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Abstract 

The present work focuses on the development of a performing numerical methodology to solve the 

steady state Population Balance Equation (PBE) including nucleation, independent size growth and 

loose agglomeration as crystallization mechanisms. The methodology is based on the solution of two 

PBEs: one for the isolated crystallites and one describing the loose agglomerates formation. Both are 

solved by a discretization method and only the last one is reformulated as a fixed point problem. The 

algorithm solving PBE for agglomeration includes the crossed-secant algorithm as a fixed point 

acceleration method. The numerical PBE solution method is first validated by comparison to analytical 

solutions and then applied to the neodymium oxalate precipitation in order to compare to experimental 

results in a wide range of operating conditions. The methodology is tested under highly restrictive 

numerical conditions: narrow tolerances, a large amount of points in the discretization scheme and a 

zero vector as initial condition. The crossed-secant method demonstrates to improve the robustness of 

the standard fixed point iterations by ensuring the convergence of the agglomerates PBE when 

penalizing conditions are applied and by reducing the number of iterations otherwise. In all cases, the 

developed methodology predicts accurately the crystal size distribution under the experimental 

uncertainty in a reasonable computation time and number of iterations. 

Keywords: population balance, steady state, oxalic precipitation, fixed point solution, 

convergence acceleration. 

1. Introduction 
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In precipitation processes, the crystal size distribution (CSD) is a decisive product property. 

Continuously operated well mixed precipitators  present in principle poor performances in this concern 

[1]. For this  reason, the simulation of continuous crystallizers has been the target of many modelling 

efforts during the last decades and remains a scientific challenge [2]. Crystallization phenomena are 

characterized by a strong dependence to the mixing issues: local concentrations involve local 

crystallization kinetics and macromixing conditions define the transport of the continuous and 

dispersed phases. This research work appears as a necessary step to further understanding the CSD 

evolution in crystallizers exhibiting complex hydrodynamics. 

 

The evolution of the CSD in a control volume is tracked by the Population Balance Equation (PBE). 

The general statement at the steady state as first proposed in 1964 by Hulburt and Katz is given as [3] 

:  

        

  
            

       

 

 

   

                                                      

where    is the crystal size (m),   is the number-based density function (m
-4

),   is the flowrate (m
3
.s

-1
), 

  is the total volume (disperse and continuous phases) (m
3
),  is the total   streams,   is the crystals 

growth rate (m.s
-1

) and      and      are the birth and death terms respectively, related to the 

appearance and disappearance of crystals in the system (through nucleation, aggregation and 

breakage mechanisms). Hereafter, the CSD dependence over the size will be obviated in order to 

simplify equations formulation (      ). 

 

The PBE is a well-known mathematical framework used to describe dispersed systems evolution. In 

precipitation, it is employed to determine CSD from crystallization kinetics (nucleation, growth, 

breakage and agglomeration) and transport phenomena.   It needs to be coupled with the mass, 

momentum and energy balances to estimate the CSD and the supersaturation. Since several strongly 

coupled phenomena influence the CSD (hydrodynamics, solid dispersed particles, reaction kinetics, 

crystallization mechanisms, etc.), a highly nonlinear algebraic partial differential equations system 

needs to be solved in order to model the precipitation process. Because of the complexity of the 

mathematical problem, analytical solutions exist only in few cases under highly restrictive hypothesis 

[4]. Indeed, the numerical solution of the PBE is still an active research field [5]–[7]. Numerical solution 

methods can be divided into two types: those predicting some properties of the CSD (moments-based 

methods) and those predicting the entire CSD (discretization methods mainly) [1]. The first implies 

converting the original problem into ordinary differential equations via the moments transformation and 

the most probable crystal size distribution has to be estimated from the computed moments (inverse 

problem). On the other hand, discretization methods are generally known to have poor computing time 

performances and being highly dependent on the quantity and distribution of the nodes (discretization 

grid).  

 

Most of the methods developed for the solution of the PBE aim at predicting the dispersed phase 

properties in a batch unit or approach the continuous process modelling as a particular case of the 



transient state analysis  [5], [6], [8]. The continuous steady state operation is rarely directly addressed 

in literature. For instance, Blandin et al. (2005) studied salicylic acid precipitation in a T-mixer 

modelled by a continuous well-mixed reactor followed by a plug-flow reactor operating at steady state 

[9]. The PBE was solved with the method of classes and the steady state in the mixing zone was given 

by the asymptote of the transient regime. Primary and secondary nucleations and size dependent 

growth were considered in the model. The steady state behaviour of polypropylene particle size was 

investigated by Luo et al. (2009) [10]. In this case, growth and attrition were both considered in a 

tubular loop reactor and the PBE was solved by a discretization method. The polymer molecular 

weight distribution and the particle size distribution were approached by solving the transient state 

population balances over an extended time scale. A Rotator Disc Contactor column operating at 

steady state was reported by Jaradat et al. (2010) where a multivariate PBE was coupled with 

hydrodynamics and applied to three chemical systems [11]. Again, the steady state PBE solution is 

based on asymptotic transient calculations. It is worth noticing that the dispersed phase properties 

obtained via transient state estimation are generally employed as initial conditions when coupled CFD-

PBE steady state simulations are performed [12], [13]. 

 

When considered, steady state PBE direct calculations are often approached under highly simplifying 

assumptions or via underperforming algorithms. M.J. Hounslow (1990) developed a discretization 

method for the PBE solution in the case of steady state continuous precipitation of Nickel Ammonium 

Sulphate [14]. The considered PBE includes nucleation, size-dependent growth and aggregation but 

computing speed drastically decreases with the number of nodes used in the discretization scheme. 

Nicmanis et al. (1998) developed a collocation-Galerkin based method to solve the steady state PBE 

accounting for nucleation, growth, agglomeration and breakage mechanisms [15]. In this case, the 

system of equations was solved by an iterative process and validated via numerical case studies and 

analytical solutions. The numerical performance of the traditional discretization method is improved but 

the selection of interpolation functions and collocation points remains a mathematical constraint. 

Semlali et al. (2001) solved the steady state PBE applied to a sugar continuous crystallizer taking into 

account a compartmental-based mixing model [16]. Since only nucleation and growth were included 

as crystallization mechanisms, PBE solution was possible through analytical solutions. More recently, 

Alzyod et al.  (2016) simulated a liquid-liquid extraction column where the steady state properties of 

the droplet size distribution are predicted thanks to a moments-based method [17]. Even if 

computational performances were found to be satisfactory, only mean droplet size and liquid phase 

compositions are predicted. Detailed information on the droplet size distribution are not reachable 

using this solution methodology. 

 

The PBE concerned in this study considers three crystallization phenomena, namely nucleation, 

growth and loose agglomeration. The last one is a particular case of agglomerates formation: the 

developed surface of crystals created by nucleation and growth is the same whether the 

agglomeration phenomenon takes place or not. The study of loose agglomerates is hardly aimed in 

literature. The formulation of the PBE in such case results in the separation of agglomeration from 



nucleation and growth mechanisms. Consequently, two successive PBEs have to be solved: one 

accounting for the isolated crystals (crystallites) and one accounting for the agglomerates [18].   

 

The purpose of this study is to develop a PBE-based model for a Mixed Suspension Mixed Product 

Removal (MSMPR) precipitator including nucleation, growth and loose agglomeration as crystallization 

mechanisms. The novelty lies in the numerical solution methodology based on the solution of two 

steady state PBEs: one considering the nucleation and growth phenomena and one regarding only the 

loose agglomeration.  The solution of the agglomeration PBE is performed by a fixed point method 

and includes the crossed secant method as a fixed point acceleration algorithm. This methodology 

aims at predicting the CSD leaving a MSMPR with no assumption on the feed streams in a reasonable 

time calculation for further coupling with a multicompartment model and/or CFD simulations.  

 

In order to test this numerical strategy, the oxalic precipitation (equation (2)) is considered as 

application case. In the nuclear industry, this reaction is widely used as the main conversion and 

purification stage leading to the production of an actinide riche powder from a multicomponent 

solution. Due to economic and environmental considerations, the study of actinides precipitation is 

traditionally approached by the investigation of harmless elements such as lanthanides [18], [19]. 

Hence, the neodymium oxalate precipitation in a MSMPR precipitator is investigated in this study. The 

reaction kinetics is considered fast enough to neglect its influence on the entire process: 

                 
   
                                                                     

The structure of this paper is as follows: In Section 2, the PBEs are formulated and the corresponding 

numerical solution methods are described. The fixed point problem solving the agglomeration PBE at 

steady state is established. A suitable fixed point acceleration method is then introduced in order to 

improve the performance of the solution algorithm but also to ensure its robustness, especially when 

standard fixed point iterations would diverge. In Section 3, simulation results are first validated by 

comparison to analytical solutions and then tested against a range of experimental data. Finally, some 

concluding remarks and perspectives are pointed out.  

 

2. Modelling strategy  

 

During continuous precipitation, the CSD and continuous phase composition are the target variables 

to be predicted since they determine the quality of the produced powder and the recovery of the 

desired compound. CSD is detailed by the PBE as described in the last section. Furthermore, liquid 

phase concentrations need mass balances to be evaluated. Thus, the system of equations describing 

the precipitator includes both mass balances on the continuous and dispersed phases and the PBE. 

 

One may note that crystallization kinetics vary with species concentrations in the continuous phase via 

the supersaturation. In parallel, the concentrations of the reagents remaining in the liquid phase are 



determined by the extent of the chemical reaction and further by the amount of solid accounted in the 

mass balances.  

 

2.1. PBE solution 

 

Equation (1) assembles all the physicochemical processes modifying the CSD, namely the transport 

phenomena and the crystallization mechanisms. The precipitator considered in this study has several 

inlet flows        
    that  may contain particles in suspension and one single exit flow (  ).  The mean 

residence time is thus defined as   
 

    
   and the outgoing flow rate as     

   
        . Assuming an 

MSMPR precipitator, operating at steady state, with nucleation, size independent growth and 

agglomeration, the PBE can be written as: 

 

 
  

  
 
        

      
   
   

    
 

                                                           

 

with  

  
  

 
 

                         
                      

          

 

 

                  
 

 

                  

where    and   represent the particle size (m),    is the Dirac delta function,    the nuclei size (m),     

(m
-3

.s
-1

) the nucleation rate,   represents the agglomeration kernel (m
3
.s

-1
), and      the density 

associated to the  output stream. The term   accounts for the particles appearing and disappearing by 

agglomeration,      and      respectively. Note that no assumption is made regarding the feed 

streams, therefore the PBE model solved in this work deals with single or multiple feedings whether 

they include crystals in suspension or not.   

 

Equation (3) is a highly nonlinear integro-differential equation. In this work, the steady state PBE 

accounting for nucleation, growth and agglomeration is solved by a discretization method. Neodymium 

oxalate crystals have been identified as loose (open) agglomerates according to microscopic 

observations: the surface of crystals in contact with the surrounding solution is the same at any stage 

of the agglomeration process [18]. Thus, the growth mechanism takes place at the surface of every 

elementary particle forming an agglomerate and is considered as non-affected by the internal 

diffusion. In other words, growth and agglomeration can be modelled as independent phenomena 

since the first affects the crystallites size whereas the second modifies the agglomerates size. 

Considering this, the steady state PBE solution is performed by describing the whole precipitation 

process through two distinct PBEs solved successively. The first one accounts for nucleation and 

growth mechanisms and the second one considers the crystallites agglomeration only, using the CSD 

obtained as a result of the first PBE. Previously, a similar methodology was implemented in order to 

determine the neodymium oxalate agglomeration kernel [18]. 

 



2.1.1.  PBE for nucleation and growth mechanisms  

 

The steady state PBE for a MSMPR undergoing only nucleation and size independent growth 

phenomena, leading to the crystallites size distribution function       , is written as: 

 
       
  

 
      
 

 

      
   
   

    
  

                                                             

Assuming that crystals born at zero size, and that       
  

             
  

, equation (5) can be rewritten 

as: 

 
       
  

 
      
 

 

      
   
   

    
  

                                                                                

with the boundary condition: 

      
   

  
  
                                                                                                    

Equation (6) is an ordinary differential equation which can be easily solved when the inlet population 

(  ) and the nucleation and growth rates are known. The population fed to the reactor is set as an 

input variable, the nucleation and growth rates depend on the species concentration in the solution via 

the supersaturation. The concentration of the precipitating compound and the CSD flowing out the 

precipitator have also to satisfy the mass balance, both are initially unknown. The nucleation and 

growth PBE is computed over the discretized size vector        
  by numerical integration (  is defined 

as the total number of nodes in the discretization grid). It is solved simultaneously with the mass 

balance by a minimisation iterative gradient-based method (Sequential Quadratic Programming 

method). The objective function aims to converge to a concentration in solution satisfying both the 

PBE and the mass balance. The stopping criterion is determined by the relative difference between 

the concentration calculated at two successive iterations.  

 

2.1.2.  PBE for agglomeration  

 

The second steady state PBE concerns only the agglomeration phenomenon. It is expressed as: 

        
          
   
   

      
 

 

 
  

 
 

                           
                

          

 

 

                              
 

 

         

From a theoretical point of view, the agglomeration process can be divided into two steps: particle 

collision and bonds consolidation. The loose agglomerates assumption implies that the amount of 

matter needed to bond crystallites does not modify the free surface of the initial particles. Thus, the 

amount of precipitating compound used to build these bonds can be neglected from the mass balance. 

Consequently, the solution of the PBE for agglomerates requires the supersaturation, the composition 



of the output stream and the crystallites CSD as input information. Equation (8) is solved by the fixed 

pivot technique proposed by Kumar and Ramkrishna (1996) [20]. The number-based density function 

( ) is substituted by the total number of particles ( ), defined by the integration of ( ) over a discrete 

size interval           : 

      
          

    

  

                                                                             

with   ,         the representative size for the k
th
 size range obtained by discretization of the size 

domain             in   elements and     and      the lower and upper boundaries for the k
th
 size 

range respectively. The right-hand side of equation (8) defines the agglomeration rate     (m-4 s-1
): 

        
  

 
 

                           
                

          

 

 

                              
 

 

                   

The discretized agglomeration rate, still called         ,  is given as proposed by Kumar and 

Ramkrishna (1996) [20]: 

             
 

 
                                      

   

     
   
 

                         

 

   

                      

under the following conditions: 

     
    

  
   

                                                                            

  

 
 
 

 
 
    
    

    
    

              

       
 

  
      

            

                                                                    

where       is defined as the Kronecker delta function,             represents the total number of 

particles in the k
th
 size range (class). The weight coefficient   ensures the conservation of two 

properties (number and mass). In the agglomeration problem, the unknown variable is defined as  

             
    which refers to the vector resulting from the discretization of the number-based CSD 

over the crystal size        
 . By substituting equation (11) in equation (8) and by defining the inlet 

population (before agglomeration process) as            
     

  
         

     
    

   

    
, equation (11)  leads 

to a system of   equations: 

                    
                                                                 

 where the function      represents the agglomeration PBE. The simplest way to solve the fixed point 

problem          in equation (14) is to use fixed point iterations (or Picard iterations). Hence the j
th

 

iteration is defined as: 

                       
                                                                       

Fixed point iterates can be seen as pseudo-transient solutions (pseudo-time steps) before reaching 

the steady state. However, the convergence of the fixed point sequence strongly depends on the 

properties of the fixed point function    (namely its spectral radius in the neighbourhood of the fixed 

point solution), which are generally a priori unknown. Hence, the convergence of the fixed point 

iterations (equation (15)) is not guaranteed.  

 



In most precipitation processes, the objective variable    varies over several orders of magnitude 

(between 0 and 10
25 

in the case of the neodymium oxalate). For this reason, the following mixed 

convergence criterion is used as in [21]:  

       
       

 
         

 
                                                               

where the index k refers to the k
th
 component of the vector. Thus the fixed point convergence is 

reached when the difference between two successive iterates (left-hand side term) is less than the 

total of the tolerances (right-hand side terms). The right-hand side terms include two tolerance 

constants: the relative tolerance    and the absolute tolerance    .This convergence criterion turns 

automatically from a relative error to an absolute error when    
 
  becomes small. Hence it enables to 

deal in a unique criterion with high values of N components (for which the relative precision is 

recommended) and small values of N components (where absolute tolerance is required). 

 

In practice, it is common to represent Equation (16) as a boolean:  

               
       

 
        

 
                                                               

 It is worth noticing that when the peak region (high values of N components) is of interest, the 

absolute tolerance could remain relatively high, in order to focus on the convergence of the solution in 

the peak region (with a relative error). 

 

2.2. Fixed point convergence acceleration methods 

 

Fixed point iterations are a powerful tool to solve highly non-linear problems, since the algorithm can 

be applied to any objective function and no information about its derivative is required to implement 

the method. Nevertheless, in case of convergence, they are often characterized by a slow first order 

convergence which can become time consuming [22], [23]. As the PBE concerned in this paper is a 

strongly non-linear and high dimensionality problem, acceleration methods are considered to improve 

both algorithm performances and robustness. Indeed, as shown in section 3, the fixed point algorithm 

applied to the agglomeration problem may result in a divergent sequence. Acceleration algorithms are 

then introduced to ensure fixed point convergence in such cases and to reduce the calculation time 

(number of iterations) when standard fixed point iterations converge. 

 

In equation (15), the standard iterates    are defined by a recurrence relation and can be treated as a 

series. Then, classical sequence acceleration principles can be applied. In numerical analysis, two 

types of convergence acceleration methods are commonly studied: the static and the dynamic 

acceleration procedures. The second   is commonly used in practice as it consists in substituting the 

current fixed point value (     ),   by an accelerated iterate  which improves the convergence rate 

[24]. Many expressions for the accelerated sequence have been proposed in the literature depending 

on the characteristics of the initial mathematical problem. In general, it is defined as a function  of the 

previous accelerated and standard iterates [23]. Ramiere et al. (2015) proposed a general framework 

to obtain accelerated sequence expressions from a nonlinear hybrid acceleration procedure applied to 



vector-based fixed point problems [25]. In this research work, three acceleration methods were tested 

to solve the PBE.  

 

The first one is the classical scalar secant method applied independently on each component of the 

unknown vector  . For a scalar fixed point problem,              this method can be 

geometrically interpreted as finding the intersection of the line passing through the two points 

(              and (         , and the first bisector of the axes  (   ). The abscissa of this 

intersection point defines the new iterate      . It is hence mathematically defined as (see for example 

[26]): 

           
                          

                          
                                         

In this work, Equation (18) is applied independently on each scalar          : 

  
   

    
 
 

   
 
   

   
      

     
 
 

     
     

 
       

       
   

 
                               

The second and third acceleration methods tested in this work can be obtained by the application of 

the secant principle when considering a vector fixed point problem. As each component    does not 

define a scalar fixed point problem, vector sequence acceleration should be applied on the whole 

vector  . The vector secant methods can be directly obtained by considering the (non unique) 

definition of the inverse of a vector: 

    
 

    
                                                                                          

where ||.|| represents a given norm, generally the Euclidean norm. Considering equations (18) and 

(20), two vector secant methods can be derived based on the two possible dot products arising in the 

numerator. In Ramière et al (2015), it has been proven that these vector secants can be seen as a 

minimization process on fixed point residuals [25]. For the sake of clarity, the following residual 

notation is introduced:             . The two vector-based secant acceleration methods 

obtained write: 

 

 The alternate secant method: 

  
          

               

            
                                                         

 

 The crossed secant method: 

  
          

                           

            
                                             

 

  

The K-dimensional scalar secant approach (Equation (19)) prevented the divergence of the fixed point 

iterations but did not reduce significantly the number of iterations. The alternate secant method did not 

improve the fixed point iterations convergence at all, Finally, the crossed secant method was selected 



to solve agglomerates PBE as it presented really advantageous properties especially in case of 

divergence of the standard fixed point iterations (see Appendix 1).  

 

 

As the fixed point sequence and the accelerated one are not mathematically constrained to fit the 

same limit [25], the convergence criterion defined in equation (17) must still focus on the standard 

fixed point residual             to guarantee the solution of equation (14). 

3. Results and discussion 

3.1. Validation through analytical solutions 

 

As described previously, the methodology developed in this work implies the formulation of two 

different population balances to describe precipitation process. As a first step, analytical solutions 

were employed to validate the numerical approach developed to solve each PBE separately. All the 

simulations were performed using the same standard personal computer. 

 

3.1.1.  PBE for nucleation and growth mechanisms in a cascade of two precipitators 

Equation (6) may be solved analytically when the reactor is fed with a single flow of clear solution 

(     ).  In such case, the CSD flowing out the reactor is determined by [27]: 

 

                 
      

  

    
                                                                                    

In order to test the methodology when the precipitator is fed with a suspension, the CSD flowing 

through a cascade of two precipitators is studied. Thus the CSD at the output  of the second 

precipitator (        ) is determined analytically as [28]:    

                 
       

  

      
  

      
      

        
  

      
             

      
  

      
      

  

      
                       

 

Both analytical solutions (equations (23) and (24)) are compared to the CSD obtained by the 

numerical method detailed in section 2.1.1 (Figure 1). Simulation points are obtained with a 

discretization grid containing 1500 logarithmically distributed values between 10
-11

 and 10
-4

 m for the 

integration rule. The relative tolerance in the mass balances is set to 10
-6

 and the calculation time is 

less than 10 seconds for both precipitators on an Intel Core i7 machine (1.90 GHz/2.11 GHz) with 32 

Go of RAM. Figure 1 shows that the numerical and analytical results are identical with a relative 

difference less than 10
-4

. 



  

Figure 1. Comparison between the numerical solution methodology and the analytical solutions: output CSD for 

two reactors in series considering nucleation and size-independent growth. 

3.1.2.  PBE for agglomeration with size independent kernel 

 

Steady state agglomeration problems can be solved analytically only when the agglomeration kernel is 

independent of the crystal size and the inlet population follows a normal distribution. In such case, 

Hounslow (1990)  developed an analytical solution based on the crystal volume as internal coordinate 

and dimensionless variables [14]: 

 

     
   

    
      

     
    
      

 

    
       
      

        
                                                         

where 

                                 
  
  

           
 

  
                                         

  represents the crystal volume,    and    are the modified Bessel functions of the first kind, of order 

zero and one respectively,    the characteristic time of the agglomeration process,    and    are 

characteristics of the inlet population, namely the mean crystal volume and the total amount of 

particles.  

 

Figure 2 a) presents a comparison between the analytical solution given in equation (25) and the 

numerical solution obtained through the accelerated method described in section 2.2 in terms of the 

total number of particles. Three values of the    parameter are examined in order to verify results 

coherence and algorithm robustness. In every case, 200 logarithmically distributed points are used to 



define the discretization grid. The numerical and the analytical solutions match with a relative 

tolerance lower than 10
-4

. 

 

 

Figure 2. Comparison between the CSD obtained by the developed numerical methodology and the analytical 

solution for the agglomeration problem. 

In the context of a multicompartmental model,    is expected to take values over 100. Additionally, 

CSD estimation has to be performed between the nuclei size (about 10
-9

 m) and the agglomerates 

maximum size (about 10
-4

 m), conditioning the number of intervals in the discretization to be large 

enough to track the smaller particles and the mean size region simultaneously. Figure 2 b) presents 

the comparison between the numerical and the analytical solutions for    varying between 10 and 

1000. Again, 200 logarithmically distributed points are used to define the discretization grid. With such 

values of t’, the accelerated algorithm enables the agglomerates PBE to converge when standard 

fixed point iterations diverge. 

 

Appendix 1 summarizes the main results obtained with the fixed point algorithm and the tested 

acceleration methods for two different values of t’ (1 and 10
3
 respectively), both    and   were chosen 



to match the order of magnitude observed in the case of the precipitation of neodymium oxalate. The 

crossed secant method clearly appears to be the most performant method to accelerate fixed point 

iteration convergence but also to guarantee sequence convergence. 

 

It is worth underlying that a relevant initialization vector (  ) is also required to obtain the best 

performances. The determination of an optimal initial vector could be a hard mathematical task and 

return to the solution of the problem itself. Three numerical choices (null initialization,  based only on 

crystallites CSD and based on both the crystallites CSD and the agglomeration dimensionless time 

(  )) have been tested (see Appendix 1). A null initialization vector (    ) appears to be a simple but 

robust choice. 

 

Appendix 2, in which the acceleration algorithm is applied to a theoretical case (    and     ), 

shows that the efficiency (in terms of number of iterations) of the standard fixed point algorithm and 

the crossed secant method  does not depend on the quantity of points used to discretize the internal 

coordinate (crystals size or volume), except for large agglomeration characteristic times. However, as 

expected the calculation time increases with the number of unknowns. One may observe that the 

number of iterations required to converge increases with the agglomeration dimensionless time (  ). 

Actually, divergence of standard fixed point iterations is observed for       . Also, the number of 

iterations to converge depends on the values of  ,   and   . For this reason, a different number of 

iterations is observed when      on Appendix 1 and Appendix 2. 

 

3.2. Application case: oxalate neodymium precipitation 

 

3.2.1. Case study 

Lalleman et al. (2012) presented results for neodymium oxalate precipitation [18]. The experiments 

were carried out in a stirred tank reactor provided with a heating jacket and four stainless steel baffles. 

Mixing was performed by a stainless-steel turbine equipped with four 45° pitched blades.  

 

Oxalic precipitation was achieved by mixing an aqueous solution of neodymium nitrate with an 

aqueous solution of oxalic acid. For the purpose of this study, the reagents concentrations in the 

reactor obey to the stoichiometric ratio of equation (2) and the neodymium oxalate was the only 

compound found in the outgoing crystals. Mean residence time is about 1 minute and the steady state 

is typically reached after 15 minutes. Slurry samples were taken from the output stream and analysed 

with a laser diffraction granulometer in order to obtain the steady state CSD in the output flow. 

The nucleation rate    for the neodymium oxalate is expressed as [19]: 

                 
     

   
       

   

      
                                                            

with   the temperature (K) and   the driving force, namely the relative supersaturation defined as: 



             
  

   
      

 

  
 

   

                                                                            

where the activity coefficient   
  is computed from the Bromley correlation [29] with the individual 

contribution values proposed by Lalleman et al. (2012) for the neodymium electrolytes [30],   is the 

molar concentration (mol.m
-3

) and    the solubility product (mol
5
.m

-15
).  

In the case of the oxalic precipitation of neodymium, the growth rate was found to be independent of 

the crystal size and integration-controlled [19]:  

               
     

   
      

                                                                    

Similarly, the neodymium oxalate agglomeration process was found to be independent of the crystal 

size [18], the agglomeration kernel is expressed as: 

                                  
     

   
                                                             

where    is the shear rate (s
-1

) and   the ionic force of the solution (mol.m
-3

). 

 

3.2.2.  PBE modelling  

 

In a first time, the developed methodology is tested against a reference experience (Experiment 1 in 

Table 1)Table 1. Figure 3 presents the behaviour of the agglomeration PBE convergence criterion 

(equation (17)) over the number of iterations when the developed methodology is applied to a MSMPR 

precipitator including nucleation, growth and agglomeration mechanisms. The discretization grid 

contains 1500 logarithmically distributed points between 10
-11

 m and 10
-3

 m. 

Standard fixed point iterations (Figure 3 (a)) do not succeed to converge due to the value of the 

dimensionless agglomeration time. In contrast, the crossed-secant accelerated fixed point achieves  

the agglomerates CSD prediction after 237 iterations (Figure 3 (b)). Simulation time for the case study 

is about 80 seconds on an Intel Core i7 machine (1.90 GHz/ 2.11 GHz) with 32 Go of RAM, the 

relative tolerance (  ) is fixed to 10
-2

 while the absolute tolerance is defined as a function of the 

crystallites CSD:     
           

   
. Following the previous study (see also Appendix 1), the initial vector 

for the fixed point algorithm solving the agglomeration PBE is set to zero. 



 

 

Figure 3. Convergence criterion evolution in the case of a MSMPR modelling including nucleation, size-

independent growth and loose agglomeration with (a) standard fixed point algorithm b) accelerated fixed point 

algorithm. 

Crystal mean size is correctly predicted under the experimental incertitude (Figure 4 a). The same 

observation is made concerning the moments, only the 0
th
 order moment is slightly over predicted by 

5% (Figure 4 c)). In contrast, a broader difference is observed when the entire CSD is examined 

(Figure 4 b)). The gap between the simulated and the experimental CSD arises from the uncertainty 

associated to the crystallization kinetics. Firstly, nucleation kinetics typically predicts the quantity of 

elementary crystals over one order of magnitude. Secondly, the methodology employed to determine 

the neodymium oxalate agglomeration kernel includes the solution of the PBE by the moments method 

[18]. Such numerical treatment ensures a precise calculation of the moments but generates errors in 

CSD prediction due to the lack of information about the entire distribution. 

 



 

 

 

Figure 4. Experimental and simulation results in the case of a MSMPR including nucleation, size-independent 

growth and loose agglomeration: a) Mean crystal size prediction over the number of iterations b) Mass-based 

CSD and c) CSD moments 



 

3.2.3.  Sensitivity analysis  

 

The developed algorithm is tested under several operating conditions. Experimental details and 

resulting mean sizes are presented in  Table 1. Variation of three operating conditions are tested: the 

temperature, the shear rate via the stirring rate and the total neodymium concentration via the inlet 

stream concentration. Mean residence time, reagents proportions, and other experimental parameters 

remain the same as in the reference case (Experiment 1).  

 

 Table 1. Experimental conditions, mean crystal size and numerical performances for the simulation of a 

continuous crystallizer including nucleation, size-independent growth and loose agglomeration.  

Experiment 
[Nd]0 

(mol m-3) T (K) ϒ (s-1) 
Experimental 

d43 (µm) 
Simulated 
d43 (µm) 

Number of 
iterations 

(Agglomeration 
PBE) 

Calculation 
time (s) 

1 62.0 293.15 362 45 43 237 76 

2 201.7 293.15 362 53 53 272 92 

3 284.9 293.15 362 59 56 274 83 

4 142.2 293.15 665 48 47 319 97 

5 142.2 293.15 1024 41 46 250 84 

6 144.7 303.15 362 55 53 303 92 

7 144.7 313.15 362 54 57 317 91 

8 144.7 323.15 362 60 60 306 89 

 

Experimental and numerical volume-based mean sizes (d43) obtained for the experiments described in  

Table 1 are plotted in Figure 5. Calculation time is lower than 100 seconds for all the examined cases. 

Also, the number of iterations is about 300 for the worst case and no direct dependency is observed 

with any of the studied variables. The proposed algorithm seems to be robust. 

 

From Erreur ! Source du renvoi introuvable. Table 1, the mean size of the examined distributions 

increases with the concentration of Nd and with the temperature. In both cases, the crystallization 

kinetics are systematically strengthened: a higher concentration implies a higher supersaturation from 

equations (27), (29) and (30). Similarly, the crystallization phenomena occur faster when the 

temperature is raised. In both cases, larger particles are expected. In contrast, it is not possible to 

establish a direct link between the shear rate and the mean crystal size, the latter could increase or 

decrease due to the compromise between mixing performance and mechanical resistance of the 

crystals. For this reason, a direct tendency is less observable when experiments 4 and 5 are 

considered. In all the cases the mean size is well predicted considering the experimental uncertainty 

and the evolution over the examined variables. 

 



 

Figure 5. Comparison between experimental and simulated mean crystal sizes for the conditions reported in 

Erreur ! Source du renvoi introuvable.Table 1. 

4. Conclusions 

 

In this work, a numerical methodology to solve the Population Balance Equation (PBE) including 

nucleation, size-independent growth and loose agglomeration in a Mixed Suspension Mixed Product 

Removal (MSMPR) precipitator was developed for the steady state case. It is based on the solution of 

two coupled PBEs by a discretization method. The PBE formulation takes into account several input 

streams and no assumption is made about the solid phase entering to the control volume.  

 

The PBE for the crystallites raises in an ordinary differential equation which can be easily solved 

numerically. Concerning the agglomerates, the PBE is a strongly non-linear and high dimensionality 

problem.  Hence, a fixed point problem is formulated and acrossed-secant acceleration method is 

included in order to guarantee both convergence and efficiency. No restriction is placed on the 

location of grid points (quantity or distribution) and a mixed convergence criterion is formulated in 

order to favour the prediction of the mean size region rather than the furthest portions of the crystal 

size distribution (CSD). The complete system is solved through the coupling of both PBEs. 

 

The methodology was first validated against analytical solutions. The entire CSD of the crystallites and 

agglomerates are accurately predicted. The crossed-secant accelerated fixed point improves standard 

fixed point robustness to solve the agglomeration PBE, especially for high values of the agglomeration 

characteristic time.  

 

As a second step, the CSD obtained by the developed methodology was compared to a wide range of 

experimental data. Only the crossed-secant acceleration method achieves agglomeration PBE 

solution. The mean crystal size and the first seven moments of the CSD are accurately predicted by 

the numerical method. A slight difference is observed when the entire distribution is compared, which 



can be explained by the error propagation induced by the nucleation, growth and agglomeration 

kinetics models and the inherent experimental uncertainty. The convergence performances are 

independent of the operating conditions when the acceleration method is included on the PBE solution 

algorithm for agglomeration. The proposed numerical methodology is then has proven to be efficient 

and robust. Moreover, the computing performances are really satisfactory and the assumptions made 

are suitable for future coupling with a multicompartmental model or CFD calculations [31]. 

 

Nomenclature 

b Boundaries of the size ranges m 

B Birth  term m-4 s-1 
C Molar composition mol m-3 
D Death  term m-4 s-1 
F Flowrate m3 s-1 
G Growth rate m s-1 
I Ionic force mol m-3 

I0, I1 Modified Bessel functions - 

J Dimensionless CSD - 
K Total quantity of nodes - 

L Crystal size m 
L* nuclei size m 
M Total quantity of streams - 
n Number-based density function m-4 

N  Total number of particles m-3 
Ps Solubility product mol5  m-15 

R Ideal gas constant J mol-1 K-1 
rAg Agglomeration rate m-4 s-1 
RN Nucleation rate m3 s-1 
S Relative supersaturation - 

t Time s 
t' Agglomeration characteristic time - 
V Reactor volume m3 
v Crystal volume m3 

   

Greek symbols   

β Agglomeration kernel m3 s-1 
δ Dirac delta function - 

δp,q Kronecker function - 

εa Absolute tolerance m-3 
εr Relative tolerance - 
η Weight coefficient - 
λ Crystal size M 
τ Mean residence time S 
  
  Activity coefficient - 
   Shear rate s-1 

   



Index   

i Stream  
j Iteration number  
k Position in the discretization vector  
M Output stream  

p,q Mother particles in agglomeration  
   

Abbreviations   

CFD Computational Fluid Dynamics  

CSD Crystal Size Distribution  

MSMPR Mixed Solution Mixed Product Removal  
PBE Population Balance Equation  
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Appendix 1. Comparison of acceleration methods and influence of the initial vector. (Study 

case) 

 

Method 
               

   

  
 

                               

Fixed point iterations 55 iterations Diverges 56 iterations Diverges Diverges 

 -dimensional scalar 
secant method 

42 iterations 
Very slow 

convergence 
43 iterations 

Very slow 
convergence 

Very slow 
convergence 

Vector 
acceleration 

Crossed 
secant 

18 iterations 
Very slow 

convergence 
20 iterations 156 iterations 154 iterations 

Alternate 
secant 

23 iterations Diverges 27 iterations Diverges Diverges 

Table 2. Numerical performances of the acceleration methods tested to solve the agglomeration fixed 

point problem over different initialization vectors (        and        ). 

Appendix 2. Convergence performances with respect to the number of discretization points 

and agglomeration characteristic time. (Theoretical case) 

 

 

 40 points 100 points 200 points 

t’=0.25 7 iterations < 1s 7 iterations < 1s 7 iterations 3 s 

t’=1 18 iterations < 1s 18 iterations 1 s 18 iterations 9 s 

t’=1.5 Diverges - Diverges - Diverges - 

Table 3. Numerical performances of the standard fixed point iterations to solve the agglomerates PBE (    

and     ). 

 

 40 points 100 points 200 points 

t’=0.25 7 iterations < 1s 7 iterations < 1s 7 iterations 3 s 

t’=1 10 iterations < 1s 12 iterations 1 s 12 iterations 8 s 

t’=1.5 12 iterations < 1s 13 iterations 1 s 14 iterations 9 s 

t’=10 20 iterations < 1s 24 iterations 2 s 25 iterations 13 s 

t’=100 35 iterations < 1s 44 iterations 3 s 47 iterations 25 s 

t’=1000 49 iterations < 1s 65 iterations 4.5 s 73 iterations 40 s 

Table 4. Numerical performances of the accelerated fixed point algorithm (crossed-secant method) to solve 

the agglomerates PBE (    and     ). 

 


