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Abstract

A major goal of molecular evolutionary biology is to identify loci or regions of the genome
under selection versus those evolving in a neutral manner. Correct identification allows
accurate inference of the evolutionary process and thus comprehension of historical and
contemporary processes driving phenotypic change and adaptation. A fundamental dif-
ficulty lies in distinguishing sites targeted by selection from both sites linked to these tar-
gets and sites fully independent of selection. These three categories of sites necessitate
attention in light of the debate over the relative importance of selection versus neutrality
and the neutral theory. Modern genomic insights have proved that complex processes
such as linkage, demography, and biased gene conversion complicate our understanding
of the role of neutral versus selective processes in evolution. In this perspective, we first
highlight the importance of the genomic and (a)biotic context of new mutations to iden-
tify the targets of natural selection. We then present mechanisms that may constrain the
evolution of genomes and bias the inference of selection. We discuss these mechanisms
within the two critical levels that they occur: the population level and the molecular level.
We highlight that they should be taken into account to correctly distinguish sites across
the genome subject to selective or non-selective forces and stress that a major current
field-wide goal is to quantify the absolute importance of these mechanisms.
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1. Introduction

Understanding the relative importance of evolutionary forces in driving adaptive change has
been a longstanding goal of evolutionary biology. In today’s genomic era, accurately and pre-
cisely addressing this question has become more feasible than ever before. Genomic data has
allowed, for example, quantification of introgression rates between populations or species (e.g.
Ellstrand et al., ) and accurate estimation of mutation rates within species or across the
genome (Besenbacher et al,, ; Ellegren et al., ; Hodgkinson and Eyre-Walker, ;
Zhu et al., ). Yet the interplay between neutral evolution and selective forces has remained
a difficult problem to address. Since the advent of population genetics as a field, debate over the
relative importance of these processes has arisen, been resolved, and re-arisen (e.g. Gillespie,

; Kimura et al., ; Kreitman, ; Ohta and Kimura, ). Most recently, 50 years
since the advent of the neutral theory, this debate has been rekindled in light of emerging ge-
nomic data (Jensen et al., ; Kern and Matthew W Hahn, ). In an era of limited genetic

tools and data, the neutral theory aimed to explain the greater than expected genetic diversity
observed based on the actions of natural selection alone. Kern and Hahn (2018) have most re-
cently argued that modern genomic data allows us to reject the applicability of neutral theory
for understanding molecular evolution, while Jensen et al. (2018) have replied that this is not
the case. A major dividing view on this point is whether a large proportion of the genome is
affected by adaptive natural selection (directly or indirectly), and there is ample space for addi-
tional data across a wider range of species to contribute towards these investigations and our
understanding of molecular evolution.

Natural selection functions in a diversity of modes. Negative selection - also termed purifying
selection - acts to reduce the frequency of deleterious mutations (i.e. mutations that reduce an
individual’s fitness, with selection coefficient s < 0) while positive selection favors the fixation
of beneficial mutations (s > 0). Both these modes of selection reduce diversity by favoring
or disfavoring specific alleles, but selection can also maintain genetic diversity when there is
a selective advantage to being in the heterozygous state, e.g. balancing selection. There is also
the case of sexual selection that we do not address here as its many and complex cases merit a
review of their own.

Genetic drift is the neutral corollary to natural selection, where allele frequencies change
due to random chance and sampling effects. Sites that are truly neutral are defined as those
with s = 0. If we define the effective size of a population as the size of an ideal population that
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experiences the same amount of genetic drift as the observed population (Wright, ), then
the appropriate measure of the strength of selection is (Ns). This is key because genetic drift
can act across a range of weakly selected sites when N is sufficiently large, while at a smaller N,
these sites may behave in a neutral manner.

Inference methods making use of empirical genomic data often require data solely originating
from neutral processes, e.g. to infer demography with SFS-based methods such as FastSimCoal
(Excoffier et al., ), or to infer the distribution of fitness effects (DFE) which requires con-
strasting SFS from neutral versus selected sites (Keightley and Eyre-Walker, ; Tataru and
Bataillon, ). A priori misidentification of selected versus neutral sites may strongly bias resul-
tant inferences, having a major impact on downstream interpretations. Approaches that search
for signatures of selection and identify causal variants for adaptation or other phenotypic change
mainly rely on identifying outlier regions of genomic differentiation (e.g GWAS, Fst outlier tests,

or environment-allele correlations; Beaumont and Nichols, : Foll et al,, ; Luu et al,,
; Whitlock and Lotterhos, ), sometimes incorporating the signature across a stretch of
the genome (e.g. Schrider and Kern, ).

Yet, a departure from genetic drift alone is not sufficient to merit a conclusion of selection.
Even supervised machine learning methods that use summary statistics to infer a history of se-
lective sweeps, such as S/HiC (Schrider and Kern, ), are sensitive to confounding factors
such as complex demographic history to accurately identify the variants under selection. In this
review we highlight both the importance of considering the genomic, biotic, and abiotic con-
text in which new mutations occur and the major evolutionary processes that can change allele
frequencies, creating a major confounding factor for evolutionary inference of natural selection.

2. Genomic and environmental context

The context in which mutations occur plays an important role in the actions of selection
versus drift. This context encapsulates both the genomic environment as well as the biotic and
abiotic environment of an organism containing those genes, therefore becoming relevant at both
the molecular and population levels of interaction. When interactions between loci occurring to-
gether in the genome create non-additive phenotypic changes (Cordell, ; Fisher, ;G
Martin et al., ) this can greatly complicate the inference of selection. In the presence of
epistatic interactions, an allele at a given site may only be beneficial to an organism when its
genomic environment contains another mutant allele at a different site in the genome, so that
when together these alleles generate a phenotypic change. The concept of epistasis is tightly
linked to the relative fitness effects of alleles, where a specific allele at one locus might change
the sign of the selection coefficient at another locus. This phenomenon may create strong pat-
terns of linkage disequilibrium and interfere with detection of selection since the selective effect
is dependent on the combinations of alleles across loci. Such an example of epistasis is provided
in the Segregation distortion paragraph.

In some cases, interference between selected sites of differential fitness effects can alter the
strength of selection on a genomic region. More positively (or negatively) selected sites with
physical linkage between each other can behave as a larger multi-site locus with an amplified
selection coefficient representative of all the selected alleles in the region. In other cases, the
strength of selection may be reduced when sites have competing impacts on fitness, termed Hill-
Robertson interference (Felsenstein, ). Amplification of the strength of selection by tightly-
linked, jointly selected sites may simplify detection of selection but complicate the identification
of precise sites under selection. Conversely, Hill-Robertson interference may complicate iden-
tifying both the presence of selection and the sites it targets. All of these effects depend on
many parameters, for instance, with a single population undergoing partial self-fertilization, se-
lective interference on deleterious alleles tends to reduce mean fitness and increase inbreeding
depression. This effect is stronger when deleterious alleles are more recessive but only weakly
dependent on the strength of selection against deleterious alleles and the recombination rate
(Roze, ). Selective interference thus affects the relative impact of adaptive and non-adaptive
processes in the genome.
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Equally complicating is the individual-level scenario where fitness is dependent on the local
community of organisms and whatever traits they exhibit (e.g. frequency-dependent selection)
or on the abiotic local conditions exerted by variable environments on the phenotype (spatially
or temporally varying selection). For example, in scale-eating cichlids, frequency-dependent se-
lection can drive the handedness of individual phenotypes, where it is advantageous to be the
rarer morph (Hori, ). Interestingly, competition between alleles at the genomic level can also
lead to frequency-dependent selection, with the most famous example being the amino acid
polymorphism at position 6 of 5-globin in Africa, which is associated with resistance to malaria
(see Taylor et al., , for review and meta-analyses). Spatially varying selection results from
environmental variation across geographic space (e.g. Gagnaire et al., ). When populations
exist across variable environments, distinct combination of alleles may arise within subpopula-
tions locally adapted to their environments. Thus, the strength of selection on non-neutral sites
can vary over time and space as an organism’s environment changes. For the purposes of evolu-
tionary inference and understanding the action of selection, experimental design is key so that
empirical analyses can be conducted where the time point is equivalent and the environment
is equivalent (or otherwise controlled for) to as much of an extent as possible (e.g. Gorter et al.,

). Spatially and temporally varying selection may be best accounted for by this direct ap-
proach or by studying natural clines of allele frequencies (Endler, : Machado et al., ).
However, for sites in the genome that are not targets of selection, nor purely under genetic drift,
remaining processes can change allele frequencies in ways indicative of selection and are thus
essential to bear in mind for evolutionary inference.

In the remainder of this perspective, we consider evolutionary processes at both the popu-
lation and molecular levels that have the potential to bias the inference of selection. Without
consideration of such processes, inaccurate conclusions may be drawn about the role of se-
lection in the evolutionary process. An extreme example of such mis-inference is Evans et al.
( ) and Mekel-Bobrov et al. ( ), where the result that selection drove brain size in hu-
mans was shown to be equivalently explained by neutral demographic processes (Currat et al.,

). Scenarios involved at the molecular level can also interfere with correct inference of se-

lection, including transmission bias (e.g. meiotic driver genes; Bravo Nunez et al., , for a
review), biased gene conversion (e.g. human accelerated genomic regions, HAR; N. Galtier and
Duret, : Pollard et al., ), or inference of the DFE (e.g. in flycatchers; Bolivar et al., ).

Though these are few examples, we argue that these population and molecular processes are
prevalent enough to act as major determinants of genomic diversity and are particularly easy to
confound with selection. We also argue that even if some cases of demographic processes may
be versions of genetic drift, in that they are due to sampling process, the signatures that they
leave in populations differs from that of single, ideal populations undergoing drift, emphasizing
their importance in distinguishing selection from neutrality. We define these as non-adaptive
processes since they are neither the direct action of selection nor are they purely subject to drift
(Table 1). This non-adaptive category should help to improve studies of both neutral or selective
processes impacting the genome by considering the relevant sites impacted by either process.
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3. Population-level processes

3.1. Population size.

A major difficulty in distinguishing neutral sites from those impacted by selection is demo-
graphic history. The term demography incorporates several factors, but at its core is defined as
change in population size, N. Population size combined with the selection coefficient determines
the effective strength of selection on existing genomic diversity and therefore has major effects
on the evolutionary process. Changes in population size result during population bottlenecks,
population expansions (within one locale), spatial population expansions over geographic space
(e.g. range expansion), or migration among populations (a more complicated case where a larger
gene pool becomes relevant).

While selection or drift may act on specific variants or regions of the genome, demographic
change affects the whole genome equally. Population bottlenecks have long been known to
impact genetic diversity and change the efficiency of selection acting on alleles with s # 0
within the population. In such a case, stronger drift impacts sites of both s = 0 and s close to
zero (nearly neutral mutations), with an increasing range of s values as population size decreases
and selection becomes less efficient. These alleles are driven to more rapid fixation or more rapid
loss, a pattern of allele frequency change which can mimic that of positive selection and selective
sweeps (see the Linked selection paragraph).

Inferring past population size bottlenecks is a rich field with many methods to do so from ge-
nomic data (Heled and Drummond, : Li and Durbin, ; Liu and Fu, : Terhorst et al.,

). Importantly, these methods rely on the use of neutral variants to obtain a proper infer-
ence (Gattepaille et al., ), and are perhaps particularly important in conservation genetics
to identify species at risk due to a recent bottleneck (rather than, e.g. an incorrect inference sug-
gesting low diversity is due to a selective sweep; Peery et al., ). The bias that results from a
demographic history of range expansion after a bottleneck has been particularly notable for hu-
mans having expanded out of Africa and more troublesome for distinguishing demography from
selection. Studies attempting to find signatures of selection in humans may suffer from biased
inferences due to these neutral historic processes (Amos and Bryant, ; Heller et al., ;
AR Martin et al., ). Such a demographic history is particularly intriguing as it combines not
only impactful changes in population size, but movement over geographic space which includes
complications of population structure and spatially varying selection.

3.2. Population structure.

Spatial population genetic structure and migration among subpopulations also plays an im-
portant role in the inference of selection. Population substructure can mimic a signal of local
adaptation, where some populations which happen to exist in different environments possess
different genetic signatures, leading methods to identify these differentiated loci as targets of
selection. For instance, several recent studies have encountered this difficulty where signals pre-
viously thought to be selective were instead due to the lack of accounting for genetic structure
among populations (Berg et al., ; Tian et al., ). Additionally, the process of migration
into populations or admixture among species can create an influx of novel genetic material. Even
if fully neutral, the presence of such heterozygosity in the population leaves a signal indicative
of either adaptive processes (e.g. balancing selection) or non-adaptive processes (e.g. secondary
contact or gene flow among structured populations) (Matthew William Hahn, ).

It is again of vital importance for studies inferring selection that population structure be
identified and accounted for. Many such approaches exist and vary depending on the form in
which structure presents itself: isolation by distance versus more distinct populations over space,
with varying degrees of migration occurring across the landscape. For example, isolation-with-
migration models aim to infer the amount of migration between isolated populations leading
to the level of polymorphism observed (Hey, ). Isolation by distance can also be difficult
in the face of inferring selection due to the correlation of allele frequency changes over space
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with environmental changes. Fortunately, much work has been done to correct for this popula-
tion structure when inferring selection over landscapes (Caye et al., ; de Villemereuil and
Gaggiotti, ; Gautier, ; Glinther and Coop, )

3.3. Spatial and temporal variation.

Spread or growth of populations across geographic space also introduces the complexity of
changing environmental conditions (or analogously temporally changing environments may have
similar impacts). Many populations and species are known to have undergone or are expected
to undergo this demographic change: from post-glacial recolonizations, to species invasions, to
shifting species ranges in response to climate change (Davis and Shaw, : Thomas, ).
During spatial expansions, not only does population size change with repeated bottlenecks of
founder individuals, but these populations colonize new geographic space, resulting in a process
termed gene surfing. Gene surfing is a unique genetic process that can leave genomic signatures
similar to those of selection, yet are due entirely to demographic processes. Sequential founder
events reduce the effective population size in colonizing populations and thus the efficiency of
selection, thereby allowing alleles that might otherwise be subject to strong selection to surf to
high frequency at the expanding wave front of a population (Edmonds et al., ; Klopfstein
et al,, ). Because surfing can lead to the increase or even fixation of a given allele (be it
neutral or not), it is easily mistaken for the product of selective forces. Yet unlike selection, surfing
can also cause deleterious variants to increase and result in severe fitness loss at expanding
fronts, termed expansion load (Peischl et al., ). This demographic process alters the actions
of natural selection and genetic drift within the genome and has potentially large effects on
population fitness, emphasizing its importance as a non-adaptive force in evolution.

4. Molecular-level processes

4.1. Linked selection.

The fact that recombination breaks apart combinations of alleles at an increasing probability
with greater distance along the genome results in many sites being physically linked and evolv-
ing in a non-independent manner. The background where a new mutation occurs therefore in-
fluences that variant’s probability of fixation, as any more strongly-selected target sites nearby
will influence that linked site, as first pointed out by Fisher ( ) and Muller ( ) (Figure 1).
A extended review on this topic was written by Gordo and Charlesworth ( ).

Neutral sites in a background with one or more sites under negative selection will have a
lower probability of fixation than unlinked neutral sites. This is due to background selection
(BGS), where negative selection against a variant reduces the frequency of nearby neutral vari-
ants (B. Charlesworth et al., ). Sites subject to BGS fall in the category of non-adaptive
evolution because these variants are not directly selected against nor are they evolving neu-
trally since selection indirectly impacts them. These linked sites evolve in a non-neutral fashion,
so even if phenotypically and adaptively they confer no change in phenotype, they must not be
considered neutral for inferential purposes, a point which is widely recognized in the field.

Similarly, the occurrence of a mutation conferring a fitness benefit can also result in the re-
duction of genetic diversity through a selective sweep (Figure 1). When selection increases the
frequency of a beneficial allele in the population, nearby neutral variants likewise increase in
frequency, hitchhiking along to fixation with the beneficial variant. Whether selection acts on a
single novel variant (hard sweeps; Messer and Neher, ) or on standing genetic variation (soft
sweeps; Hermisson and Pleuni S. Pennings, ; Pleuni S Pennings and Hermisson, ,b)
can influence the extent of the impact on allele frequency change for linked neutral sites. Several
population level processes may even be contributors to instances where standing genetic varia-
tion results in a soft sweep, for example if existing diversity shifts to become beneficial, perhaps
due to environmental change.

Finally, genetic linkage can also lead to an increase in genetic diversity when neutral sites
fall near a partially deleterious recessive allele or near an allele under balancing selection. In the
presence of partially recessive deleterious alleles, this increase in diversity is termed associative
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overdominance (AOD; Becher et al., : Gilbertetal., : Ohta and Kimura, ; Zhao and
Brian Charlesworth, ), and is limited to regions of low recombination (Figure 1). In contrast,
sites linked to those under classical balancing selection should increase in diversity across regions
spanning the range of possible recombination rates.

Most methods to detect selection on linked polymorphisms are based on the site frequency
spectrum (SFS), such as Tajima’s D which depends on the pairwise nucleotide diversity and the
number of segregating sites (Tajima, ) and other methods which are based on the haplotype
structure (Hudson and Kaplan, ; Sabeti, Reich, et al., ; Sabeti, Varilly, et al., ; Voight
etal, ). Methods based on haplotype structure are most effective to detect recent episodes
of hitchhiking (Garud et al., ).

Background selection Associative overdominance Selective sweeps

Figure 1 - Genetic linkage can drastically change the frequency of neutral alleles in a
population, falling into three categories depending on the manner of selection towards
a focal site. For each form of selection shown, the top row shows the haplotypes of a
non-recombining region in the initial population. The bottom row shows the resultant
haplotypes after an episode of selection. For illustrative purpose, each haplotype con-
tains 3 derived alleles (circles): neutral ones are in blue, beneficial in green, and deleteri-
ous alleles are in red or orange to indicate dominant or recessive, respectively. For back-
ground selection (left), neutral diversity is reduced due to negative selection on nearby
linked deleterious alleles and homozygosity increases at the population level. Associa-
tive overdominance (center) prevents combinations of homozygous neutral alleles from
accumulating in the population in regions of low recombination. At the beginning, each
haplotype contains one deleterious recessive allele (orange circle) and loci carrying such
alleles are genetically linked as the region is non-recombining. Selection favors combina-
tions of heterozygous deleterious alleles as they are recessive. Neutral heterozygosity is
favored at the population level and diversity increases. Selective sweeps (right) reduce
diversity and increase allele frequency through the hitchhiking of neutral variants that
are linked to beneficial mutations under positive selection. Figure inspired from Alves et

al. ( ).

4.2. Hypermutability of CpG sites and mutation rate variation.

CpG sites in which a cytosine and a guanine appear consecutively, can experience high levels
of mutational pressure. Cytosines at CpG sites are one of the preferential targets of methyla-
tion in vertebrates and some other species. Methylated cytosines spontaneously deaminate to
thymines, leading to an increase in the frequency of TpG sites within the genome and a relative

deficit of CpG (reviewed in Hodgkinson and Eyre-Walker, ), potentially leaving a signature
indicative of selection.
A recent paper by Laurin-Lemay et al. ( ) found that a large proportion of mammalian

codon usage, such as the preferential usage of the GCC Alanine codon compared to its synony-
mous GCG in humans, can be explained by the hypermutability of CpG sites, even though this
is often unaccounted for in codon substitution models. The authors advocate for evaluating the
impact of such model violations on statistical tests in phylogenetic analyses. Interestingly, CpG
hypermutability is also an underappreciated process in the field of population genomics where
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the favored strategy has been to filter out hypermutable sites before performing evolutionary
inferences (Pouyet, Aeschbacher, et al., ). The hypermutability of these sites and the sub-
sequent bias to certain alleles has been shown to shift site frequency spectra in ways that might
interfere with population genetic inferences that are based on the SFS (Harpak et al., ).

4.3. Segregation distortion.

Meiotic gene drivers manipulate the transmission process during meiosis to their own ad-
vantage, leading to their over-representation in gametes despite the lack of advantage to the
carrier. As segregation distortion encompasses a wide variety of mechanisms, we provide three
such examples. The first one is the segregation distorter gene complex (Figure 2; Larracuente and
Presgraves, ), present at low frequency in all natural populations of Drosophila melanogaster.
This complex involves the Sd locus and its target responder locus (Rsp). There is variable trans-
mission advantage between the different Sd alleles, and one of these alleles recently swept to
fixation in Africa causing strong linkage disequilibrium and loss of genetic diversity (Presgraves
et al., ). A second example is Wolbachia, where a maternally inherited bacteria of arthro-
pods manipulates host reproduction. Wolbachia is known to be a selfish element favoring its
own propagation through, for instance, the inability of infected males to successfully reproduce
with uninfected females (Turelli and Hoffmann, ). At the level of the host, the presence of
Wolbachia is also associated to segregation distortion: the maternal inheritance induces genetic
linkage on host mitochondria and mitochondria in infected females are over-represented in the
next generation. This effect reduces the effective population size and the efficacy of selection
in mitochondria and could drive fixation of mitochondrial haplotypes (Cariou et al., ; GD
Hurst and Jiggins, ). A third example comes from centromere evolution, where asymmetry
at female meiosis causes only one of the four products of meiosis to become the oocyte nucleus
and can lead to a kind of segregation distortion (Henikoff et al., ). Centromeres have a cen-
tral role in preventing aneuploidy by facilitating the assembly of several components required
for chromosome separation (see Tanaka et al., , for a review). This centromere drive model
includes proteins such as Cid and highly repetitive satellite sequences that bind to microtubules
during meiosis | (Henikoff et al., ). Centromeres which preferentially transmit to the oocyte
nucleus can rapidly drive to fixation even with a slight advantage at each meiosis (Henikoff et al.,

).

Meiotic drivers are predicted to be evolutionarily labile by favoring their fixation in the popu-
lation even though they are detrimental for their carriers (Lindholm et al., ). Identifying loci
under selection in these cases is anything but straightforward, as the signal of meiotic drive might
be easily confounded with selective sweeps and positive selection (Presgraves et al., ).

4.4. Mobility of genetic elements.

Detecting the signature of selection is often restricted to SNPs even though transposable
elements (TE) and other structural genomic changes such as inversions are likely also prevalent
biases for adaptive evolution. Until further studies improve our understanding of mobile genetic
elements and our ability to identify them, it is certainly possible that these regions of the genome
may play a role in changing diversity and biasing or interrupting our ability to infer selection or
neutral demographic parameters, e.g. in inverted regions that can no longer recombine, delete-
rious variation can become masked or beneficial variation may be maintained in tight linkage.

TEs are widespread across the tree of life and in some species can represent a major fraction
of the genome (de Koning et al., ; Wicker et al,, ). TEs are associated with the creation
of new mutations and changes in recombination patterns (e.g. Bartolome et al., ). McClin-
tock ( ) first discovered that mobile elements were associated with phenotypic changes in
maize. However, these sorts of structural genomic changes are often disregarded in favor of
SNPs when inferring sources of adaptive evolution mainly because of methodological limita-
tions (Villanueva-Canas et al., ). First, TE families are difficult to identify as they are repet-
itive elements spread throughout the genome with limited descriptive features such as target
site duplications or terminal repeats and transposases (Xiong et al., ). They are also com-
monly associated with genetic load as they can lead to diseases if inserted into genes (Chen et al.,
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Meiosis products
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Figure 2 - Figure simplified from Bravo Ninez et al. ( ). An example of segregation
distortion of meiotic gene drivers with the “killer- target" strategy is shown for the SD
gene complex in Drosophila melanogaster. This complex involves the Sd and Rsp loci. The
“target" locus Rsp harbours two alleles: the Rsp® and Rsp’ that are respectively sensitive
and insensitive to the meiotic driver. Sd produces a “killer" element (red dots, a protein in
this example) which interferes with Rsp® and kills the meiotic products that inherit Rsp®.

). For instance, the Alu family of insertions are associated to haemophilia or breast cancer
in humans (Batzer and Deininger, ). Second, because repetitive elements are enriched for
TEs, it is difficult to assemble these genomic regions (Bourgeois and Boissinot, ). For the
past decade, new techniques have emerged to infer selection on TE insertions and are divided
into two main classes: SFS-based or haplotype-based methods (Villanueva-Canas et al., ).
It is clear that as our understanding of TE dynamics improves, such knowledge may greatly con-
tribute to our understanding of selection acting at the genomic level and modes of adaptive
evolution.

4.5. Gene conversion.

Meiotic recombination reshuffles the genetic material of parents to produce a new set of ge-
netic material in offspring. During recombination, homologous gene conversion can result from
the conversion of an acceptor locus at heterozygous sites in donor sequences. Biased gene con-
version (BGC),occurring at locations where recombination breaks the DNA strand, makes the
probability of transmitting one of the two alleles larger than the probability of losing it. BGC
is comprised of two main mechanisms: double-strand-break-driven (dBGC; Myers et al., ;
Paigen and Petkov, ) and GC-driven (gBGC; Duret and N. Galtier, ; Lesecque et al,,

), each of which have different mechanistic origins and consequences. To our knowledge
dBGC is not expected to be confounded with selection and will not be discussed further herein.
On the contrary, gBGC is often responsible for false positives in inferences of selection (Nicolas
Galtier et al., : Ratnakumar et al., ).

gBGC is a transmission bias in favor of G/C over A/T alleles when a mismatch is repaired after
a meiotic recombination event. This leads to the increase of GC content in regions of high recom-
bination over evolutionary time (Duret and N. Galtier, ) (Figure 3). Evidence for gBGC has
been shown in many organisms (Duret and N. Galtier, ; Lassalle et al., ; Lesecque et al.,

; Webster et al., ) and has strong consequences on genomic architecture, ranging from
global GC-enrichment of genomes to variation in codon usage between genes (Pouyet, Mouch-
iroud, et al., ), and can be confounded with translational selection (Gingold et al., ).
When G/C alleles are beneficial as compared to A/T, gBGC amplifies the speed of fixation of a
beneficial allele in the population, while in other cases when G/C alleles are slightly deleterious,
gBGC counteracts the effect of selection (if the transmission bias parameter, b, is stronger than
the selection parameter, s. At the population level, gBGC shifts the site frequency spectrum to-
wards the left for strong-to-weak polymorphisms (respectively to the right for weak-to-strong)
mimicking the effect of natural selection in high recombination rate regions (Glémin et al., :
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Figure 3 - Figure adapted from Glémin et al. ( ). GC-biased gene conversion (gBGC)
occurs after the formation of hetero-duplexes during a meiotic recombination event. Het-
eroduplexes can result from crossing-over (shown here) as well as from non-crossover
events. In the presence of gBGC, mismatches are repaired more than half of the time in
favor of guanine and cytosine rather than adenine and thymine. This bias towards en-
richment of guanine and cytosine is of few percent in yeast or humans, leading to the
accumulation of GC content within genomes over time.

Lachance and Tishkoff, ; Pouyet, Aeschbacher, et al., ). One way to consider the conse-
qguences of gBGC is to contrast genetic diversity of a region between weak-to-strong and strong-
to-weak mutations. Additionally, gBGC should not leave the same signature as linked selection
because gBGC acts solely on its targets sites and does not affect the surrounding diversity. There
is no inherent selective bias driving the genomic changes resulting from gene conversion, nor can
a biased process by definition be considered neutral. Instead, this process is best considered as
non-adaptive evolution, where fitness is not impacted, but there is clearly a non-neutral change
in allele frequencies over time. As illustrated by Hurst ( ), segregation distortion and BGC
are rarely considered simultaneously even though they act similarly to increase their transmis-
sion to the detriment of other alleles. Both BGC and segregation distortion along with structural
genomic changes are common in nature, and including these processes in studies of adaptive
evolution will allow us to properly identify targets of positive selection (Villanueva-Canas et al.,

).

5. Conclusion

In the modern genomic era, emerging data will hopefully allow us to build a complete picture
of the relevant genomic, demographic, and environmental scenarios where different evolution-
ary processes are expected to dominate changes in molecular diversity over time. Identifying a
variant as subject to natural selection is difficult since the selective environment of an allele is a
combination of its own innate properties impacting the genome, along with epistatic effects due
to its genomic environment, as well as its demographic situation (how efficient selection is in the
population where this individual exists), and lastly its (a)biotic environment (e.g. stressful environ-
ments for the organism harboring this variant, or the frequency of conspecific phenotypes). Un-
derstanding the processes that may bias our inferences of sites under selection is paramount to
better understanding the evolutionary forces leading to genomic change. To a large extent these
biases result from the difficulty or inability to distinguish non-adaptive sites from sites under
direct selection. As discussed, this is largely due to the demographic processes in a population’s
past that make otherwise neutral sites mimic selection and fall into the category of non-adaptive,
as well as due to the molecular processes that change neutral allele frequencies in biased ways
and can even counteract the effect of selection on selected sites (gBGC, for instance). There is
an implied distinction worth explicitly stating: even if the majority of sites within the genome
may be neutral in terms of their selection coefficient, it is very likely the case that the majority of
the genome evolves due to the impact of selective forces, even if that targets few specific sites,
due to the degree of linkage within the genome. This still does not, however, discount the fact
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that non-adaptive evolutionary processes have an important impact on genomic change. Incor-
porating all of this information in future studies is a tall task, particularly since empirical study of
biology is further complicated by changing environments and demographics that are not always
apparent to observers, nor always sufficiently sampled. We hope that this perspective has high-
lighted the importance of recognizing and distinguishing the complex interactions of selective,
non-adaptive, and neutral processes acting within and among genomes and serves to move the
field of evolutionary genomics forward in understanding the drivers of molecular diversity.
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