in advance which method is the best. To do
this, we used 79 databases with known expected results. The good results obtained
by geometric methods on high-dimensional time series, motivated us to carry out this
work. We proposed to apply similar methods to one-dimensional time series using
delay coordinate embedding. In addition, as the literature on one-dimensional time
series clustering makes little mention of this type of methods, it appeared important
to us to carry out this benchmark.
We have compared 4 coupled geometries with 4 clustering algorithms. The three
geometries induced by the embedding on higher-dimensional space gave significantly
better results than using an Euclidean method on raw data. Moreover, the Stiefel
manifold allowed better comparison and thus clustering of time series than the unit
sphere and then Rn×p.
If we look only at the clustering algorithms, a fairly clear ranking has emerged.
The combination of UMAP and HDBSCAN has been the best algorithm in front
of K-means, Hierarchical and HDBSCAN alone. In particular, the combination
UMAP+HDBSCAN on the Stiefel manifold gave the best results.
However, two parameters came into play during the delay coordinate embedding.
if m, the embedding dimension appeared as a parameter with little influence on
clustering, the τ parameter seemed to be of prime importance. For the different
simulation scenario, we have determined this optimal parameter for the clustering
with respect to the ’true’ labels, leading consequently to a small flavor of supervision
for the methods analyzed. An undergoing work is then to find an optimal way to
determine τ .
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In the literature, several methods are proposed to determine m and τ for the Takens’
theorem. In general, for m, the false nearest neighbor method is quite widely used
[1, 34]. For τ this is more complicated. Some methods like the one proposed in
[13] and which is an entropy-based method, allow to determine m and τ at the same
time. However, all these methods become complicated to implement in cases of noisy
and ’short’ time series like the ones available at ’UCR time series’. Moreover, the
best τ for the Takens’ theorem is not necessarily the best for the clustering. Indeed,
we don’t necessarily want a perfect representation of the dynamic system attractor,
but rather to highlight the difference between clusters through specific geometrical
features. Determining τ properly for real time series clustering therefore remains an
open question.
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