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Abstract

This paper deals with extreme-value index estimation of a heavy-
tailed distribution of a spatial dependent process. We are particularly
interested in spatial rare events of a β−mixing process. Given a sta-
tionary real-valued multidimensional spatial process

{
Xi, i ∈ ZN

}
, we

investigate its heavy-tail index estimation. Asymptotic properties of
the corresponding estimator are established under mild mixing condi-
tions. The particularity of the tail proposed estimator is based on the
spatial nature of the sample and its unbiased and reduced variance prop-
erties compared to well known tail index estimators. Extreme quantile
estimation is also deduced. A numerical study on synthetic and real
datasets is conducted to assess the finite-sample behaviour of the pro-
posed estimators.

keywords: Asymptotic normality; β-mixing; extreme value index; bias correction;
spatial dependence; functional estimation.
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1 INTRODUCTION
Extreme value theory is around a strong dynamic growth in recent years motivated
by the large number of applications in various and varied fields. The literature on
statistical inference in extreme value theory develops sophisticated statistical tools for
extreme events modeling towards several directions.
Estimation of the extreme-value index and extreme quantiles has been investigated
rather extensively in the recent literature. We refer particularly to Bobbia et al. [2019,
2021], Daouia et al. [2020], Bassene [2016], Opitz [2015], Ndao et al. [2014], Goegebeur
and Guillou [2013], Resnick et al. [1998], Hsing [1991], Hill [1975] to name a few. Since
the seminal tail index estimator of Hill [1975] under the independent hypothesis, few
works were dedicated to dependent data. In one hand, Resnick et al. [1998] discussed
the consistency of Hill’s estimator in the case of some classes of heavy-tailed stationary
and dependent processes. On the other hand, almost all the extensions of Hill estimator
are developed for time-dependent data (see e.g. Chavez-Demoulin and Guillou [2018]
for more details) despite the numerous situations where data are of spatial dependency
nature. In fact, in many fields, data are nowadays collected with geographical positions
such as oceanography, epidemiology, forestry survey, economy and many others. The
study of these kinds of data or any characteristic of such data cannot be done with-
out spatial statistical analyzes by taking into account the geographical positions and
possibly spatial dependency. Spatial analysis is a general term to describe a technique
that uses the spatial information in order to better handle the dependency of observed
geo-localized data in an inference.
For modelling extreme spatial processes, the reader may refer to Bopp et al. [2021],
Sharkey and Winter [2019], Opitz [2016], Bassene [2016], Basrak and Tafro [2014],
Thibaud et al. [2013], Davison et al. [2012], Blanchet and Davison [2011], Turkman
et al. [2010] among others. In particular, for tail index estimation, Basrak and Tafro
[2014] considered the extremal behaviour of spatial moving averages and moving max-
ima on a regular spatial discrete grid while Bassene [2016] extended the previous works
to a more general context under strongly conditions. Tail index estimation is impor-
tant in many extreme value theory problems in particular when estimating extreme
quantiles (see Bolancé and Guillen [2021], Velthoen et al. [2021], Chavez-Demoulin
and Guillou [2018], Bassene [2016], Goegebeur et al. [2014] among others). Goegebeur
et al. [2014] and Bassene [2016] proposed Weissman extreme quantile estimators for
β−mixing non-spatial process (resp. α−mixing spatial process) from tail estimation.
Velthoen et al. [2021] proposed recently a gradient boosting procedure to estimate a
conditional generalized Pareto quantiles while Bolancé and Guillen [2021] introduced
a new method to estimate longevity risk based on the kernel estimation of extreme
quantiles.
Let {Xi, i ∈ Z} be a real and measurable process with Xi having the same distribution
as a random variable X defined on the probability space (Ω,A,P). We provide R with
the metric d(·, ·). We assume that the condition of the regular variation of the X’s tail
probability is given by:

∀x > 0 P(X > x) = x−
1
γL(x), (1)

where γ > 0 is an unknown parameter and L(·) is a slowly varying function.
The unknown γ is the parameter designating the tail index of extreme distribution.
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In a series of observations, since we are interested in extreme or unusual values, it is
essential to find a method for identifying and collecting such values. One of the most
widely used methods for collecting extreme values in extreme statistics can be summa-
rized as follows.

• Let observations X1, X2, . . . , Xn; ordered as X(1) ≥ X(2) ≥, . . . ,≥ X(n),

• Choose an intermediate sequence kn such that 1 ≤ kn < n ; kn = o(n) as n→∞,

• the well known Hill [1975] estimator of the tail index γ is:

γn = 1
kn

kn∑
i=1

log
(

X(i)

X(kn+1)

)
. (2)

This estimator has generated a lot of interest among many researchers in particular
when the random variables of interest are independent and identically distributed. In
this contribution, we aim to estimate the extreme index in the case of spatial dependent
distributed random variables.
In the spatial context, the usual methods of counting the first kth extremes observations
will not be applicable. Nevertheless, there are a collection of methods adapted to the
spatial framework, the one used in this document transforms the spatial data into a
triangular table (see Robinson [2011]) and then applies the previous method to these
triangular data.
This spatial ordering has been first used in the extreme value index estimation by
Bassene [2016] who expanded the work of Basrak and Tafro [2014] that was limited to
bivariate spatial domain.
Indeed Bassene [2016] considers

{
Xi, i ∈ ZN

}
a real and measurable strongly-mixing

spatial process where Xi has the same distribution as X defined on the probability
space (Ω,A,P). Under certain conditions Bassene [2016] built the estimator of the tail
index γ:

γn = 1
k̂n

k̂n∑
i=1

log
 X(i)

X(k̂n+1)

 (3)

where X(1) ≥ X(2) ≥ · · · ≥ X(n̂) is the order statistic associated with the observations{
Xi, i ∈ ZN

}
; and (k̂n) is an intermediate sequence such that 1 ≤ k̂n ≤ n̂ (see the

definition of n̂ below).
In this work, we propose a functional estimation of the extreme tail index for β−mixing
spatial process. Indeed, we wish to extend the estimator proposed by Chavez-Demoulin
and Guillou [2018] for β−mixing time series process to the spatial framework thus
generalizing that of Bassene [2016] to a larger class of process and unbiased estimators.
Chavez-Demoulin and Guillou [2018]) considered a β-mixing time series {Xi, i ∈ N}
and built an estimator of the tail index γ:

γ̂k(K) = TK(Qn) =
∫ 1

0
log

(
Qn(t)
Qn(1)

)
d(tK(t)), (4)

where Qn(t) = Xn−bktc,n 0 < t < n/k, is the quantile function and K is a function with
support in (0, 1).
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Under the β-mixing conditions on the time process, the regularity of the function K
and other conditions [Chavez-Demoulin and Guillou, 2018], asymptotic properties of
this estimator have been proved by the authors. The main objectives of this work is to
extend the previous estimator in a context of spatial context. The proposed estimator
is not a simple extension, it also gives some improvements of Chavez-Demoulin and
Guillou [2018] in terms of reduction of estimation mean squared error.
This paper is organized as follows. Section 2 presents the estimator of the tail index
and a bias correction method while Section 3 deals with the extreme quantile estimator.
In order to study the finite sample performance of our estimators, we proposed some
examples of spatial processes in Section 4. We also propose finite sample properties
of the estimates with simulated study and a real data application in Section 5. The
proofs of the main results are presented in Section 6.

2 Functional estimation of the extreme value index

2.1 Methodology
We want to build a spatial version of the γ estimator defined in (4).
It is not easy to transcribe asymptotic properties in this spatial framework due to the
fact that there is no natural order in ZN , N ≥ 2.
Let ZN ; N ≥ 1 be a EuclideanN -dimensional space of the point indices and

{
Xi, i ∈ ZN

}
a real and measurable spatial process where Xi has the same distribution as X defined
on the probability space (Ω,A,P). We assume that the condition of the regular vari-
ation of the X’s tail probability stated in equation (1) is satisfied; i. e. X belongs
to the Fréchet attraction domain of parameter α = 1/γ; where γ > 0 is an unknown
parameter and L(·) is a slowly varying function i.e. verifying:

lim
x→∞

L(tx)
L(x) = 1, ∀ t > 0. (5)

The unknown γ parameter is the parameter designating the tail index. In the
following we are interested in the non-parametric estimation of this parameter γ > 0.
Let i = (i1, . . . , iN) ∈ ZN be a site and consider the notation of the rectangular domain
(see Bassene [2016]):

In = {i = (i1, . . . , iN); 1 ≤ ik ≤ nk; k = 1, . . . , N} ; (6)

with lexicographical order; in the sense that i = (i1, . . . , iN) ≤ j = (j1, . . . , jN)⇔ i1 ≤
j1 or i1 = j1 and i2 ≤ j2 or, . . . , ik = jk and iN ≤ jN , k = 1, . . . , N − 1. Consider a
sample (Xi)i∈In of dependent variables verifying the relationship (1). In this triangular
ordering, the observations become (Xi)1≤i≤n̂ where each index i = 1, . . . , n̂ = n1×n2×
...× nN , is identified by a site i in the region In (see Robinson [2011]).
Let In = {i; 1 ≤ i ≤ n̂} and for simplicity set n̂ = n. In the following all limits are
considered for n→∞.

Let (kn)n be a sequence of elements such that 1 ≤ kn ≤ n. As in the case of non-
spatial data, we will assume that (kn)n is an intermediate sequence of integers such
that:

kn →∞ and kn = o(n), n→∞. (7)
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Let Qn(t) = Xn−bkntc,n 0 < t < n/kn, be the quantile function. It is clear that
∀ 0 < t ≤ 1, Qn(t) ≥ Qn(1).
Let z : [0, 1] −→ R be a measurable function; consider the functional:

TK(z) =


∫ 1

0 log
(
z(t)
z(1)

)
d(tK(t)) if this integral is defined and finite,

0 otherwise.

Then, we extend Chavez-Demoulin and Guillou [2018] estimator defined in (4) to the
spatial context. We base the inference on the sample fraction kn. The non-parametric
functional estimator of γ for spatial data is as follows:

γ̂kn(K) = TK(Qn) =
∫ 1

0
log

(
Qn(t)
Qn(1)

)
d(tK(t)), (8)

where K is any function with support in (0, 1).

Remark 2.1 Under the differentiability conditions on the function K, the estimator
in Bassene [2016] (spatial version of Hill [1975]) is a special case of this functional
estimator for K ≡ 1).

2.2 Asymptotic properties of the tail index estimator
This section gives asymptotic properties of the tail index estimator. We establish
asymptotic normality under the following assumptions.
Condition CK : Let K be a function such as 0 <

∫ 1

0
K(t)dt <∞. Suppose that K is

continuously differentiable on (0, 1) and that there is M > 0 and τ ∈ [0, 1/2) such that
|K(t)| ≤Mt−τ .
Condition CM (mixing condition): Let σX(T ) = σ({Xi, i ∈ T}) denote the σ-field
generated by {Xi, i ∈ T} for T ⊂ ZN . For any subsets T1 and T2 of ZN , the β-mixing
coefficient between σX(T1) and σX(T2) is defined by

β̃(T1, T2) = sup 1
2

J∑
j=1

S∑
s=1
|P (Aj ∩Bs)− P (Aj)P (Bs)|, (9)

where the supremum is taken over all partitions {Aj}Jj=1 ⊂ σX(T1) and {Bs}Ss=1 ⊂
σX(T2) of ZN . Let R(b) denote the collection of all finite disjoint unions of cubes in
ZN with total volume not exceeding b. Then, let

β(a, b) = sup
{
β̃(T1, T2); d(T1, T2) ≥ a;T1, T2 ∈ R(b)

}
, a, b > 0, (10)

where d(T1, T2) = inf {‖x− y‖;x ∈ T1, y ∈ T2}. We assume that there exist a nonin-
creasing function β1 with lima→∞ β1(a) = 0 and a nondecreasing function g (that may
be unbounded) such that

β(a, b) ≤ β1(a)g(b); a, b > 0. (11)
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Condition CA: (Second order condition).
There exist a constant ρ <0 and a rate function A(·) verifying A(x)→ 0 when x→∞
such that for t > 1,

lim
x→∞

log(U(tx)/U(x))− γlogt
A(x) = tρ − 1

ρ
, (12)

where U is the quantile function with regular variation defined by U = (1/(1 − F ))←
(← refers to the continuous generalized inverse on the left).
Condition CR: (regularity)
There is ε > 0, a function r : R× R→ R.
Set I(j) = {i; jk(p+ q) + 1 ≤ ik ≤ jk(p+ q) + p; k = 1, . . . , N} a collections of disjoints
sites of size pN (pN = o(n), p = pn →∞ , q = qn →∞ , q/p→ 0) and separate at list
by q.

(a) β(q,pN )
pN

n+ pN log2k̂n√
k̂n
→ 0;

(b) n
pN k̂n

Cov

 ∑
i∈I(j)
j∈In

1{Xi>F←(1−k̂nx/n)},
∑

i∈I(j)
j∈In

1{Xi>F←(1−k̂ny/n)}

→ r(x, y),

∀ 0 ≤ x, y ≤ 1 + ε;

(c) there exists a constant C such that ∀ 0 ≤ x < y ≤ 1 + ε :

n

pN k̂n
E


 ∑

i∈I(j)
j∈In

1{F←(1−k̂ny/n)<Xi≤F←(1−k̂nx/n)}


4 ≤ C(y − x).

Remark 2.2 The hypotheses CA is classical in extreme value theory (see Drees [2000],
Drees et al. [2003], De Haan and Ferreira [2016]). The β−mixing random fields condi-
tion CM is given in Kurisu et al. [2021], Bradley [1993], Dedecker et al. [2007]) while
condition CR is an extension to spatial context of the one-dimension regular condition
given in Drees [2000]). Condition CK is technical to achieve our goals. We need the
additional assumptions (like C2 and C3 in Drees et al. [2003]) if one wants to obtain
the regularity condition CR. Particularly the condition CR− (a) is verified if (11) hold.

Theorem 2.1 Let
{
Xi, i ∈ ZN

}
be a stationary spatial process with continuous distri-

bution function and verifying conditions CM , CA and CR. Set (kn) an intermediate
sequence such that

√
knA(b(n/kn)) −→ λ <∞, n→∞. We have:

√
kn

[
γ̂kn(K)− γ −A(b(n/kn))

∫ 1

0
t−ρK(t)dt

]
d→ γ

∫ 1

0

[
t−1W (t)−W (1)

]
d(tK(t)),

(13)
where (W (t))t∈[0,1] is a centered Brownian motion, r is the covariance defined in CR
and

b(t) = F←(1− t−1) t > 1, (14)
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F←(y) = inf{x, F (x) ≥ y} 0 ≤ y ≤ 1,
F being a distribution function and therefore subject to regular variation :

F̄ (b(t)) ∼ t−1, F̄ := 1− F. (15)
Remark 2.3 The result of this theorem is an extension of Theorem 1 of Chavez-
Demoulin and Guillou [2018]. The particularity lies in the multivariate indexation
(i ∈ ZN , N ≥ 1) of the considered process (spatial in our context).
If we assume that the observations (Xi, i ∈ In) are i.i.d. and K(t) = 1 for all t ∈ (0, 1),
we find the asymptotic normality of the Hill [1975] estimator (see De Haan and Resnick
[1998], Resnick and Stărică [1995], Mason [1982]...).
The following corollary specifies the asymptotic bias and variance.
Corollary 2.1 Under the condition of Theorem 2.1, we have:√

kn (γ̂kn(K)− γ) d−→ N (λAB(K), AV(K)) . (16)

where AB(K) =
∫ 1

0
t−ρK(t)dt

and AV(K) = γ2
∫ 1

0

∫ 1

0

[
r(t, s)
ts
− r(t, 1)

t
− r(1, s)

s
+ r(1, 1)

]
d(tK(t))d(sK(s)).

This tail estimator being asymptotically biased with bias
(
λ
∫ 1

0
t−ρK(t)dt

)
. The aim

of the next section if to reduce it.

2.3 Bias correction
2.3.1 Existing works and some remarks

Before stating the bias reduction contribution, let us recall the existing works on this
direction.
• Firstly, let us analyse the estimator of extreme value index proposed by Chavez-

Demoulin and Guillou [2018] (in the case where N = 1) according to ρ denoted
by γ̂kn(K∆∗) with the function K∆∗(t) =

(
1−ρ
ρ

)2
− (1−ρ)(1−2ρ)

ρ2 t−ρ. This gives an
unbiased estimator and a variance AV(γ̂kn(K∆∗)) = γ2

(
1−ρ
ρ

)2
. One can remark

that this variance increases and is closer to γ2 for large values of |ρ| and very high
for low values of |ρ|. According to these remarks we conclude that this estimator
is useful for large value of |ρ|.

• Secondly, how does the associated quantile estimator behave for large values of
|ρ| ? The quantile estimator proposed by Chavez-Demoulin and Guillou [2018] is
given by;

x̂p,ξ = Xn−k,n

(
k

pn

)γ̂kn (Kδ̂∗ )

exp
{
−(1− ρ)(1− 2ρ)

ρ2

× [γ̂kn(K1)− γ̂kn(K2,ρ)]

(
k
pn

)ρ
− 1

ρ

 ,
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which gives for large values of |ρ|

x̂p,ξ = Xn−k,n

(
k

pn

)γ̂kn (Kδ̂∗ )

,

since ( k
pn)ρ−1
ρ

→ 0 when ρ → −∞. Then one get directly a Weismann-type
estimator without the correction term.

2.3.2 Our proposition

In this section, we propose a bias reduction method, useful for low values of |ρ| and for
the corresponding quantile estimator. Knowing that the bias of the considered class of
estimators depends on the function K, we will choose an optimal one, i.e. making both
the bias almost zero and minimizing the variance. The particularity of our approach
compared to those of Chavez-Demoulin and Guillou [2018] and that of Goegebeur and
Guillou [2013] lies in the consideration of a more wide class of functions K.
For that purpose, consider two functions K1 and K2 verifying CK and set:

K(α,β)(t) = αK1(t) + βK2(t); α, β ∈ R∗, (17)

such that 1
α

+ 1
β

= −1 (this condition imposed on α and β is for technical reason) and∫ 1

0
K(α,β)(t)dt > 0. Let us now evaluate the bias of the estimator γ̂kn(K(α,β)). We have

λ√
kn
AB

(
K(α,β)

)
= λ√

kn

∫ 1

0
t−ρK(α,β)(t)dt

= λ√
kn

(αAB(K1) + βAB(K2)) .

Since it is question of bias reduction, let us find the values of α and β for which the
bias is close to 0. We then obtain the system of equations:

αAB(K1) + βAB(K2) = 0,

1
α

+ 1
β

= −1.

The solution of this system is given by S = (α∗, β∗) ∈ R∗2 where α∗ = AB(K2)−AB(K1)
AB(K1)

and β∗ = AB(K1)−AB(K2)
AB(K2) . The resulting function KS leads to an estimator of γ of

asymptotically zero bias as stated by the following result.

Corollary 2.2 Under the hypotheses of Theorem 2.1, and assuming that K1 and K2
satisfy the CK condition, we have:√

kn (γ̂kn(KS)− γ) d−→ N (0, AV(KS)) . (18)

Let Cγ = {γ̂kn(KS), K1 K2 verifying CK} be the class of asymptotically unbiased
estimators of γ. It remains to construct an estimator with minimum asymptotic vari-
ance.
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In the case of i.i.d. random variables, Goegebeur and Guillou [2013] (Theorem 2 and
Corollary 4) established that the couple of functions (K1,ρ, K2,ρ) verifying the condition
CK for which the variance is minimal is given by: (1, (1− ρ)t−ρ). Although we have
not yet established the optimal variance in our context, let us take the same functions
(1, (1− ρ)t−ρ) as in the i.i.d. case. Thus, the function KS∗ of "optimal" variance from
the (1, (1− ρ)t−ρ) of the form (17) is given by

KS∗(t) = ρ2

1− 2ρ −
ρ2

1− ρt
−ρ. (19)

It is easy to see that γ̂kn(KS∗) ∈ Cγ is of minimal variance.

Remark 2.4 Under the assumption of i.i.d. observations, the tail estimator with the
optimal choice γ̂kn(KS∗) is better than that of Goegebeur and Guillou [2013] (Corollary
4) for low values of |ρ| (see Figure 6.1).

Indeed, the obtained variance is AV(KS∗) = γ2 ρ6

(1−ρ)2(1−2ρ)2 →
ρ→0

0 compare to

AV(K∆∗) = γ2
(

1−ρ
ρ

)2
→
ρ→0
∞ of Goegebeur and Guillou [2013].

By closely analyzing Figure 6.1, we can exhibit a better estimator γ̂kn(KS∆) which
is a compromise between that of Goegebeur and Guillou [2013] and the one proposed
above. Let KS∆ be defined as 

KS∆ = K∆∗ if ρ ≤ ρ̄,

KS∆ = KS∗ if ρ ≥ ρ̄,

(20)

where ρ̄ is the intersection point of the two solutions variance of the equation:

AV(KS∗) = AV(K∆∗).

The dichotomy resolution allows us to find an approximate value of ρ̄ = −3.67.
In the following we focus on the study of γ̂kn(KS∗) instead of γ̂kn(KS∆) since γ̂kn(K∆∗)
is widely studied by our predecessors (e.g Goegebeur and Guillou [2013]).
Note that the function KS∗(t) is function of the unknown parameter ρ. So, to overcome
this problem let ρ̃ be a value from ρ in (19) or a point estimator (or canonical) of ρ.
We have

KS̃∗(t) = ρ̃2

1− 2ρ̃ −
ρ̃2

1− ρ̃ t
−ρ̃, (21)

The following corollary is then stated

Corollary 2.3 Under the assumptions of the Theorem 2.1, and assuming that K1 and
K2 satisfy the condition CK, we have:

√
kn (γ̂kn(KS̃∗)− γ) d−→ N

(
λ

ρ̃3(ρ̃− ρ)
(1− ρ̃)(1− ρ)(1− 2ρ̃)(1− ρ− ρ̃) , AV(KS̃∗)

)
. (22)
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Remark 2.5 The two corollaries of this section coincide when ρ̃ = ρ.
This Corollary 2.3 is similar to Corollary 3 in Chavez-Demoulin and Guillou [2018],
with a particular difference in the behaviour of the asymptotic bias. Indeed, the bias
in our corollary decreases to 0 while the one in Corollary 3 of Chavez-Demoulin and
Guillou [2018] explodes for |ρ̃| rather small. Thus we propose to choose the previously
constructed KS∆ which makes a compromise.

Certainly, this estimator is biased but it provides a particular interest for the control
(reduction) of the bias because a judicious choice of ρ̃ (since ρ is a parameter that
controls the convergence speed) would allow us to considerably reduce the bias unlike
Corollary 2.1. On the other hand, since it is possible to cancel this bias (for ρ̃ = ρ)
if we replace ρ by one estimator ρ̂kn,ρ which is a function of an intermediate sequence
(knρ)n∈ZN , we obtain the following theorem:

Theorem 2.2 Let
{
Xi, i ∈ ZN

}
be a stationary spatial process with continuous distri-

bution function and verifying conditions CM , CR and CA. Let ρ̂kn,ρ be an estimator of
ρ consisting of probability, depending on an intermediate sequence (kn,ρ)n∈N. Let (kn)
be an intermediate sequence such that

√
knA(b(n/kn)) −→ λ <∞, n→∞. We have:√

kn (γ̂kn(KŜ∗)− γ) d−→ N (0, AV(KS∗)) , (23)

where KŜ∗ is in the form (19) by replacing ρ by ρ̂kn,ρ.

Note that KŜ∗ is a function of ρ̂kn,ρ and n, then we need an additional condition on the
term

√
kn,ρA(b(n/kn,ρ)). Although the function KŜ∗ is of the form (19), it cannot be

written in the form (17) (where K1 and K2 are functions of ρ̂kn,ρ , α and β are functions
of ρ functions). So it is necessary to estimate ρ.
Gomes et al. [2002] have proposed a possible set of values for ρ̂kn,ρ also used in De Haan
and Ferreira [2016] and in Chavez-Demoulin and Guillou [2018]:

ρ̂kn,ρ :=
−4 + 6S(2)

kn
+
√

3S(2)
kn
− 2

4S(2)
kn
− 3

with S
(2)
kn
∈
]2
3 ,

3
4

[
, (24)

where

S
(2)
kn

:= 3
4

[
M

(4)
kn
− 24

(
M

(1)
kn

)4
] [
M

(2)
kn
− 2

(
M

(1)
kn

)2
]

[
M

(3)
kn
− 6

(
M

(1)
kn

)3
]2 ,

with
M

(α)
kn

:= 1
kn

kn∑
i=1

(logXn−i+1,n − logXn−kn,n)α , α ∈ N. (25)

In this ρ domain we have the following corollary.

Corollary 2.4 Let
{
Xi, i ∈ ZN

}
be a stationary spatial process with continuous dis-

tribution function and verifying the conditions CM , CR and CA. Let us also assume
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that the condition CK is satisfied. Let ρ̂kn,ρ be an estimator of ρ where the interme-
diate sequence (kn,ρ)n∈ZN is such that

√
kn,ρA(b(n/kn,ρ)) −→ ∞. Let (kn) be another

intermediate sequence such that
√
knA(b(n/kn)) −→ λ <∞, n→∞. We have:√

kn (γ̂kn(KŜ∗)− γ) d−→ N (0, AV(KS∗)) , (26)

where KŜ∗ is in the form (19), replacing ρ by ρ̂kn,ρ.

This corollary is similar to Corollary 4 in Chavez-Demoulin and Guillou [2018]; the
difference lies in the spatial nature of the process studied here. Here the condition on
(kn,ρ)n∈N is such that

√
kn,ρA(b(n/kn,ρ)) −→ ∞ is necessary to ensure the probability

consistency of the estimator ρ̂kn,ρ of ρ.
In practice, it is usual to consider K as a kernel but this does not prevent from using
the proposed function KS∆. Note that the originality of the proposed approach, does
not only lies in the spatial nature of the studied dependent process, but also on a wide
choice of functions K and assumption CK , reducing the asymptotic bias and variance,
different from those of our predecessors Chavez-Demoulin and Guillou [2018], De Haan
and Ferreira [2016], Goegebeur and Guillou [2013] where the function K is a kernel.
Estimating γ is a (necessary) step in estimating extreme quantile, so in the next section
we apply the tail index estimate to quantile inference.

3 Estimation of extreme distribution quantile
Since one of the main purpose of statisticians is to predict future events, the tail index
estimation of the previous section is useful to reach this aim. Thus in this section, we
are interested in estimating the extreme quantile of order p:

xp = U(1/p), p→ 0. (27)

From condition CA, one obtain

U(ux)
U(u) = xγexp

{
A(u)x

ρ − 1
ρ

}
+ o(1).

By setting ux = 1/p and u = Yn−btknc,n where Yi ∼ Pareto (standard Pareto distribu-
tion) and as Xn−btknc,n = U(Yn−btknc,n), an approximation of xp is

xp ' Xn−btknc,n

(
1

pYn−btknc,n

)γ
exp

A(Yn−btknc,n)

(
1

pYn−btknc,n

)ρ
− 1

ρ


' Xn−btknc,n

(
1

pb(n/kn)

)γ
exp

A (b(n/kn))

(
1

pb(n/kn)

)ρ
− 1

ρ

 , (28)

where the last step follows from replacing Yn−btknc,n by its expected value b(n/kn). This
approximation is only accessible if one replace γ and A (b(n/kn)) by their estimators.
It should be noted that the term A (b(n/kn)) is seen as the moderator or corrector of
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the quantile estimator since we find the Weissman-type estimator if n is large enough
that is, if A (b(n/kn))→ 0 (see Weissman [1978]).
Chavez-Demoulin and Guillou [2018] proposed an estimator for A (b(n/kn)) that we
adapt to our context. These authors estimated A (b(n/kn)) by :

−(1− ξ)(1− 2ξ)
ξ2 [γ̂kn(K1)− γ̂kn(K2,ξ)],

where ξ is a negative real number or an estimator of ρ. So by replacing γ and
A (b(n/kn)) with their estimators in the relationship (28), we get the estimator:

x̂p,ξ = Xn−btknc,n

(
1

pb(n/kn)

)γ̂kn (KŜ∗ )

exp
{
−(1− ξ)(1− 2ξ)

ξ2

×[γ̂kn(K1)− γ̂kn(K2,ξ)]

(
1

pb(n/kn)

)ξ
− 1

ξ

 . (29)

The convergence in distribution of this quantile estimator have been established
in the literature under certain appropriate assumptions. We extend this asymptotic
result to the spatial context.

Theorem 3.1 Let
{
Xi, i ∈ ZN

}
be a stationary spatial process with continuous distri-

bution function and verifying the conditions CM , CR and CA. Let ρ̂kn,ρ be a consistent
estimator of ρ, depending on an intermediate sequence (kn)n∈N. Let (kn) be an inter-
mediate sequence such that

√
knA(b(n/kn)) −→ λ < ∞, n → ∞ and suppose that

p = pn such that 1
pb(n/kn) → ∞, log( 1

pb(n/kn))√
kn

→ 0 and n−alogp → 0 for all a > 0, then
we have: √

kn
log 1

pb(n/kn)

(
x̂p,ξ
xp
− 1

)
d−→ N (0, AV(KS∗)) , (30)

where ξ is a negative parameter ρ̃ or an consistent estimator in probability ρ̂, such that
|ρ̂− ρ| = OP(n−ε) for ε > 0

4 Some examples of heavy tailed spatial processes
In this section, we give some examples of spatial processes satisfying heavy tailed
assumptions.

4.1 Brown-Resnick process
Let

{
Zs; s ∈ RN

}
be a stationary Spatial Gaussian process with mean 0 and unit vari-

ance. The following hypothesis is assumed on ϕ (see Davis et al. [2013]).

Hypothesis Hϕ: there exist a sequence (Sn)n∈N of constants; Sn → 0 as n → ∞
and a nonnegative function δ such that

(1− ϕ(Snh)) log n→ δ(h), as n→∞.
The following proposition gives the construction of the Brown-Resnick process. It is
an entension to spatial case of Proposition 2.2 in Davis et al. [2013].

12



Proposition 4.1 (Davis et al. [2013])
Let

{
Zj
s ; s ∈ RN

}
, j = 1, . . . , n, be n independent copies of Zs. Let {ξj, j ∈ N} denote

points of a random Poisson measure on (0,∞] with with intensity ξ−2dξ. Suppose Hϕ

hold, then the random field
{
ηns ; s ∈ RN

}
defined for any n ∈ N∗ by (where Φ denotes

the standard normal distribution function)

ηns =
n∨
j=1
− 1

log
(
Φ(Zj

Sns)
) , s ∈ RN , (31)

converges weakly in the space of continuous functions in RN towards a stationary
Brown-Resnick process

ηs =
∞∨
j=1
ξjexp

(
W j
s − δ(s)

)
, s ∈ RN , (32)

where δ is defined in Hϕ and (W j
s )s∈Rd , j ∈ N, are independent copies of a stationary

Brownian process (Ws)s∈Rd such as W0 = 0, E(Ws) = 0, cov(Ws1 ,Ws2) = δ(s1) +
δ(s2)− δ(s1 − s2), (s1 − s2 is defined component wise).

The bivariate distribution function of (ηs)s∈Rd can be expressed in closed form (based
on Davis et al. [2013]) for x1, x2 > 0 as

F (x1, x2) = exp
− 1

x1
Φ
 logx2

x1

2
√
δ(h)

+
√
δ(h)

− 1
x2

Φ
 logx1

x2

2
√
δ(h)

+
√
δ(h)

 ,
and the tail dependence coefficient is given by:

χ(h) = lim
u↑1

P
(
ηs1 ≥ F←ηs1 (u) | ηs2 ≥ F←ηs2 (u)

)
, h = s1 − s2.

4.2 Auto-regressive (AR) spatial process
Let (ξi)i∈Z be a family of an i.i.d. variables with Lebesgue density function fε (resp.
distribution function Fε) continuous and verifying L1-Lipschitz condition∫

|fε(ε+ u)− fε(ε)|dε = O(u), u↘ 0.

Suppose that

1− Fε(ε) ∼ qε−1/γl(ε) and Fε(−ε) ∼ (1− q)ε−1/γl(ε), ε→∞,

where l(·) is a slowly varying function and q ∈]0, 1[, γ > 0. Let us consider the
stationary solution of the equation of an AR(1) time-process {Xi, i ∈ R}

Xi = θXi−1 + ξi, θ ∈]0, 1[.

The regularity condition is checked with

r(x, y) = min(x, y) +
∞∑
m=1

(rm(x, y) + rm(y, x)) ,
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where rm(x, y) = min(x, yθ
m
γ ) with γ the tail index (see Chavez-Demoulin and Guillou

[2018]).
Starting from this process, we build the spatial process

{
Y(i,j); i, j ∈ Z

}
defined as

follows
∀ i, j ∈ Z, Y(i,j) = Xmin(i,j). (33)

This process is stationary, with tail index γ.

4.3 Log-Laplace spatial process
Let (Z = {Zs, s ∈ S ⊂ R2}) be a centered weakly Gaussian spatial process with covari-
ance function (Σ(h) = cov (Zs+h, Zs) , (s+ h) ∈ S). Let Y be a non negative random
variable such that Y 2 has an exponential distribution with scale λ = 2 and independent
of Z. In the literature, the distribution of the random variable Y is called Rayleigh’s
law of parameter 1. Its probability distribution function is given by fY (y) = e−0.5y2 .
The random field

X = {Xs, s ∈ S} = {Y Zs, s ∈ S},
is called Laplace spatial process (see for example Opitz [2016, 2015]). If Z is a stan-

dard Gaussian process, then X is said to be Laplace Standard process. Its covariance
function is equal to 2Σ(h) and that of the conditional distribution of X given Y = y
is Gaussian with covariance y2Σ(h).

If X is a standard Laplace process then U = {Us = eXs , s ∈ S ⊂ R2}, is a process
whose marginals are log Laplace of tail index γ = 1 (see Opitz [2015]) and density

fU(t) = 1/(2t2), if t ≥ 1; fU(t) = 1/2; if 0 ≤ t < 1; fU(t) = 0; otherwise.

5 Finite sample properties
In this section, we illustrate the finite-sample performance of the proposed estimator
using simulated and real datasets.

5.1 Simulation study
Throughout this section, for illustration purpose, we simulate a Log-Laplace process
as above such that the tail index is equal to γ = 1 (see Figure 6.2).

We aim to estimate the index γ = 1 of the simulated log-Laplace process. For
this purpose, we generate N = 100 samples of log-Laplace process and we consider a
range of the highest values k (k = 1, · · · , 1000) to be considered in order to display
the best estimator, i.e. the one of minimum error. We have computed three families of
estimators; that of Hill given by (2), Chavez-Demoulin and Guillou [2018] given by (4)
ignoring the spatial nature of the data and the one proposed in this article given by
(8). This will allows to appreciate each estimators but also validate our contribution
(8).
For this simulation study, we have used the empirical form of the estimator (20) that
is:

γ̂kn(K) = 1
kn

kn∑
i=1

log
(

X(i)

X(kn+1)

)
×
(
K
(
i

kn

)
+ i

kn
×K ′

(
i

kn

))
, (34)

14



where K ′ is the first derivative of the function K.
We essentially verified the performance of our estimator (8) and that of Chavez-
Demoulin and Guillou [2018] given by (4) according to some appropriate choice of
the values of ρ (see Section 2.3). The results (see Table 6.1) of the simulations allows
us to conclude that the proposed estimator (8) is more useful than Chavez-Demoulin
and Guillou [2018] (4) for low values of ρ. Thus, based on these results we recommend
the use of the estimator (8) in which the function K(·) is given by (20) realizes the
compromise between the two estimators (8) and (4).

Note that each estimate in Table 6.1 is the average of the best (in terms of MSE)
estimates over the 100 samples. The choice of the optimal sample fraction Kop is done
using a data-driven method that is the average of the values k resulting from the best
estimators (in terms of MSE) over the 100 samples.
We also investigate the performance of the associate extreme quantile estimate qn such
that P(Xi ≥ qn) = p, when p is very small. In our simulation, we present the predicted
quantile for p = 10−3, where the theoretical quantile qn = 80.995 (true value given by
the function qllaplace under the package "LaplacesDemon"). The results are shown in
Table 6.2.
One can notice from these results that sometimes the predicted quantiles beyond the
true value, which means that the risk of occurrence of other extremes values is not
taken into account. In addition, regarding our estimator (last column), it overperforms
compared to Hill [1975]’s estimator that is independent of ρ, then a judicious choice
of ρ allows to take into account the occurrences of risky values so that to get better
predictions.
As mentioned in the previous sections, our estimator realizes a trade-off between γ(K∆)
(ρ ≤ −3.67) and γ(KS) (ρ ≥ −3.67).

5.2 Real data application
In this section, we propose to illustrate the behaviour of the proposed methodology
on rainfall data from 1559 stations in the West Africa Region on first September 2019
(available on NASA website). The mesh was made over the West Africa Region by
varying the longitude in the interval [−17, 16] and the latitude in [4.5, 20].
The spatial aspect is materialized by longitude and latitude. The observed process has
a minimum value of 0 and a maximum value of 65.94 with a mean of 6.94 and a median
of 4.94. It can be seen that the mean is very close to the minimum observation and
very distant from the maximum observation. The median shows the extremal aspect
of the observations quite large. Indeed 50% of the observations are concentrated in
[0, 4.94] and the rest scattered in [4.94, 65.94]; this aspect is visible on Figure 6.4. We
can thus think of the existence of a heavy tail on the right, hence be interested of
an extreme data study. Figure 6.4 shows a grouping by similarity (color gradient) of
the data on the geographical level. This makes us think of spatialized data or spatial
dependence of data. Figure 6.4 gives the spatial representation of the data. This figure
illustrates two main aspects of the data: the spatial one materialized by the longitude
and latitude and the extreme behavior visualized by the color gradient which shows
very few large observations (light blue, yellow and red). It also illustrates the spatial
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dependence marked by the grouping of data by similarity (size of observations) and
according to geographical positions; we can notice the cluster of colors (materializing
the value of the observations): dark blue (the most frequent observations), the highest
observations in red and dark red (rare) surrounded by the observations more or less
high (see Figure 6.5).

We carry out, in Figure 6.6, visual checks of whether the heavy-tailed assumption
makes sense for this sample of data (composed of observations denoted Yi). The boxplot
and histogram of the Yi both give descriptive evidence of heavy right tail. To further
confirm that the heavy-tailed framework is appropriate, we drew a quantile-quantile
plot of the weighted log-spacings within the top of the data against the quantiles of the
unit exponential distribution. Formally, let Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n denote the order
statistics of the sample (Y1, · · · , Yn). Let Zi,n = ilog(Yn−i+1,n/Yn−i,n), 1 ≤ i ≤ n − 1,
denote the weighted log-spacings computed from the consecutive top order statistics.
It is known that, if a distribution is heavy-tailed with tail index γ then, for low i,
the Zi,n are approximately independent copies of an exponential random variable with
mean γ (see e.g. Beirlant et al. [2006]). Figure 6.6, bottom row, right panel gives
a quantile-quantile plot of the Zi,n for 1 ≤ i ≤ bn/5c versus the exponential distri-
bution. The relationship in this quantile-quantile plot is approximately linear, which
constitutes further evidence that the heavy tail assumption makes sense. We can well

notice that on average 76.97% of the observations are closed to the mean while very
few observations (less than 6.41%) are very far from the majority.
The results are summarized in Table 6.3.

Figure 6.7 and Figure 6.8 show the boxplots of the N = 1000 realizations of Hill’s
estimator and γ̂kn(KŜ∗) for ρ = −3.67 while Figure 6.9 and Figure 6.10 show the
corresponding boxplots for ρ = −5. In view of these results we can clearly see that
the proposed estimator is more efficient. Indeed the boxplots show that there is more
concentration around the median for our estimator than for Hill’s estimator.
To better evaluate the performance of our estimators, we used a bootstrap method.
Indeed we resampled 100 random samples (with replacement) from the initial sample
(with n = 1559). On each sample, we run the previous algorithm. We then obtain a
vector of 100 estimators and we return the mean. The results are presented in Table
6.4 and Figure 6.11. This figure shows the boxplots of the N = 100 bootstrap samples
of Hill’s estimator and γ̂kn(KŜ∗) for ρ = −3.67 while Figure 6.12 shows the boxplots for
the associated quantile estimators. The corresponding boxplots for ρ = −5 are given
in Figure 6.13 and Figure 6.14. These results confirm the performance of the proposed
methodology.

Conclusion
The estimation of the extreme distribution tail index discussed in this article general-
izes that of Bassene [2016] for more efficiency and that of Chavez-Demoulin and Guillou
[2018] to the spatial case. The asymptotic properties of the proposed tail index estima-
tors (biased and unbiased) have been established under certain conditions, in particular

16



the β-mixing condition compare to the α-mixing in Bassene [2016]. The originality of
the considered framework lies in the spatial nature of the dependent process studied
but also on a wide choice of functions K and assumption CK , reducing the asymptotic
bias and variance of the estimators, compare to our predecessors [Chavez-Demoulin
and Guillou, 2018, De Haan and Ferreira, 2016, Goegebeur and Guillou, 2013]. We
also proposed an asymptotically normal quantile estimator similar to the one proposed
by Chavez-Demoulin and Guillou [2018]. Future directions may include considering
models with exogenous variables or space-time processes, with a number of potential
applications.
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6 Appendix

Proofs of the main results
To establish the proofs of the main results, we adopt Robinson [2011]’s notation of the
spatial locations (for seek of simplicity). That is the process

{
Xi, i ∈ ZN

}
is written

as {Xi, 1 ≤ i ≤ n = n1 × n2 × · · · × nN} using for instance a triangular array notation
and a lexicographic ordering. For this notation the mixing conditions CM and CR
(regularity) are written as:

Condition C ′M (mixing condition): Let’s (ln)n∈N∗ be a sequence of integers such
that 1 ≤ ln ≤ n; set Bjm = σ(Xi,m ≤ i ≤ j) be σ-fields generated by the random
variables (Xi)i with m ≤ i ≤ j. the β-mixing condition is given by:

β(ln) := sup
m∈N∗

E

 sup
A∈B+∞

ln+m+1

|P(A|Bm1 )− P(A)|
 −→
ln→∞

0 (35)

See Drees [2000] for a discussion on the β-mixing and examples.

Condition C ′R: (regularity)
There is ε > 0, a function r : R × R → R, and (ln) defined above is such that
ln = o(n/kn); and when n→∞

(a’) β(ln)
ln
n+ ln

log2kn√
kn
→ 0;

(b’) n
lnkn

Cov
(
ln∑
i=1

1{Xi>F←(1−knx/n)},
ln∑
i=1

1{Xi>F←(1−kny/n)}

)
→ r(x, y),

∀ 0 ≤ x, y ≤ 1 + ε;

(c’) there exists a constant C such that :

n

lnkn
E


 ln∑
i=1

1{F←(1−kny/n)<Xi≤F←(1−knx/n)}

4
 ≤ C(y − x) ∀ 0 ≤ x < y ≤ 1 + ε.

6.1 Proof of Theorem 2.1
To establish the proof of the theorem, we need the following proposition.

Proposition 6.1 Let
{
Xi, i ∈ ZN

}
be a β-mixing stationary spatial process with a

distribution function F ; verifying CA and CR and K a function verifying CK. Let (kn)
be an intermediate sequence such that

√
knA(b(n/kn))→ λ, as n→∞. For all ε > 0,

by Skorohod construction, there exist a function Ã ∼ A and a Gaussian centred process
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(W (t))t∈[0,1] with covariance function r such that, as n→∞,

sup
t∈(0,1]

t1/2+ε
∣∣∣∣∣√kn

(
log

(
Qn(t)

U(b(n/kn))

)
+ γ∫ 1

0 K(s)ds
log t

)
− γt−1W (t)

−
√
knÃ(b(n/kn))t

−ρ − 1
ρ

∣∣∣∣∣ a.s−→ 0. (36)

Proof of Proposition 6.1
Suppose the relationship (12) (from the condition CA) hold. By applying Theorem
B.2.18 in De Haan and Ferreira [2006], we get:
∀ ε, δ > 0 ∃ u0 = u0(ε, δ) such that ∀ ux ≥ u0;∣∣∣∣∣ log(U(ux)/U(u))− γ log(x)

Ã(u)
− xρ − 1

ρ

∣∣∣∣∣ ≤ εxρ max(xδ, x−δ). (37)

Set Xi = U(Yi) where Yi follows a standard Pareto distribution. Then (Yi)i∈ZN is
stationary and β− mixing satisfying the regular variation (CR). Then, since Qn(t) =
U(Yn−bkntc,n) and according to Theorem 2.1 in Drees (2003) and under Skorohod con-
struction, there exists a centred Gaussian process (W (t))t∈[0,1] with covariance function
r such that for all ε > 0

sup
t∈(0,1]

t1/2+ε
∣∣∣∣∣
√
kn

(
t
Yn−bkntc,n
b(n/kn) − 1

)
− t−1W (t)

∣∣∣∣∣→ 0, a.s, (38)

as n→∞. The inequality (37) gives, for all n > n0(ε, δ):∣∣∣∣∣log(Qn(t))− log (U(b(n/kn)))− γlog
(

1
b(n/kn)Yn−bkntc,n

)
− Ã(b(n/kn))( 1

b(n/kn)Yn−bkntc,n)
ρ
−1

ρ

∣∣∣∣∣
≤ ε

∣∣∣Ã(b(n/kn))
∣∣∣ ( 1

b(n/kn)Yn−bkntc,n
)ρ+δ

.

So,

t1/2+ε
∣∣∣∣∣
√
kn

(
log

(
Qn(t)

U(b(n/kn))

)
+ γ∫ 1

0 K(s)ds
log(t)

)
− γt−1W (t)

−
√
knÃ(b(n/kn))t

−ρ − 1
ρ

+
√
knÃ(b(n/kn))1

ρ

(
t−ρ −

(
1

b(n/kn)Yn−bkntc,n
)ρ)

−γ
{√

kn

(
log

(
1

b(n/kn)Yn−bkntc,n
)

+ 1∫ 1
0 K(s)ds

log(t)
)
− t−1W (t)

}∣∣∣∣∣
≤ ε

√
kn
∣∣∣Ã(b(n/kn))

∣∣∣ t1/2+ε
(

1
b(n/kn)

)
.

Since 1
b(n/kn)Yn−bkntc,n ≥ 1, by choosing δ ∈ (0,−ρ) the right term tends to 0 when

ε → 0. Thus under the convergence (38) the proof of the Proposition 6.1 is obtained
as in De Haan et al. [2016].
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Proof of Theorem 2.1: From Proposition 6.1, we deduce that:
√
kn

{
γ̂kn(K) + γ∫ 1

0 K(s)ds

∫ 1

0
log(t)d(tK(t))

}
= γ

∫ 1

0
(t−1W (t)−W (1))d(tK(t))

+
√
knÃ(b(n/kn))

∫ 1

0

t−ρ − 1
ρ

d(tK(t))

+o(1)
∫ 1

0
t−1/2−εd(tK(t)).

Using an integration by part, we can write
∫ 1

0
log(t)d(tK(t)) = −

∫ 1

0
K(s)ds and

∫ 1

0

t−ρ − 1
ρ

d(tK(t)) =
∫ 1

0
t−ρK(t)dt.

Hence√
kn

{
γ̂kn(K)− γ − Ã(b(n/kn))

∫ 1

0
t−ρK(t)dt

}
= γ

∫ 1

0
(t−1W (t)−W (1))d(tK(t))

+o(1)
∫ 1

0
t−1/2−εd(tK(t)).

By taking 0 < ε < 1/2 − τ , we get the convergence of
∫ 1

0
t−1/2−εd(tK(t)). Thus, this

ends the proof.

6.2 Proof of Corollary 2.1

Indeed, the term A(b(n/kn))
∫ 1

0
t−ρK(t)dt outcome from (13) is the bias of the es-

timator; and as
√
knA(b(n/kn)) −→ λ then we get the asymptotic bias λAB(K) =

λ
∫ 1

0
t−ρK(t)dt.

The variance AV(K) is obtained from the Gaussian centered process (W (t))t∈[0.1] co-
variance function r; that is

AV(K) = γ2E
[(∫ 1

0

[
t−1W (t)−W (1)

]
d(tK(t))

)2]
.

The proofs of Corollary 2.2 and Corollary 2.3 are straightforward and follow the
same lines as the Corollary 2.1.

6.3 Proof of Theorem 2.2
Let

KS∗(t) = ρ2

1− 2ρ −
ρ2

1− ρt
−ρ := αK1,ρ(t) + βK2,ρ(t) and

KŜ∗(t) =
ρ̂2
kn,ρ

1− 2ρ̂kn,ρ
−

ρ̂2
kn,ρ

1− ρ̂kn,ρ
t−ρ̂kn,ρ := α̂K1,ρ̂kn,ρ (t) + β̂K2,ρ̂kn,ρ (t),

20



where α̂ and β̂ are consistent estimators of α and β respectively.
Let us first, give the following decomposition√

kn (γ̂kn(KŜ∗)− γ) =
√
kn (γ̂kn(KS∗)− γ) +

√
kn (γ̂kn(KŜ∗)− γ̂kn(KS∗)) . (39)

According to Corollary 2.2, the first term on the right converges to Gaussian distri-
bution. So it remains to prove that the second term tends to 0 in probability. The
proof follows the same lines as those of Theorem 2 in Chavez-Demoulin and Guillou
[2018]. The difference in our approach is in managing the assumptions of the CR and
CK conditions since we assumed that K is not necessarily a kernel function. We have:
√
kn (γ̂kn(KŜ∗)− γ̂kn(KS∗)) =

√
kn

{∫ 1

0
logQn(t)

Qn(1)d(tKŜ∗(t))−
∫ 1

0
logQn(t)

Qn(1)d(tKS∗(t))
}

=
√
kn

{
α̂
∫ 1

0
log Qn(t)

Qn(1)dt− α
∫ 1

0
log Qn(t)

Qn(1)dt

+ β̂
∫ 1

0
log Qn(t)

Qn(1)d(tK2,ρ̂kn,ρ (t))− β
∫ 1

0
log Qn(t)

Qn(1)d(tK2,ρ(t))
}

= (α̂− α)
√
kn

{∫ 1

0
logQn(t)

Qn(1)dt−
∫ 1

0
log Qn(t)

Qn(1)d(tK2,ρ(t))
}

+(α̂− α + β̂ − β)
√
kn

∫ 1

0
log Qn(t)

Qn(1)d(tK2,ρ(t))

+β̂
√
kn

{∫ 1

0
log Qn(t)

Qn(1)d(tK2,ρ̂kn,ρ (t))−
∫ 1

0
log Qn(t)

Qn(1)d(tK2,ρ(t))
}

=: T1 + T2 + T3.

(40)

Let us evaluate the three terms.
Using Corollary 2.1 and the fact that α̂ and β̂ are consistent estimators of α and β
respectively, we have T1 = oP(1) and T2 = oP(1).
It remains to deal with Term T3.
Noting that log Qn(t)

Qn(1) = log Qn(t)
U(b(n/kn)) − log Qn(1)

U(b(n/kn)) , the Proposition 6.1 gives for all
ε ∈ (0, 1/2)

log Qn(t)
Qn(1) = γ∫ 1

0 K(s)ds
(− log(t)) + γ√

kn
[t−1W (t)−W (1)]

+Ã(b(n/kn))t
−ρ − 1
ρ

+ o(1)√
kn
t−ε−1/2.
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Thus we get:√
kn

{∫ 1

0
log Qn(t)

Qn(1)d(tK2,ρ̂kn,ρ (t))−
∫ 1

0
log Qn(t)

Qn(1)d(tK2,ρ(t))
}

= γ
√
kn

 1∫ 1
0 K2,ρ̂kn,ρ (t)dt

∫ 1

0
(− log(t))d(tK2,ρ̂kn,ρ (t))

− 1∫ 1
0 K2,ρ(t)dt

∫ 1

0
(− log(t))d(tK2,ρ(t))

}

+γ
{∫ 1

0
[t−1W (t)−W (1)]d(tK2,ρ̂kn,ρ (t))−

∫ 1

0
[t−1W (t)−W (1)]d(tK2,ρ(t))

}
+
√
knÃ(b(n/kn))

{∫ 1

0

t−ρ − 1
ρ

d(tK2,ρ̂kn,ρ (t))−
∫ 1

0

t−ρ − 1
ρ

d(tK2,ρ(t))
}

+o(1)
{∫ 1

0
t−

1
2−εd(tK2,ρ̂kn,ρ (t))−

∫ 1

0
t−

1
2−εd(tK2,ρ(t))

}
=: A+B + C +D.

The term A converges by using an integration by part.
The term B is

B = γ
{∫ 1

0 [t−1W (t)−W (1)]
(
K2,ρ̂kn,ρ (t)−K2,ρ(t)

)
dt

+
∫ 1
0 [t−1W (t)−W (1)]t

(
K
′
2,ρ̂kn,ρ (t)−K ′2,ρ(t)

)
dt
}
.

Let us consider ε ∈ (0, 1) and ρ̃ a random value between ρ and ρ̂knρ . We have∣∣∣∣∫ 1

0
[t−1W (t)−W (1)]

(
K2,ρ̂kn,ρ (t)−K2,ρ(t)

)
dt
∣∣∣∣

≤
∫ 1

0

∣∣∣t−1W (t)−W (1)
∣∣∣ ∣∣∣K2,ρ̂kn,ρ (t)−K2,ρ(t)

∣∣∣ dt
≤ (1− ρ̂kn,ρ)

∫ 1

0

∣∣∣t−1W (t)−W (1)
∣∣∣ ∣∣∣t−ρ̂kn,ρ − t−ρ∣∣∣ dt

+
∣∣∣ρ̂kn,ρ − ρ∣∣∣ ∫ 1

0

∣∣∣t−1W (t)−W (1)
∣∣∣ t−ρdt

≤ (1− ρ̂kn,ρ) sup
t∈(0,1]

t
1
2 +ε

∣∣∣t−1W (t)−W (1)
∣∣∣ sup
t∈(0,1]

t
1
4
∣∣∣t−ρ̂kn,ρ − t−ρ∣∣∣ ∫ 1

0
t
−

3
4−εdt

+
∣∣∣ρ̂kn,ρ − ρ∣∣∣ sup

t∈(0,1]
t

1
2 +ε

∣∣∣t−1W (t)−W (1)
∣∣∣ sup
t∈(0,1]

t
1
4−ρ

∫ 1

0
t
−

3
4−εdt

∗
≤ 4

1− 4ε
∣∣∣ρ̂kn,ρ − ρ∣∣∣ (1− ρ̂kn,ρ) sup

t∈(0,1]
t

1
2 +ε

∣∣∣t−1W (t)−W (1)
∣∣∣ sup
t∈(0,1]

(−logt) t 3
4−ρ̃

+ 4
1− 4ε

∣∣∣ρ̂kn,ρ − ρ∣∣∣ sup
t∈(0,1]

t
1
2 +ε

∣∣∣t−1W (t)−W (1)
∣∣∣

= oP(1).

The inequality
∗
≤ is justified by:

set h(t) = t
1
4−ρ̂kn,ρ − t

1
4−ρ = t

1
4−ρ̃

(
tρ̃−ρ̂kn,ρ − tρ̃−ρ

)
. A Taylor expansion of the term
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(
tρ̃−ρ̂kn,ρ − tρ̃−ρ

)
gives

h(t) ' t
1
4−ρ̃(ρ− ρ̂kn,ρ)log(t),

and we get
sup
t∈(0,1]

|h(t)| ≤
∣∣∣ρ̂kn,ρ − ρ∣∣∣ sup

t∈(0,1]
t

1
4−ρ̃ (−log(t)) .

In the same way we have:

∣∣∣∣∫ 1

0
[t−1W (t)−W (1)]t

(
K ′2,ρ̂kn,ρ (t)−K ′2,ρ(t)

)
dt
∣∣∣∣

≤
∫ 1

0

∣∣∣t−1W (t)−W (1)
∣∣∣ t ∣∣∣K ′2,ρ̂kn,ρ (t)−K ′2,ρ(t)

∣∣∣ dt
≤ −ρ̂kn,ρ(1− ρ̂kn,ρ)

∫ 1

0

∣∣∣t−1W (t)−W (1)
∣∣∣ ∣∣∣t−ρ̂kn,ρ − t−ρ∣∣∣ dt

−
(
ρ̂kn,ρ + ρ

) ∣∣∣ρ̂kn,ρ − ρ∣∣∣2 ∫ 1

0

∣∣∣t−1W (t)−W (1)
∣∣∣ t−ρdt

≤ −ρ̂kn,ρ(1− ρ̂kn,ρ) sup
t∈(0,1]

t
1
2 +ε

∣∣∣t−1W (t)−W (1)
∣∣∣ sup
t∈(0,1]

t
1
4
∣∣∣t−ρ̂kn,ρ − t−ρ∣∣∣ ∫ 1

0
t
−

3
4−εdt

−
(
ρ̂kn,ρ + ρ

) ∣∣∣ρ̂kn,ρ − ρ∣∣∣2 sup
t∈(0,1]

t
1
2 +ε

∣∣∣t−1W (t)−W (1)
∣∣∣ sup
t∈(0,1]

t
1
4−ρ

∫ 1

0
t
−

3
4−εdt

∗
≤ −ρ̂kn,ρ

4
1− 4ε

∣∣∣ρ̂kn,ρ − ρ∣∣∣ (1− ρ̂kn,ρ) sup
t∈(0,1]

t
1
2 +ε

∣∣∣t−1W (t)−W (1)
∣∣∣ sup
t∈(0,1]

(−logt) t 3
4−ρ̃

− 4
1− 4ε

(
ρ̂kn,ρ + ρ

) ∣∣∣ρ̂kn,ρ − ρ∣∣∣2 sup
t∈(0,1]

t
1
2 +ε

∣∣∣t−1W (t)−W (1)
∣∣∣

= oP(1).

Then we get B = oP(1).

By making an integration by part C is

C =
√
knÃ(b(n/kn))


[
t
t−ρ − 1
ρ

(
K2,ρ̂kn,ρ (t)−K2,ρ(t)

)]1

0

+
∫ 1

0
t−ρ

(
K2,ρ̂kn,ρ (t)−K2,ρ(t)

)
dt
}
,

and as
√
knÃ(b(n/kn)) → λ and

∫ 1

0
t−ρ

(
K2,ρ̂kn,ρ (t)−K2,ρ(t)

)
dt converges so we have

C = oP(1).
Similarly, an integration by part allows us to conclude that D = oP(1).

In short, we have T3 = oP(β̂) and since β̂ < 1 we have√
kn (γ̂kn(KŜ∗)− γ̂kn(KS∗)) = oP(1).
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This ends the proof of Theorem 2.2.

6.4 Proof of Theorem 3.1

To do this, we only need to show the asymptotic normality of
√
kn

log 1
pb(n/kn)

log x̂p,ξ
xp

.

We have the decomposition below:
√
kn

log 1
pb(n/kn)

log x̂p,ξ
xp

=
√
kn

log 1
pb(n/kn)

{
logXn−btknc,n + γ̂kn(KŜ∗) log 1

pb(n/kn) − log xp

−(1− ξ)(1− 2ξ)
ξ2 [γ̂kn(K1)− γ̂kn(K2,ξ)]

(
1

pb(n/kn)

)ξ
− 1

ξ


=

√
kn (γ̂kn(KŜ∗)− γ) +

√
kn

log 1
pb(n/kn)

log Qn(t)
U(b(n/kn))

−
√
kn

log 1
pb(n/kn)

log
U(1

p
)

U(b(n/kn)) − γ log 1
pb(n/kn)


−(1− ξ)(1− 2ξ)

ξ2

√
kn[γ̂kn(K1)− γ̂kn(K2,ξ)]

log 1
pb(n/kn)

(
1

pb(n/kn)

)ξ
− 1

ξ

=
√
kn (γ̂kn(KŜ∗)− γ) +

√
kn

log 1
pb(n/kn)

log Qn(t)
U(b(n/kn))

−
√
kn

log 1
pb(n/kn)

Ã(b(n/kn))

(
1

pb(n/kn)

)ρ
− 1

ρ
−

√
kn

log 1
pb(n/kn)

Ã(b(n/kn))

×

 log U(1
p
)− log U(b(n/kn))− γ log 1

pb(n/kn)

Ã(b(n/kn))
−

(
1

pb(n/kn)

)ρ
− 1

ρ


−(1− ξ)(1− 2ξ)

ξ2

√
kn[γ̂kn(K1)− γ̂kn(K2,ξ)]

log 1
pb(n/kn)

(
1

pb(n/kn)

)ξ
− 1

ξ

=: T4 + T5 − T6 − T7 − T8.

Let us now look at the 5 terms.
Theorem 2.2 ensures the asymptotic normality of the term T4

T4
d−→ N (0, AV(KS∗)) .

Using Proposition 6.1 (for t = 1 and the fact that log(x) ∼ x− 1 when x→ 1), we can
show

T5
P−→ 0.
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Indeed,

sup
t∈(0,1]

t1/2+ε
∣∣∣∣∣
√
kn log

(
Qn(t)

U(b(n/kn))

)
− γW (1)

∣∣∣∣∣
≤ sup

t∈(0,1]
t

1
2 +ε

∣∣∣∣∣∣
√
kn

log
 Qn(t)
U
(
b
(
n
kn

))
+ γ log(t)∫ 1

0 K(s)ds


− γt−1W (t)−

√
knÃ

(
b
(
n

kn

))
t−ρ − 1
ρ

∣∣∣∣∣
+ sup

t∈(0,1]
t

1
2 +ε

∣∣∣∣∣
√
kn

γlog(t)∫ 1
0 K(s)ds

− γ
(
t−1W (t)−W (1)

)
−
√
knÃ

(
b
(
n

kn

))
t−ρ − 1
ρ

∣∣∣∣∣
= o(1).

To prove that T6 = o(1), inequation (37)
leads to:

|T7| ≤
√
kn

log 1
pb(n/kn)

|Ã(b(n/kn))|

×

∣∣∣∣∣∣
log U(1

p
)− log U(b(n/kn))− γ log 1

pb(n/kn)

Ã(b(n/kn))
−

(
1

pb(n/kn)

)ρ
− 1

ρ

∣∣∣∣∣∣
≤

√
kn

log 1
pb(n/kn)

|Ã(b(n/kn))|ε
(

1
pb(n/kn)

)ρ+δ

= o(1),

for all 0 < δ < −ρ.
Note that the term T8 is a function of ξ which can be a canonical value or an consistent
estimator of ρ.

• If ξ = ρ̃ then, we have:√
kn[γ̂kn(K1)− γ̂kn(K2,ξ)] =

√
kn[γ̂kn(K1)− γ]−

√
kn[γ̂kn(K2,ξ)− γ] = OP(1) ac-

cording to the Corollary 2.1. This leads to T8 = oP(1).

• If ξ = ρ̂

T8 = (1− ρ̂)(1− 2ρ̂)
ρ̂2

√
kn[γ̂kn(K1)− γ̂kn(K2,ρ̂)]

log 1
pb(n/kn)

×

(
1

pb(n/kn)

)ρ
− 1

ρ
+ (1− ρ̂)(1− 2ρ̂)

ρ̂2

×
√
kn[γ̂kn(K1)− γ̂kn(K2,ρ̂)]

log 1
pb(n/kn)


(

1
pb(n/kn)

)ρ̂
− 1

ρ̂
−

(
1

pb(n/kn)

)ρ
− 1

ρ

 .
However, according to Corollary 2.1 and Theorem 2.2
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√
kn[γ̂kn(K1)− γ̂kn(K2,ρ̂)] =

√
kn[γ̂kn(K1)− γ]−

√
kn[γ̂kn(K2,ρ)− γ]

−
√
kn[γ̂kn(K2,ρ̂)− γ̂kn(K2,ρ)]

= OP(1).

The term T8 becomes,

T8 = oP(1) + oP(1)


(

1
pb(n/kn)

)ρ̂
− 1

ρ̂
−

(
1

pb(n/kn)

)ρ
− 1

ρ


= oP(1) + oP(1)

∫ 1
pb(n/kn)

0
sρ−1(sρ̂−ρ − 1)ds,

Inspired by Chavez-Demoulin and Guillou [2018], we get∫ 1
pb(n/kn)

0
sρ−1(sρ̂−ρ − 1)ds = oP(1),

which leads to the conclusion that T8 = oP(1) and therefore we get the proof of Theorem
3.1.
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6.5 Figures and tables

Figure 6.1 Variances comparison for γ = 1; AV(K∆∗) (green) and AV(KS∗) (red).

Figure 6.2 log-Laplace field representation for γ = 1
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Figure 6.3 γ Hill (left); γkn(KS∆) (right) in each graph for ρ = −3.67 on the first
line and ρ = −4 on the second line. At left n = 36000 and on right n = 40000.
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Figure 6.4 Spatial representation of data.

Figure 6.5 Geographical representation of data.
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Figure 6.6 Top row, left panel: histogram of the data. Top row, right panel: density.
Bottom row, left panel: boxplot of the data. Bottom row, right panel: quantile-quantile
plot of weighted log-spacings Zi,n for 1 ≤ i ≤ bn/5c versus the standard exponential
quantiles.

Figure 6.7 Boxplots of the N = 100
estimates of γ for ρ = −3.67.

Figure 6.8 Boxplots of the N = 100 esti-
mates of q(1/1000) for ρ = −3.67.
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Figure 6.9 Boxplots of the N = 100
estimates of γ for ρ = −5.

Figure 6.10 Boxplots of the N = 100 es-
timates of q(1/1000) for ρ = −5.

Figure 6.11 Gammas ρ = −3.67. Figure 6.12 Quantile for ρ = −3.67 and
p = 1/1000.
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Figure 6.13 Gamma for ρ = −5. Figure 6.14 Quantiles for ρ = −5 and
p = 1/1000.

n = 10 000 n = 40 000
value of ρ Hill γ̂kn(KS∆) Hill γ̂kn(KS∆)
ρ = −3.5 [7.04.e−3] [5.85.e−3] [5.83.e−3] [4.15.e−3]

(7.06.e−3) (5.88.e−3) (5.86.e−3) (4.16.e−3)
381 439 262 349

ρ = −3.67 [4.79.e−3] [3.28.e−3]
(4.19.e−3) (3.40.e−3)

440 368
ρ = −3.8 [4.50.e−3] [3.29.e−3]

(4.52.e−3) (3.29.e−3)
407 369

ρ = −4 6.87.e−3 2.53.e−3

(6.90.e−3) (2.51.e−3)
425 354

ρ = −5 [6.68.e−3] [3.54.e−3]
(6.71.e−3) (3.52.e−3)

449 317
ρ = −10 [7.56.e−3] [4.41.e−3]

(7.56.e−3) (4.38.e−3)
406 293

ρ = −20 [6.82.e−3] [7.32.e−3]
(6.78.e−3) (7.27.e−3)

416 294
**[MSE]: Mean Square Error.

(sd): standard deviation
Kop: optimum k

Table 6.1 Gamma estimators
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n = 10 000 n = 40 000
value of ρ q̂Hill q̂γ(KS∆) q̂Hill q̂γ(KS∆)

ρ = −3.5
80.795 81.220 81.011 80.966
[1.499] [0.782] [0.295] [0.128]
(1.493) (0.773) (0.296) (0.128)

ρ = −3.67
81.208 80.998
[0.870] [0.122]
(0.848) (0.122)

ρ = −3.8
81.142 81.021
[1.009] [0.125]
(1.003) (0.125)

ρ = −4
81.069 81.018
[0.975] [0.125]
(0.977) (0.125)

ρ = −5
81.064 81.008
[0.867] [0.124]
(0.869) (0.124)

** [MSE]: Mean Square Error.
(sd): standard deviation

Table 6.2 Quantile estimators

value of ρ γ̂Hill (k) γ̂kn(KS∆) (k) q(1/1000) q(1/100)

Hill q̂KS∆ Hill q̂KS∆

ρ = −3 0.463 (465) 0.315 (303) 118.11 53.80 40.70 26.06
ρ = −3.67 0.428 (312) 98.93 36.91
ρ = −4 0.429 (324) 99.10 37.25
ρ = −5 0.424 (323) 99.22 36.99

Table 6.3 Gamma estimator and quantile predictors on real data. The Hill’s estima-
tors are not function of ρ.
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value of ρ γ̂Hill (k) γ̂kn (KS∆) (k) q(1/1000) q(1/100)

Hill q̂KS∆ Hill q̂KS∆

ρ = −3 0.514 (529) 0.309 (306) 179.515 53.498 49.370 26.238
|0.122| |0.040| |100.72| |6.487| |14.488| |3.790|

[0.27− 0.75] [0.23− 0.39] [17.9− 377] [40.78− 66.21] [20.97− 77.77] [18.80− 33.67]

ρ = −3.67 0.426 (302) 99.506 37.033
|0.054| |16.660| |3.960|

[0.32− 0.53] [66.85− 132.16] [29.27− 44.80]

ρ = −4 0.425 (302) 99.470 37.079
|0.054| |16.701| |3.972|

[0.31− 0.53] [66.71− 132.22] [29.29− 44.87]

ρ = −5 0.424 (304) 99.541 37.138
|0.055| |17.405| |4.024|

[0.31− 0.53] [65.42− 133.65] [29.25− 45.02]

* |sd| = standard deviation
* [IC (5%)] = Confidence Interval

Table 6.4 Gamma estimator and quantile predictors on real data (bootstraping). the
Hill’s estimetors are not function of ρ.
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