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STABILITY OF EQUIVARIANT LOGARITHMIC TANGENT
SHEAVES ON TORIC VARIETIES OF PICARD RANK TWO

ACHIM NAPAME

Abstract. For an equivariant log pair (X, D) where X is a normal toric va-
riety and D a reduced Weil divisor, we study slope-stability of the logarithmic
tangent sheaf TX(− logD). We give a complete description of divisors D and
polarizations L such that TX(− logD) is (semi)stable with respect to L when
X has a Picard rank one or two.

1. Introduction

The notion of slope-stability for vector bundles was first introduced by Mumford
[Mum62] in his attempt to construct the moduli spaces of vector bundles over a
curve. This notion was generalized in higher dimension by Takemoto [Tak72]. The
study of stability of coherent sheaves over polarized varieties is a difficult problem.
This problem is simplified when additional structures are added on the sheaf.

A quasi-coherent sheaf E on a toric variety X with torus T is said to be an
equivariant sheaf if it admits a lift of the T -action on X, which is linear on the
stalks of E . Klyachko in [Kly90] gave a complete classification of equivariant vector
bundles over toric varieties in terms of a family of filtrations of vector spaces. This
classification was generalized in the case of quasi-coherent sheaves on toric varieties
by Perling in [Per04].

By using the equivariant structure of the tangent bundle, Hering-Nill-Süss in
[HNS19] and Dasgupta-Dey-Khan in [DDK20] studied slope-stability of the tangent
bundle TX of a smooth projective toric variety X of Picard rank one or two.
Inspired by Iitaka’s philosophy, in this paper, we extend the result of [HNS19]
and [DDK20] to the case of log pairs (X, D). More precisely, if X is a normal
toric variety and D a reduced Weil divisor such that the logarithmic tangent sheaf
TX(− logD) is equivariant, we are interested by the set of polarizations L on X
such that TX(− logD) is (semi)stable with respect to L.

Assume that X is a Kähler manifold and D =
∑

i aiDi a simple normal crossing
divisor with ai ∈ [0 ; 1] ∩ Q . If KX + D is ample, there exists a Kähler-Einstein
metric ω on the pair (X, D) by [BG16, Theorem C]; moreover, if D is reduced, then
the logarithmic tangent sheaf TX(− logD) is semi-stable with respect to KX +D
by [Gue16, Theorem A]. If the pair (X, D) is Fano, by [Ber16, Section 4.3], the
pair (X, D) admits a Kähler-Einstein metric ω if for all i, 0 < ai < 1. In this case,
(X, D) is K-polysatble. According to [Li20, Theorem 1.4], the orbifold tangent
sheaf TX(− logD) is slope semi-stable with respect to −(KX +D).

In this paper, we are interested in the case where ai ∈ {0, 1}. According to
[BB13, Section 1.2.1 and Section 3], when (X, D) is Fano, we don’t have a natural
notion of Kähler-Einstein metric on (X, D). We will use another method to study
the slope-stability of TX(− logD).

In Section 2, we recall some notions about toric varieties and equivariant sheaves.
Let X be a normal toric variety over C and T be its torus. We denote by Σ the
fan of X and Σ(1) the set of rays of Σ. In Proposition 2.10, we show that : for a
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reduced Weil divisor D, the logarithmic tangent sheaf TX(− logD) is equivariant
if and only if

D =
∑
ρ∈∆

Dρ

where ∆ is a subset of Σ(1) and Dρ the Zariski closure of the orbit O(ρ) correspond-
ing to the ray ρ. Using the family of multifiltrations defined in [Per04, Section 5],
we give in Section 3.1 the family of multifiltrations corresponding to the equivari-
ant sheaf TX(− logD). In Section 3.2, we give some conditions on Σ and ∆, such
that TX(− logD) is decomposable. In Section 4, we recall some notions about
slope-stability and we show that :
Proposition 1.1. Let X be a toric variety without torus factor and p be the rank
of its class group Cl(X). If

1 + p ≤ card(∆) ≤ dim(X) + p− 1

then TX(− logD) is not semi-stable with respect to any polarizations.
By Corollary 3.6, if ∆ = ∅, then TX(− logD) is the tangent sheaf TX and when

∆ = Σ(1), TX(− logD) is isomorphic to the trivial vector bundle of rank dimX.
If X has no torus factor, we have card(Σ(1)) = dim(X) + p by [CLS11, Theorem
4.1.3]. According to Proposition 1.1, it is therefore sufficient to study the stability
of TX(− logD) when card(∆) ≤ p. In this paper we will be interested in the case
where p ∈ {1, 2}. As the case card(∆) = 0 corresponds to the tangent sheaf, we
will study the slope-stability of TX(− logD) when 1 ≤ card(∆) ≤ p.

In Section 4.4, we study slope-stability of TX(− logD) when X is a toric orbifold
of Picard rank one. If X = Pn and ∆ ⊂ Σ(1), we show that :
Proposition 1.2. If card(∆) = 1, then TX(− logD) is poly-stable but not stable
with respect to any polarizations.

In the last sections (Sections 5 and 6) we study slope-stability of TX(− logD)
when X is a smooth toric variety of Picard rank 2. These parts form the core of
this paper.

1.1. Smooth toric varieties of Picard rank two. Let X be a smooth toric
variety of dimension n with fan Σ in Rn such that rkPic(X) = 2. By [CLS11,
Theorem 7.3.7] due to Kleinschmidt (see [Kle88]), there exists r, s ∈ N∗ with
r + s = n and a1, . . . , ar ∈ N with a1 ≤ a2 ≤ . . . ≤ ar such that

(1) X = P

(
OPs ⊕

r⊕
i=1

OPs(ai)

)
.

We denote by π : X −→ Ps the projection to the base Ps. By [CLS11, Section 7.3]
and [DDK20, Section 4.2], the rays of Σ are given by the half-lines generated by
w0, w1, . . . , ws , v0, v1, . . . , vr where (w1, . . . , ws) is the standard basis of Zs×0Zr ,
(v1, . . . , vr) the standard basis of 0Zs × Zr ,

v0 = −(v1 + . . .+ vr) and w0 = a1v1 + . . .+ arvr − (w1 + . . .+ ws) .

We denote by Dvi the divisor corresponding to the ray Cone(vi) and Dwj the divisor
corresponding to the ray Cone(wj).
Notation 1.3. Let Amp(X) ⊂ N1(X)⊗Z R be the ample cone of X. We define :

Stab(TX(− logD)) =

{
L ∈ Amp(X) : TX(− log(D))

is stable with respect to L

}
and

sStab(TX(− logD)) =

{
L ∈ Amp(X) : TX(− log(D))

is semi-stable with respect to L

}
.
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1.2. Main results. Let X be a smooth toric variety of Picard rank two and
L = π∗OPs(µ) ⊗ OX(λ) be a polarization on X. We set ν = µ

λ . In Section 5,
more precisely in Proposition 5.10, we give a criterion that allows to verify the
stability of TX(− logD). For all divisors D =

∑
ρ∈∆ Dρ with 1 ≤ card(∆) ≤ 2,

we give in tables 1, 2, 3 and 4 the values of ν for which TX(− logD) is (semi)stable
with respect to L. We give here some results.

If a1 = . . . = ar = 0, the variety X given in (1) is Ps × Pr. Let
D1 = {Dvi : 0 ≤ i ≤ r} ∪ {Dwj

: 0 ≤ j ≤ s} ∪ {Dvi +Dwj
: 0 ≤ i ≤ r, 0 ≤ j ≤ s}

and
D2 = {Dvi +Dvj : 0 ≤ i < j ≤ r} ∪ {Dwi

+Dwj
: 0 ≤ i < j ≤ s} .

We have :

Theorem 1.4. If D ∈ D1 ∪D2, then Stab(TX(− logD) ) = ∅. But :
(1) if D ∈ D2, sStab(TX(− logD)) = ∅ ;
(2) if D ∈ D1, TX(− logD) is poly-stable with respect to L if and only if L is

a power of the polarization corresponding to −(KX +D).

We now consider the general case, that is X given by (1) with ar ≥ 1.

Theorem 1.5 (Stability of TX(− logDvr )). We have Stab(TX(− logDvr )) ̸= ∅
if and only if sStab(TX(− logDvr )) ̸= ∅ if and only if ar = 1 and ar−1 = 0 . If
ar = 1 and ar−1 = 0, then the logarithmic tangent sheaf TX(− logDvr ) is stable
(resp. semi-stable) with respect to π∗OPs(µ) ⊗ OX(λ) if and only if 0 < µ

λ < ν0
(resp. 0 < µ

λ ≤ ν0) where ν0 is the unique positive root of

P0(x) =

s−1∑
k=0

(
s+ r − 1

k

)
xk − s

(
s+ r − 1

s

)
xs .

If ar ≥ 1, we see that this theorem is similar to [HNS19, Theorem 1.4]. If
we fix r and s, there is only one smooth toric variety with Picard rank two
such that Stab(TX(− logDvr )) ̸= ∅ or Stab(TX) ̸= ∅ ; this variety is given
by (1) with a1 = . . . = ar−1 = 0 and ar = 1. If ar ≥ 1 and (a1, . . . , ar) ̸=
(0, . . . , 0, 1), we have sStab(TX) = ∅ by [HNS19, Theorem 1.4]. In the case of
log pairs, with some conditions on the ai, there exists another divisor D such that
Stab(TX(− logD)) ̸= ∅ .

Theorem 1.6 (Stability of TX(− logDv0)). We assume that ar ≥ 1.
(1) If r = 1, then Stab(TX(− logDv0) ) ̸= ∅ .
(2) If r ≥ 2, then Stab(TX(− logDv0) ) ̸= ∅ if and only if a1 = . . . = ar

and ar < s+1
r−1 .

If D /∈ {Dv0 , Dvr}, then TX(− logD) is not stable with respect to any polarizations.

Acknowledgments. I would like to thank my advisor Carl Tipler for our dis-
cussions on this subject and also Henri Guenancia for some references.
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2. Toric varieties and equivariant logarithmic tangent sheaves

2.1. Toric varieties. We give here some notions about toric varieties. We refer to
[CLS11, Chapter 2, 3] and [CT20, Section 2.1].
Definition 2.1 ([CLS11, Definition 3.1.1]). A toric variety is an irreducible variety
X containing a torus T ≃ (C∗)n as a Zariski open subset such that the action of T
on itself extends to an algebraic action of T on X.
Notation 2.2. Let T be a torus. We denote by M the lattice of characters of T and
N the lattice of one-parameter subgroups of T ; we have T ∼= N ⊗ZC∗ (it is a group
isomorphism). We set NK = N⊗ZK and MK = M⊗ZK for K = R or C. For m ∈M ,
we associate the character χm : T −→ C∗ and for u ∈ N , we associate the one-
parameter subgroup λu : C∗ −→ T . There is a natural pairing ⟨ · , · ⟩ : M×N −→ Z
between M and N .
Definition 2.3 ([CLS11, Definition 3.1.2]). A fan Σ in NR is a finite collection of
cones σ ⊆ NR such that :

(1) Every σ ∈ Σ is a strongly convex rational polyhedral cone.
(2) For all σ ∈ Σ, each face of σ is also in Σ.
(3) For all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of each.

We will write τ ⪯ σ if τ is a face of σ. If Σ is fan, the support of Σ is |Σ| =
∪
σ∈Σ

σ .

We say that Σ is complete, if |Σ| = NR . We denote by Σ(r) the set of r-dimensional
cones of Σ. We call Σ(1) the set of rays of Σ. If ρ ∈ Σ(1), we denote by uρ ∈ N its
minimal generator.
Let XΣ be a toric variety associated to a fan Σ. The variety XΣ is obtained by
gluing affine charts (Uσ)σ∈Σ , with Uσ = Spec(C[Sσ]) and C[Sσ] is the semi-group
algebra of

Sσ = σ∨ ∩M = {m ∈M : ⟨m, u⟩ ≥ 0 for all u ∈ σ} .
By [CLS11, Theorem 3.1.5], XΣ is a normal separated toric variety.
Theorem 2.4 ([CLS11, Corollary 3.1.8]). Let X be a normal separated toric variety
with torus T . Then, there exists a fan Σ in NR such that X is isomorphic to XΣ.

From now on, a normal toric variety X will be defined by a fan Σ.
Definition 2.5 ([CLS11, Proposition 3.3.9]). A normal toric variety X has a torus
factor if and only if the uρ, ρ ∈ Σ(1) do not span NR.

A cone σ ∈ Σ gives the torus orbit O(σ) ∼= HomZ(σ
⊥ ∩M, C∗) where

σ⊥ ∩M = {m ∈M : ⟨m, u⟩ = 0 for all u ∈ σ} .
We have :
Theorem 2.6 (Orbit-Cone Correspondence, [CLS11, Theorem 3.2.6]).

(1) There is a bijective correspondence
{Cone σ in Σ} ←→ {T − orbits in X}

σ ←→ O(σ)

and dimO(σ) = dimNR − dimσ.
(2) The affine open subset Uσ is the union of orbits Uσ =

∪
τ⪯σ

O(τ) .

(3) τ ⪯ σ if and only if O(σ) ⊂ O(τ), and O(τ) =
∪
τ⪯σ

O(σ) where O(τ)

denotes the closure in both the classical and Zariski topologies.
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For ρ ∈ Σ(1), we define the T -invariant Weil divisor Dρ as the closure in the
Zariski topology of O(ρ).
Lemma 2.7 ([CLS11, Section 4.1]). A Weil divisor D on X is invariant under the
action of T if and only if

D =
∑

ρ∈Σ(1)

aρDρ with aρ ∈ Z .

Order Relation. Let Σ be a fan in NR and σ ∈ Σ. We define an order relation
⪯σ on M by setting m ⪯σ m′ if and only if m′ −m ∈ Sσ. We write m ≺σ m′ if
we have m ⪯σ m′ but not m′ ⪯σ m .
Group action. Let G be an algebraic group acting on the affine toric variety
Y = Spec(R). For any g ∈ G, let ϕg : Y −→ Y the map defined by ϕg(x) = g · x .
We define an action of G on R by setting : for g ∈ G and φ ∈ R,

g · φ =
(
ϕg−1

)∗
φ

that is, for any y ∈ Y , (g · φ)(y) = φ(g−1 · y) .

2.2. Equivariant sheaves. We refer to [Per03, Section 2.2.2] for properties about
equivariant coherent sheaf. Let T be the torus of X.
Let σ : T ×X −→ X be an action of algebraic group T on X, µ : T ×T −→ T the
group multiplication, p2 : T ×X −→ X the projection onto the second factor and
p23 : T × T ×X −→ T ×X the projection onto the second and the third factor.
We call a sheaf E on X equivariant or T -linearized if there exists an isomorphism
Φ : σ∗E

∼=−→ p∗2E such that
(2) (µ× IdX)∗Φ = p∗23Φ ◦ (IdT ×σ)∗Φ .

For t ∈ T , let αt : X −→ T ×X and ϕt : X −→ X be the morphisms defined by
αt(x) = (t, x) and ϕt(x) = σ(t, x) .

We get an isomorphism Φt := α∗
tΦ : ϕ∗

tE
∼=−→ E . For any t, t′ ∈ T , the cocyle

condition (2) factors as follows :

(3)
(ϕt′·t)

∗E E

ϕ∗
tE

Φt′·t

ϕ∗
tΦt′

Φt

2.3. Logarithmic tangent sheaves. We recall here the definition of the logarith-
mic tangent sheaf of a log pair (X, D) where X is a normal projective variety and
D a reduced Weil divisor on X. We refer to [Gue16, Section 3.1].
Definition 2.8. We say that a pair (X, D) is log-smooth if X is smooth and D is
reduced snc (simple normal crossing) divisor.
We denote by (X, D)reg the snc locus of the pair (X, D), that is, the locus of points
x ∈ X where (X, D) is log-smooth in a neighborhood of x.

If (X, D) is log-smooth, we define the logarithmic tangent bundle TX(− logD) as
the dual of the bundle of logarithmic differential form Ω1

X(logD) where Ω1
X(logD)

is defined in [Ita76, §1]. By [Kaw78, Definition 4] and [Sai75, §1], we can see the
space of sections of TX(− logD) as the set of vector fields on X which vanish along
D. If D is locally given by (z1 · · · zk = 0), then TX(− logD) as a sheaf is the locally
free OX -module generated by

z1
∂

∂z1
, . . . , zk

∂

∂zk
,

∂

∂zk+1
, . . . ,

∂

∂zn
.
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Definition 2.9 ([Gue16, Definition 3.4]). Let (X, D) be a log pair and
X0 = (X, D)reg. The logarithmic tangent sheaf of (X, D), denoted by TX(− logD),
is defined as j∗TX0

(− logD|X0
) where j : X0 −→ X is the open immersion.

The sheaf TX(− logD) (as well as its dual) is coherent ; by [Har80, Proposition
1.6], this sheaf is reflexive.
We now consider the case where X is a toric variety. We will give a condition on
D such that TX(− logD) is equivariant. Let Σ be the fan of X and X0 the toric
variety corresponding to the fan Σ1 = Σ(0)∪Σ(1). We denote by j : X0 −→ X the
open immersion.

Proposition 2.10. Let D be a reduced Weil divisor on X. The sheaf Ω1
X(logD)

is equivariant if and only if D is an invariant divisor under the torus action.

Proof. We assume that D is an invariant divisor under the torus action. Let D0

be the restriction of D on X0. For t ∈ T , let ϕt : X −→ X the map defined by
ϕt(x) = σ(t, x) and Φt the map defined by Φt = (dϕt)

−1 where dϕt is the differential
of ϕt . If E = TX0, we have an isomorphism Φt : ϕ

∗
tE −→ E and the diagram (3)

is verified. Now if we replace E by TX0(− logD0), the diagram (3) remains true ;
so TX0(− logD0) is equivariant. Hence Ω1

X0
(logD0) is equivariant. Like

(4) Ω1
X(logD) ∼= j∗Ω

1
X0

(logD0) ,

we deduce that Ω1
X(logD) is equivariant.

We now assume that Ω1
X(logD) is equivariant. We write D =

s∑
j=1

Dj .

First case. We assume that X is smooth. By [EV92, Section 2.3] we have an exact
sequence

0 −→ Ω1
X −→ Ω1

X (logD) −→
s⊕

j=1

ODj
−→ 0

where ODj is viewing as a sheaf on X via extension by zero. The first part of the
proof is to show that : for any t ∈ T , t · Z = Z where Z = X \D.
Let x ∈ Z and assume that there is t ∈ T such that y = σ(t, x) ∈ D. We have two
exact sequences

0 −→ Ω1
X, x −→ Ω1

X (logD)x −→
s⊕

j=1

ODj , x −→ 0

0 −→ Ω1
X, y −→ Ω1

X (logD)y −→
s⊕

j=1

ODj , y −→ 0

Like Ω1
X and Ω1

X(logD) are equivariant, we have an isomorphism
s⊕

j=1

ODj , x
∼=

s⊕
j=1

ODj , y ;

this is absurd. Therefore, for any t ∈ T , we have t · Z ⊂ Z, that is t · Z = Z . As
Ω1

X(logD) is equivariant, by using the fact that D = X \Z, for any t ∈ T , we have
t ·D = D ; thus, D is a T -invariant divisor.
Second case. We assume that X is a normal variety. By (4), as Ω1

X(logD) is
equivariant, we also have the same property for Ω1

X0
(logD0). By the first case, D0

is an invariant divisor under the action of T on X0. Like codim(X \X0) ≥ 2, we
deduce that D is the Zariski closure of D0 on X. Thus, D is an invariant divisor
under the action of T on X. □
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3. Multifiltrations of logarithmic tangent sheaf

3.1. Family of multifiltrations. We give here the family of multifiltrations of
equivariant logarithmic tangent sheaf on toric varieties. Let X be a toric variety of
dimension n with fan Σ. We first give some results.
Proposition 3.1 ([DDK20, Corollary 2.2.17]). The family

(
T , {T ρ(i)}ρ∈Σ(1), i∈Z

)
of multifiltrations associated to the tangent sheaf TX are given by

T ρ(i) =

 0 if i ≤ −2
Span(uρ) if i = −1
N ⊗Z C if i ≥ 0

.

Remark 3.2. If X is smooth, the tangent sheaf TX if the tangent bundle TX.
Lemma 3.3. For every ray ρ ∈ Σ(1), we have (Uρ ∩Dρ) ∩ T = ∅.
Proof. Let ρ ∈ Σ(1). We assume that ρ = Cone(u1) where u1 ∈ N . Let (u1, . . . , un)
be a basis of N and (e1, . . . , en) its dual basis. We set xj = χej , we have

Uρ = Spec(C[x1, x
±1
2 , . . . , x±1

n ]) ∼= C× (C∗)n−1

and
T = Spec(C[x±1

1 , . . . , x±1
n ]) ∼= (C∗)n .

As on Uρ the divisor Dρ is defined by x1 = 0, we deduce that (Uρ∩Dρ)∩ T = ∅. □
Lemma 3.4. Let ρ1 and ρ2 be two distinct rays of Σ. If i ̸= j, then Uρi ∩Dρj = ∅.
Proof. By the orbit-cone correspondence (Theorem 2.6), we have Uρi = O(ρi) ∪ T
and O(ρi) ∩Dρj = ∅ if i ̸= j. As

Uρi ∩Dρj =
(
O(ρi) ∩Dρj

)
∪
(
T ∩Dρj

)
,

by Lemma 3.3, we conclude that Uρi
∩Dρj

= ∅. □

Let ∆ ⊂ Σ(1) and D be the T -invariant divisor of X defined by

D =
∑
ρ∈∆

Dρ .

For ρ ∈ Σ(1), we set Eρ = Γ(Uρ, TX(− logD)).

Theorem 3.5. The family of multifiltrations
(
E, {Eρ(j)}ρ∈Σ(1), j∈Z

)
corresponding

to the logarithmic tangent sheaf TX(− logD) are given by

Eρ(j) =

{
0 if j ≤ −1
NC if j ≥ 0

if ρ ∈ ∆

and by

Eρ(j) =

 0 if j ≤ −2
Span(uρ) if j = −1
NC if j ≥ 0

if ρ /∈ ∆ .

Proof. According to Lemma 3.4, if ρ ∈ ∆, we have Uρ ∩ D = Dρ and for ρ /∈ ∆,
Uρ∩D = ∅. We can reduce the problem to the case where ∆ = {ρ1} and D = Dρ1 .
For the rest of the proof, we assume that ∆ = {ρ1}.
First case : We assume that ρ = ρ1. Let (u1, . . . , un) be a basis of N such that
u1 = uρ. We denote by (e1, . . . , en) the dual basis of (u1, . . . , un) and xi = χei . We
have C[Sρ] = C[x1, x

±1
2 , . . . , x±1

n ] and Uρ = Spec(C[Sρ]). Like on Uρ the divisor D
is defined by the equation x1 = 0, we have

Eρ =

(
C[Sρ] · x1

∂

∂x1

)
⊕

(
n⊕

i=2

C[Sρ] ·
∂

∂xi

)
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that is

Eρ =

n⊕
i=2

⊕
m∈Sρ

C · χm ∂

∂xi

⊕
⊕

m∈Sρ

C · χm+e1
∂

∂x1

 .

We set
Lρ
1 =

⊕
m∈Sρ

C · χm+e1
∂

∂x1

and for i ∈ {2, . . . , n}, we set

Lρ
i =

⊕
m∈Sρ

C · χm ∂

∂xi
.

For t ∈ T and m ∈M , we have t · χm = χ−m(t)χm, so t · dxi = χ−ei(t) dxi . Thus,
we have t · ∂

∂xi
= χei(t)

∂

∂xi
. For i ∈ {1, . . . , n}, we write

Lρ
i =

⊕
m∈M

(Lρ
i )m where (Lρ

i )m = {f ∈ Lρ
i : t · f = χ−m(t) f} .

We have

(Lρ
1)m =

 C · χm+e1
∂

∂x1
if 0 ⪯ρ m

0 otherwise
and for i ∈ {2, . . . , n}, we have

(Lρ
i )m =

 C · χm+ei
∂

∂xi
if − ei ⪯ρ m

0 otherwise
.

For i ∈ {1, . . . , n}, we set Lρ
i = C · ∂

∂xi
. If i ∈ {2, . . . , n}, we have (Lρ

i )−ei = Lρ
i .

For all m ∈M :
• if i ≥ 2 and −ei ⪯ρ m , we identify (Lρ

i )m with Lρ
i through the multiplica-

tion by the character χ−m−ei .
• If i = 1 and 0 ⪯ρ m, we identify (Lρ

i )m with Lρ
1 through the multiplication

by χ−m−e1 .
For m ∈M , we set j = ⟨m, u1⟩.

• If j ≤ −1, for all i ∈ {1, . . . , n}, we have (Lρ
i )m = 0.

• If j ≥ 0, for all i ∈ {1, . . . , n}, (Lρ
i )m
∼= Lρ

i .
The torus T is a Lie group. The tangent space of T at the neutral element is
isomorphic to NC. Like the tangent space of T at the neutral element is generated
by
(

∂

∂xi

)
1≤i≤n

, for all i ∈ {1, . . . , n}, we can identify ∂

∂xi
with ui. Like

Eρ =
⊕
m∈M

Eρ(⟨m, u1⟩) where Eρ(⟨m, u1⟩) = Eρ
m =

n⊕
i=1

(Lρ
i )m ,

we get Eρ(j) ∼=
{

0 if j ≤ −1
NC if j ≥ 0

.

Second case : We assume that ρ ∈ Σ(1) \ ∆. We start as in the first case. Like
Uρ ∩D = ∅, we have

Eρ =

n⊕
i=1

C[Sρ] ·
∂

∂xi
=

n⊕
i=1

⊕
m∈Sρ

C · χm ∂

∂xi

 .
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For all i ∈ {1, . . . , n} , we set

Lρ
i =

⊕
m∈Sρ

C · χm ∂

∂xi
.

We have

Lρ
i =

⊕
m∈M

(Lρ
i )m where (Lρ

i )m =

 C · χm+ei
∂

∂xi
if − ej ⪯ρ m

0 oherwise
.

As in the first case, with a small modification, for all i ∈ {1, . . . , n}, we identify
(Lρ

i )m with Lρ
i if m ∈M satisfies −ei ⪯ρ m . By setting j = ⟨m, uρ⟩, we get

Eρ(j) ∼=

 0 if j ≤ −2
Span(uρ) if j = −1
N ⊗Z C if j ≥ 0

.

Hence we get the theorem. □
The sheaf of regular section of the trivial vector bundle X × C −→ X of rank 1

is OX . For ρ ∈ Σ(1), we set F ρ = OX(Uρ). Like F ρ = C[Sρ] , we have

F ρ =
⊕
m∈Sρ

C · χm =
⊕
m∈M

F ρ
m where F ρ

m = {f ∈ F ρ : t · f = χ−m(t) f} .

Thus F ρ
m = 0 if m /∈ Sρ and F ρ

m = C · χm if m ∈ Sρ (i.e 0 ⪯ρ m). For all m ∈ Sρ,
we identify F ρ

m with F ρ
0 = C. By setting j = ⟨m, uρ⟩, we get

F ρ(j) ∼=
{

0 if j ≤ −1
C if j ≥ 0

.

Corollary 3.6. Let ∆ ⊂ Σ(1) and D =
∑
ρ∈∆

Dρ .

1. If ∆ = ∅ , then TX(− logD) is the tangent sheaf TX .
2. If ∆ = Σ(1), then TX(− logD) is isomorphic to the trivial vector bundle

of rank n.
Proof. If ∆ = ∅, the family of multifiltrations of TX(− logD) is identical to the
family of multifiltrations given in Proposition 3.1. If ∆ = Σ(1), for all ρ ∈ Σ(1),
we have

Eρ(j) =

{
0 if j ≤ −1
N ⊗Z C if j ≥ 0

.

Hence, TX(− logD) is isomorphic to the trivial vector bundle of rank n. □
From now on, we will assume that ∅ ⊊ ∆ ⊊ Σ(1) and D the T -invariant Weil

divisor defined by
D =

∑
ρ∈∆

Dρ .

Notation 3.7. Let G be a sub-vector space of NC. We denote by EG the sub-sheaf
of E = TX(− logD) defined by the family of multifiltrations

(
EG, {Gρ(j)}ρ∈Σ(1), j∈Z

)
where EG = G and Gρ(j) = Eρ(j) ∩G.
If ρ ∈ ∆ or uρ /∈ G, then

Gρ(j) =

{
0 if j ≤ −1
G if j ≥ 0

.

If ρ /∈ ∆ and uρ ∈ G, then

Gρ(j) =

 0 if j ≤ −2
Span(uρ) if j = −1
G if j ≥ 0

.
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3.2. Decomposition of equivariant logarithmic tangent sheaf. In this part,
we give some conditions on Σ and ∆ which ensure that the logarithmic tangent
sheaf is decomposable. We first recall the family of multifiltration of a direct sum
of equivariant reflexive sheaves.

Proposition 3.8 ([DDK20, Remark 2.2.15]). Let F and G be two equivariant
reflexive sheaves with

(
F, {F ρ(j)}ρ∈Σ(1), j∈Z

)
and

(
G, {Gρ(j)}ρ∈Σ(1), j∈Z

)
for family

of filtrations. The family of multifiltrations of F ⊕ G is given by

(5)
(
F ⊕G, {(F ⊕G)ρ(j)}ρ∈Σ(1), j∈Z

)
where (F ⊕G)ρ(j) = F ρ(j)⊕Gρ(j) .

We assume that X is toric variety without torus factor. We denote by p the
rank of the class group Cl(X) of X. By [CLS11, Theorem 4.1.3], we have an exact
sequence

(6) 0 −→M −→
⊕

ρ∈Σ(1)

Z ·Dρ −→ Cl(X) −→ 0

and card(Σ(1)) = n+ p.

Theorem 3.9. We assume that card(∆) = p. We set Σ(1)\∆ = {ρ1, . . . , ρn} where
ρk = Cone(uk) and uk ∈ N . If NR = Span(u1, . . . , un), then E = TX(− logD) is
decomposable and

E =

n⊕
k=1

EFk

where EFk
is the sub-sheaf of E corresponding to the vector space Fk = Span(uk).

Proof. For all k ∈ {1, . . . , n}, the family of multifiltration
(
Fk, {F ρ

k (j)}ρ∈Σ(1), j∈Z
)

of EFk
are given by

F ρ
k (j) =

{
0 if j ≤ −1
Fk if j ≥ 0

if ρ ̸= Cone(uk)

and

F ρ
k (j) =

 0 if j ≤ −2
Span(uρ) if j = −1
Fk if j ≥ 0

if ρ = Cone(uk) .

For all ρ ∈ Σ(1) and j ∈ Z, we have
n⊕

k=1

F ρ
k (j) =

{
0 if j ≤ −1
NC if j ≥ 0

if ρ ∈ ∆

and
n⊕

k=1

F ρ
k (j) =

 0 if j ≤ −2
Span(uρ) if j = −1
NC if j ≥ 0

if ρ /∈ ∆ .

Hence, by (5) and Theorem 3.5 we have E =

n⊕
k=1

EFk
. □

Proposition 3.10. We assume that ∆ satisfies 1 + p ≤ card(∆) ≤ n + p − 1.
The sheaf E = TX(− logD) is decomposable and E = EG ⊕ EF where
G = Span(uρ : ρ ∈ Σ(1) \∆) and F a sub-space of NC such that NC = G⊕ F .

Proof. It suffices to work with the family of multifiltration as in the proof of The-
orem 3.9. □
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4. Stability of equivariant logarithmic sheaf

4.1. Some stability notions. We recall now the notions of stability that we will
consider in this paper. For this part, we refer to [Gue16, Section 3.1] and [CT20,
Section 4.1].

Definition 4.1. Let E be a torsion-free coherent sheaf on X. The degree of E with
respect to an ample class L ∈ Amp(X) is the real number obtained by intersection:

degL(E ) = c1(E ) · Ln−1

and its slope with respect to L is given by

µL(E ) =
degL(E )

rk(E )
.

Definition 4.2. A torsion-free coherent sheaf E is said to be µ-semi-stable with
respect to L ∈ Amp(X) if for any proper coherent sub-sheaf of lower rank F of E
with 0 < rkF < rkE , one has

µL(F ) ≤ µL(E ) .

When strict inequality always holds, we say that E is µ-stable. Finally, E is said to
be µ-polystable if it is the direct sum of µ-stable sub-sheaves of the same slope.

Lemma 4.3 ([CT20, Lemma 4.3]). Let E be an equivariant reflexive sheaf with
family of multifiltrations

(
E, {Eρ(j)}ρ∈Σ(1), j∈Z

)
. We have

µL(E ) =
1

rk(E )

∑
ρ∈Σ(1)

∑
i∈Z

i eρ(i) degL(Dρ)

where eρ(i) = dimEρ(i− 1)− dimEρ(i).

Following [Koo11, Proposition 4.13] and [HNS19, Proposition 2.3], we have :

Proposition 4.4 ([CT20, Proposition 4.2]). Let E be a T -equivariant reflexive
sheaf on X with family of multifiltrations

(
E, {Eρ(j)}ρ∈Σ(1), j∈Z

)
. Then E is µ-

semi-stable (resp. µ-stable) with respect to L if and only if for all proper vector
sub-spaces W ⊂ E, µL(EW ) ≤ µL(E ) (resp. µL(EW ) < µL(E )), where EW is
defined in notation 3.7.

4.2. Polystability and semi-stability. We give here a link between poly-stability
and semi-stability.

Proposition 4.5 ([Koo11, Claim 2 of Proposition 4.13]). A reflexive µ-polystable
sheaf on X is a µ-semi-stable sheaf on X isomorphic to a (finite, nontrivial) direct
sum of reflexive µ-stable sheaves. Let E be a µ-semi-stable reflexive sheaf on X.
Then E contains a unique maximal reflexive µ-polystable sub-sheaf of the same slope
as E .

Corollary 4.6. Let E be an equivariant reflexive sheaf such that

E =

r⊕
i=1

Ei

with r ≥ 2. Let L ∈ Amp(X) such that for all i ∈ {1, . . . , r}, Ei is stable with
respect to L. Then, E is poly-stable with respect to L if and only if E is semi-stable
with respect to L.
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Proof. If E is poly-stable with respect to L, then E is semi-stable with respect to
L. We now assume that E is semi-stable with respect to L ; by using the identity

rk(E )µL(E ) =

r∑
i=1

rk(Ei)µL(Ei) ,

we get µL(Ei) = µL(E ) for all i ∈ {1, . . . , r} . Hence, E is poly-stable. □

4.3. An instability condition for the logarithmic tangent sheaves. Let
∆ ⊂ Σ(1) and

D =
∑
ρ∈∆

Dρ

a T -invariant Weil divisor on X. Let G be a sub-vector space of NC of dimension
l with 1 ≤ l < n. Let

(
E, {Eρ(j)}ρ∈Σ(1), j∈Z

)
be the family of multifiltrations

corresponding to E = TX(− logD) and
(
EG, {Gρ(j)}ρ∈Σ(1), j∈Z

)
be the family of

multifiltrations corresponding to EG. By Lemma 4.3, we have

(7) µL(E ) =
1

n

∑
ρ/∈∆

degL(Dρ)

and

(8) µL(EG) =
1

l

∑
ρ/∈∆ and uρ∈G

degL(Dρ) .

Therefore, we have
(9)

µL(E )− µL(EG) =

(
1

n
− 1

l

) ∑
ρ/∈∆, uρ∈G

degL(Dρ)

+
1

n

 ∑
ρ/∈∆, uρ /∈G

degL(Dρ)

 .

To study the stability of E with respect to L ∈ Amp(X), it suffices to compare
µL(E ) with µL(EG) where G ⊂ Span(uρ : ρ /∈ ∆) and 1 ≤ dimG ≤ n− 1.

Theorem 4.7. If 1 ≤ card(Σ(1) \ ∆) ≤ n − 1, then for any L ∈ Amp(X), the
logarithmic tangent sheaf E = TX(− logD) is not semi-stable with respect to L.

Proof. We assume that Σ(1)\∆ = {ρ1, . . . , ρk} where 1 ≤ k ≤ n−1 and we denote
by Dj the divisor corresponding to ρj = Cone(uj). Let G = Span(u1, . . . , uk) and
l = dimG. If L ∈ Amp(X), we have

µL(E )− µL(EG) =

(
1

n
− 1

l

) k∑
j=1

degL(Dj) < 0

because the numbers degL(Dj) are positive and different to zero. Thus, E is not
semi-stable with respect to L. □

We assume that X has no torus factor. We have seen that card(Σ(1)) = n +
rkCl(X), so the Theorem 4.7 becomes :

Corollary 4.8. We set p = rkCl(X). If 1+ p ≤ card(∆) ≤ n+ p− 1, then for any
L ∈ Amp(X), the logarithmic tangent sheaf TX(− logD) is not semi-stable with
respect to L.

Proof. If 1 + p ≤ card(∆) ≤ n+ p− 1, by using
card(Σ(1)) = n+ p = card(∆) + card(Σ(1) \∆) ,

we get 1 ≤ card(Σ(1) \∆) ≤ n− 1 ; we can conclude with Theorem 4.7. □

Remark 4.9. By Corollary 3.6, if card(∆) = n+ p, TX(− logD) is semi-stable.



STABILITY OF EQUIVARIANT LOGARITHMIC TANGENT SHEAVES 13

From now on, when we study the stability or semi-stability of TX(− logD), we
will consider only the case where 1 ≤ card(∆) ≤ p = rkCl(X) and p ∈ {1, 2}.

4.4. Stability on toric orbifolds of Picard rank one. In this section, we will
study the semi-stability of logarithmic tangent sheaf on toric orbifolds of Picard
rank one.
Let q0, q1, . . . , qn ∈ N∗ such that gcd(q0, . . . , qn) = 1. We set

N = Zn+1/Z(q0, . . . , qn) .
The dual lattice of N is M = {(a0, . . . , an) ∈ Zn+1 : a0 q0 + . . .+ an qn = 0}.
Let {ui : 0 ≤ i ≤ n} be the images in N of the standard basis vectors in Zn+1, so
the relation

q0 u0 + q1 u1 + . . .+ qn un = 0

holds in N . Let Σ be the fan in NR defined by
Σ = {Cone(A) : A ⊊ {u0, . . . , un}} .

We define X to be the toric variety of the fan Σ. Like Σ is simplicial, by [CLS11,
Proposition 4.2.7], Pic(X) has finite index in Cl(X). By (6), we deduce that
rkPic(X) = 1. We denote by Di the Weil divisor corresponding to the ray Cone(ui).
In the Corollary 4.8, we see that if 2 ≤ card(∆) ≤ n, then TX(− logD) is not semi-
stable with respect to any L ∈ Amp(X). We assume that card(∆) = 1. Let
i ∈ {0, . . . , n} and Ai = {0, . . . , n} \ {i}. We set E = TX(− logDi).

Lemma 4.10. For all j ∈ Ai, the divisor qiDj is linearly equivalent to the divisor
qjDi.

Proof. We fix j ∈ Ai . Let m = (a0, . . . , an) ∈M defined by ai = qj , aj = −qi and
ak = 0 if k ∈ {0, . . . , n} \ {i, j}. Like div(χm) = qj Di − qi Dj , we deduce that
qi Dj is linearly equivalent to qj Di . □
Theorem 4.11. Let L ∈ Amp(X). The sheaf E is poly-stable with respect to L if
and only if there is q ∈ N∗ such that for all j ∈ Ai , qj = q .

Proof. The assumptions of Theorem 3.9 are verified. Hence,

E =
⊕
j∈Ai

EFj

where Fj = Span(uj). By (8), µL(EFj
) = degL(Dj) for all j ∈ Ai . By Lemma

4.10, for all j ∈ Ai ,
µL(EFj

) =
qj
qi

degL(Di) .

If E is poly-stable with respect to L, there is r ∈ Q such that for all j ∈ Ai ,
qj = r qi . Hence, we have the existence of q ∈ N∗ such that for all j ∈ Ai , qj = q .
For the converse, if for all j ∈ Ai , we have qj = q , then E is poly-stable. □

According to Theorem 4.11 and Corollary 4.6, we have :

Corollary 4.12. For all i ∈ {0, . . . , n}, sStab(TX(− logDi)) ̸= ∅ if and only if
there exists q ∈ N∗ such that for all j ∈ Ai , qj = q . Moreover, if for all j ∈ Ai ,
we have qj = q , then

sStab(TX(− logDi)) = Amp(X) .

Corollary 4.13. For all i ∈ {0, . . . , n}, we have Stab(TX(− logDi)) = ∅ .

Corollary 4.14. If q0 = . . . = qn = 1 , that is X = Pn, then for all i ∈ {0, . . . , n},
we have

∅ = Stab(TX(− logDi)) ⊊ sStab(TX(− logDi)) = Amp(X) .
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5. Description of smooth projective toric varieties of Picard rank
two

Let X be a smooth projective toric variety of dimension n such that
rkPic(X) = 2. There exists r, s ∈ N∗ with r + s = n and a1, . . . , ar ∈ N with
a1 ≤ a2 ≤ . . . ≤ ar such that

(10) X = P

(
OPs ⊕

r⊕
i=1

OPs(ai)

)
.

We keep the notation of Section 1.1. We denote by π : X −→ Ps the projection
onto the basis Ps. We have the following linear equivalence,

(11) Dvi ∼lin Dv0−aiDw0 for i ∈ {1, . . . , r} and Dwj ∼lin Dw0 for j ∈ {1, . . . , s} .

By (11), we deduce that Pic(X) is generated by Dv0 and Dw0
.

Proposition 5.1 ([DDK20, Proposition 4.2.1]). Let D = µDw0 + λDv0 be a
T -invariant divisor of X with µ, λ ∈ Z . The divisor D is ample if and only if
µ > 0 and λ > 0.

Remark 5.2. Let µ, λ ∈ N∗ and L = OX(µDw0 +λDv0). We have an isomorphism
L ∼= π∗OPs(µ)⊗ OX(λ) .

By [CLS11, Theorem 8.1.2], the anti-canonical divisor of X is given by

(12) −KX =

r∑
i=0

Dvi +

s∑
j=0

Dwj ∼lin (s+ 1− a1 − . . .− ar)Dw0 + (r + 1)Dv0 .

Hence, X is Fano if and only if a1 + . . .+ ar ≤ s.

Let D be a reduced T -invariant Weil divisor on X. To study the stability of
E = TX(− logD) with respect to L = OX(Z) where Z = µDw0

+λDv0 (µ, λ ∈ N∗),
we will study the stability of E with respect to the ample Q-divisor Z ′ = νDw0

+Dv0

where ν =
µ

λ
.

5.1. Computation of the degree. Let P ⊂MR be a polytope such that the fan
ΣP of P is the fan Σ of X. For each ρ ∈ Σ(1) we denote by P ρ the facet of P
corresponding to a ray ρ.
We recall that a lattice M defines a measure ν on MR as the pull-back of Haar
measure on MR/M . It is determined by the properties

i. ν is translation invariant,
ii. ν(MR/M) = 1.

For all ρ ∈ Σ(1), we denote by vol(P ρ) the volume of P ρ with respect to the measure
determined by the lattice Span(P ρ) ∩M .

Proposition 5.3 ([Dan78, Section 11]). Let (X, L) be a polarized toric variety
corresponding to a lattice polytope P . For all ray ρ, we have degL(Dρ) = vol(P ρ).

5.2. Polytope corresponding to a Q-ample divisor. Here, we describe the
polytope corresponding to the Q-polarized variety (X, L) where

L = π∗OPs(ν)× OX(1) .

We refer to [HNS19, Section 4].
Let ν ∈ Q+ such that ν ̸= 0 and Ps = Conv(0, w1, w2, . . . , ws). Then,

P = Conv (νPs × {0} ∪ (a1 + ν)Ps × {v1} ∪ . . . ∪ (ar + ν)Ps × {vr})
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is the polytope corresponding to the Q-polarized variety (X, L). We denote by P vi

(resp. Pwj ) the facet of P corresponding to the ray Cone(vi) (resp. Cone(wj)).
The facet P vi is the convex hull of
νPs×{0}∪ . . .∪(ai−1+ν)Ps×{vi−1}∪(ai+1+ν)Ps×{vi+1}∪ . . .∪(ar+ν)Ps×{vr}
and Pwi is isomorphic to

νP ′
s × {0} ∪ (a1 + ν)P ′

s × {v1} ∪ . . . ∪ (ar + ν)P ′
s × {vr}

where P ′
s = Conv(0, w1, . . . , ws−1) .

Notation 5.4. For all i ∈ {0, 1, . . . , r} , we set Vi = vol(P vi) . Like for all j ∈
{1, . . . , s} , vol(Pwj ) = vol(Pw0) , we set W = vol(Pw0).

Proposition 5.5 ([HNS19, Proposition 4.3]). Let c0, c1, . . . , cr ∈ N, ν > 0 and
Ps = Conv(0, w1, w2, . . . , ws). The volume of the polytope

P = Conv ((c0 + ν)Ps × {0} ∪ (c1 + ν)Ps × {v1} ∪ . . . ∪ (cr + ν)Ps × {vr})
is given by

s∑
k=0

(
s+ r

k

)( ∑
d0+...+dr=s−k

cd0
0 · · · cdr

r

)
νk .

By Proposition 5.5, we have

W =

s−1∑
k=0

(
s+ r − 1

k

)( ∑
d1+...+dr=s−k−1

ad1
1 · · · adr

r

)
νk

V0 =

s∑
k=0

(
s+ r − 1

k

)( ∑
d1+...+dr=s−k

ad1
1 · · · adr

r

)
νk

and for i ∈ {1, . . . , r} ,

Vi =

s∑
k=0

(
s+ r − 1

k

) ∑
d1+...+di−1

+di+1+...+dr=s−k

ad1
1 · · · a

di−1

i−1 a
di+1

i+1 · · · a
dr
r

 νk .

For ν fixed, we give some relations between W and the numbers Vi.
If a1 = . . . = ar = 0, then

(13) W =

(
s+ r − 1

s− 1

)
νs−1 and Vi =

(
s+ r − 1

s

)
νs .

We now assume that (a1, . . . , ar) ̸= (0, . . . , 0) with a1 ≤ a2 ≤ . . . ≤ ar. Let
z ∈ {0, 1, . . . , r − 1} such that az = 0 and az+1 > 0 (we set a0 = 0). For
k ∈ {0, . . . , s} and i ∈ {z + 1, . . . , r}, we set

Wk =
∑

dz+1+...+dr=s−1−k

a
dz+1

z+1 · · · adr
r

V0k =
∑

dz+1+...+dr=s−k

a
dz+1

z+1 · · · adr
r

Vik =
∑

dz+1+...+di−1
+di+1+...+dr=s−k

a
dz+1

z+1 · · · a
di−1

i−1 a
di+1

i+1 · · · a
dr
r

where Ws = 0. If i ∈ {1, . . . , z}, we set Vik = V0k. We have Ws−1 = 1 and for
i ∈ {0, . . . , r}, Vis = 1.

Remark 5.6. If r = 1, we set V1s = 1 and for k ∈ {0, . . . , s− 1}, V1k = 0 .
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Lemma 5.7. For k ∈ {0, . . . , s− 1} and i ∈ {1, . . . , r}, ai Wk + Vik = V0k .

Proof. If i ∈ {1, . . . z}, the equality is true because ai = 0. We assume that
i ∈ {z + 1, . . . , r}, we have

V0k =
∑

dz+1+...+dr=s−k

a
dz+1

z+1 · · · adr
r

=
∑

dz+1+...+dr=s−k

di=0

a
dz+1

z+1 · · · adr
r +

∑
dz+1+...+dr=s−k

di≥1

a
dz+1

z+1 · · · adr
r

The first term of the second line corresponds to the number Vik and the second to
ai Wk (it suffices to replace di by d′i + 1). Hence, V0k = Vik + ai Wk . □

Corollary 5.8. For all i ∈ {1, . . . , r} , V0 = ai W + Vi .

5.3. A necessary condition for stability. In this part, we adapt some results
of [HNS19, Section 4] for the study of the stability of TX(− logD).
The following lemma will be useful in the proof of Proposition 5.10 which is the
main result of this part. Let z ∈ {0, . . . , r− 1} such that az = 0 and az+1 > 0. We
have the following lemma.

Lemma 5.9 ([HNS19, Lemma 4.2]).
Let I ′ ⊂ {0, 1 . . . , r} and G = Span(vi : i ∈ I ′). The vector a1v1 + . . . + arvr
belongs to G if and only if

i. {z + 1, . . . , r} ⊂ I ′ or
ii. {0, . . . , z} ⊂ I ′ , card({z + 1, . . . , r} \ I ′) ≥ 1 and ai = aj for all

i, j ∈ {z + 1, . . . , r} \ I ′ .

Let ∆ ⊂ Σ(1) and D =
∑
ρ∈∆

Dρ .

Let IΣ = {Cone(v0), . . . , Cone(vr)} and JΣ = {Cone(w0), . . . , Cone(ws)}. We set
I = {i ∈ {0, 1, . . . , r} : Cone(vi) ∈ IΣ \ (IΣ ∩∆)} and

J = {j ∈ {0, 1, . . . , s} : Cone(wj) ∈ JΣ \ (JΣ ∩∆)} .

Let L ∈ Amp(X). To study the stability of E = TX(− logD), it suffices to compare
µL(E ) and µL(EG) where G = Span(vi, wj : i ∈ I ′, j ∈ J ′) with I ′ ⊂ I, J ′ ⊂ J
and 1 ≤ dimG < (r + s) . By Proposition 5.3, and by using of (7), (8) we have

µL(E ) =
1

r + s

(∑
i∈I

Vi + card(J) ·W

)
and

µL(EG) =
1

dimG

(∑
i∈I′

Vi + card(J ′) ·W

)
.

Here is a variant of [HNS19, Proposition 4.1] which will be useful for us in the study
of stability of TX(− logD).

Proposition 5.10. The logarithmic tangent bundle E = TX(− logD) is stable
(resp. semi-stable) with respect to L if and only if

µL(E ) =
1

r + s

(∑
i∈I

Vi + card(J) ·W

)
is greater than (resp. greater than or equal to) the maximum of
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(1) Vi0 where i0 = min I if I ̸= ∅ ;

(2) 1

r′

∑
i∈I

Vi , if r′ = dimSpan(vi : i ∈ I) ̸= 0 ;

(3) card(J) ·W
s′

, if s′ = dimSpan(wj : j ∈ J) ̸= 0 and s′ < r + s ;

(4) 1

s+ k

(∑
i∈I′

Vi + (s+ 1)W

)
, if card(J ′) = s + 1, k = card(I ′) < r and

{z + 1, . . . , r} ⊂ I ′ ⊂ I ;

(5) 1

s+ k

(∑
i∈I′

Vi + (s+ 1)W

)
, if card(J ′) = s + 1 , k = card(I ′) < r and

I ′ ⊂ I such that the condition ii. of Lemma 5.9 is verified.

Proof. Let G = Span(vi, wj : i ∈ I ′, j ∈ J ′) where I ′ ⊂ I and J ′ ⊂ J . The
expressions (1) of Proposition 5.10 corresponds to G = Span(vi0), (2) corresponds
to G = Span(vi : i ∈ I) and (3) corresponds to G = Span(wj : j ∈ J).
• If card(J ′) = 0, then for ∅ ⊊ I ′ ⊆ I, we have dimG ≤ r and

µL(EG) =
1

dimG

∑
i∈I′

Vi ;

this number is less than or equal to the maximum of the numbers given in (1) and
(2).
• If card(I ′) = 0, then for ∅ ⊊ J ′ ⊆ J such that dimG < r + s, we have

µL(EG) =
card(J ′) ·W

dimG
;

this number is less than or equal to that given in (3).
• If card(I ′) = r + 1, then dimG < r + s if and only if s′ := card(J ′) < s. If
1 ≤ s′ < s, then

µL(EG) =
1

r + s′

(∑
i∈I′

Vi + s′W

)
≤ max

(
1

r

∑
i∈I′

Vi , W

)
;

this number is less than or equal to the maximum of numbers given in (2) and (3).
• If 1 ≤ card(I ′) ≤ r , 1 ≤ card(J ′) ≤ s and dimG < r + s, then µL(EG) is less
than or equal to the maximum of numbers given in (1), (2) and (3).

• It remains to study the case where card(J ′) = s+1 and 1 ≤ card(I ′) < r (because
if card(I ′) ≥ r, then dimG = r + s). We will treat it in two cases.
First case : ar = 0. For all i ∈ {1, . . . , r}, Vi = V0. If r′ = card(I ′) and 1 ≤ r′ < r,
then

µL(EG) =
1

r′ + s

(∑
i∈I′

Vi + (s+ 1)W

)
≤ max

(
V0 ,

(s+ 1)W

s

)
.

Second case : ar > 0. We set r′ = card(I ′). If I ′ satisfies the first (resp. second)
condition of Lemma 5.9, we get (4) (resp. (5) ).
If I ′ doesn’t satisfy the conditions of Lemma 5.9, then dimG = r′ + (s + 1).
Moreover, if r′ + (s + 1) < r + s, the number µL(EG) is less than or equal to
the maximum of the numbers given in (1) and (3). □
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Remark 5.11. If a1 = . . . = ar = 0, to check the stability of E with respect to L,
it is enough to compare µL(E ) with the numbers given by the points 1, 2 and 3 of
Proposition 5.10.

To check that E = TX(− logD) is not semi-stable, we will need the lemma below.
The purpose of the lemma is to avoid comparing µL(E ) with all the numbers given
in the Proposition 5.10.

Lemma 5.12.
(1) If ar ≥ 2 , then sV0 − (s+ 1)W ≥ sVr .
(2) Let r ≥ 2 and i ∈ {1, . . . , r − 1} . If ar > ai , then Vi −W ≥ Vr .

Proof. If ar ≥ 2, then
(
s− s+ 1

ar

)
=

ar s− (s+ 1)

ar
≥ 2s− (s+ 1)

ar
≥ 0 because

s ≥ 1 . Hence,

sV0 − (s+ 1)W = sV0 −
s+ 1

ar
(V0 − Vr) because ar W = V0 − Vr

=

(
s− s+ 1

ar

)
V0 +

s+ 1

ar
Vr

≥
(
s− s+ 1

ar

)
Vr +

s+ 1

ar
Vr = sVr .

Since V0 = ai W + Vi = ar W + Vr , we have Vi = (ar − ai)W + Vr . If ar > ai ,
then ar − ai ≥ 1 ; therefore Vi ≥W + Vr , i.e Vi −W ≥ Vr . □

5.4. Stability of logarithmic tangent bundle on X = Pr × Ps. In this part,
we assume that a1 = a2 = . . . = ar = 0 . We have X ∼= Ps × Pr. We denote by
π1 : X −→ Ps and π2 : X −→ Pr the projection maps.
We first show that TX(− logD) is decomposable when card(∆) ∈ {1, 2}.

Lemma 5.13. For i ∈ {0, . . . , r}, the vector bundle E = TX(− logDvi) satisfies

E =

 r⊕
k=0, k ̸=i

EFk

⊕ EG

where Fk = Span(vk) and G = Span(w0, . . . , ws) .

Lemma 5.14. For j ∈ {0, . . . , s}, the vector bundle E = TX(− logDwj
) satisfies

E =

 s⊕
k=0, k ̸=j

EGk

⊕ EF

where Gk = Span(wk) and F = Span(v0, . . . , vr) .

Lemma 5.15. Let i, i′ ∈ {0, . . . , r} distinct and j, j′ ∈ {0, . . . , s} distinct. We
have

TX(− log(Dvi +Dvi′ ))
∼= TPs ⊕ TPr (− log(π2(Dvi) + π2(Dvi′ ) ))

TX(− log(Dwj +Dwj′ ))
∼= TPs(− log(π1(Dwj ) + π1(Dwj′ ) ))⊕ TPr

For the proofs of these three lemmas it suffices to work with the family of mul-
tifiltrations as in the proof of Theorem 3.9. If i ∈ {0, . . . , r} and j ∈ {0, . . . , s}, by
Theorem 3.9 the vector bundle TX(− log(Dvi +Dwj

)) is decomposable.
We now study (semi)stability. In this table, we give the values of ν for which
E = TX(− logD) is (semi)stable with respect to π∗OPs(ν)⊗ OX(1).
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Table 1. Stability of TX(− logD) when a1 = . . . = ar = 0

Divisor D Stab(E ) sStab(E ) References

Dvi , 0 ≤ i ≤ r ∅ ν =
s+ 1

r
Theorem 5.16

Dwj
, 0 ≤ j ≤ s ∅ ν =

r + 1

s
Theorem 5.16

Dvj +Dwj

∅ ν =
s

r
Theorem 5.19

Dvi +Dvj , 0 ≤ i < j ≤ r ∅ ∅ Theorem 5.18

Dwi
+Dwj

, 0 ≤ i < j ≤ s ∅ ∅ Theorem 5.18

By (13), we have V =
r ν

s
W.

Theorem 5.16. Let i ∈ {0, 1, . . . , r} and j ∈ {0, 1, . . . , s}. For any L ∈ Amp(X),
the logarithmic tangent bundles TX(− logDvi) and TX(− logDwj ) are not stable
with respect to L. We have :

(1) TX(− logDvi) is semi-stable with respect to π∗OPs(ν)⊗OX(1) if and only
if ν =

s+ 1

r
;

(2) TX(− logDwj
) is semi-stable with respect to π∗OPs(ν)⊗OX(1) if and only

if ν =
r + 1

s
.

Proof. We start with E = TX(− logDvi
). We have :

µL(E ) =
1

r + s
(rV + (s+ 1)W) =

r2ν + s2 + s

s(r + s)
W =

r2ν + s2 + s

rν(r + s)
V .

By Proposition 5.10, to have stability or semi-stability, it is enough to compare
µL(E ) with max

(
(s+ 1)W

s
,V

)
.

If µL(E ) ≥ V , then r2ν + s2 + s

rν(r + s)
≥ 1 , i.e (r2ν + s2 + s) ≥ (r2ν + rsν) ; hence,

ν ≤ s+ 1

r
. If µL(E ) ≥ (s+ 1)W

s
, then r2ν + s2 + s

s(r + s)
≥ s+ 1

s
, i.e ν ≥ s+ 1

r
.

If ν ̸= s+ 1

r
, the numbers µL(E ) − V and µL(E ) − s+ 1

s
W are non-zero and

have opposite signs. Therefore, TX(− logDvi) is not semi-stable with respect to
π∗OPs(ν)⊗ OX(1).

If ν =
s+ 1

r
, then µL(E ) = V =

s+ 1

s
W . Thus, TX(− logDvi) is semi-stable but

not stable with respect to π∗OPs(ν)⊗ OX(1).

If we regard the case where E = TX(− logDwj
), it is enough to compare µL(E )

with max

(
(r + 1)V

r
,W

)
. We get the result by exchanging the roles of r and s

and also the roles of V and W in the computation above. □

Corollary 5.17. With the decomposition given in Lemma 5.13 (resp. Lemma
5.14), the vector bundle TX(− logDvi) (resp. TX(− logDwi)) is poly-stable with
respect to π∗OPs(ν)⊗ OX(1) if and only if ν =

s+ 1

r
(resp. ν =

r + 1

s
).
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Theorem 5.18. Let i, i′ ∈ {0, . . . , r} distinct and j, j′ ∈ {0, . . . , s} distinct. For
any L ∈ Amp(X) , the logarithmic tangent bundles TX(− log(Dvi + Dvi′ ) ) and
TX(− log(Dwj

+Dwj′ ) ) are not semi-stable with respect to L.

Proof. Let E = TX(− log(Dvi
+Dvi′ ) . We have :

µL(E ) =
1

r + s
((r−1)V+(s+1)W) =

r(r − 1)ν + s2 + s

s(r + s)
W =

r(r − 1)ν + s2 + s

rν(r + s)
V .

We assume that r = 1. We have µL(E ) = W . If we set F = Span(w0, . . . , ws),

we have µL(EF ) =
(s+ 1)W

s
; thus TX(− log(Dvi +Dvi′ ) ) is not semi-stable with

respect to L.

We now assume that r ≥ 2. To check the stability or semi-stability, it is enough to
compare µL(E ) with max

(
(s+ 1)W

s
,V

)
.

If µL(E ) ≥ V , then r(r − 1)ν + s2 + s

rν(r + s)
≥ 1 ; i.e ν ≤ s

r
.

If µL(E ) ≥ (s+ 1)W

s
, then r(r − 1)ν + s2 + s

s(r + s)
≥ s+ 1

s
; i.e ν ≥ s+ 1

r − 1
>

s

r
.

Like ν cannot satisfy this two conditions, we deduce that TX(− log(Dvi +Dvi′ ) )
is not semi-stable with respect to L. □

Theorem 5.19. Let i ∈ {0, . . . , r}, j ∈ {0, . . . , s} and D = Dvi +Dwj . We have :
(1) TX(− logD) is not stable with respect to any L ∈ Amp(X).
(2) TX(− logD) is semi-stable with respect to π∗OPs(ν) ⊗ OX(1) if and only

if ν =
s

r
.

Proof. We have

µL(E ) =
1

r + s
(rV + sW) =

r2ν + s2

s(r + s)
W =

r2ν + s2

rν(r + s)
V .

To check stability or semi-stability, it is enough to compare µL(E ) with max(V, W).

If µL(E) ≥ V , then r2ν + s2

rν(r + s)
≥ 1 ; i.e ν ≤ s

r
.

If µL(E) ≥W , then r2ν + s2

s(r + s)
≥ 1; i.e ν ≥ s

r
.

Hence, TX(− logD) is semi-stable with respect to π∗OPs(ν) ⊗ OX(1) if and only
if ν =

s

r
. □

Corollary 5.20. With the decomposition given in theorem 3.9, TX(− log(Dvi +

Dwj
)) is poly-stable with respect to π∗OPs(ν)⊗ OX(1) if and only if ν =

s

r
.

According to (11) and (12), when a1 = . . . = ar = 0, we have :

Dvi ∼lin Dv0 , Dwj
∼lin Dw0

and −KX ∼lin (s+ 1)Dw0
+ (r + 1)Dv0 .

By the above study when sStab(TX(− logD) ) ̸= ∅, we see that TX(− logD) is
semi-stable with respect to L if and only if L ∼= OX(−α (KX +D)) with α ∈ N∗.
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6. Stability of TX(− logD) on smooth toric varieties of Picard rank
two when ar ≥ 1

In this part, we will study the stability of TX(− logD) when X is given by (10)
with ar ≥ 1. If D =

∑
ρ∈∆

Dρ with ∆ ⊂ Σ(1), by Corollary 4.8, we will only study

the case where card∆ ∈ {1, 2}. The case card∆ = 0 was treated by Hering-Nill-
Süss in [HNS19].

Let L = π∗OPs(ν) ⊗ OX(1) be an element of Amp(X) ⊂ N1(X) ⊗Z R. We recall
that the numbers V0, . . . , Vr defined on Section 5.2 are polynomials of ν of degree
s and W is polynomial of degree s − 1. If E = TX(− logD), the number µL(E ) is
polynomial of degree at most s. Let P0 , P1 , P2 and Q be the polynomials of ν
defined by
P0 = µL(E )−V0 , P1 = µL(E )−V1 , P2 = µL(E )−V2 and Q = µL(E )−W .

We first recall the sign changes rule of Descartes. We refer to [Mig89, Chapter 5,
Section 4.3].

Theorem 6.1 (Descartes). Let P = cnX
n + cn−1X

n−1 + . . .+ c0 be a polynomial
with real coefficients where cn c0 ̸= 0 . Let p the number of sign changes in
the sequence (c0, . . . , cn) of its coefficients and q the numbers of positive real roots,
counted with their order of multiplicity. Then, there is m ∈ N such that q = p−2m .

Under certain conditions on ai , r and s , these polynomials (P0, P1,P2 and Q)
have respectively one or no positive root. If the positive root exists, we denote by

• νi the unique positive root of Pi where i ∈ {0, 1, 2}
• ν3 the unique positive root of Q.

In these tables, we give the values of ν for which E = TX(− logD) is stable or
semi-stable with respect to L = π∗OPs(ν)⊗ OX(1) .

Table 2. Stability of TX(− logD) when ar ≥ 1

Divisor D
Condition on r
and ai

Condition on s Stab(E ) sStab(E )

Dwj

0 ≤ j ≤ s

Theorem 6.2
r ≥ 1 and ar ≥ 1 s ≥ 1 ∅ ∅

Dvi

1 ≤ i ≤ r− 1

Prop. 6.4
r ≥ 2 and ar ≥ 1 s ≥ 1 ∅ ∅

Dvr

r ≥ 1 , ar = 1 and
ar−1 = 0

s ≥ 1 0 < ν < ν0 0 < ν ≤ ν0

Theorem 6.6 r ≥ 1 and (ar ≥ 2
or ar−1 ̸= 0) s ≥ 1 ∅ ∅

r = 1 s ≥ 1 0 < ν < ν1 0 < ν ≤ ν1

Dv0 r ≥ 2 and a1 < ar s ≥ 1 ∅ ∅

Theorem 6.9 r ≥ 2 and a ≥ s+ 1

r − 1
∅ ∅

Lemma 6.8 a1 = ar = a
s

r
≤ a <

s+ 1

r − 1
0 < ν < ν1 0 < ν ≤ ν1

Theorem 6.11 a r < s ν3 < ν < ν1 ν3 ≤ ν ≤ ν1
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Table 3. Stability of TX(− logD) when ar ≥ 1

Divisor D
Condition on r
and ai

Condition on s Stab(E ) sStab(E )

Dwi
+Dwj

0 ≤ i < j ≤ s

Theorem 6.2
r ≥ 1 and ar ≥ 1 s ≥ 1 ∅ ∅

Dvi +Dvj

1 ≤ i < j ≤ r

Corollary 6.5
r ≥ 2 and ar ≥ 1 s ≥ 1 ∅ ∅

Dvi
+Dwj

, j ≥ 0
and 1 ≤ i ≤ r − 1

Proposition 6.4
r ≥ 2 and ar ≥ 1 s ≥ 1 ∅ ∅

Dvr
+Dwj

, j ≥ 0

Corollary 6.7
r ≥ 1 and ar ≥ 1 s ≥ 1 ∅ ∅

Dv0+Dwj , 0 ≤ j ≤ s r = 1 s ≥ 1 ∅ ν = ν3

Theorem 6.9 r ≥ 2 and a1 < ar s ≥ 1 ∅ ∅
Lemma 6.8 r ≥ 2 and s ≤ a(r − 1) ∅ ∅
Theorem 6.13 a1 = ar = a s > a(r − 1) ∅ ν = ν3

Dv0
+Dvi , 2 ≤ i ≤ r r ≥ 2 and a1 < ar s ≥ 1 ∅ ∅

Lemma 6.8 r ≥ 2 and s ≤ a(r − 1) ∅ ∅
Theorem 6.13 a1 = ar = a s > a(r − 1) ∅ ν = ν3

Table 4. Stability of TX(− logD) when ar ≥ 1

Divisor D Condition on r and ai Condition on s Stab(E ) sStab(E )
r = 1 s ≥ 1 ∅ ν > 0

Dv0 +Dv1 r ≥ 2 and 0 = a1 < ar s ≥ 1 ∅ ∅
r ≥ 2 and s ≤ a(r − 1) ∅ ∅

Theorem 6.9 a1 = ar = a s > a(r − 1) ∅ ν = ν3

Prop. 6.14 r = 2 and s ≤ δ2 ∅ ∅
Theorem 6.13 0 < a1 < a2 s > δ2 ∅ ν = ν3

Prop. 6.17 r ≥ 3 and a2 < ar s ≥ 1 ∅ ∅
Lemma 6.15 r ≥ 3 and s ≤ δr ∅ ∅
Prop. 6.19 0 < a1 < a2 = . . . = ar s > δr ∅ ν = ν3

6.1. The case D = Dwj and D = Dwj +Dwi . Let i, j ∈ {0, . . . , s} distinct and
E = TX(− logDwi) , F = TX(− log(Dwi +Dwj )) .
If ar ≥ 1, the Lemma 5.14 is again true. The vector bundles E and F are decom-
posable and we have

E =

 s⊕
k=0, k ̸=i

EGk

⊕ EF and F =

 s⊕
k=0, k ̸=i

FGk

⊕FF

where Gk = Span(wk) and F = Span(v0, . . . , vr) .
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Theorem 6.2. Let (a1, . . . , ar) ̸= (0, . . . , 0). For any L ∈ Amp(X), the vector
bundles E and F are not semi-stable with respect to L .

Proof. Let L = π∗OPs(ν)⊗ OX(1), we have

µL(E ) =
1

r + s
( sW + (V0 + . . .+ Vr) )

and
µL(F ) =

1

r + s
( (s− 1)W + (V0 + . . .+ Vr) ) ;

thus, µL(F ) < µL(E ) . The points 4 and 5 of Proposition 5.10 are not verifying.
To check that E (resp. F ) is not semi-stable with respect to L it is enough to
compare µL(E ) (resp. µL(F )) with

max

(
V0,

1

r
(V0 + V1 + . . .+ Vr)

)
.

By Corollary 5.8, we have V0 = ar W + Vr . Like ar ≥ 1, we have V0 ≥ W + Vr ,
i.e V0 −W ≥ Vr . Thus,

(r + s) (V0 − µL(E )) = s(V0 −W) + (rV0 − (V0 + . . .+ Vr−1))− Vr

≥ s(V0 −W)− Vr because Vi ≤ V0

≥ (s− 1)Vr .

If s ≥ 2 , we have V0 − µL(E ) > 0 and V0 − µL(F ) > 0 . Thus, E and F are not
semi-stables with respect to L.
We now assume that s = 1. By using the formula defining Vi and W given in
Section 5.2, we have

W = 1 , V0 = (a1 + . . .+ ar) + rν and Vi = V0 − ai for i ∈ {1, . . . , r} .
We have

µL(E ) =
1

r + 1
(1 + (r + 1)V0 − (a1 + . . .+ ar))

and
1

r
(V0 + . . .+ Vr) =

1

r
((r + 1)V0 − (a1 + . . .+ ar)) .

Therefore, V0 + . . .+ Vr

r
− µL(E ) =

(r + 1)V0 − (a1 + . . .+ ar)− r

r(r + 1)
. We have

(r + 1)V0 − (a1 + . . .+ ar)− r =(r + 1)(a1 + . . .+ ar) + (r + 1)rν

− (a1 + . . .+ ar)− r

=r(a1 + . . .+ ar − 1) + (r + 1)rν > 0

because (a1 + . . . + ar − 1) ≥ 0 and ν > 0 . Thus, E and F are not semi-stables
with respect to L. □

6.2. The case where Cone(v0) /∈ ∆. If i ∈ {1, . . . , r} and j ∈ {0, . . . , s}, by The-
orem 3.9, the logarithmic tangent bundle TX(− log(Dvi +Dwj

) ) is decomposable.
Let r ≥ 2 and D ∈ {Dvi + Dvj : 1 ≤ i < j ≤ r} ; we set E = TX(− logD) , we
have the following proposition :

Lemma 6.3. The logarithmic tangent bundle E is decomposable. If ai < aj, then

E =

(
s⊕

l=0

EGl

)
⊕

 r⊕
k=0, k/∈{i, j}

EFk


where Gl = Span(wl) and Fk = Span(vk) . If ai = aj, then

E = EG ⊕ EF
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where G = Span(wl, vk : l ∈ {0, . . . , s}, k ∈ {0, . . . , r} \ {i, j}) and F = Span(vi)
or F = Span(vj).

Proof. For the proof we use the families of multifiltrations. We use the Lemma 5.9
to explain the choice of this decomposition. □

If D ∈ {Dvi : 1 ≤ i ≤ r}, we will not search to know if E = TX(− logD) is
decomposable because it depends on the numbers r, s and a1, . . . , ar . In particular,
if we assume that r = 2 , s = 1 , a1 = 0 and a2 = 1, then E = TX(− logDv1) is
decomposable and E = EF ⊕EG where F = Span(v2, w1) and G = Span(v0). But
F = TX(− logDv2) is not decomposable.

We first study the stability of TX(− logD) when r ≥ 2 and
D ∈{Dvi : 1 ≤ i ≤ r − 1} ∪ {Dvi +Dwj

: 1 ≤ i ≤ r − 1 and 0 ≤ j ≤ s}
∪ {Dvi +Dvj : 1 ≤ i < j ≤ r} .

Proposition 6.4. Let r ≥ 2 , (a1, . . . , ar) ̸= (0, . . . , 0), i ∈ {1, . . . , r−1} and j ∈
{0, . . . , s} . For any L ∈ Amp(X) , the logarithmic tangent bundles TX(− logDvi)
and TX(− log(Dvi +Dwj

)) are not semi-stables with respect to L.

Proof. We set E = TX(− logDvi) and F = TX(− log(Dvi +Dwj
)) .

Let L ∈ Amp(X), we have

µL(E ) =
1

r + s
( (s+ 1)W + (V0 + . . .+ Vi−1 + Vi+1 + . . .+ Vr) )

and µL(F ) < µL(E ) . We will show that V0 > µL(E ). We have
(r + s)(V0 − µL(E )) =(s+ 1)(V0 −W)− Vr

+ ( (r − 1)V0 − (V0 + . . .+ Vi−1 + Vi+1 + . . .+ Vr−1) )

≥(s+ 1)(V0 −W)− Vr

≥(s+ 1)Vr − Vr = sVr

By Proposition 5.10, E and F are not semi-stables with respect to L. □

Corollary 6.5. Let r ≥ 2 and (a1, . . . , ar) ̸= (0, . . . , 0). Let L ∈ Amp(X); for
all i, j ∈ {1, . . . , r} distinct, the logarithmic tangent bundle TX(− log(Dvi +Dvj ))
is not semi-stable with respect to L.

Proof. If we set G = TX(− log(Dvi +Dvj ) ), by using the proof of Proposition 6.4,
we have µL(G ) < µL(E ) < V0. Thus, G is not semi-stable with respect to L. □

We now study the stability of TX(− logD) when
D ∈ {Dvr} ∪ {Dvr +Dwj

: 0 ≤ j ≤ s} .

Theorem 6.6. Let r ≥ 1 and ar ≥ 1. We have Stab(TX(− logDvr )) ̸= ∅ if and
only if sStab(TX(− logDvr )) ̸= ∅ if and only if ar = 1 and ar−1 = 0 .
If ar = 1 and ar−1 = 0, then the logarithmic tangent bundle TX(− logDvr ) is stable
(resp. semi-stable) with respect to π∗OPs(ν) ⊗ OX(1) if and only if 0 < ν < ν0
(resp. 0 < ν ≤ ν0) where ν0 is the unique positive root of

P0(x) =

s−1∑
k=0

(
s+ r − 1

k

)
xk − s

(
s+ r − 1

s

)
xs .

Proof. Let E = TX(− logDvr ) and L = π∗OPs(ν)⊗ OX(1). We have
(r + s)µL(E ) = (s+ 1)W + V0 + V1 + . . .+ Vr−1 .
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• If ar ≥ 2 , by using the first point of Lemma 5.12 and the fact that Vi ≤ V0, we
get :

(r + s)[V0 − µL(E )] = (sV0 − (s+ 1)W) + rV0 − (V0 + . . .+ Vr−1) ≥ sVr .

By Proposition 5.10, TX(− logDvr
) is not semi-stable with respect to L.

• We assume that r ≥ 2 and ar−1 = ar = 1 . Like Vr−1 = Vr, we have
(r + s)[V0 − µL(E )] = (s+ 1)[V0 −W]− Vr−1 + [(r − 1)V0 − (V0 + . . .+ Vr−2)]

≥ (s+ 1)Vr − Vr−1 because V0 −W ≥ Vr

≥ sVr

By Proposition 5.10, TX(− logDvr ) is not semi-stable with respect to L.

• Let r ≥ 1. We now assume that ar−1 = 0 and ar = 1. By using the expressions
of Section 5.2, we have V0 = . . . = Vr−1 = V where

V =

s∑
k=0

(
s+ r − 1

k

)
νk and W =

s−1∑
k=0

(
s+ r − 1

k

)
νk .

The points 4 and 5 of Proposition 5.10 are not verified in this case. To check the
stability of E it is enough to compare

µL(E ) =
1

r + s
(rV + (s+ 1)W)

with max(V, W ). We have
(r + s)[µL(E )−W] = rV − (r − 1)W > 0 because W < V

and
(r + s)[µL(E )− V] =(s+ 1)W − sV

=

s−1∑
k=0

(
s+ r − 1

k

)
νk − s

(
s+ r − 1

s

)
νs = P0(ν) .

By the sign rule of Descartes (see Theorem 6.1), the polynomial P0 have a unique
positive root ν0. If ν > 0, then P0(ν) > 0 (resp. P0(ν) ≥ 0) if and only if ν < ν0
(resp. ν ≤ ν0). Thus, TX(− logDvr ) is stable (resp. semi-stable) with respect to
π∗OPs(ν)⊗ OX(1) if and only if 0 < ν < ν0 (resp. 0 < ν ≤ ν0). □

Corollary 6.7. We assume that r ≥ 1 and (a1, . . . , ar) ̸= (0, . . . , 0). Let j ∈
{0, . . . , s} and D = Dvr + Dwj

. For any L ∈ Amp(X) , the logarithmic tangent
bundle TX(− logD) is not semi-stable with respect to L.

Proof. If E = TX(− logD), we have V0 > µL(E ). By Proposition 5.10, TX(− logD)
is not semi-stable with respect to L. □

6.3. The case where Cone(v0) ∈ ∆. In this part we study the stability of the
logarithmic tangent bundle TX(− logD) when r ≥ 2 and

D ∈ {Dv0} ∪ {Dv0 +Dwj : 0 ≤ j ≤ s} ∪ {Dv0 +Dvi : 2 ≤ i ≤ r} .
The last case D = Dv0+Dv1 will be study in the Section 6.4. We recall that a0 = 0.
By Lemma 6.3 and Theorem 3.9, for all

D ∈ {Dv0 +Dwj : 0 ≤ j ≤ s} ∪ {Dv0 +Dvi : 2 ≤ i ≤ r}
TX(− logD) is decomposable. If D = Dv0 , r ≥ 2 and a1 = 0, then E = TX(− logD)
is decomposable and E = EG ⊕ EF where G = Span(w0, w1, . . . , ws, v2, . . . , vr)
and F = Span(v1). By Lemma 5.9, if a1 > 0, then TX(− logDv0) cannot be written
as a sum of two equivariant vector bundles.
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We now study the semi-stability of these bundles.

Lemma 6.8. Let r ≥ 2 , (a1, . . . , ar) ̸= (0, . . . , 0) such that a1 < ar , i ∈
{2, . . . , r} and j ∈ {0, . . . , s}. We set E = TX(− logDv0), F = TX(− log(Dv0 +
Dvi)) and G = TX(− log(Dv0 +Dwj )). For any L ∈ Amp(X), the vector bundles
E , F and G are not semi-stables with respect to L.

Proof. We have µL(E ) > µL(F ) and µL(E ) > µL(G ). We will show that
V1 > µL(E ). By Lemma 5.12, we have V1 −W ≥ Vr . Therefore

(r + s)(V1 − µL(E )) = (r + s)V1 − (V1 + . . .+ Vr)− (s+ 1)W

= (s+ 1)[V1 −W ]− Vr + [(r − 1)V1 − (V1 + . . .+ Vr−1)]

≥ (s+ 1)[V1 −W ]− Vr

≥ sVr

By Proposition 5.10, E , F and G are not semi-stables with respect to L. □

Let a ∈ N∗ . We now study what happen in Lemma 6.8 when a1 = . . . = ar = a.

6.3.1. We assume that r = 1.

Theorem 6.9. We assume that X = P (OPs ⊕ OPs(a)). Let P1 and Q the polyno-
mials defined by

P1(x) = (s+ 1)

s−1∑
k=0

(
s

k

)
as−k−1xk − s xs and Q(x) = xs −

s−1∑
k=0

(
s

k

)
as−k−1xk .

We have :
(1) TX(− logDv0) is stable (resp. semi-stable) with respect to π∗OPs(ν) ⊗

OX(1) if and only if 0 < ν < ν1 (resp. 0 < ν ≤ ν1) where ν1 is the unique
positive root of P1.

(2) If j ∈ {0, . . . , s}, then Stab(TX(− log(Dv0 +Dwj )) ) = ∅ ;
TX(− log(Dv0 +Dwj

)) is semi-stable with respect to π∗OPs(ν)⊗OX(1) if
and only if ν = ν3 where ν3 is the unique positive root of Q.

(3) ∅ = Stab(TX(− log(Dv0 + Dv1)) ) ⊊ sStab(TX(− log(Dv0 + Dv1)) ) =
Amp(X) .

Proof. By the sign rule of Descartes (cf. Theorem 6.1), P1 and Q have respectively
one positive root. Let L = π∗OPs(ν)⊗OX(1) , by using the expressions of Section
5.2, we have :

V1 = νs and W =

s−1∑
k=0

(
s

k

)
as−k−1νk .

Let E = TX(− logDv0). By Proposition 5.10, to check the stability of E , it is
enough to compare

µL(E ) =
V1 + (1 + s)W

1 + s
with max(V1, W) . We don’t use the points 4 and 5 because the hypothesis are not
verifying. We have

µL(E ) > W and (1 + s)(µL(E )− V1) = P1(ν) .

Thus, E is stable (resp. semi-stable) with respect to π∗OPs(ν)⊗OX(1) if and only
if 0 < ν < ν1 (resp. 0 < ν ≤ ν1).

Let F = TX(− log(Dv0 +Dwj
)). By Proposition 5.10, we compare

µL(F ) =
V1 + sW

1 + s
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with max(V1, W) . We have
(1 + s)(µL(F )−W) = Q(ν) and (1 + s)(µL(F )− V1) = −sQ(ν) .

Thus, for any ν > 0, F is not stable with respect to L. The vector bundle F is
semi-stable with respect to L if and only if ν = ν3 .

Let G = TX(− log(Dv0 +Dv1)) . We have µL(G ) = W . By Proposition 5.10, G is
semi-stable not stable with respect to L. □

6.3.2. We assume that r ≥ 2. We assume that a1 = . . . = ar = a with a ∈ N∗.

Lemma 6.10. We have

card{(α1, . . . , αp) ∈ Np : α1 + . . .+ αp = m} =
(
m+ p− 1

m

)
.

By Lemma 6.10, for all k ∈ {0, . . . , s− 1} , we have

Wk =
∑

d1+...+dr=s−k−1

ad1
1 · · · adr

r =

(
s− k + r − 2

s− k − 1

)
as−k−1

and
V1k =

∑
d2+...+dr=s−k

ad2
2 · · · adr

r =

(
s− k + r − 2

s− k

)
as−k .

We recall that V1s = 1 . By using the equality
(

n

p− 1

)
=

p

n− p+ 1

(
n

p

)
, for all

k ∈ {0, . . . , s− 1},

Wk =

(
s− k + r − 2

s− k − 1

)
as−k−1 =

s− k

r − 1

(
s− k + r − 2

s− k

)
as−k−1 =

s− k

a(r − 1)
V1k .

Let P1 and Q the polynomials defined by :

P1(x) =

s−1∑
k=0

[(
−s+ (s− k)(s+ 1)

a(r − 1)

)(
s+ r − 1

k

)
V1k

]
xk − s

(
s+ r − 1

s

)
xs

Q(x) =
s−1∑
k=0

[(
r − s− k

a

)(
s+ r − 1

k

)
V1k

]
xk + r

(
s+ r − 1

s

)
xs

Theorem 6.11. Let r ≥ 2 and X = P (OPs ⊕ OPs(a1)⊕ . . .⊕ OPs(ar)) with
a1 = . . . = ar = a where a ∈ N∗. We set E = TX(− logDv0).

(1) If a <
s

r
, then E is stable (resp. semi-stable) with respect to π∗OPs(ν) ⊗

OX(1) if and only if ν3 < ν < ν1 (resp. ν3 ≤ ν ≤ ν1) where ν1 and ν3 are
respectively the positive roots of P1 and Q.

(2) If s

r
≤ a <

s+ 1

r − 1
, then E is stable (resp. semi-stable) with respect to

π∗OPs(ν) ⊗ OX(1) if and only if 0 < ν < ν1 (resp. 0 < ν ≤ ν1) where ν1
is the unique positive root of P1.

(3) If a ≥ s+ 1

r − 1
, then for any L ∈ Amp(X), E is not semi-stable with respect

to L.

Before giving the proof of this theorem, we will explain the condition which
ensure the existence of positive roots on P1 and Q. We will use the Descartes sign
rule.

We write P1 as P1(x) =

s∑
k=0

αk x
k . We have αs < 0. If −s+ (s− k)(s+ 1)

a(r − 1)
> 0 ,
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then s− k >
a s(r − 1)

s+ 1
, i.e k <

(
1− a(r − 1)

s+ 1

)
s .

If a(r − 1)

s+ 1
≥ 1 , then for any x ≥ 0, P1(x) < 0 .

If a <
s+ 1

r − 1
, then for all k <

(
1− a(r − 1)

s+ 1

)
s , we have αk > 0 and for all

k ≥
(
1− a(r − 1)

s+ 1

)
s , αk ≤ 0 . Hence P1 has only one positive root ν1.

We write Q(x) =
s∑

k=0

βk x
k . We have βs > 0. If r−s− k

a
< 0 , then r a−(s−k) < 0,

i.e k < s− r a . If a ≥ s

r
, then for any x ≥ 0, Q(x) > 0 .

If a <
s

r
, then for all k < s − r a , we have βk < 0 and for all k ≥ s − r a ,

βk ≥ 0 . Thus, Q has only one positive root ν3 .

Lemma 6.12. If a <
s

r
, then ν3 < ν1 .

Proof. If a <
s

r
, then a <

s+ 1

r − 1
. By the above analysis, ν1 and ν3 exist. For x ≥ 0,

we have P1(x) > 0 if and only if 0 ≤ x < ν1. Like

P1(x)

−s
− Q(x)

r
=

s−1∑
k=0

[(
1− (s− k)(s+ 1)

a s(r − 1)
− 1 +

s− k

r a

)(
s+ r − 1

k

)
V1k

]
xk

=
−(r + s)

a s r(r − 1)

s−1∑
k=0

(s− k)

(
s+ r − 1

k

)
V1k x

k = P(x)

we have P1(ν3)

−s
− Q(ν3)

r
= P(ν3) < 0 . Hence, P1(ν3) > 0 , i.e ν3 < ν1 . □

Now, we can prove Theorem 6.11.

Proof of Theorem 6.11. Like a1 = . . . = ar , we have V1 = . . . = Vr. Therefore

µL(E ) =
rV1 + (s+ 1)W

r + s
.

In this case the point 4 and 5 are not verified. To check the stability of E =
TX(− logDv0), it is enough to compare µL(E ) with max(V1, W) . We have
(r + s)(µL(E )− V1) = −sV1 + (s+ 1)W

= −s
s∑

k=0

(
s+ r − 1

k

)
V1k ν

k + (s+ 1)

s−1∑
k=0

(
s+ r − 1

k

)
Wk ν

k

= P1(ν)

and
(r + s)(µL(E )−W) = rV1 − (r − 1)W

= r

s∑
k=0

(
s+ r − 1

k

)
V1k ν

k − (r − 1)

s−1∑
k=0

(
s+ r − 1

k

)
Wk ν

k

= Q(ν)

We have :
i. If a ≥ s+ 1

r − 1
, then for any ν > 0, we have P1(ν) < 0.
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ii. If a <
s+ 1

r − 1
, then P1(ν) > 0 (resp. P1(ν) ≥ 0) if and only if 0 < ν < ν1

(resp. 0 < ν ≤ ν1).
iii. If a ≥ s

r
, then for any ν > 0, we have Q(ν) > 0 .

iv. If a <
s

r
, then Q(ν) > 0 (resp. Q(ν) ≥ 0) if and only if ν > ν3 (resp.

ν ≥ ν3).
The point i. shows the third point of the theorem. By using the points ii. , iv. and
the Lemma 6.12, we get the first point of theorem. The points ii. and iii. give the
second point of the theorem. □

Let i ∈ {1, . . . , r} and j ∈ {0, . . . , s}. We now study the stability of Fj =
TX(− log(Dv0

+ Dwj
)) and Gi = TX(− log(Dv0 + Dvi)) . Let Q the polynomial

defined by

Q(x) =
s−1∑
k=0

[(
1− s− k

a(r − 1)

)(
s+ r − 1

k

)
V1k

]
xk +

(
s+ r − 1

s

)
xs .

Theorem 6.13. We assume that r ≥ 2 and X = P (OPs ⊕ OPs(a1)⊕ . . .⊕ OPs(ar))
with a1 = . . . = ar = a where a ∈ N∗. Let i ∈ {1, . . . , r} and j ∈ {0, . . . , s}.

(1) For any L ∈ Amp(X) , Fj and Gi are not stables with respect to L.
(2) If a ≥ s

r − 1
, then for any L ∈ Amp(X) , Fj and Gi are not semi-stables

with respect to L.
(3) If a <

s

r − 1
, then Fj and Gi are semi-stables with respect to π∗OPs(ν)⊗

OX(1) if and only if ν = ν3 where ν3 is the unique root of Q.

Proof. We first study the polynomial Q. We write Q(x) =

s∑
k=0

αk x
k . We have

αs > 0 . If 1− s− k

a(r − 1)
< 0 , then a(r − 1)− (s− k) < 0 , i.e k < s− a(r − 1) .

If a ≥ s

r − 1
, then for any x ≥ 0, Q(x) > 0 .

If a <
s

r − 1
, then for all k < s−a(r−1) , we have αk < 0 and for k ≥ s−a(r−1) ,

αk ≥ 0 . Thus, Q has a unique positive root ν3 .
Like a1 = . . . = ar, we have V1 = . . . = Vr. Thus,

µL(Fj) =
rV1 + sW

r + s
and µL(Gi) =

(r − 1)V1 + (s+ 1)W

r + s
.

By using Proposition 5.10, to check the stability of Fj (resp. Gi), it is enough to
compare µL(Fj) (resp. µL(Gi)) with max(V1, W ). We have{

(r + s)(µL(Fj)− V1) = s(W − V1) = −sQ(ν)
(r + s)(µL(Fj)−W) = r(V1 −W) = rQ(ν)

and {
(r + s)(µL(Gi)− V1) = (s+ 1)(W − V1) = −(s+ 1)Q(ν)

(r + s)(µL(Gi)−W) = (r − 1)(V1 −W) = (r − 1)Q(ν)

If a ≥ s

r − 1
, then for any ν > 0, Q(ν) > 0; thus, µL(Fj) < V1 and µL(Gi) < V1 .

Hence, for any ν > 0, Fj and Gi are not semi-stables with respect to L.

We now assume that a <
s

r − 1
. Let ν3 the positive root of Q.

If ν ̸= ν3 , by the above equalities, Fj and Gi are not semi-stables with respect to
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L. If ν = ν3 , the logarithmic tangent bundles Fj and Gi are semi-stables but not
stable with respect to π∗OPs(ν)⊗ OX(1) . □

6.4. The case D = Dv0 +Dv1 . In this part, we assume that D = Dv0 +Dv1 and
E = TX(− logD). In the beginning of Section 6.3, we see that E is decomposable.
In this part, we will study the stability of E when r ≥ 2 and a1 < ar. The stability
of E when r = 1 was treated in Theorem 6.9. When r ≥ 2, in Theorem 6.13, we
study the stability of E when a1 = . . . = ar with a1 ∈ N∗.

Proposition 6.14. If a1 = 0 , then for any L ∈ Amp(X), E is not semi-stable
with respect to L.

Proof. We have µL(E ) =
1

r + s
((s+ 1)W + V2 + . . .+ Vr) . Like card{2, . . . , r} =

r − 1, by using the point 4 of Proposition 5.10 with I ′ = {2, . . . , r}, we have

1

r + s− 1

(∑
i∈I′

Vi + (s+ 1)W

)
=

1

r + s− 1
(V2 + . . .+ Vr + (s+ 1)W) .

Thus, TX(− log(Dv0 +Dv1)) is not semi-stable with respect to L. □

We also have :

Lemma 6.15. Let r ≥ 3 , (a1, . . . , ar) ̸= (0, . . . , 0) such that a2 < ar . For any
L ∈ Amp(X), the vector bundle E is not semi-stable with respect to L.

Proof. We have µL(E ) =
1

r + s
(V2 + . . . + Vr + (s + 1)W) . We will show that

V2 > µL(E ). By Lemma 5.12, we have V2 −W ≥ Vr , thus

(r + s)(V2 − µL(E ) = (r + s)V2 − (V2 + . . .+ Vr)− (s+ 1)W

= (s+ 1)[V2 −W] + [(r − 1)V2 − (V2 + . . .+ Vr)]

≥ (s+ 1)[V2 −W]

≥ (s+ 1)Vr

Hence, by Proposition 5.10, E is not semi-stable with respect to L. □

We now assume that 0 < a1 < a2 = . . . = ar . For the stability of E , we see that:
the point 4 and 5 of Proposition 5.10 are not verified here. To check the stability
of E , it is enough to compare µL(E ) with max(V2, W) . We have

µL(E ) =
(r − 1)V2 + (s+ 1)W

r + s

and

(14)
{

(r + s)[µL(E )− V2] = (s+ 1)(W − V2)

(r + s)[µL(E )−W] = −(r − 1)(W − V2)

We have :

Proposition 6.16. Let r ≥ 2 . If 0 < a1 < a2 = . . . = ar , then Stab(E ) = ∅ .

The vector bundle E = TX(− log(Dv0 + Dv1)) is semi-stable with respect to
L = π∗OPs(ν3) ⊗ OX(1) if and only if ν3 is a positive root of the polynomial
Q(ν) = W − V2 (W and V2 depend on ν).
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6.4.1. We assume that r = 2 and 0 < a1 < a2 .

Proposition 6.17. Let r = 2 and 0 < a1 < a2 . We define δ =
ln(1 + a2 − a1)

ln(a2)− ln(a1)
and Q the polynomial

Q(x) =
s−1∑
k=0

[
as−k
1

a2 − a1

((
a2
a1

)s−k

− 1− a2 + a1

)(
s+ 1

k

)]
xk − (s+ 1)xs .

We have :
(1) If s ≤ δ , then sStab(TX(− log(Dv0 +Dv1)) ) = ∅ ;
(2) If s > δ , then TX(− log(Dv0+Dv1)) is semi-stable with respect to π∗OPs(ν)⊗

OX(1) if and only if ν = ν3 where ν3 is the positive root of Q.

Proof. We have

V2 =

s∑
k=0

(
s+ 1

k

)
as−k
1 νk

W =

s−1∑
k=0

(
s+ 1

k

)( ∑
d1+d2=s−k−1

ad1
1 ad2

2

)
νk =

s−1∑
k=0

as−k
2 − as−k

1

a2 − a1

(
s+ 1

k

)
νk

hence,

W−V2 =

s−1∑
k=0

[
as−k
1

a2 − a1

((
a2
a1

)s−k

− 1− a2 + a1

)(
s+ 1

k

)]
νk−(s+1)νs = Q(ν) .

We write Q(x) =
s∑

k=0

αk x
k . We have αs < 0 . The inequality

(
a2
a1

)s−k

− 1− a2 + a1 > 0

gives k < s− ln(1 + a2 − a1)

ln(a2)− ln(a1)
= s− δ . If s ≤ δ , then for any x ≥ 0 , Q(x) < 0 .

If s > δ , then by the Descartes rule, Q has a unique positive root ν3 .
Hence, if s > δ, then E is semi-stable with respect to π∗OPs(ν) ⊗ OX(1) if and
only if ν = ν3. □

6.4.2. We assume that r ≥ 3 and a1 < ar . Let a, b ∈ N∗ such that a < b .
We assume that a1 = a and a2 = . . . = ar = b . By Lemma 6.10, for all k ∈
{0, . . . , s− 1} , we have :

Wk =
∑

d1+...+dr
=s−k−1

ad1
1 · · · adr

r =

s−k−1∑
j=0

as−k−1−j

 ∑
d2+...+dr=j

bj


=

s−k−1∑
j=0

(
j + r − 2

j

)
bj as−k−1−j

and

V2k = Vrk =
∑

d1+...+dr−1
=s−k

ad1
1 · · · a

dr−1

r−1 =

s−k∑
j=0

as−k−j

 ∑
d2+...+dr−1=j

bj


=

s−k∑
j=0

(
j + r − 3

j

)
bj as−k−j .
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For k ∈ {0, . . . , s − 1}, we have (s − k) ∈ {1, . . . , s} . For p ∈ {1, . . . , s} , we set
αp = Ws−p − V2, s−p ; we have

αp =

p−1∑
j=0

(
j + r − 2

j

)
bj ap−1−j −

p∑
j=0

(
j + r − 3

j

)
bj ap−j .

Let Qs be the polynomial defined by

Qs(x) =

s−1∑
k=0

(
s+ r − 1

k

)
αs−k x

k −
(
s+ r − 1

s

)
xs .

We have W − V2 = Qs(ν) . We now search a condition on s which ensure the

existence of positive root on Q. By using the identity
(

n

p− 1

)
=

p

n− p+ 1

(
n

p

)
,

we have

αp =

p−1∑
j=0

j + 1

r − 2

(
j + r − 2

j + 1

)
bj ap−1−j −

p∑
j=1

(
j + r − 3

j

)
bj ap−j − ap

=

p−1∑
j=0

[(
j + 1

r − 2
− b

)(
j + r − 2

j + 1

)
bj ap−1−j

]
− ap .

If 1 ≤ p ≤ b(r − 2) , then for all j ∈ {0, . . . , p− 1}, we have

j + 1

r − 2
− b ≤ p

r − 2
− b =

p− b(r − 2)

r − 2
≤ 0 ;

thus αp < 0 . Hence, if αp > 0, then we must have p > b(r − 2) .
If there is p > b(r− 2) such that αp > 0, then for any q ≥ p, we have αq > 0 ; this
follows from these equalities.

αp+1 =

p−1∑
j=0

[(
j + 1

r − 2
− b

)(
j + r − 2

j + 1

)
bj ap−j

]
− ap+1 +

(
p+ 1

r − 2
− b

)(
p+ r − 2

p+ 1

)
bp

= aαp +

(
p+ 1

r − 2
− b

)(
p+ r − 2

p+ 1

)
bp

We denote by ⌊x⌋ the floor of x ∈ R.

Lemma 6.18. Let m = b(r−2) . There is a unique integer δr ∈ [m+ 1 ; ⌊3.2m⌋+ 1]
such that : if p ≤ δr , then αp ≤ 0 and if p > δr , then αp > 0 .

Let δr be the integer given in Lemma 6.18. If s ≤ δr, then all coefficients of Qs

are negative; thus, for any x > 0, Qs(x) < 0 . If s > δr, then by the Descartes rule
(see Theorem 6.1), Qs has a only one positive root ν3. We deduce :

Proposition 6.19. Let r ≥ 3 and a, b ∈ N∗ such that a < b and a1 = a ,
a2 = . . . = ar = b .

(1) If s ≤ δr , then sStab(TX(− log(Dv0 +Dv1)) ) = ∅ ;
(2) If s > δr , then TX(− log(Dv0+Dv1)) is semi-stable with respect to π∗OPs(ν)⊗

OX(1) if and only if ν = ν3 .

We now give the proof of Lemma 6.18.
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Proof. We have αp =

m−1∑
j=0

[(
j + 1

r − 2
− b

)(
j + r − 2

j + 1

)
bj ap−1−j

]
− ap + βp where

βp =

p−1∑
l=m

[(
l + 1− (r − 2)b

r − 2

)(
l + r − 2

l + 1

)
bl ap−1−l

]

=

p−1−m∑
l=0

[
l + 1

r − 2

(
l +m+ r − 2

l +m+ 1

)
bl+m ap−1−(l+m)

]
The goal of this proof is to find an integer p such that αp > 0. We will search an
integer p such that

(15) βp ≥ ap +

m−1∑
j=0

b

(
j + r − 2

j + 1

)
bj ap−1−j .

We have
(
l +m+ r − 2

l +m+ 1

)
=

(
l +m+ r − 2

r − 3

)
=

r − 2

l +m+ 1

(
l +m+ r − 2

r − 2

)
. From

the equality
r∑

j=n

(
j

n

)
=

(
r + 1

n+ 1

)
we have

(
r + 1

n+ 1

)
= 1 +

r−n−1∑
j=0

(
j + n+ 1

n

)
;

Hence, (
l +m+ r − 2

r − 2

)
= 1 +

l+m−1∑
j=0

(
j + r − 2

r − 3

)
= 1 +

l+m−1∑
j=0

(
j + r − 2

j + 1

)

≥ 1 +

m−1∑
j=0

(
j + r − 2

j + 1

)
.

Thus,

βp ≥

1 +

m−1∑
j=0

(
j + r − 2

j + 1

) p−1−m∑
l=0

l + 1

l + 1 +m
bl+m ap−1−(l+m)

≥ bm ap−1−m

1 +

m−1∑
j=0

(
j + r − 2

j + 1

) p−1−m∑
l=0

l + 1

l + 1 +m

(
b

a

)l

.

We have
p−1−m∑

l=0

l + 1

l + 1 +m
≥

p−1−m∑
l=0

∫ l+1

l

x dx

x+m
=

∫ p−m

0

x

x+m
dx

=
[x
1
−m ln(x+m)

]p−m

0

= p−m−m ln
( p

m

)
We set k =

p

m
. If k ≥ 17

5
= 3.2, then (k−1− ln(k)) > 1. If we set p = ⌊3.2m⌋+1,

we get
p−1−m∑

l=0

l + 1

l + 1 +m

(
b

a

)l

≥
p−1−m∑

l=0

l + 1

l + 1 +m
≥ m ≥ b .
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For j ∈ {0, . . . , m− 1}, we have bm ap−1−m ≥ bj ap−1−j . If p = ⌊3.2m⌋+1, we get

βp ≥ b bm ap−1−m

1 +

m−1∑
j=0

(
j + r − 2

j + 1

)
≥ bm+1 ap−1−m +

m−1∑
j=0

b

(
j + r − 2

j + 1

)
bj ap−1−j ;

this proves the inequality (15). Thus, αp > 0 for p = ⌊3.2m⌋+1. Hence, we deduce
the existence of the integer δr in the interval [m+ 1 ; ⌊3.2m⌋+ 1] . □
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