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Abstract
Amajor goal ofmolecular evolutionary biology is to identify loci or regions of the genomeunder selection versus those evolving in a neutral manner. Correct identification allowsaccurate inference of the evolutionary process and thus comprehension of historical andcontemporary processes driving phenotypic change and adaptation. A fundamental dif-ficulty lies in distinguishing sites targeted by selection from both sites linked to these tar-gets and sites fully independent of selection. These three categories of sites necessitateattention in light of the debate over the relative importance of selection versus neutralityand the neutral theory. Modern genomic insights have proved that complex processessuch as linkage, demography, and biased gene conversion complicate our understandingof the role of neutral versus selective processes in evolution. In this perspective, we firsthighlight the importance of the genomic and (a)biotic context of new mutations to iden-tify the targets of natural selection.We then present mechanisms that may constrain theevolution of genomes and bias the inference of selection. We discuss these mechanismswithin the two critical levels that they occur: the population level and themolecular level.We highlight that they should be taken into account to correctly distinguish sites acrossthe genome subject to selective or non-selective forces and stress that a major currentfield-wide goal is to quantify the absolute importance of these mechanisms.
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1. Introduction
Understanding the relative importance of evolutionary forces in driving adaptive change hasbeen a longstanding goal of evolutionary biology. In today’s genomic era, accurately and pre-cisely addressing this question has become more feasible than ever before. Genomic data hasallowed, for example, quantification of introgression rates between populations or species (e.g.Ellstrand et al., 2013) and accurate estimation of mutation rates within species or across thegenome (Besenbacher et al., 2019; Ellegren et al., 2003; Hodgkinson and Eyre-Walker, 2011;Zhu et al., 2014). Yet the interplay between neutral evolution and selective forces has remaineda difficult problem to address. Since the advent of population genetics as a field, debate over therelative importance of these processes has arisen, been resolved, and re-arisen (e.g. Gillespie,1995; Kimura et al., 1968; Kreitman, 1996; Ohta and Kimura, 1971). Most recently, 50 yearssince the advent of the neutral theory, this debate has been rekindled in light of emerging ge-nomic data (Jensen et al., 2018; Kern and Matthew W Hahn, 2018). In an era of limited genetictools and data, the neutral theory aimed to explain the greater than expected genetic diversityobserved based on the actions of natural selection alone. Kern and Hahn (2018) have most re-cently argued that modern genomic data allows us to reject the applicability of neutral theoryfor understanding molecular evolution, while Jensen et al. (2018) have replied that this is notthe case. A major dividing view on this point is whether a large proportion of the genome isaffected by adaptive natural selection (directly or indirectly), and there is ample space for addi-tional data across a wider range of species to contribute towards these investigations and ourunderstanding of molecular evolution.Natural selection functions in a diversity ofmodes. Negative selection – also termed purifyingselection – acts to reduce the frequency of deleterious mutations (i.e. mutations that reduce anindividual’s fitness, with selection coefficient s < 0) while positive selection favors the fixationof beneficial mutations (s > 0). Both these modes of selection reduce diversity by favoringor disfavoring specific alleles, but selection can also maintain genetic diversity when there isa selective advantage to being in the heterozygous state, e.g. balancing selection. There is alsothe case of sexual selection that we do not address here as its many and complex cases merit areview of their own.Genetic drift is the neutral corollary to natural selection, where allele frequencies changedue to random chance and sampling effects. Sites that are truly neutral are defined as thosewith s = 0. If we define the effective size of a population as the size of an ideal population that
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experiences the same amount of genetic drift as the observed population (Wright, 1931), thenthe appropriate measure of the strength of selection is (Ns). This is key because genetic driftcan act across a range of weakly selected sites when N is sufficiently large, while at a smaller N ,these sites may behave in a neutral manner.Inferencemethodsmaking use of empirical genomic data often require data solely originatingfrom neutral processes, e.g. to infer demography with SFS-based methods such as FastSimCoal(Excoffier et al., 2013), or to infer the distribution of fitness effects (DFE) which requires con-strasting SFS from neutral versus selected sites (Keightley and Eyre-Walker, 2007; Tataru andBataillon, 2019). A priorimisidentification of selected versus neutral sites may strongly bias resul-tant inferences, having a major impact on downstream interpretations. Approaches that searchfor signatures of selection and identify causal variants for adaptation or other phenotypic changemainly rely on identifying outlier regions of genomic differentiation (e.g GWAS, FST outlier tests,or environment-allele correlations; Beaumont and Nichols, 1996; Foll et al., 2008; Luu et al.,2017; Whitlock and Lotterhos, 2015), sometimes incorporating the signature across a stretch ofthe genome (e.g. Schrider and Kern, 2016).Yet, a departure from genetic drift alone is not sufficient to merit a conclusion of selection.Even supervised machine learning methods that use summary statistics to infer a history of se-lective sweeps, such as S/HiC (Schrider and Kern, 2016), are sensitive to confounding factorssuch as complex demographic history to accurately identify the variants under selection. In thisreview we highlight both the importance of considering the genomic, biotic, and abiotic con-text in which new mutations occur and the major evolutionary processes that can change allelefrequencies, creating a major confounding factor for evolutionary inference of natural selection.
2. Genomic and environmental context

The context in which mutations occur plays an important role in the actions of selectionversus drift. This context encapsulates both the genomic environment as well as the biotic andabiotic environment of an organism containing those genes, therefore becoming relevant at boththe molecular and population levels of interaction. When interactions between loci occurring to-gether in the genome create non-additive phenotypic changes (Cordell, 2002; Fisher, 1918; GMartin et al., 2007) this can greatly complicate the inference of selection. In the presence ofepistatic interactions, an allele at a given site may only be beneficial to an organism when itsgenomic environment contains another mutant allele at a different site in the genome, so thatwhen together these alleles generate a phenotypic change. The concept of epistasis is tightlylinked to the relative fitness effects of alleles, where a specific allele at one locus might changethe sign of the selection coefficient at another locus. This phenomenon may create strong pat-terns of linkage disequilibrium and interfere with detection of selection since the selective effectis dependent on the combinations of alleles across loci. Such an example of epistasis is providedin the Segregation distortion paragraph.In some cases, interference between selected sites of differential fitness effects can alter thestrength of selection on a genomic region. More positively (or negatively) selected sites withphysical linkage between each other can behave as a larger multi-site locus with an amplifiedselection coefficient representative of all the selected alleles in the region. In other cases, thestrength of selection may be reduced when sites have competing impacts on fitness, termed Hill-Robertson interference (Felsenstein, 1974). Amplification of the strength of selection by tightly-linked, jointly selected sites may simplify detection of selection but complicate the identificationof precise sites under selection. Conversely, Hill-Robertson interference may complicate iden-tifying both the presence of selection and the sites it targets. All of these effects depend onmany parameters, for instance, with a single population undergoing partial self-fertilization, se-lective interference on deleterious alleles tends to reduce mean fitness and increase inbreedingdepression. This effect is stronger when deleterious alleles are more recessive but only weaklydependent on the strength of selection against deleterious alleles and the recombination rate(Roze, 2015). Selective interference thus affects the relative impact of adaptive and non-adaptiveprocesses in the genome.
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Equally complicating is the individual-level scenario where fitness is dependent on the localcommunity of organisms and whatever traits they exhibit (e.g. frequency-dependent selection)or on the abiotic local conditions exerted by variable environments on the phenotype (spatiallyor temporally varying selection). For example, in scale-eating cichlids, frequency-dependent se-lection can drive the handedness of individual phenotypes, where it is advantageous to be therarer morph (Hori, 1993). Interestingly, competition between alleles at the genomic level can alsolead to frequency-dependent selection, with the most famous example being the amino acidpolymorphism at position 6 of β-globin in Africa, which is associated with resistance to malaria(see Taylor et al., 2012, for review and meta-analyses). Spatially varying selection results fromenvironmental variation across geographic space (e.g. Gagnaire et al., 2012). When populationsexist across variable environments, distinct combination of alleles may arise within subpopula-tions locally adapted to their environments. Thus, the strength of selection on non-neutral sitescan vary over time and space as an organism’s environment changes. For the purposes of evolu-tionary inference and understanding the action of selection, experimental design is key so thatempirical analyses can be conducted where the time point is equivalent and the environmentis equivalent (or otherwise controlled for) to as much of an extent as possible (e.g. Gorter et al.,2018). Spatially and temporally varying selection may be best accounted for by this direct ap-proach or by studying natural clines of allele frequencies (Endler, 1977; Machado et al., 2016).However, for sites in the genome that are not targets of selection, nor purely under genetic drift,remaining processes can change allele frequencies in ways indicative of selection and are thusessential to bear in mind for evolutionary inference.In the remainder of this perspective, we consider evolutionary processes at both the popu-lation and molecular levels that have the potential to bias the inference of selection. Withoutconsideration of such processes, inaccurate conclusions may be drawn about the role of se-lection in the evolutionary process. An extreme example of such mis-inference is Evans et al.(2005) and Mekel-Bobrov et al. (2005) , where the result that selection drove brain size in hu-mans was shown to be equivalently explained by neutral demographic processes (Currat et al.,2006). Scenarios involved at the molecular level can also interfere with correct inference of se-lection, including transmission bias (e.g. meiotic driver genes; Bravo Núnez et al., 2018, for areview), biased gene conversion (e.g. human accelerated genomic regions, HAR; N. Galtier andDuret, 2007; Pollard et al., 2006), or inference of the DFE (e.g. in flycatchers; Bolivar et al., 2018).Though these are few examples, we argue that these population andmolecular processes areprevalent enough to act as major determinants of genomic diversity and are particularly easy toconfound with selection. We also argue that even if some cases of demographic processes maybe versions of genetic drift, in that they are due to sampling process, the signatures that theyleave in populations differs from that of single, ideal populations undergoing drift, emphasizingtheir importance in distinguishing selection from neutrality. We define these as non-adaptiveprocesses since they are neither the direct action of selection nor are they purely subject to drift(Table 1). This non-adaptive category should help to improve studies of both neutral or selectiveprocesses impacting the genome by considering the relevant sites impacted by either process.
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3. Population-level processes
3.1. Population size.

A major difficulty in distinguishing neutral sites from those impacted by selection is demo-graphic history. The term demography incorporates several factors, but at its core is defined aschange in population size,N . Population size combined with the selection coefficient determinesthe effective strength of selection on existing genomic diversity and therefore has major effectson the evolutionary process. Changes in population size result during population bottlenecks,population expansions (within one locale), spatial population expansions over geographic space(e.g. range expansion), or migration among populations (a more complicated case where a largergene pool becomes relevant).
While selection or drift may act on specific variants or regions of the genome, demographicchange affects the whole genome equally. Population bottlenecks have long been known toimpact genetic diversity and change the efficiency of selection acting on alleles with s ̸= 0within the population. In such a case, stronger drift impacts sites of both s = 0 and s close tozero (nearly neutral mutations), with an increasing range of s values as population size decreasesand selection becomes less efficient. These alleles are driven tomore rapid fixation or more rapidloss, a pattern of allele frequency changewhich canmimic that of positive selection and selectivesweeps (see the Linked selection paragraph).
Inferring past population size bottlenecks is a rich field with many methods to do so from ge-nomic data (Heled and Drummond, 2008; Li and Durbin, 2011; Liu and Fu, 2015; Terhorst et al.,2017). Importantly, these methods rely on the use of neutral variants to obtain a proper infer-ence (Gattepaille et al., 2013), and are perhaps particularly important in conservation geneticsto identify species at risk due to a recent bottleneck (rather than, e.g. an incorrect inference sug-gesting low diversity is due to a selective sweep; Peery et al., 2012). The bias that results from ademographic history of range expansion after a bottleneck has been particularly notable for hu-mans having expanded out of Africa and more troublesome for distinguishing demography fromselection. Studies attempting to find signatures of selection in humans may suffer from biasedinferences due to these neutral historic processes (Amos and Bryant, 2011; Heller et al., 2013;AR Martin et al., 2017). Such a demographic history is particularly intriguing as it combines notonly impactful changes in population size, but movement over geographic space which includescomplications of population structure and spatially varying selection.

3.2. Population structure.
Spatial population genetic structure and migration among subpopulations also plays an im-portant role in the inference of selection. Population substructure can mimic a signal of localadaptation, where some populations which happen to exist in different environments possessdifferent genetic signatures, leading methods to identify these differentiated loci as targets ofselection. For instance, several recent studies have encountered this difficulty where signals pre-viously thought to be selective were instead due to the lack of accounting for genetic structureamong populations (Berg et al., 2019; Tian et al., 2008). Additionally, the process of migrationinto populations or admixture among species can create an influx of novel genetic material. Evenif fully neutral, the presence of such heterozygosity in the population leaves a signal indicativeof either adaptive processes (e.g. balancing selection) or non-adaptive processes (e.g. secondarycontact or gene flow among structured populations) (Matthew William Hahn, 2018).
It is again of vital importance for studies inferring selection that population structure beidentified and accounted for. Many such approaches exist and vary depending on the form inwhich structure presents itself: isolation by distance versusmore distinct populations over space,with varying degrees of migration occurring across the landscape. For example, isolation-with-migration models aim to infer the amount of migration between isolated populations leadingto the level of polymorphism observed (Hey, 2010). Isolation by distance can also be difficultin the face of inferring selection due to the correlation of allele frequency changes over space
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with environmental changes. Fortunately, much work has been done to correct for this popula-tion structure when inferring selection over landscapes (Caye et al., 2019; de Villemereuil andGaggiotti, 2015; Gautier, 2015; Günther and Coop, 2013)
3.3. Spatial and temporal variation.

Spread or growth of populations across geographic space also introduces the complexity ofchanging environmental conditions (or analogously temporally changing environments may havesimilar impacts). Many populations and species are known to have undergone or are expectedto undergo this demographic change: from post-glacial recolonizations, to species invasions, toshifting species ranges in response to climate change (Davis and Shaw, 2001; Thomas, 2010).During spatial expansions, not only does population size change with repeated bottlenecks offounder individuals, but these populations colonize new geographic space, resulting in a processtermed gene surfing. Gene surfing is a unique genetic process that can leave genomic signaturessimilar to those of selection, yet are due entirely to demographic processes. Sequential founderevents reduce the effective population size in colonizing populations and thus the efficiency ofselection, thereby allowing alleles that might otherwise be subject to strong selection to surf tohigh frequency at the expanding wave front of a population (Edmonds et al., 2004; Klopfsteinet al., 2005). Because surfing can lead to the increase or even fixation of a given allele (be itneutral or not), it is easilymistaken for the product of selective forces. Yet unlike selection, surfingcan also cause deleterious variants to increase and result in severe fitness loss at expandingfronts, termed expansion load (Peischl et al., 2013). This demographic process alters the actionsof natural selection and genetic drift within the genome and has potentially large effects onpopulation fitness, emphasizing its importance as a non-adaptive force in evolution.
4. Molecular-level processes

4.1. Linked selection.
The fact that recombination breaks apart combinations of alleles at an increasing probabilitywith greater distance along the genome results in many sites being physically linked and evolv-ing in a non-independent manner. The background where a new mutation occurs therefore in-fluences that variant’s probability of fixation, as any more strongly-selected target sites nearbywill influence that linked site, as first pointed out by Fisher (1930) and Muller (1932) (Figure 1).A extended review on this topic was written by Gordo and Charlesworth (2001).Neutral sites in a background with one or more sites under negative selection will have alower probability of fixation than unlinked neutral sites. This is due to background selection(BGS), where negative selection against a variant reduces the frequency of nearby neutral vari-ants (B. Charlesworth et al., 1993). Sites subject to BGS fall in the category of non-adaptiveevolution because these variants are not directly selected against nor are they evolving neu-trally since selection indirectly impacts them. These linked sites evolve in a non-neutral fashion,so even if phenotypically and adaptively they confer no change in phenotype, they must not beconsidered neutral for inferential purposes, a point which is widely recognized in the field.Similarly, the occurrence of a mutation conferring a fitness benefit can also result in the re-duction of genetic diversity through a selective sweep (Figure 1). When selection increases thefrequency of a beneficial allele in the population, nearby neutral variants likewise increase infrequency, hitchhiking along to fixation with the beneficial variant. Whether selection acts on asingle novel variant (hard sweeps;Messer andNeher, 2012) or on standing genetic variation (softsweeps; Hermisson and Pleuni S. Pennings, 2005; Pleuni S Pennings and Hermisson, 2006a,b)can influence the extent of the impact on allele frequency change for linked neutral sites. Severalpopulation level processes may even be contributors to instances where standing genetic varia-tion results in a soft sweep, for example if existing diversity shifts to become beneficial, perhapsdue to environmental change.Finally, genetic linkage can also lead to an increase in genetic diversity when neutral sitesfall near a partially deleterious recessive allele or near an allele under balancing selection. In thepresence of partially recessive deleterious alleles, this increase in diversity is termed associative
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overdominance (AOD; Becher et al., 2020; Gilbert et al., 2020; Ohta and Kimura, 1970; Zhao andBrian Charlesworth, 2016), and is limited to regions of low recombination (Figure 1). In contrast,sites linked to those under classical balancing selection should increase in diversity across regionsspanning the range of possible recombination rates.Most methods to detect selection on linked polymorphisms are based on the site frequencyspectrum (SFS), such as Tajima’s D which depends on the pairwise nucleotide diversity and thenumber of segregating sites (Tajima, 1989) and other methods which are based on the haplotypestructure (Hudson andKaplan, 1995; Sabeti, Reich, et al., 2002; Sabeti, Varilly, et al., 2007; Voightet al., 2006). Methods based on haplotype structure are most effective to detect recent episodesof hitchhiking (Garud et al., 2015).

Background selection Associative overdominance Selective sweeps
Figure 1 – Genetic linkage can drastically change the frequency of neutral alleles in apopulation, falling into three categories depending on the manner of selection towardsa focal site. For each form of selection shown, the top row shows the haplotypes of anon-recombining region in the initial population. The bottom row shows the resultanthaplotypes after an episode of selection. For illustrative purpose, each haplotype con-tains 3 derived alleles (circles): neutral ones are in blue, beneficial in green, and deleteri-ous alleles are in red or orange to indicate dominant or recessive, respectively. For back-ground selection (left), neutral diversity is reduced due to negative selection on nearbylinked deleterious alleles and homozygosity increases at the population level. Associa-tive overdominance (center) prevents combinations of homozygous neutral alleles fromaccumulating in the population in regions of low recombination. At the beginning, eachhaplotype contains one deleterious recessive allele (orange circle) and loci carrying suchalleles are genetically linked as the region is non-recombining. Selection favors combina-tions of heterozygous deleterious alleles as they are recessive. Neutral heterozygosity isfavored at the population level and diversity increases. Selective sweeps (right) reducediversity and increase allele frequency through the hitchhiking of neutral variants thatare linked to beneficial mutations under positive selection. Figure inspired from Alves etal. (2012).

4.2. Hypermutability of CpG sites and mutation rate variation.
CpG sites in which a cytosine and a guanine appear consecutively, can experience high levelsof mutational pressure. Cytosines at CpG sites are one of the preferential targets of methyla-tion in vertebrates and some other species. Methylated cytosines spontaneously deaminate tothymines, leading to an increase in the frequency of TpG sites within the genome and a relativedeficit of CpG (reviewed in Hodgkinson and Eyre-Walker, 2011), potentially leaving a signatureindicative of selection.A recent paper by Laurin-Lemay et al. (2018) found that a large proportion of mammaliancodon usage, such as the preferential usage of the GCC Alanine codon compared to its synony-mous GCG in humans, can be explained by the hypermutability of CpG sites, even though thisis often unaccounted for in codon substitution models. The authors advocate for evaluating theimpact of such model violations on statistical tests in phylogenetic analyses. Interestingly, CpGhypermutability is also an underappreciated process in the field of population genomics where
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the favored strategy has been to filter out hypermutable sites before performing evolutionaryinferences (Pouyet, Aeschbacher, et al., 2018). The hypermutability of these sites and the sub-sequent bias to certain alleles has been shown to shift site frequency spectra in ways that mightinterfere with population genetic inferences that are based on the SFS (Harpak et al., 2016).
4.3. Segregation distortion.

Meiotic gene drivers manipulate the transmission process during meiosis to their own ad-vantage, leading to their over-representation in gametes despite the lack of advantage to thecarrier. As segregation distortion encompasses a wide variety of mechanisms, we provide threesuch examples. The first one is the segregation distorter gene complex (Figure 2; Larracuente andPresgraves, 2012), present at low frequency in all natural populations ofDrosophila melanogaster.This complex involves the Sd locus and its target responder locus (Rsp). There is variable trans-mission advantage between the different Sd alleles, and one of these alleles recently swept tofixation in Africa causing strong linkage disequilibrium and loss of genetic diversity (Presgraveset al., 2009). A second example is Wolbachia, where a maternally inherited bacteria of arthro-pods manipulates host reproduction. Wolbachia is known to be a selfish element favoring itsown propagation through, for instance, the inability of infected males to successfully reproducewith uninfected females (Turelli and Hoffmann, 1991). At the level of the host, the presence ofWolbachia is also associated to segregation distortion: the maternal inheritance induces geneticlinkage on host mitochondria and mitochondria in infected females are over-represented in thenext generation. This effect reduces the effective population size and the efficacy of selectionin mitochondria and could drive fixation of mitochondrial haplotypes (Cariou et al., 2017; GDHurst and Jiggins, 2005). A third example comes from centromere evolution, where asymmetryat female meiosis causes only one of the four products of meiosis to become the oocyte nucleusand can lead to a kind of segregation distortion (Henikoff et al., 2001). Centromeres have a cen-tral role in preventing aneuploidy by facilitating the assembly of several components requiredfor chromosome separation (see Tanaka et al., 2013, for a review). This centromere drive modelincludes proteins such as Cid and highly repetitive satellite sequences that bind to microtubulesduring meiosis I (Henikoff et al., 2001). Centromeres which preferentially transmit to the oocytenucleus can rapidly drive to fixation even with a slight advantage at each meiosis (Henikoff et al.,2001).Meiotic drivers are predicted to be evolutionarily labile by favoring their fixation in the popu-lation even though they are detrimental for their carriers (Lindholm et al., 2016). Identifying lociunder selection in these cases is anything but straightforward, as the signal ofmeiotic drivemightbe easily confounded with selective sweeps and positive selection (Presgraves et al., 2009).
4.4. Mobility of genetic elements.

Detecting the signature of selection is often restricted to SNPs even though transposableelements (TE) and other structural genomic changes such as inversions are likely also prevalentbiases for adaptive evolution. Until further studies improve our understanding of mobile geneticelements and our ability to identify them, it is certainly possible that these regions of the genomemay play a role in changing diversity and biasing or interrupting our ability to infer selection orneutral demographic parameters, e.g. in inverted regions that can no longer recombine, delete-rious variation can become masked or beneficial variation may be maintained in tight linkage.TEs are widespread across the tree of life and in some species can represent a major fractionof the genome (de Koning et al., 2011; Wicker et al., 2007). TEs are associated with the creationof new mutations and changes in recombination patterns (e.g. Bartolome et al., 2002). McClin-tock (1950) first discovered that mobile elements were associated with phenotypic changes inmaize. However, these sorts of structural genomic changes are often disregarded in favor ofSNPs when inferring sources of adaptive evolution mainly because of methodological limita-tions (Villanueva-Canas et al., 2017). First, TE families are difficult to identify as they are repet-itive elements spread throughout the genome with limited descriptive features such as targetsite duplications or terminal repeats and transposases (Xiong et al., 2014). They are also com-monly associated with genetic load as they can lead to diseases if inserted into genes (Chen et al.,
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Figure 2 – Figure simplified from Bravo Núnez et al. (2018). An example of segregationdistortion of meiotic gene drivers with the “killer-target" strategy is shown for the SDgene complex in Drosophila melanogaster. This complex involves the Sd and Rsp loci. The“target" locus Rsp harbours two alleles: the Rsps and Rspi that are respectively sensitiveand insensitive to the meiotic driver. Sd produces a “killer" element (red dots, a protein inthis example) which interferes with Rsps and kills the meiotic products that inherit Rsps .
2005). For instance, the Alu family of insertions are associated to haemophilia or breast cancerin humans (Batzer and Deininger, 2002). Second, because repetitive elements are enriched forTEs, it is difficult to assemble these genomic regions (Bourgeois and Boissinot, 2019). For thepast decade, new techniques have emerged to infer selection on TE insertions and are dividedinto two main classes: SFS-based or haplotype-based methods (Villanueva-Canas et al., 2017).It is clear that as our understanding of TE dynamics improves, such knowledge may greatly con-tribute to our understanding of selection acting at the genomic level and modes of adaptiveevolution.
4.5. Gene conversion.

Meiotic recombination reshuffles the genetic material of parents to produce a new set of ge-netic material in offspring. During recombination, homologous gene conversion can result fromthe conversion of an acceptor locus at heterozygous sites in donor sequences. Biased gene con-version (BGC),occurring at locations where recombination breaks the DNA strand, makes theprobability of transmitting one of the two alleles larger than the probability of losing it. BGCis comprised of two main mechanisms: double-strand-break-driven (dBGC; Myers et al., 2010;Paigen and Petkov, 2018) and GC-driven (gBGC; Duret and N. Galtier, 2009; Lesecque et al.,2013), each of which have different mechanistic origins and consequences. To our knowledgedBGC is not expected to be confounded with selection and will not be discussed further herein.On the contrary, gBGC is often responsible for false positives in inferences of selection (NicolasGaltier et al., 2009; Ratnakumar et al., 2010).gBGC is a transmission bias in favor of G/C over A/T alleles when amismatch is repaired aftera meiotic recombination event. This leads to the increase of GC content in regions of high recom-bination over evolutionary time (Duret and N. Galtier, 2009) (Figure 3). Evidence for gBGC hasbeen shown in many organisms (Duret and N. Galtier, 2009; Lassalle et al., 2015; Lesecque et al.,2013;Webster et al., 2006) and has strong consequences on genomic architecture, ranging fromglobal GC-enrichment of genomes to variation in codon usage between genes (Pouyet, Mouch-iroud, et al., 2017), and can be confounded with translational selection (Gingold et al., 2014).When G/C alleles are beneficial as compared to A/T, gBGC amplifies the speed of fixation of abeneficial allele in the population, while in other cases when G/C alleles are slightly deleterious,gBGC counteracts the effect of selection (if the transmission bias parameter, b, is stronger thanthe selection parameter, s . At the population level, gBGC shifts the site frequency spectrum to-wards the left for strong-to-weak polymorphisms (respectively to the right for weak-to-strong)mimicking the effect of natural selection in high recombination rate regions (Glémin et al., 2015;
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TC

GC TA
Figure 3 – Figure adapted from Glémin et al. (2014). GC-biased gene conversion (gBGC)occurs after the formation of hetero-duplexes during ameiotic recombination event. Het-eroduplexes can result from crossing-over (shown here) as well as from non-crossoverevents. In the presence of gBGC, mismatches are repaired more than half of the time infavor of guanine and cytosine rather than adenine and thymine. This bias towards en-richment of guanine and cytosine is of few percent in yeast or humans, leading to theaccumulation of GC content within genomes over time.

Lachance and Tishkoff, 2014; Pouyet, Aeschbacher, et al., 2018). Oneway to consider the conse-quences of gBGC is to contrast genetic diversity of a region between weak-to-strong and strong-to-weak mutations. Additionally, gBGC should not leave the same signature as linked selectionbecause gBGC acts solely on its targets sites and does not affect the surrounding diversity. Thereis no inherent selective bias driving the genomic changes resulting from gene conversion, nor cana biased process by definition be considered neutral. Instead, this process is best considered asnon-adaptive evolution, where fitness is not impacted, but there is clearly a non-neutral changein allele frequencies over time. As illustrated by Hurst (2019), segregation distortion and BGCare rarely considered simultaneously even though they act similarly to increase their transmis-sion to the detriment of other alleles. Both BGC and segregation distortion along with structuralgenomic changes are common in nature, and including these processes in studies of adaptiveevolution will allow us to properly identify targets of positive selection (Villanueva-Canas et al.,2017).
5. Conclusion

In the modern genomic era, emerging data will hopefully allow us to build a complete pictureof the relevant genomic, demographic, and environmental scenarios where different evolution-ary processes are expected to dominate changes in molecular diversity over time. Identifying avariant as subject to natural selection is difficult since the selective environment of an allele is acombination of its own innate properties impacting the genome, along with epistatic effects dueto its genomic environment, as well as its demographic situation (how efficient selection is in thepopulation where this individual exists), and lastly its (a)biotic environment (e.g. stressful environ-ments for the organism harboring this variant, or the frequency of conspecific phenotypes). Un-derstanding the processes that may bias our inferences of sites under selection is paramount tobetter understanding the evolutionary forces leading to genomic change. To a large extent thesebiases result from the difficulty or inability to distinguish non-adaptive sites from sites underdirect selection. As discussed, this is largely due to the demographic processes in a population’spast that make otherwise neutral sites mimic selection and fall into the category of non-adaptive,as well as due to the molecular processes that change neutral allele frequencies in biased waysand can even counteract the effect of selection on selected sites (gBGC, for instance). There isan implied distinction worth explicitly stating: even if the majority of sites within the genomemay be neutral in terms of their selection coefficient, it is very likely the case that the majority ofthe genome evolves due to the impact of selective forces, even if that targets few specific sites,due to the degree of linkage within the genome. This still does not, however, discount the fact
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that non-adaptive evolutionary processes have an important impact on genomic change. Incor-porating all of this information in future studies is a tall task, particularly since empirical study ofbiology is further complicated by changing environments and demographics that are not alwaysapparent to observers, nor always sufficiently sampled. We hope that this perspective has high-lighted the importance of recognizing and distinguishing the complex interactions of selective,non-adaptive, and neutral processes acting within and among genomes and serves to move thefield of evolutionary genomics forward in understanding the drivers of molecular diversity.
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