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STABILITY OF EQUIVARIANT LOGARITHMIC TANGENT
SHEAVES ON TORIC VARIETIES OF PICARD RANK TWO

ACHIM NAPAME

ABSTRACT. For an equivariant log pair (X, D) where X is a normal toric va-
riety and D a reduced Weil divisor, we study slope-stability of the logarithmic
tangent sheaf Jx (—log D). We give a complete description of divisors D and
polarizations L such that Jx (—log D) is (semi)stable with respect to L when
X has a Picard rank one or two.

1. INTRODUCTION

The notion of slope-stability for vector bundles was first introduced by Mumford
[Mum62] in his attempt to construct the moduli spaces of vector bundles over a
curve. This notion was generalized in higher dimension by Takemoto [Tak72]. The
study of stability of coherent sheaves over polarized varieties is a difficult problem.
This problem is simplified when additional structures are added on the sheaf.

A quasi-coherent sheaf & on a toric variety X with torus T is said to be an
equivariant sheaf if it admits a lift of the T-action on X, which is linear on the
stalks of &. Klyachko in [Kly90] gave a complete classification of equivariant vector
bundles over toric varieties in terms of a family of filtrations of vector spaces. This
classification was generalized in the case of quasi-coherent sheaves on toric varieties
by Perling in [Per04].

By using the equivariant structure of the tangent bundle, Hering-Nill-Siiss in
[HNS19] and Dasgupta-Dey-Khan in [DDK20] studied slope-stability of the tangent
bundle TX of a smooth projective toric variety X of Picard rank one or two.
Inspired by Iitaka’s philosophy, in this paper, we extend the result of [HNS19]
and [DDK20] to the case of log pairs (X, D). More precisely, if X is a normal
toric variety and D a reduced Weil divisor such that the logarithmic tangent sheaf
Ix (—log D) is equivariant, we are interested by the set of polarizations L on X
such that Jx(—log D) is (semi)stable with respect to L.

Assume that X is a Kéhler manifold and D = )", a;D; a simple normal crossing
divisor with a; € [0; 1] N Q. If Kx + D is ample, there exists a Kéhler-Einstein
metric w on the pair (X, D) by [BG16, Theorem C]; moreover, if D is reduced, then
the logarithmic tangent sheaf 7x (—log D) is semi-stable with respect to Kx + D
by [Guel6, Theorem A]. If the pair (X, D) is Fano, by [Berl6, Section 4.3], the
pair (X, D) admits a Kédhler-Einstein metric w if for all ¢, 0 < a; < 1. In this case,
(X, D) is K-polysatble. According to [Li20, Theorem 1.4], the orbifold tangent
sheaf Jx(—log D) is slope semi-stable with respect to —(Kx + D).

In this paper, we are interested in the case where a; € {0, 1}. According to
[BB13, Section 1.2.1 and Section 3], when (X, D) is Fano, we don’t have a natural
notion of Kéhler-Einstein metric on (X, D). We will use another method to study
the slope-stability of Jx(—log D).

In Section 2, we recall some notions about toric varieties and equivariant sheaves.
Let X be a normal toric variety over C and T be its torus. We denote by X the
fan of X and X(1) the set of rays of ¥. In Proposition 2.10, we show that : for a
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2 A. NAPAME

reduced Weil divisor D, the logarithmic tangent sheaf Jx(—log D) is equivariant

if and only if
D=Y D,
pEA

where A is a subset of 3(1) and D, the Zariski closure of the orbit O(p) correspond-
ing to the ray p. Using the family of multifiltrations defined in [Per04, Section 5],
we give in Section 3.1 the family of multifiltrations corresponding to the equivari-
ant sheaf Jx(—log D). In Section 3.2, we give some conditions on ¥ and A, such
that Ix(—log D) is decomposable. In Section 4, we recall some notions about
slope-stability and we show that :

Proposition 1.1. Let X be a toric variety without torus factor and p be the rank
of its class group Cl(X). If

1+ p<card(A) <dim(X)+p—1
then Jx (—log D) is not semi-stable with respect to any polarizations.

By Corollary 3.6, if A = &, then Ix(—log D) is the tangent sheaf Jx and when
A = ¥(1), Ix(—log D) is isomorphic to the trivial vector bundle of rank dim X.
If X has no torus factor, we have card(X(1)) = dim(X) + p by [CLS11, Theorem
4.1.3]. According to Proposition 1.1, it is therefore sufficient to study the stability
of Tx(—log D) when card(A) < p. In this paper we will be interested in the case
where p € {1, 2}. As the case card(A) = 0 corresponds to the tangent sheaf, we
will study the slope-stability of Ix(—log D) when 1 < card(A) < p.

In Section 4.4, we study slope-stability of Zx (—log D) when X is a toric orbifold
of Picard rank one. If X =P" and A C (1), we show that :

Proposition 1.2. If card(A) = 1, then Ix(—log D) is poly-stable but not stable
with respect to any polarizations.

In the last sections (Sections 5 and 6) we study slope-stability of Jx(—log D)
when X is a smooth toric variety of Picard rank 2. These parts form the core of
this paper.

1.1. Smooth toric varieties of Picard rank two. Let X be a smooth toric
variety of dimension n with fan ¥ in R™ such that rkPic(X) = 2. By [CLS11,
Theorem 7.3.7] due to Kleinschmidt (see [Kle88]), there exists r, s € N* with

r+s=mnand ay,..., a € Nwith ay <as <...<a, such that
(1) X=P (ﬁps @@ﬁps(ai)> :
i=1

We denote by 7 : X — P* the projection to the base P*. By [CLS11, Section 7.3]

and [DDK20, Section 4.2], the rays of ¥ are given by the half-lines generated by

Wo, W1, ..., Ws, Vg,V1,..., v, where (w1,..., ws) is the standard basis of Z* x 0z-,

(v1,..., v.) the standard basis of 0zs x Z",

vo=—(v1+...4v.) and wo=a1v1+...+ av, — (w1 +...+ws) .

We denote by D,, the divisor corresponding to the ray Cone(v;) and D,,; the divisor

corresponding to the ray Cone(w;).

Notation 1.3. Let Amp(X) C N'(X) ®z R be the ample cone of X. We define :
L € Amp(X) : Ix(—1log(D))

Stab(Zx (—log D)) =
ab(7x (= log D)) { is stable with respect to L

and

sStab(7x (— log D)) = { L € Amp(X) : Tx(~log(D)) }

is semi-stable with respect to L



STABILITY OF EQUIVARIANT LOGARITHMIC TANGENT SHEAVES 3

1.2. Main results. Let X be a smooth toric variety of Picard rank two and

= T Ops (1) ® Ox(A) be a polarization on X. We set v = §£. In Section 5,
more precisely in Proposition 5.10, we give a criterion that allows to verify the
stability of Ix(—log D). For all divisors D =3 . D, with 1 < card(A) < 2,
we give in tables 1, 2, 3 and 4 the values of v for which Fx (—log D) is (semi)stable
with respect to L. We give here some results.

If ay = ... =a, =0, the variety X given in (1) is P* x P". Let
D ={Dy, : 0<i<r}U{Dy,: 0<j<spU{Dy, + Dy, : 0<i<r, 0<5<s}
and
Dy =Dy, + Dy, : 0<i<j<r}U{Dy, + Dy, : 0<i<j<s}.
We have :

Theorem 1.4. If D € 91 U s, then Stab( Ix(—log D)) = &. But :
(1) if D € 95, sStab(Ix(—logD)) =@ ;

(2) if D € 21, Ix(—log D) is poly-stable with respect to L if and only if L is
a power of the polarization corresponding to —(Kx + D).

We now consider the general case, that is X given by (1) with a, > 1.

Theorem 1.5 (Stability of Jx(—log D, )). We have Stab(Jx(—logD,,)) # @
if and only if sStab(Jx(—logD,,.)) # @ if and only if a, =1 and a1 =0. If
ar =1 and a,._1 = 0, then the logarithmic tangent sheaf Tx(—logD,, ) is stable
(resp. semi-stable) with respect to 7 Ops (1) ® Ox(\) if and only if 0 < § < 1p
(resp. 0 < & <) where vy is the unique positive root of

= (s+r—1\ 4 s+r—1Y |
Po(aj)—kz_o< k )x s< . )x .

If a, > 1, we see that this theorem is similar to [HNS19, Theorem 1.4]. If
we fix r and s, there is only one smooth toric variety with Picard rank two
such that Stab(Jx(—logD,, )) # @ or Stab(Jx) # @; this variety is given
by (1) with ¢y = ... = a,—1 = 0 and a, = 1. If @, > 1 and (a4,..., a,) #
(0,...,0, 1), we have sStab(Jx) = @ by [HNS19, Theorem 1.4]. In the case of
log pairs, with some conditions on the a;, there exists another divisor D such that
Stab(Ix (—log D)) # @ .

Theorem 1.6 (Stability of Ix(—log D,,)). We assume that a, > 1.
(1) If r =1, then Stab(Jx(—logD,,)) # @ .
(2) If r > 2, then Stab(Ix(—logD,,)) # @ if and only if a1 = ... = a,

and a, < iﬂ .

If D ¢ {D,,, D, }, then Ix(—log D) is not stable with respect to any polarizations.

Acknowledgments. I would like to thank my advisor Carl TIPLER for our dis-
cussions on this subject and also Henri GUENANCIA for some references.
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2. TORIC VARIETIES AND EQUIVARIANT LOGARITHMIC TANGENT SHEAVES

2.1. Toric varieties. We give here some notions about toric varieties. We refer to
[CLS11, Chapter 2, 3] and [CT20, Section 2.1].

Definition 2.1 ([CLS11, Definition 3.1.1]). A toric variety is an irreducible variety
X containing a torus T' ~ (C*)™ as a Zariski open subset such that the action of T
on itself extends to an algebraic action of T' on X.

Notation 2.2. Let T be a torus. We denote by M the lattice of characters of T' and
N the lattice of one-parameter subgroups of T'; we have T'= N ®; C* (it is a group
isomorphism). We set Nx = N®zK and Mg = M®zK for K =R or C. Form € M,
we associate the character x" : T — C* and for u € N, we associate the one-
parameter subgroup A\* : C* — T'. There is a natural pairing (-, -) : M XN — Z
between M and N.

Definition 2.3 ([CLS11, Definition 3.1.2]). A fan ¥ in Ng is a finite collection of
cones 0 C Ny such that :

(1) Every o € ¥ is a strongly convex rational polyhedral cone.
(2) For all o € X, each face of ¢ is also in X.
(3) For all o1, oy € 3, the intersection o1 N oy is a face of each.

We will write 7 < ¢ if 7 is a face of 0. If ¥ is fan, the support of X is |X| = U 0.
oEX

We say that 3 is complete, if |X| = Ng . We denote by X(r) the set of r-dimensional

cones of X. We call ¥(1) the set of rays of X. If p € (1), we denote by u, € N its

minimal generator.

Let X5 be a toric variety associated to a fan . The variety Xy is obtained by
gluing affine charts (U, )ges , with U, = Spec(C[S,]) and C[S,] is the semi-group
algebra of

S,=c"NM={meM: (m,u)>0forallucoc}.
By [CLS11, Theorem 3.1.5], Xy is a normal separated toric variety.

Theorem 2.4 ([CLS11, Corollary 3.1.8]). Let X be a normal separated toric variety
with torus T'. Then, there exists a fan X in Ny such that X is isomorphic to Xy.

From now on, a normal toric variety X will be defined by a fan 3.

Definition 2.5 ([CLS11, Proposition 3.3.9]). A normal toric variety X has a torus
factor if and only if the u,, p € £(1) do not span Ng.

A cone o € ¥ gives the torus orbit O(c) = Homgz(o- N M, C*) where
ctAM={meM: (mu)=0foralluco}.

We have :
Theorem 2.6 (Orbit-Cone Correspondence, [CLS11, Theorem 3.2.6]).

(1) There is a bijective correspondence

{Cone o in3} <«— {T — orbits in X}
o +— O(o)
and dim O(o) = dim Ng — dimo.
(2) The affine open subset U, is the union of orbits U, = U O(r) .

T=0
(3) 7 = o if and only if O(0) C O(r), and O(r) = | J O(0) where O()
70
denotes the closure in both the classical and Zariski topologies.
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For p € ¥(1), we define the T-invariant Weil divisor D, as the closure in the
Zariski topology of O(p).

Lemma 2.7 ([CLS11, Section 4.1]). A Weil divisor D on X is invariant under the
action of T if and only if

D= Y a,D, with a,€Z.

pEX(1)

Order Relation. Let X be a fan in Ng and o € . We define an order relation
=, on M by setting m <, m’ if and only if m’ —m € S,. We write m <, m’ if
we have m <, m/ but not m’ <, m.
Group action. Let G be an algebraic group acting on the affine toric variety
Y = Spec(R). For any g € G, let ¢4 : Y — Y the map defined by ¢4(z) =¢-z.
We define an action of G on R by setting : for g € G and p € R,

g 9= (1) ¢
that is, forany y € Y, (g-9)(y) = ¢(g7 - v).

2.2. Equivariant sheaves. We refer to [Per03, Section 2.2.2] for properties about
equivariant coherent sheaf. Let T" be the torus of X.

Let 0 :T x X — X be an action of algebraic group T'on X, p: T xT — T the
group multiplication, py : T x X — X the projection onto the second factor and
po3 i T xT x X — T x X the projection onto the second and the third factor.
We call a sheaf & on X equivariant or T-linearized if there exists an isomorphism
®: o*& — pi& such that

(2) (uxIdx)*® = pi3® o (Idp x0)*® .
ForteT,let oy : X — T x X and ¢; : X — X be the morphisms defined by
ar(z) = (t, ) and ¢(z) =o(t, x) .

We get an isomorphism ®; := of® : ¢ & =, & . For any t, t' € T, the cocyle
condition (2) factors as follows :

(Pr.4)"&

(3) @@t\) Wg%
t

2.3. Logarithmic tangent sheaves. We recall here the definition of the logarith-
mic tangent sheaf of a log pair (X, D) where X is a normal projective variety and
D a reduced Weil divisor on X. We refer to [Guel6, Section 3.1].

Definition 2.8. We say that a pair (X, D) is log-smooth if X is smooth and D is
reduced snc (simple normal crossing) divisor.

We denote by (X, D)yeg the snc locus of the pair (X, D), that is, the locus of points
x € X where (X, D) is log-smooth in a neighborhood of z.

If (X, D) is log-smooth, we define the logarithmic tangent bundle T'x (— log D) as
the dual of the bundle of logarithmic differential form Q% (log D) where Q% (log D)
is defined in [Ita76, §1]. By [Kaw78, Definition 4] and [Sai75, §1], we can see the
space of sections of T'x (— log D) as the set of vector fields on X which vanish along
D. If D is locally given by (21 - -z, = 0), then T'x (— log D) as a sheaf is the locally
free Ox-module generated by

0 0 0 0

Oz1 " 0z, Oz Ozn

P,y

&
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Definition 2.9 ([Guel6, Definition 3.4]). Let (X, D) be a log pair and
Xo = (X, D)yeg. The logarithmic tangent sheaf of (X, D), denoted by Jx (—log D),
is defined as j.T'x,(—log D|x,) where j : Xo — X is the open immersion.

The sheaf Jx (—log D) (as well as its dual) is coherent ; by [Har80, Proposition
1.6], this sheaf is reflexive.

We now consider the case where X is a toric variety. We will give a condition on
D such that Jx(—log D) is equivariant. Let ¥ be the fan of X and X, the toric
variety corresponding to the fan X! = ¥(0) UX(1). We denote by j : Xo — X the
open immersion.

Proposition 2.10. Let D be a reduced Weil divisor on X. The sheaf Q% (log D)
is equivariant if and only if D is an invariant divisor under the torus action.

Proof. We assume that D is an invariant divisor under the torus action. Let Dy
be the restriction of D on Xy. For t € T, let ¢y : X — X the map defined by
¢+(x) = o(t, x) and ®; the map defined by ®; = (d¢;)” " where d is the differential
of ¢y. If & = T Xy, we have an isomorphism ®; : ¢pj& — & and the diagram (3)
is verified. Now if we replace & by Tx,(—log Dy), the diagram (3) remains true ;
so Tx,(—log Do) is equivariant. Hence QY (log D) is equivariant. Like

(4) Qx (log D) = j,Q, (log Do) ,
we deduce that Q% (log D) is equivariant.

S
We now assume that Q4 (log D) is equivariant. We write D = Z D;.
j=1
First case. We assume that X is smooth. By [EV92, Section 2.3] we have an exact
sequence

S
0 — Q% — Q% (log D) —)@ﬁDj —0
j=1
where Op, is viewing as a sheaf on X via extension by zero. The first part of the
proof is to show that : for any t € T, t - Z = Z where Z = X \ D.
Let x € Z and assume that there is t € T such that y = (¢, z) € D. We have two
exact sequences

0— Q% , — Q% (log D), — @ﬁDj,w —0
j=1

0— Q% , — Q% (log D), — P Op,., — 0
j=1

Like Q% and Q% (log D) are equivariant, we have an isomorphism

S S
@ﬁf’wl‘ = @ﬁDy‘»y )
j=1 Jj=1

this is absurd. Therefore, for any t € T, we have t - Z C Z, that is t- Z = Z. As
QL (log D) is equivariant, by using the fact that D = X \ Z, for any t € T, we have
t-D = D; thus, D is a T-invariant divisor.

Second case. We assume that X is a normal variety. By (4), as Q% (log D) is
equivariant, we also have the same property for Q}(O (log Dy). By the first case, Dg
is an invariant divisor under the action of 7" on Xj. Like codim(X \ Xy) > 2, we
deduce that D is the Zariski closure of Dy on X. Thus, D is an invariant divisor
under the action of 7" on X. O
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3. MULTIFILTRATIONS OF LOGARITHMIC TANGENT SHEAF

3.1. Family of multifiltrations. We give here the family of multifiltrations of
equivariant logarithmic tangent sheaf on toric varieties. Let X be a toric variety of
dimension n with fan X. We first give some results.

Proposition 3.1 ([DDK20, Corollary 2.2.17]). The family (7, {77 (i)} pex (1), icz)
of multifiltrations associated to the tangent sheaf Tx are given by
0 ifi<—2
TP() = Span(u,) ifi=—1
N ®zC ifi1>0

Remark 3.2. If X is smooth, the tangent sheaf Jx if the tangent bundle T'X.
Lemma 3.3. For every ray p € (1), we have (U,ND,)NT = &.

Proof. Let p € ¥(1). We assume that p = Cone(u;) where uy € N. Let (uq, ..., uy)
be a basis of N and (e1, ..., ey) its dual basis. We set z; = x°, we have

U, = Spec(Clz1, z£!, ..., zF1])) =2 C x (C*)"!
and
T = Spec(Clzt, ..., zFl]) = (C*)" .
As on U, the divisor D,, is defined by z1 = 0, we deduce that (U,ND,)NT =@. O
Lemma 3.4. Let p1 and p2 be two distinct rays of 3. Ifi # j, then U, N D, = @.

Proof. By the orbit-cone correspondence (Theorem 2.6), we have U,, = O(p;) UT
and O(p;) N D,, = @ ifi # j. As

Up, N Dy, = (O(pi) N Dy, ) U(T N Dy,)
by Lemma 3.3, we conclude that U,, N D, = &. O

Let A C ¥(1) and D be the T-invariant divisor of X defined by

D=>D,.

pEA
For p € (1), we set B =T'(U,, Ix(—1logD)).

Theorem 3.5. The family of multifiltrations (E, {Ep(j)}pez(l),jez) corresponding
to the logarithmic tangent sheaf Tx(—log D) are given by

. 0 ifj < -1 .
p _
and by
0 ifj <=2
E*(j) = Span(u,) ifj=—1 ifpéd A .
N¢ if >0

Proof. According to Lemma 3.4, if p € A, we have U, N D = D, and for p ¢ A,
U,ND = &. We can reduce the problem to the case where A = {p;} and D = D,,,.
For the rest of the proof, we assume that A = {p;1}.

First case : We assume that p = py. Let (u1,..., u,) be a basis of N such that
u1 = u,. We denote by (e, ..., e,) the dual basis of (ui, ..., u,) and z; = x*. We
have C[S,] = Clz1, 23°,..., 2;f'] and U, = Spec(C[S,]). Like on U, the divisor D
is defined by the equation z; = 0, we have

B = <<c[sp] ~z1£1) ® (@CW ' ai)
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that is
Ep:é @@.Xmﬁ o @@.Xmmi
. ({93’}1 8x1
i=2 \meS, meS,
We set 5
LP — C. m+te; 7
1 @ X Oxq
meS,
and for i € {2,..., n}, we set
0
Lf = C-x™ .
S
mesS,

For t € T and m € M, we have ¢ - x™ = x~™(¢t)x™, so t - dx; = x "¢ (t) dz; . Thus,

0 o , .
we havet-—xi = X% (¢) T For i € {1,..., n}, we write
L= @ (Lf),, where (LY), ={felLf:t-f=x"(t)f}.
meM
We have
0]
C-xymter — if0 =
(Lp=q =% 0w D"
0 otherwise
and for i € {2,..., n}, we have
C . ymte: i if —e; <
(LD, =8 = w0
0 otherwise

For i € {1,..., n}, we set L :(C~%. Ifi € {2,..., n}, we have (L?)_., = L..
Forallme M : '
e if i > 2 and —e; =<, m, we identify (L?) =~ with L! through the multiplica-
tion by the character xy =™ ¢.
o If i =1 and 0 <, m, we identify (L?), with L{ through the multiplication
by x~™~e1.
For m € M, we set j = (m, uq).
o If j < —1,forallie{l,..., n}, we have (L),, = 0.
e Ifj>0,foralie{l,...,n}, (LY),, =L~
The torus T is a Lie group. The tangent space of T at the neutral element is
isomorphic to N¢. Like the tangent space of T" at the neutral element is generated

by ( 0 > ,forall i € {1,..., n}, we can identify 86
1<i<n

with u;. Like
8:102» Z;

n

B = G?WEP«m, up)) where E°((m, uy)) = Ef, = @(L”m ’

(0 ifj<-1
we get Ep(j){NC ifj’>0

Second case : We assume that p € (1) \ A. We start as in the first case. Like
U,ND = &, we have

n

- o )
EP:@C[SPL(?—%:@ @c-xma—xi

i=1 \meSsS,
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For alli € {1,..., n}, we set
0
Lf = C.-™ )
P=@DC g
mesS,
We have
C m+e; i if —e; <
L? = @ (LY),, where (L?) = X ox; ! € =p M
meM 0 oherwise
As in the first case, with a small modification, for all i € {1,..., n}, we identify
(LY),, with L? if m € M satisfies —e; <, m. By setting j = (m, u,), we get
0 if j < -2

Er(j) = Span(u,) if j=—1
N ®7zC if7>0

Hence we get the theorem. O

The sheaf of regular section of the trivial vector bundle X x C — X of rank 1
is Ox. For p € ¥(1), we set F¥ = 0x(U,). Like F? =C[S,|, we have
FP=@ Cx"=€P F where Fj={fecF’ t-f=x"(t)f}.
mes, meM
Thus Ff, =0if m¢ S, and Ff, =C-x" if me S, (i.e 0 <, m). For all m € S,
we identify F?, with Fj = C. By setting j = (m, u,), we get
. 0 ifj<-—1
14 o~ —
Fm{Ciuzo
Corollary 3.6. Let A C 5(1) and D=» D, .
pPEA
1. If A =@, then Ix(—log D) is the tangent sheaf Tx.
2. If A = %(1), then Ix(—log D) is isomorphic to the trivial vector bundle
of rank n.

Proof. If A = &, the family of multifiltrations of Jx(—log D) is identical to the
family of multifiltrations given in Proposition 3.1. If A = X(1), for all p € 3(1),
we have

) 0 if j < -1
P(7) — >
E°(5) {N@ﬂjﬁjzo
Hence, Jx (—log D) is isomorphic to the trivial vector bundle of rank n. O

From now on, we will assume that @ C A C 3(1) and D the T-invariant Weil
divisor defined by
D=>D,.

pEA
Notation 3.7. Let G be a sub-vector space of N¢. We denote by &g the sub-sheaf
of & = Ix(—log D) defined by the family of multifiltrations (Ecq, {G*(j)}yes(1), jez)
where Eq = G and G*(j) = E*(j) N G.
If pe Aoru, ¢ G, then
‘ 0 ifj<—1
P _ =
(””{Giuzo
If p¢ A and u, € G, then

0 if j < -2
G’(j) =< Span(u,) if j=-1
G if j>0
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3.2. Decomposition of equivariant logarithmic tangent sheaf. In this part,
we give some conditions on ¥ and A which ensure that the logarithmic tangent
sheaf is decomposable. We first recall the family of multifiltration of a direct sum
of equivariant reflexive sheaves.

Proposition 3.8 ([DDK20, Remark 2.2.15]). Let .# and ¢ be two equivariant

reflezive sheaves with (F, {F*(j)},ex1), jez) and (G, {G?(j)} pes (1), jez) for family
of filtrations. The family of multifiltrations of F ® 9 is given by

5)  (FeG {(F®G)()}esq),jez) where (F&G) () = F*(j) ® G*(j) -

We assume that X is toric variety without torus factor. We denote by p the
rank of the class group C1(X) of X. By [CLS11, Theorem 4.1.3], we have an exact
sequence

(6) 0—M-— € z-D,— ClIX)—0
peEX(1)
and card(3(1)) = n+p.

Theorem 3.9. We assume that card(A) = p. We set X(1)\A = {p1,..., pn} where
pr = Cone(ug) and up, € N. If Ng = Span(uy, ..., uy), then & = Ix(—log D) is
decomposable and

n
5= @én
k=1
where &g, is the sub-sheaf of & corresponding to the vector space Fj, = Span(uy,).

Proof. For all k € {1,..., n}, the family of multifiltration (Fy, {F{(j)},exq), jez)
of &, are given by

. 0 ifj<-1
13 _ >
F{(j) = { Fo ifj>0 if p # Cone(uy,)
and
0 ifj<-2
F{(j) =4 Span(u,) if j=—1 if p = Cone(us) .
F, if j >0
For all p € (1) and j € Z, we have
= . 0 ifj<-—1 .
13 o >
k=1
and
n 0 if j <=2
P FLG) =3 Span(u,) ifj=—1 ifpd A .
k=1 N¢ ifj>0
Hence, by (5) and Theorem 3.5 we have & = EB Er, - O
k=1

Proposition 3.10. We assume that A satisfies 1 + p < card(A) < n+p — 1.
The sheaf & = Ix(—logD) is decomposable and & = &g ® Ep where
G = Span(u, : p € (1) \ A) and F a sub-space of N¢ such that Nc = G & F.

Proof. Tt suffices to work with the family of multifiltration as in the proof of The-
orem 3.9. O
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4. STABILITY OF EQUIVARIANT LOGARITHMIC SHEAF

4.1. Some stability notions. We recall now the notions of stability that we will
consider in this paper. For this part, we refer to [Guel6, Section 3.1] and [CT20,
Section 4.1].

Definition 4.1. Let & be a torsion-free coherent sheaf on X. The degree of & with
respect to an ample class L € Amp(X) is the real number obtained by intersection:

deg; (&) = c1(&) - L1
and its slope with respect to L is given by

pr(&) = dil%éf)

Definition 4.2. A torsion-free coherent sheaf & is said to be u-semi-stable with
respect to L € Amp(X) if for any proper coherent sub-sheaf of lower rank % of &
with 0 < rk.% < 1k &, one has

pr(F) < pr(é) -

When strict inequality always holds, we say that & is p-stable. Finally, & is said to
be p-polystable if it is the direct sum of u-stable sub-sheaves of the same slope.

Lemma 4.3 ([CT20, Lemma 4.3]). Let & be an equivariant reflexive sheaf with
family of multifiltrations (E, {Ep(j)}pez(l),jez). We have

Z Zzep deg;(D,)

pEE(l) €L

where e (i) = dim EP(i — 1) — dim E”(2).

pi(&)

Following [Kooll, Proposition 4.13] and [HNS19, Proposition 2.3], we have :

Proposition 4.4 ([CT20, Proposition 4.2]). Let & be a T-equivariant reflexive
sheaf on X with family of multifiltrations (E, {E'D(j)}pez(l),jez). Then & is p-
semi-stable (resp. p-stable) with respect to L if and only if for all proper vector
sub-spaces W C E, ur(&w) < pur(&) (resp. pr(éw) < pr(&)), where Sy is
defined in notation 3.7.

4.2. Polystability and semi-stability. We give here a link between poly-stability
and semi-stability.

Proposition 4.5 ([Kooll, Claim 2 of Proposition 4.13]). A reflexive u-polystable
sheaf on X is a p-semi-stable sheaf on X isomorphic to a (finite, nontrivial) direct
sum of reflexive u-stable sheaves. Let & be a u-semi-stable reflexive sheaf on X.
Then & contains a unique mazimal reflexive p-polystable sub-sheaf of the same slope

as &.

Corollary 4.6. Let & be an equivariant reflexive sheaf such that

g:@g
i=1

with r > 2. Let L € Amp(X) such that for all i € {1,...,r}, & is stable with
respect to L. Then, & is poly-stable with respect to L if and only if & is semi-stable
with respect to L.
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Proof. If & is poly-stable with respect to L, then & is semi-stable with respect to
L. We now assume that & is semi-stable with respect to L; by using the identity

(&) pn(6) = S IK(E) pn(6)
i=1
we get pr (&) = ur (&) for all i € {1,..., r}. Hence, & is poly-stable. O

4.3. An instability condition for the logarithmic tangent sheaves. Let

A C X(1) and
D=) D,
pEA
a T-invariant Weil divisor on X. Let G be a sub-vector space of N¢ of dimension
I with 1 <1 < n. Let (E, {E*(j)},esq), jez) be the family of multifiltrations
corresponding to & = Jx(—log D) and (EG7 {G'D<j)}p€2(1)’jez) be the family of
multifiltrations corresponding to . By Lemma 4.3, we have

™) pr() == 3 deg, (D)
pEA

and

(8) pr(éa) = % Z deg.(D,) .

p¢A and u,€G

Therefore, we have
(9)
1 1 1
pr(&) — pr(éa) = 01 Z degr(D,) | + I Z degy,(Dy)
PEA, u,EG PEA, updG

To study the stability of & with respect to L € Amp(X), it suffices to compare
pr(&) with pr(&g) where G C Span(u, : p¢ A) and 1 < dimG <n —1.

Theorem 4.7. If 1 < card(X(1) \ A) < n — 1, then for any L € Amp(X), the
logarithmic tangent sheaf & = Tx(—log D) is not semi-stable with respect to L.

Proof. We assume that X(1)\ A = {p1,..., px} where 1 <k <n—1 and we denote
by D; the divisor corresponding to p; = Cone(u;). Let G = Span(u,..., u;) and
I=dimG. If L € Amp(X), we have

k
11(6) = nalb) = (3 = 7 ) S dews(Dy) <0

because the numbers deg; (D;) are positive and different to zero. Thus, & is not
semi-stable with respect to L. O

We assume that X has no torus factor. We have seen that card(3(1)) = n +
rk C1(X), so the Theorem 4.7 becomes :

Corollary 4.8. We set p =1k Cl(X). If 1+ p < card(A) < n+p—1, then for any
L € Amp(X), the logarithmic tangent sheaf Ix(—log D) is not semi-stable with
respect to L.

Proof. f 1 + p < card(A) < n+p— 1, by using

card(X(1)) =n + p = card(A) + card(X(1) \ A) ,
we get 1 < card(X(1) \ A) <n —1; we can conclude with Theorem 4.7. O
Remark 4.9. By Corollary 3.6, if card(A) = n + p, Ix(—log D) is semi-stable.
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From now on, when we study the stability or semi-stability of Zx(—log D), we
will consider only the case where 1 < card(A) < p =rkCl(X) and p € {1, 2}.

4.4. Stability on toric orbifolds of Picard rank one. In this section, we will
study the semi-stability of logarithmic tangent sheaf on toric orbifolds of Picard
rank one.

Let qo, q1, -- -, gn € N* such that ged(qo, ..., gn) = 1. We set

N = Zn—‘rl/Z(qu R qn) :

The dual lattice of N is M = {(ag,..., an) € Z" ' 1 agqo+ ...+ angn = 0}.
Let {u; : 0 <i < n} be the images in N of the standard basis vectors in Z"*1, so
the relation
Gouo+qrur + ... +quuy =0
holds in V. Let X be the fan in Ny defined by
Y ={Cone(A): AC {ug,..., un}} .

We define X to be the toric variety of the fan ¥. Like ¥ is simplicial, by [CLS11,
Proposition 4.2.7], Pic(X) has finite index in CI(X). By (6), we deduce that
rk Pic(X) = 1. We denote by D; the Weil divisor corresponding to the ray Cone(u;).

In the Corollary 4.8, we see that if 2 < card(A) < n, then Jx(—log D) is not semi-
stable with respect to any L € Amp(X). We assume that card(A) = 1. Let
i€{0,...,n}and 4; ={0,..., n}\ {i}. Weset & = Ix(—logD;).

Lemma 4.10. For all j € A;, the divisor ¢;D; is linearly equivalent to the divisor
45 D;.

Proof. We fix j € A;. Let m = (ao, ..., an) € M defined by a; = ¢; , a; = —¢; and
ap =01if k € {0,..., n} \ {3, j}. Like div(x™) = ¢; D; — ¢; D, we deduce that
gi D; is linearly equivalent to g; D; . U

Theorem 4.11. Let L € Amp(X). The sheaf & is poly-stable with respect to L if
and only if there is ¢ € N* such that for all j € A;, q¢j =q.
Proof. The assumptions of Theorem 3.9 are verified. Hence,
&= @ SF,;
JEA;

where Fj = Span(u;). By (8), ur(éF;) = deg(D;) for all j € A;. By Lemma
4.10, for all j € A;,
4
ni(Er;) = q*J, deg,(D;) .
If & is poly-stable with respect to L, there is r € Q such that for all j € A;,
g; = 7 ¢q; . Hence, we have the existence of ¢ € N* such that for all j € A;, ¢; =¢q.
For the converse, if for all j € A;, we have ¢; = ¢, then & is poly-stable. O

According to Theorem 4.11 and Corollary 4.6, we have :

Corollary 4.12. For all i € {0,..., n}, sStab(Ix(—logD;)) # @ if and only if
there exists ¢ € N* such that for all j € A;, q; = q. Moreover, if for all j € A;,
we have q; = q, then

sStab(Zx (—log D;)) = Amp(X) .
Corollary 4.13. For alli €{0,..., n}, we have Stab(Ix(—logD;)) = 2.

Corollary 4.14. Ifgo=... =g, =1, that is X =P", then for alli € {0,..., n},
we have

@ = Stab(Tx (—1log D;)) € sStab(Tx (—log D;)) = Amp(X) .
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5. DESCRIPTION OF SMOOTH PROJECTIVE TORIC VARIETIES OF PICARD RANK
TWO

Let X be a smooth projective toric variety of dimension n such that
rk Pic(X) = 2. There exists r, s € N* with r + s = n and ay,..., a, € N with
a1 <as <...<a, such that

(10) X=P (ﬁps P é ﬁ]ps (a1)> .

i=1
We keep the notation of Section 1.1. We denote by m : X — P* the projection
onto the basis P°. We have the following linear equivalence,
(11) Dy, ~tin Doy —aiDy, fori € {1,..., 7} and Dy, ~1in Dy, forj € {1,..., s} .
By (11), we deduce that Pic(X) is generated by D,, and D,,.

Proposition 5.1 ([DDK20, Proposition 4.2.1]). Let D = p Dy, + AD,, be a
T-invariant divisor of X with p, X\ € Z. The divisor D is ample if and only if
w>0and A > 0.

Remark 5.2. Let p, A € N* and L = Ox (p Dy, + A D, ). We have an isomorphism
= 1 G (1) & Ox (V).

By [CLS11, Theorem 8.1.2], the anti-canonical divisor of X is given by

(12) —Kx = Dy, +Y Dy, ~in(s+1=ar—...—a)Dy, + (r+1)Dy, .
i=0 =0

Hence, X is Fano if and only if a1 + ... 4+ a, < s.

Let D be a reduced T-invariant Weil divisor on X. To study the stability of

& = Tx(—log D) with respect to L = Ox (Z) where Z = p Dy, +A Dy, (g, A € N*),

we will study the stability of & with respect to the ample Q-divisor Z’ = vD,,, + Dy,
I

where v = —.

A

5.1. Computation of the degree. Let P C Mg be a polytope such that the fan
Yp of P is the fan ¥ of X. For each p € 3(1) we denote by P? the facet of P
corresponding to a ray p.

We recall that a lattice M defines a measure v on Mg as the pull-back of Haar
measure on Mg /M. It is determined by the properties

i. v is translation invariant,

ii. v(Mg/M) = 1.
For all p € (1), we denote by vol(P?) the volume of PP with respect to the measure
determined by the lattice Span(P*) N M.

Proposition 5.3 ([Dan78, Section 11]). Let (X, L) be a polarized toric variety
corresponding to a lattice polytope P. For all ray p, we have degy (D,) = vol(PP).

5.2. Polytope corresponding to a Q-ample divisor. Here, we describe the
polytope corresponding to the Q-polarized variety (X, L) where

L= W*ﬁps(l/) X ﬁx(l) .

We refer to [HNS19, Section 4].
Let v € Q% such that v # 0 and P; = Conv(0, wq, wa, ..., ws). Then,

P =Conv (vPs x {0} U (a1 +v)Ps x {v1} U... U (ar + v)Ps x {v.})
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is the polytope corresponding to the Q-polarized variety (X, L). We denote by P
(resp. PYi ) the facet of P corresponding to the ray Cone(v;) (resp. Cone(wy)).
The facet PV is the convex hull of

vPyx{0}U.. . U(a;—1+v)Ps x{v;—1 }U(a;j41+v)Ps x {vix1}U...U(a, +v)Ps x {v,- }
and PYi is isomorphic to

vP. x {0} U (a1 + V)P, x {v1}U... U (ar +v)P. x {v,}
where P! = Conv(0, wy,..., ws—1).

Notation 5.4. For all i € {0, 1,..., r}, we set V; = vol(P"). Like for all j €
{1,..., s}, vol(P¥) = vol(P"°), we set W = vol(P™°).

Proposition 5.5 ([HNS19, Proposition 4.3]). Let co, ¢1,..., ¢, € N, v > 0 and
P, = Conv(0, wy, wa, ..., ws). The volume of the polytope

P =Conv ((co+v)Ps x {0} U (c1 + v)Ps x {v1} U ... U (¢ +v)Ps x {v,})

is given by
s+
Z(M( 2. gd>k

k=0 do+...+dr=s—k

s—1
s+r—1
W= (") )( )3 )

di+...4+dr=s—k—1

s
-1
V0: <S+; ) ( E ail1~~aff"> l/k
k=0 di+...+dr=s—k

and for i € {1,..., 1},

<

S
s+r—1 d di_1 d;
J— 1 i—1  Qit1 d, k
Vl—g ( & > E ayt e ay e an .
k=0 dy+...+d;_q
+diy1+.Fdr=s—k

For v fixed, we give some relations between W and the numbers V;.
Ifa; =...=a, =0, then

(13) W:(s—i—r—l)Vs_l and Vi:(s—l—r—l)ﬁ-

s—1 s
We now assume that (aj,..., a,) # (0,...,0) with a; < as < ... < a,. Let
z € {0,1,...,r — 1} such that a, = 0 and a,11 > 0 (we set a9 = 0). For
ke{0,...,s}andie {z+1,..., r}, weset
d. -
W, = Z az++11 e ag
degrt.tdp=s—1—k
d. :
Vor = > ali - -al
degit.tdp=s—Fk
d, di—1 _d; d,
Vig = Z aziy ey ey can

dyp1+.Fdi_q
tdip1+..Fdp=s—k

where Wy, = 0. If ¢ € {1,..., z}, we set Vi = Vor. We have W,_; = 1 and for
1€ {O,..., T},Vis =1.

Remark 5.6. If r =1, we set Vi, =1 and for k € {0,..., s — 1}, V15 =0.
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Lemma 5.7. Forke€{0,...,s—1} andi€ {1,..., 7}, a; W+ Vi =Vor .

Proof. If i € {1,... z}, the equality is true because a; = 0. We assume that
1e€{z+1,...,r}, we have

d.y1 d,
Vo= Y aled
dz+1+~»-+d'r:S_k

_ § : dzq1 d, § : dzq1 dy
e az+1...ar + az+1...aT

dyyqt-tdr=s—k dyp1+. . +dr=s—k
d;=0 d;>1

The first term of the second line corresponds to the number V,; and the second to
a; Wy, (it suffices to replace d; by d; + 1). Hence, Vo = Vi + a; Wy, . O

Corollary 5.8. Forall i€ {1,...,r}, Vo=a;,W+V,.

5.3. A necessary condition for stability. In this part, we adapt some results
of [HNS19, Section 4] for the study of the stability of Tx (—log D).

The following lemma will be useful in the proof of Proposition 5.10 which is the
main result of this part. Let z € {0,..., r — 1} such that a, = 0 and a1 > 0. We
have the following lemma.

Lemma 5.9 ([HNS19, Lemma 4.2]).
Let I'  {0,1...,r} and G = Span(v; : i € I'). The vector ajvy + ...+ a,v,
belongs to G if and only if
i {z4+1,...,r}CI or
ii. {0,...,2} ¢ I', caed({z + 1,...,7}\I') > 1 and a; = a; for all
i, je{z+1,..., I\ I".

Let ACX(1)and D= D,.
pEA
Let Is, = {Cone(vp), ..., Cone(v,)} and Jy = {Cone(wy), ..., Cone(ws)}. We set

I={ie{0,1,...,7}: Cone(v;) € Is \ Is N A)} and
J={je€{0,1,...,s}: Cone(w;) € Jx \ (Js NA)}.

Let L € Amp(X). To study the stability of & = T'x (— log D), it suffices to compare
pr(&) and prp(&e) where G = Span(v;, w; : 1 € I', j € J) with I’ Cc I, J C J
and 1 <dimG < (r + s). By Proposition 5.3, and by using of (7), (8) we have

pL(&) = ! (Z V; + card(J) - w)

r S
+ i€l

and

pr(éa) = dirilG (Z V; + card(J') - W) )

iel’
Here is a variant of [HNS19, Proposition 4.1] which will be useful for us in the study
of stability of Tx (—log D).

Proposition 5.10. The logarithmic tangent bundle & = Tx(—log D) is stable
(resp. semi-stable) with respect to L if and only if

pL(&) = ! (Z V; + card(J) - w)

r S
+ i€l

is greater than (resp. greater than or equal to) the maximum of
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(1) V,, where ip=minl if I # & ;

1o

1 . . .
(2) P;Vi ,4f " =dimSpan(v; :i€1)#0 ;
card(J) - W
!/

(3) ,if s’ =dimSpan(w;: j€J)#0 and s’ <r+s;

S

1 . . 7 _ !
(4) Py (;Vz—k(s—i—l)W), if card(J') =s+1, k = card(I') < r and

{z+1,...,r}Ccl'CI;

1 . ] L - /
(5) S+k<;vz+(s+1)w>, if card(J') =s+1, k= card(I') < r and

I' C I such that the condition ii. of Lemma 5.9 is verified.
Proof. Let G = Span(v;, w; : ¢ € I',j € J') where I' C I and J" C J. The

expressions (1) of Proposition 5.10 corresponds to G = Span(v;,), (2) corresponds
to G = Span(v; : ¢ € I) and (3) corresponds to G = Span(w; : j € J).

o If card(J’) = 0, then for @ C I’ C I, we have dimG < r and

1

this number is less than or equal to the maximum of the numbers given in (1) and
(2)-
o If card(I’) = 0, then for @ C J' C J such that dim G < r + s, we have
card(J') - W
dim G ;
this number is less than or equal to that given in (3).

o If card(I') = r + 1, then dimG < r + s if and only if &' := card(J') < s. If
1<s' < s, then

1 1
ur(éa) = e (Zvi—l-s'W) < max <T2Vi, W) :

iel’ iel’

pur(éa) =

this number is less than or equal to the maximum of numbers given in (2) and (3).
o If 1 <card(I') <r, 1 <card(J') < s and dimG < r + s, then u(ég) is less
than or equal to the maximum of numbers given in (1), (2) and (3).

o It remains to study the case where card(J') = s+1 and 1 < card(I’) < r (because
if card(I") > r, then dim G = r + s). We will treat it in two cases.

First case : a, =0. Foralli € {1,...,r},V; = V. If ' =card(I’) and 1 < ¢’ < r,
then

R — (Zvi+<s+1>W) < mex (vo, (Sf)w) .

!
r S
* iel’

Second case : a, > 0. We set v’ = card(I’). If I’ satisfies the first (resp. second)
condition of Lemma 5.9, we get (4) (resp. (5)).

If I’ doesn’t satisfy the conditions of Lemma 5.9, then dimG = ' + (s + 1).
Moreover, if 7' + (s + 1) < r + s, the number ur(ég) is less than or equal to
the maximum of the numbers given in (1) and (3). O
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Remark 5.11. If a1 = ... = a,, = 0, to check the stability of & with respect to L,
it is enough to compare pr (&) with the numbers given by the points 1, 2 and 3 of
Proposition 5.10.

To check that & = T'x (—log D) is not semi-stable, we will need the lemma below.
The purpose of the lemma is to avoid comparing ur, (&) with all the numbers given
in the Proposition 5.10.

Lemma 5.12.
(1) If ar > 2, then sVg— (s+1)W > sV,..
(2) Let r>2 and i€ {1,...,7—1}. If a, > a;, then V; =W >V,..
s+1\  ars—(s+1) < 2s—(s+1)
n ay - Qy

Proof. If a, > 2, then <s — > 0 because

s > 1. Hence,

Qr

s+1

T

1 |
:(S—H )v0+3“L v,
a

T T

1 1
Z<S_S+ )Vr+s+ V,=sV, .

a’T T

sVo—(s+1)W =1s5Vy — (Vo — V,.) Dbecause a, W=V —V,

Since Vo = a;W+V,; = a. W+ V,, we have V; = (a, — a;) W+ V,.. If a, > a;,
then a, —a; > 1; therefore V;, > W+ V,.,ie V; - W >V,.. O

5.4. Stability of logarithmic tangent bundle on X = P" x P%. In this part,
we assume that a; = as = ... = a, = 0. We have X = P* x P". We denote by
m : X — P° and mp : X — P” the projection maps.

We first show that T'x (—log D) is decomposable when card(A) € {1, 2}.
Lemma 5.13. Fori € {0,..., r}, the vector bundle & = Tx(—log D,,) satisfies

s=| @ on)es
k=0, ki

where Fj, = Span(vg) and G = Span(wy, ..., ws) .
Lemma 5.14. For j € {0,..., s}, the vector bundle & = Tx(—1log D.,,) satisfies

= P édc |eér
k=0, k#£j

where Gy, = Span(wy) and F = Span(vg, ..., v.) .
Lemma 5.15. Let i,i € {0,...,r} distinct and j, 37 € {0,..., s} distinct. We
have
Tx(—log(Dy; + D, )) = Tps & Tpr (—log(m2(Dy,) + m2(Dw,, ) )
Tx (—10g(Dw; + Dw,,)) = Tps (= log(m1(Duw;) + m1(Duw,, ) ) & Tpr
For the proofs of these three lemmas it suffices to work with the family of mul-

tifiltrations as in the proof of Theorem 3.9. If ¢ € {0,..., r} and j € {0,..., s}, by
Theorem 3.9 the vector bundle T'x (—log(D,, 4+ D)) is decomposable.

We now study (semi)stability. In this table, we give the values of v for which
& = Tx(—log D) is (semi)stable with respect to 7*Ops (V) @ Ox(1).
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TABLE 1. Stability of Tx(—log D) when a; = ... =a, =0
Divisor D Stab(&) sStab(&) References
D 0<i<r 1%} V:S+1 Theorem 5.16
Vi 9 =t = r
Dy 0<j<s @ V:r—|—1 Theorem 5.16
i —J = S
D, +D %} y="2 Theorem 5.19
Vj wj r
Dy, +D,;, 0<i<j<r ] & Theorem 5.18
Dy, + Dy, , 0<i<j<s %] 1%/ Theorem 5.18
7

By (13), we have V = —W.
s

Theorem 5.16. Leti € {0, 1,...,r} andj € {0, 1,..., s}. Forany L € Amp(X),
the logarithmic tangent bundles Tx(—log D,,) and Tx(—logD,;) are not stable
with respect to L. We have :

(1) Tx(—log D,,) is semi-stable with respect to n*Op=(v) ® Ox (1) if and only

1
if v= st ;
r
(2) Tx(—log D) is semi-stable with respect to 7 Ops(v) ® Ox (1) if and only
. r+1
if v= .
s

Proof. We start with & = Tx (—log D,,,). We have :

1 rPv4+s2+s r’v+s%+s
&)= V W) = W=
Hi (&) r+s(r s+ )W) s(r+s) rv(r + s)

By Proposition 5.10, to have stability or semi-stability, it is enough to compare
HW

pr (&) with max ((SH ,V).
s

r21/+s2+s

If pp(&) >V, then >1,ie (r’v+s%+s) > (r’v + rsv); hence,

rv(r +s)
1 W 2 2 1 1
1/§8+ .IfuL(g’)Zi(S—'_ ) , then rvEs +st+ , 1.e 1/28+ .
s s(r+s) s T
1 1
If v # s , the numbers pr(&) —V and pp(&) — st W are non-zero and

have opposite signs. Therefore, Tx(—logD,,) is not semi-stable with respect to
T*Ops (V) ® Ox (1).

1
fy=>"" + , then pp (&) =V = W. Thus, Tx(—log D,,) is semi-stable but
T

s
not stable with respect to 7*0ps(v) @ Ox(1).

s+1

If we regard the case where & = Tx(—log D,,;), it is enough to compare jur, (&)

(r+1)V

with max ,W ). We get the result by exchanging the roles of r and s

and also the roles of V and W in the computation above. O
Corollary 5.17. With the decomposition given in Lemma 5.13 (resp. Lemma

5.14), the vector bundle Tx(—logD,,) (resp. Tx(—logD,,)) is poly-stable with
r+1
).

1
respect to w*Ops (V) ® Ox (1) if and only if v = stl (resp. v =
T
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Theorem 5.18. Let i, i’ € {0,..., r} distinct and j, j' € {0,...,s} distinct. For
any L € Amp(X), the logarithmic tangent bundles Tx(—log(D,, + D,,)) and
Tx (—log(Dw; + Dy ,)) are not semi-stable with respect to L.

Proof. Let & = Tx(—log(Dy, + D,,, ). We have :

Crr=lr+s*+s,,, rr—ly+si+s
r+s (r=DVH(s+ )W) = s(r+s) W= rv(r +s) v

pr(€) =

We assume that r = 1. We have ur(€) = W. If we set F' = Span(wy, ..., ws),

(s+ )W

we have ur(€r) = ; thus T'x (—log(Dy, + D,,,) ) is not semi-stable with

respect to L.
We now assume that r > 2. To check the stability or semi-stability, it is enough to
compare pr, (&) with max ((S+81)W 7V>.

rir—1r+s*+s

If up(&) >V, then >1;ie ugf.

rv(r+s) T
HW -1 2 1 1
IfUL(g)Zu,then rlr Jv+s +S>SJr ;i.eyzi>§.
s(r+s) r—1"r
Like v cannot satisfy this two conditions, we deduce that Ty (—log(D,, + Dy, ))
is not semi-stable with respect to L. O

Theorem 5.19. Leti € {0,...,7},j€{0,..., s} and D = Dy, + Dy,,. We have :
(1) Tx(—logD) is not stable with respect to any L € Amp(X).
(2) Tx(—logD) is semi-stable with respect to w*Ops(v) ® Ox (1) if and only

s
ifv=-.
r

Proof. We have

1 r2u + 2 2y + 52
&)= ——(rV W=——W=———
ne(8) ’I“-‘rS(T +sW) s(r+s) rv(r+s)

To check stability or semi-stability, it is enough to compare pr,(&€) with max(V, W).

2 2
If pur(E) >V, then Vs

zl;i.eygf.
rv(r+s) T

2 2
If up(E) > W, then TSt >1;iev> f.
s(r +s) r
Hence, T'x(—log D) is semi-stable with respect to 7*0p:(v) ® Ox (1) if and only
s
if v=-. O

r

Corollary 5.20. With the decomposition given in theorem 3.9, Tx(—log(D,, +
D)) is poly-stable with respect to 7 Ops(v) ® Ox (1) if and only if v = ; .

According to (11) and (12), when a; = ... = a, = 0, we have :
Dvi ~lin Dvo ) ij ~lin Dwo and — KX ~lin (S + ]-)Dwg + (T + ]-)Dvo .

By the above study when sStab(Tx(—logD)) # @, we see that Tx(—log D) is
semi-stable with respect to L if and only if L & Ox(—a (Kx + D)) with o € N*.
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6. STABILITY OF Tx(—log D) ON SMOOTH TORIC VARIETIES OF PICARD RANK
TWO WHEN a, > 1

In this part, we will study the stability of Tx (—log D) when X is given by (10)
with a, > 1. If D = Z D, with A C X(1), by Corollary 4.8, we will only study
pEA
the case where card A € {1, 2}. The case card A = 0 was treated by HERING-NILL-
SUss in [HNS19].

Let L = 7*Ops(v) ® Ox (1) be an element of Amp(X) C N1(X) ®z R. We recall
that the numbers Vy, ..., V, defined on Section 5.2 are polynomials of v of degree
s and W is polynomial of degree s — 1. If & = Tx(—log D), the number ur (&) is
polynomial of degree at most s. Let Py, P;, P2 and Q be the polynomials of v
defined by

Po=pr(&)—Vo, Pi=pr(&)—Vi, Pea=pur(&)—Ve and Q= pur(&)—W.

We first recall the sign changes rule of Descartes. We refer to [Mig89, Chapter 5,
Section 4.3].

Theorem 6.1 (Descartes). Let P =c, X" + ¢, 1 X" 1 +...4+co be a polynomial
with real coefficients where c,co # 0. Let p the number of sign changes in
the sequence (cq, ..., ¢) of its coefficients and q the numbers of positive real roots,
counted with their order of multiplicity. Then, there is m € N such that ¢ = p—2m .

Under certain conditions on a;, r and s, these polynomials (Pg, P1,P2 and Q)
have respectively one or no positive root. If the positive root exists, we denote by
e u; the unique positive root of P; where ¢ € {0, 1, 2}
e v3 the unique positive root of Q.

In these tables, we give the values of v for which & = Tx(—log D) is stable or
semi-stable with respect to L = 7*0ps:(v) @ Ox(1).

TABLE 2. Stability of Tx (—log D) when a, > 1

Divisor D Condition on  r Condition on s | Stab(&) sStab(&)
and a;
D,
0<j<s r>1 and a, >1 s>1 o &
Theorem 6.2
D,
1<i<r—1 |r>2 and a, >1 s>1 %] 1]
Prop. 6.4
> frd
D, 2—1"8" L and s> 1 O<v<w | 0<v<u
T r—1 —
Theorem 6.6 r=1land (ar > 2 s>1 %) o]
or a,_1 #0)
r=1 s>1 O<v<iy | O<v<y
D,, r>2and a1 < a, s>1 o
1
Theorem 6.9 | r > 2 and a28+1 (%)
r—
1
Lemma 6.8 a1 =a, =a fga S+1 O<v<u O<v<uy
r r—
Theorem 6.11 ar <s ry3<v<uv |v3<vr<y
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TABLE 3. Stability of Jx(—log D) when a, > 1

Condition on r

Divisor D Condition on s | Stab(&) | sStab(&)
and a;

0<i<j<s r>1and a, >1 s>1 o) 1%

Theorem 6.2

DU,L' + va

1<i<yj<r r>2and a, >1 s>1 o) %]

Corollary 6.5

Dvi+Dw_7 ».720
and 1 <:<r—-1 r>2and a, >1 s>1 o %)

Proposition 6.4
D’UT + ij b) j Z 0

r>1and a,>1 s>1 %} o)
Corollary 6.7
Dyy+Dy, ,0<j<s|r=1 s>1 1] v=u3
Theorem 6.9 r>2and a; < a, s>1 o %]
Lemma 6.8 r > 2 and s<a(r—1) 2]
Theorem 6.13 a1 =a,=a s>a(r—1) %] V=us
Dy, +D,,, 2<i<r|r>2anda; <a, s>1 1%} @
Lemma 6.8 r > 2 and s<a(r—1) o &
Theorem 6.13 a=a,=a s>a(r—1) 1% v=u3

TABLE 4. Stability of Tx (—log D) when a, > 1

Divisor D Condition on r and a; | Condition on s | Stab(&) | sStab(&)
r=1 s>1 %] v>0
D,, + D,, r>2and 0=a; < a, s>1 1% 1%
r > 2 and s<a(r—1) %] %]
Theorem 6.9 a =a=a s>a(r—1) 1] V=13
Prop. 6.14 r =2 and s < 09 1] 1]
Theorem 6.13 0<ar <as s> 09 %] vV =us3
Prop. 6.17 r>3 and a2 < a, s>1 (%) %)
Lemma 6.15 r >3 and s <9, 1] 1]
Prop. 6.19 O<ar<ag=...=a, s> 0, [o] v =us

6.1. The case D = D,,; and D = D, + Dy,. Let i, j € {0,..., s} distinct and
& =Tx(—logDy,), F = Tx(—1og(Dy, + Du,)) .

If a, > 1, the Lemma 5.14 is again true. The vector bundles & and .Z are decom-
posable and we have

= P o |osr and F=| P Fo |0 Fr
k=0, k#i k=0, k#i

where G, = Span(wy) and F = Span(vg, ..., v,).
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Theorem 6.2. Let (ay,...,a;) # (0,...,0). For any L € Amp(X), the vector
bundles & and F are not semi-stable with respect to L .

Proof. Let L = 7*0ps (V) ® Ox (1), we have
1
ML(éa):m(SW-i-(Vo-&-.-.-&-Vr))

and

pr(#) = —— (= DW+ (Vo +.. 4 V0)

thus, pr(#) < pr(€). The points 4 and 5 of Proposition 5.10 are not verifying.
To check that & (resp. %) is not semi-stable with respect to L it is enough to
compare pr, (&) (resp. pr(F)) with

1
max (VO7 ;(Vo + V1 +...+ V,)) .
By Corollary 5.8, we have Vg = a, W + V,.. Like a, > 1, we have Vo > W +V, |
i.e Vo —W >V, Thus,
(?" + S) (VO — ,U,L(g)) = S(VO — W) + (TVO — (Vo —+ ... +Vr71)) — VT

> s(Vg — W) =V, because V; <V

> (s=1)V, .
If s >2, wehave Vg — (&)
semi-stables with respect to L.

We now assume that s = 1. By using the formula defining V; and W given in
Section 5.2, we have

W=1,Vo=(@1+...4+a,)+rv and V,=Vo—a; forie{l,...,r}.
We have

>0 and Vo — pr(&#) > 0. Thus, & and .# are not

1

pr(&) = T+1(1+(T+1)V0—((11—|—...+G,T))
and ) )
;(Vo—&-...—&-VT):;((r—i—l)Vo—(al—i—...—i-ar)) .
Therefore, u _NL(g) _ (7"+1)V0 - ((11 +...+ar)—r  We have
r r(r—+1)

(r+1O)Vo—(a1+...4+a,)—r=(r+ (a1 +...+a.)+ (r+1rv
—(a1+...4a,)—r
=r(a1+...+a -1+ (r+Lrv>0
because (a1 +...+a, —1) > 0 and v > 0. Thus, & and .# are not semi-stables
with respect to L. O

6.2. The case where Cone(vg) ¢ A. If i € {1,..., r} and j € {0,..., s}, by The-
orem 3.9, the logarithmic tangent bundle T'x (—log(D,, 4+ D) ) is decomposable.
Let r >2and D € {Dy, +D,; : 1 <i<j<r};weset &=Tx(—logD), we
have the following proposition :

Lemma 6.3. The logarithmic tangent bundle & is decomposable. If a; < a;, then

(D)o B
1=0 k=0, kg {i, 7}
where Gy = Span(w;) and Fy, = Span(vy) . If a; = a;, then
& =6q D EF
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where G = Span(wy, vg : 1 €{0,..., s}, k€ {0,...,r}\ {4, j}) and F = Span(v;)
or F' = Span(v;).

Proof. For the proof we use the families of multifiltrations. We use the Lemma 5.9
to explain the choice of this decomposition. O

If De{D,, :1<i<r} wewill not search to know if & = Tx(—logD) is
decomposable because it depends on the numbers r, s and a1, ..., a, . In particular,
if we assume that r =2, s=1, a; =0 and ay = 1, then & = Tx(—log D,,) is
decomposable and & = & @ &z where F' = Span(vs, wy) and G = Span(vg). But
F = Tx(—logD,,) is not decomposable.

We first study the stability of Tx (—log D) when r > 2 and
De{Dy, :1<i<r—1}U{Dy, + Dy, : 1 <i<r—1and0<j<s}
U{Dy, + Dy, : 1<i<j<r}.
Proposition 6.4. Letr > 2, (a1,...,a,) #(0,...,0), i €{l,...,r—1} and j €

{0,..., 8}. For any L € Amp(X), the logarithmic tangent bundles Tx (—log D,,)
and Tx(—log(Dy, + D.;)) are not semi-stables with respect to L.

Proof. We set & = Tx(—logD,,) and .# = Tx(—log(D,, + Du,)) -
Let L € Amp(X), we have
1
,U,L(cg)): r+8((S+1)W+(V0+...+V7;_1+Vz'+1+...+VT)>
and pur(F) < pr(&). We will show that Vo > ur(&£). We have
(r+5)(Vo — ur (&) =(s + 1)(Vo — W) =V,
+((r71)V0f(Vo+...+Vi_1+V,;+1+...+Vr_1))

>(s+1) (Vo —W) -V,
>(s+ 1)V, =V, =sV,

By Proposition 5.10, & and % are not semi-stables with respect to L. O

Corollary 6.5. Let r > 2 and (a1,...,a.) # (0,...,0). Let L € Amp(X); for
all i, j € {1,..., r} distinct, the logarithmic tangent bundle Tx (—log(D., + D.,))
is not semi-stable with respect to L.

Proof. If we set ¥ = Tx (—log(Dy, + D,,) ), by using the proof of Proposition 6.4,
we have pp(4) < ur(€) < Vo. Thus, ¢4 is not semi-stable with respect to L. O

We now study the stability of Tx (—log D) when
D € {D,, }U{D,, + Dy, : 0<j <s}.

Theorem 6.6. Let r > 1 and a, > 1. We have Stab(Tx(—logD,,.)) # @ if and
only if sStab(T'x(—log D, )) # @ if and only if a, =1 and a,—1 =0.

If a, =1 and a,_1 = 0, then the logarithmic tangent bundle Tx (—log D, ) is stable
(resp. semi-stable) with respect to 7 Ops(v) ® Ox (1) if and only if 0 < v < 1
(resp. 0 < v <wuy) where vy is the unique positive Toot of

s—1

s+r—1 s+r—1\ .

Po(x)=z< k )xk_5< s )x '
k=0

Proof. Let & =Tx(—logD,, ) and L =7*0ps(v) ® Ox(1). We have
(r+s8)pur(&)=(6+1)W+Vo+Vi+...+V,_7.
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o If a, > 2, by using the first point of Lemma 5.12 and the fact that V; < Vg, we
get :

(r+98)[Vo—pr(&)] =(sVo—(s+ )W) +rVog— (Vo + ...+ V,_1) > sV, .
By Proposition 5.10, Tx (—log D,,.) is not semi-stable with respect to L.
e We assume that » > 2 and a,_1 = a, = 1. Like V,._1 = V,., we have
(r+s)Vo—pr(&)] =6+ 1)NVo—W]=V,_1+[(r—1)Vo— Vo+ ...+ V,_2)]
>(s+ 1)V, —V,_1 because Vo — W >V,
> sV,
By Proposition 5.10, T'x (— log D,,,.) is not semi-stable with respect to L.

e Let 7 > 1. We now assume that a,_; = 0 and a,, = 1. By using the expressions

of Section 5.2, we have Vg =... =V,_1 =V where
s s—1
s+r—1\ , (S‘H"_l) k
V= v and W= Ve
2 (") 20

The points 4 and 5 of Proposition 5.10 are not verified in this case. To check the
stability of & it is enough to compare

pLl8) = — OV + (s + W)

with max(V, W). We have
(r+8)pp(&) —W]=rV—-(r—1)W >0 because W <V
and
(r+8)[pn(&) — V] =(s+ 1)W — sV

s—1
:Z <S+T—1>Vk_8(8+7‘—1>ys — Po(v) .
= k s

By the sign rule of Descartes (see Theorem 6.1), the polynomial Py have a unique
positive root vg. If v > 0, then Po(v) > 0 (resp. Po(v) > 0) if and only if v < 1
(resp. v < 1p). Thus, Tx(—logD,, ) is stable (resp. semi-stable) with respect to
T Ops (V) ® Ox (1) if and only if 0 < v < vy (resp. 0 < v < wy). O

Corollary 6.7. We assume that v > 1 and (ay,...,a,) # (0,...,0). Let j €
{0,..., s} and D = D, + Dy, . For any L € Amp(X), the logarithmic tangent
bundle Tx (—log D) is not semi-stable with respect to L.

Proof. If & = Tx (—log D), we have Vg > u1(&). By Proposition 5.10, T'x (— log D)
is not semi-stable with respect to L. [l

6.3. The case where Cone(vg) € A. In this part we study the stability of the
logarithmic tangent bundle Tx (—log D) when r > 2 and
D € {Dy,} U{Dyy +Dy; : 0<j<spU{Dy, + Dy, : 2<i <1}
The last case D = D,,, + D, will be study in the Section 6.4. We recall that ag = 0.
By Lemma 6.3 and Theorem 3.9, for all
D e{Dy,+ Dy, : 0<j <5} U{Dy, + Dy, : 2<i <1}

Tx(—log D) is decomposable. If D = D,,,, r > 2 and a; = 0, then & = Tx (—log D)
is decomposable and & = &g ® & where G = Span(wg, w1, ..., Ws, Vo, ..., V)

and F = Span(v;). By Lemma 5.9, if a; > 0, then T'x (—log D,,) cannot be written
as a sum of two equivariant vector bundles.



26 A. NAPAME

We now study the semi-stability of these bundles.

Lemma 6.8. Let r > 2, (ay,...,a,) # (0,...,0) such that a1 < a,, i €
{2,...;7} and j € {0,..., s}. We set & = Tx(—logD,,), F = Tx(—log(D,, +
D,,)) and 4 = Tx(—log(Dy, + Dw,)). For any L € Amp(X), the vector bundles
&, F and 4 are not semi-stables with respect to L.

Proof. We have pup(&) > pp(#) and pr(&) > pr(¥). We will show that
Vi > ur(&). By Lemma 5.12, we have V3 — W > V,.. Therefore

(r+s)Vi—pr(&)=r+s)Vi—-Vi+...+ V)= (s+ )W
:(S+1)[V1—W]—VT+[(7‘—1)V1—(V1++VT,1)}

> (s+ D[V = W] -V,
> sV;
By Proposition 5.10, &, .% and ¢ are not semi-stables with respect to L. O
Let a € N*. We now study what happen in Lemma 6.8 when a; = ... = a, = a.

6.3.1. We assume that r = 1.

Theorem 6.9. We assume that X =P (Ops © Ops(a)). Let Py and Q the polyno-
mials defined by

s—1 s—1
Pi(z)=(s+1) Z (Z) a* ek —sat and Q(z) = 2° — Z (Z) as "k tgk
k=0 k=0

We have :

(1) Tx(—logD,,) is stable (resp. semi-stable) with respect to ™ Ops(v) ®
Ox(1) if and only if 0 <v < vy (resp. 0 < v < vy) where vy is the unique
positive Toot of Py.

(2) If j €10,..., s}, then Stab(Tx(—log(Dy, + Duw,))) = @ ;

Tx (—log(Dy, + Dy,)) is semi-stable with respect to 7*Ops (V) @ Ox (1) if
and only if v = v3 where v3 is the unique positive root of Q.

(3) @ = Stab(Tx(—log(Dy, + Dv,))) & sStab(Tx(=log(Dy, + Dy,))) =

Amp(X).

Proof. By the sign rule of Descartes (cf. Theorem 6.1), P; and Q have respectively
one positive root. Let L = 7*0ps(v) @ Ox (1), by using the expressions of Section

5.2, we have :
s—1
Vy =v* and W = ];) (Z) a® k1

Let & = Tx(—logD,,). By Proposition 5.10, to check the stability of &, it is
enough to compare

Vi+(1+s)W
#L(g)z—l 1(+8 )

with max(Vy, W). We don’t use the points 4 and 5 because the hypothesis are not
verifying. We have

ML((g))>W and (1+S)(/LL(£)—V1):P1(U) .
Thus, & is stable (resp. semi-stable) with respect to 7*0ps (v) ® Ox (1) if and only
it0<v<uw (resp. 0 <v <uy).
Let F = Tx(—log(Dy, + Du,)). By Proposition 5.10, we compare
Vl + SW

j =
He(F) 14+ s
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with max(Vy, W). We have
(14 9)(pe(F) —W) = Q) and (1+8)(us(F) — V1) = —s Q) .

Thus, for any v > 0, .% is not stable with respect to L. The vector bundle .# is
semi-stable with respect to L if and only if v = v3.

Let ¢ = Tx(—1log(Dy, + Dy,)). We have ur(¢4) =W . By Proposition 5.10, ¢ is

semi-stable not stable with respect to L. O
6.3.2. We assume that r > 2. We assume that a1 = ... = a,, = a with a € N*.
Lemma 6.10. We have

card{(aq,..., ap) ENP 1y + ...+ ap =m} = <m+£_1> .

By Lemma 6.10, for all k£ € {0,..., s — 1}, we have

d d, s—k+r—2\ _._
W, = Z all"'ar :< b1 a’ 1
dit...4+d,=s—k—1

and
— -2
Vi = Z ag"’-~-afT:<8 k+; )as_k_
dot...4d.=s—k 5=
We recall that Vi3 = 1. By using the equality ( " ) - P (n>’ for all
p—1 n—p+1\p

ke{0,..., s—1},

s—k+r—=2\ .4, s—k(s—k+r—-2\ .. s—k
Wy = s = s = — Vi .
¥ ( s—k—1 >a r—1 s—k ¢ a t

Let Py and Q the polynomials defined by :

- ) (4 ()

k=
Ss—

o[- (e o)

Theorem 6.11. Let r > 2 and X = P(Ops @ Ops(a1) D ... D Ops(a,)) with
a; =...=a, =a where a € N*. We set & = Tx(—1log D,,).

= o

(1) If a < s , then & is stable (resp. semi-stable) with respect to © Ops (V) ®
T

Ox (1) if and only if v3 <v < vy (resp. v3 <v <wvy) where vy and vs are
respectively the positive roots of Py and Q.

(2) If ; <a< %, then & is stable (resp. semi-stable) with respect to
T Ops (V) @ Ox (1) if and only if 0 < v < vy (resp. 0 < v < 1) where v,
1s the unique positive root of Pq.

(3) If az>
to L.

571 , then for any L € Amp(X), & is not semi-stable with respect
r—
Before giving the proof of this theorem, we will explain the condition which

ensure the existence of positive roots on P; and Q. We will use the Descartes sign
rule.

(s—k)(s+1)

a(r —1) >0,

We write Py as P1(x) = Z apz¥. We have ay < 0. If —s+
k=0
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then s—k>w,i.e k< <1_a(r1)>8

s+1 s+1
-1
It a(r+1) > 1, then for any > 0, P1(z) < 0.
S
1 -1
If a< il , then for all £k < <1— a(r+1)>s’ we have aj > 0 and for all
— S
a(r—1) o
E>(1-— ) s, ar < 0. Hence P; has only one positive root v;.
S

—k
We write Q(z Zﬁkx We have g5 > 0. If r—si <0, thenra—(s—k) <0,
a

i.e k<s—ra.If aif,thenforanyxzo,Q(x)>0.

<

If a< s , then for all k < s—ra, we have 8, < 0 and for all k& > s—ra,
r
Br > 0. Thus, Q has only one positive root vs .

Lemma 6.12. If a < s , then v3 < vy .
T

1
Proof. If a < s , then a < H—l By the above analysis, v and v3 exist. For z > 0,
r r—
we have Pl(x) > 0 if and only if 0 < z < 1. Like

i) E[( W ) (v

k=0
(8 +;‘ 1>V1kxk = P(2)
Pl(V3) Q(V3)

we have - = P(v3) < 0. Hence, P1(v3) >0, ie v3 <vy. O
—s r

I
Q
Vo)
:ﬁ
|+
Cn
L

Now, we can prove Theorem 6.11.

Proof of Theorem 6.11. Like a; = ... = a,, we have V{ = ... = V,.. Therefore
rVi+ (s+1)W
= —-—7-—"—.
pr(&) s

In this case the point 4 and 5 are not verified. To check the stability of & =
Tx(—log D,,), it is enough to compare pr (&) with max(Vy, W). We have

(r+ 5)(HL(E) = Vi) = —s Vi + (s + W

* (54— S s+r—1
=—s \% V-|-8+1 W, ¥
) G S M

=P1(v)
and
(r+s)(up(&)—W)=rVy — (r— )W

S s—1
- s+r—1 s+r—1
=r E < i )Vlkyk—(r—l) E ( i >Wk1/k

k=0 k=0
=Q(v)
We have :
. s+1
i. Ifa> 7 then for any v > 0, we have P1(v) < 0.
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1
ii. fa < Hil, then Py(v) > 0 (resp. P1(v) > 0) if and only if 0 < v < 1y
.
(resp. 0 <v <uy).
iii. If a > ;, then for any v > 0, we have Q(v) > 0.

iv. If a < ﬁ, then Q(v) > 0 (resp. Q(v) > 0) if and only if v > v3 (resp.
T
v > vs).
The point 7. shows the third point of the theorem. By using the points 7. , iv. and

the Lemma 6.12, we get the first point of theorem. The points 4. and 7. give the
second point of the theorem. O

Let i € {1,...,r} and j € {0,..., s}. We now study the stability of .%#; =
Tx(—1og(Dy, + Du;)) and ¥; = Tx(—log(Dy, + D,,)). Let Q the polynomial
defined by

Q=) =§K1—“) (3+;‘1)v1k] oy <8+Z—1>x3 |

Theorem 6.13. We assume thatr > 2 and X =P (Ops @ Ops(a1) ® ... D Ops(ay))
withay = ... =a, = a where a € N*. Leti € {1,...,r} and j € {0,..., s}.
(1) For any L € Amp(X), %; and ¥; are not stables with respect to L.
(2) If a > 1 then for any L € Amp(X), %, and 9 are not semi-stables
with respect to L.
(3) If a < %, then %, and 9; are semi-stables with respect to T Ops (V) ®

Ox (1) if and only if v = v3 where v3 is the unique root of Q.
Proof. We first study the polynomial Q. We write Q(x) = Zak z¥ . We have
k=0

—k
as > 0. If 175747_1)<0,then alr—1)—(s—k)<0,ie k<s—a(r—1).
If az%,thenforanyxzo, Q(z) > 0.

If a < Ll , then for all k¥ < s—a(r—1), we have oy < 0 and for k > s—a(r—1),
r

ar > 0. Thus, Q has a unique positive root vs .

Like a1 = ... = a,, we have V; = ... =V,.. Thus,
2 TVit+sW L (r=DVi+(s+ W
pL(F;) = s od nr(9:) = s :

By using Proposition 5.10, to check the stability of .%; (resp. %), it is enough to
compare pr(%;) (resp. pr (%)) with max(Vy, W). We have

{ (r+8)(pe(F5) = Vi) = s(W = Vi) = =sQ(v)
(r+8)(pe(F5) = W) =r(V1 =W) =7Q(v)

and
{ (r+s)(pe(%) —Vi) = (s + DW= Vi) = =(s + 1) Q(»)
(r+s)(pe(#) —W) =(r=1)(Vi =W) = (r—1)Q(v)
If a > ril , then for any v > 0, Q(v) > 0; thus, pr(%;) < Vi and pp(9%) < Vi.

Hence, for any v > 0, .%; and ¥, are not semi-stables with respect to L.

s
We now assume that a < —— . Let v3 the positive root of Q.

r—
If v # v3, by the above equalities, .%; and ¥; are not semi-stables with respect to
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L. If v =3, the logarithmic tangent bundles .#; and ¥; are semi-stables but not
stable with respect to 7*Ops (V) @ Ox(1). O

6.4. The case D = D,,, + D,,. In this part, we assume that D = D,, + D,, and
& = Tx(—log D). In the beginning of Section 6.3, we see that & is decomposable.
In this part, we will study the stability of & when r > 2 and a; < a,. The stability
of & when r = 1 was treated in Theorem 6.9. When r > 2, in Theorem 6.13, we
study the stability of & when a1 = ... = a, with a; € N*.

Proposition 6.14. If a; = 0, then for any L € Amp(X), & is not semi-stable
with respect to L.

1
Proof. We have pur (&) = s ((s+D)W+Vy+...+V,). Likecard{2,..., r} =
r+s
r — 1, by using the point 4 of Proposition 5.10 with I’ = {2,..., r}, we have

1 1
— (Y, DW | = ——— (Vo f... 4V, W) .
r+s_1<; +(s+1) ) e Vet Ve (s W)

Thus, Tx (—log(Dy, + D.,)) is not semi-stable with respect to L. O

We also have :

Lemma 6.15. Let r > 3, (a1,...,ar) # (0,..., 0) such that as < a,. For any
L € Amp(X), the vector bundle & is not semi-stable with respect to L.

1
Proof. We have ur(&) = T(Vg + ...+ V. + (s+1)W) . We will show that
r+s
Vo > ur(&). By Lemma 5.12, we have Vo — W >V, thus

(r+s)(Vo—pup(&)=(r+s)Vo— (Va+...+V,) = (s+ HW

)
=(s+1D[Va—=W]+[(r—1)Va— (Va+...+V,)]
> (s+1)[Va — W]
> (s+ 1)V,
Hence, by Proposition 5.10, & is not semi-stable with respect to L. O
We now assume that 0 < a1 < ag = ... = a, . For the stability of &, we see that:

the point 4 and 5 of Proposition 5.10 are not verified here. To check the stability
of &, it is enough to compare pr (&) with max(Ve, W). We have

(r—1)Vo + (s + )W

pL(&) = r+s
and
14 { (r+8)[ue(6) = Va] = (s + (W = V)
(r+8)pe(&) = W] = —(r — 1)(W — Va)
We have :
Proposition 6.16. Let r > 2. If 0 <aj; < ag =...=a,, then Stab(&)=g.

The vector bundle & = Tx(—log(D,, + D,,)) is semi-stable with respect to
L = 7 0ps(v3) ® Ox(1) if and only if vs is a positive root of the polynomial
Q(v) =W =V (W and V3 depend on v).
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6.4.1. We assume that r=2 and 0 < a1 < as.
In(1+ as — ay)

Proposition 6.17. Let r =2 and 0 < ay < ag. We define § = ——————=
In(ag) — In(ay)

and Q the polynomial

s—1 s—k s—k
_ aj az L s+1
Q(JC)—’;} [%al <<a1> 1 a2+a1> ( L >

We have :
(1) If s <4, then sStab(Tx(—log(Dy, + Dy,))) =& ;
(2) If s > 0§, then Tx(—log(Dy,+D,,)) is semi-stable with respect to 7 Ops (V)®
Ox (1) if and only if v =vs where vs is the positive root of Q.

Proof. We have

i <1>

zF — (s+1)z°

k=0
hence
s—1 s—k s—k
1
W—V, = lal <(a2> —1—as+ a1> (s + ) (s+1)v° =Q(v)
ao — Ay ay k‘
k=0
We write Q(z Z ap ¥ . We have a, < 0. The inequality
a s—k
<2> —1l—ax+a; >0
ay

In(1 —

gives k<s—w:s—5. If s<4§, then for any x >0, Q(z) <0
In(az) — In(aq

If s >, then by the Descartes rule, Q has a unique positive root vs .

Hence, if s > §, then & is semi-stable with respect to 7*0ps(v) ® Ox (1) if and

only if v = v3. O

6.4.2. We assume that r > 3 and a; < a,. Let a, b € N* such that a < b.
We assume that a1 = a and a3 = ... = a, = b. By Lemma 6.10, for all k£ €
{0,..., s — 1}, we have :

s—k—1
Wiz Y b= Y ak (Y
di+-»i€+dlr 7=0 do+...4+dr=j
s—k—1 .
_ (]+T )b] s—k—1—j
j=0 J
and
s—k
dy_ —k— 2 :
V2k = Vrk: = E atli1 : ar—ll = a® ki v
dy4.tde_q 7=0 do+...+dr_1=]
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For k € {0,..., s — 1}, we have (s —k) € {1,..., s}. For p € {1,..., s}, we set
op =W,_p, — V3 s_p; we have

p—1 . P .

—92\ . ) —3\ . )

op = § (]+; )b]ap_l_J— E <]+; )bjap_].
j=0 j=0

Let Qs be the polynomial defined by

We have W — Vs = Q,(v). We now search a condition on s which ensure the

existence of positive root on Q. By using the identity " - r (" ,
p—1 n—p+1

we have

. P .
+;<j fi;z)bjap_l_j—z (]+7j_3>bjap_j—ap
- J

i=1 J

Z
S 0]

If 1 <p<b(r—2),then forall j €{0,..., p— 1}, we have

‘7+1be ,b:w§0;
r—2 r—2 r—2

thus o, < 0. Hence, if oy, > 0, then we must have p > b(r —2).
If there is p > b(r —2) such that «, > 0, then for any ¢ > p, we have oy > 0; this
follows from these equalities.

p—1 . .
1 =2\, ; 1 -2
Qpi1 = E [(ﬁb> (jJ.rr >b7apj] —aPt! 4 (]Hb> (p+1" >bp
= r—2 7j+1 r—2 p+1

B pt1 p+r—2
—aap+< — b)( ol )bp
We denote by |z] the floor of z € R.

Lemma 6.18. Let m = b(r—2). There is a unique integer 0, € [m+1; |3.2m| + 1]
such that : if p < 0, , then ap, <0 and if p> 6, , then o, > 0.

Let ¢, be the integer given in Lemma 6.18. If s < §,., then all coefficients of Q,
are negative; thus, for any > 0, Qs(z) < 0. If s > 4,., then by the Descartes rule
(see Theorem 6.1), Q, has a only one positive root v3. We deduce :

Proposition 6.19. Let r > 3 and a,b € N* such that a < b and a1 = a,
ags=...=a,=>b.
(1) If s <6, , then sStab(Tx(—log(Dy, + Dy,))) =2 ;
(2) If s > 0, , then Tx (—log(Dy,+D.,)) is semi-stable with respect to © Ops (V)®
Ox(1) if and only if v=v3.

We now give the proof of Lemma 6.18.
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m—1 i1 i —2 ) )
Proof. We have o), = Z [(‘7 —b) (j ) >b7 ap_l_]} —af + 3, where
s r—2 j+1

z () ()]

_ |:l +1 (l +tm+r— 2) bl+’rn ap—l—(l+7n):|
=0

r—2 l+m+1

The goal of this proof is to find an integer p such that o, > 0. We will search an
integer p such that

(15) aP+Z (j” >bjap1j.

l+m+r—2 l+m+r—2 r—2 l+m+r—2
We have = = . From
l+m+1 r—3 l+m-+1 r—2

the equality

Z(DZCJD we have (;+1> 1+T§”:1< +n+1)7

Jj=n j=0
Hence,
l+m—1 +m—
l+m+r2> <]+r2> (j+r >
13 1S
( T—2 = r—3 = Jj+1
m—1
S 14 (]+r—2>
- iz j+1
Thus,
m—1 . p—1—-m
J+r—2 L1 m pe1—(i4m)
bz (105 () Y e
= Jj+1 — l+14+m
m—1 —1-m 1
s e () ()
- = j+1 — [+1+m \a
We have
pim I+1 >p1m/l+1 cdr _/P—’" r
= I+14+m — — S rt+m 0 T+m
X p—m
= {f - mln(x—i—m)]
1 0
:p—m—mln<£>
m
17

Weset k= L. Ifk > = =32, then (k—1-1In(k)) > 1. If we set p = [3.2m] +1,
m
we get

—m —1-m

1— 1 »p
E [+1 é > E Hilzmzb_
— I+1+m — l+14+m

p—
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For j € {0,..., m—1}, we have b aP~1=™ > bl qP=17J. If p = |3.2m] + 1, we get

m—1 .
-2
ﬂpzbbmapflfm 1+ Z (,]""I" >

par SN 1
m—1 . 9
> pmtl gp=l-m | Z b(‘j +r— >bjap1j ;
- — j+1
7=0
this proves the inequality (15). Thus, a;, > 0 for p = [3.2m|+1. Hence, we deduce
the existence of the integer 4, in the interval [m +1; [3.2m] + 1]. O
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