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Abstract 
Remotely estimating prey-capture rates in wild animals is key to assess foraging success. In diving animals, accelerometers 

have been particularly useful to remotely detect prey captures and have been shown to be more precise than traditional esti- 

mates relying on depth-derived measures (e.g., wiggles). However, validations of the accelerometry technique using a gold 

standard (i.e., with supervision) have been mostly restricted to shallow diving species, which can be equipped with camera- 

loggers for visual validation of prey-capture events. In species diving near the euphotic limit (150–200 m), accelerometers 

remain mostly untested due to the difficulty of validating such methods in darkness at extreme depth in the wild. In addition, 

prey-pursuits in low-light conditions might not result in intense and long-duration acceleration signatures, as predator–prey 

perception likely occurs at close-range in the dark (i.e., the “visual-interactions hypothesis”). We combined accelerometers 

with beak-opening sensors (for validation) and depth recorders on a wild deep-diving seabird, the king penguin Aptenodytes 

patagonicus, to describe prey captures at depth and create predictive models using accelerometers. Surprisingly, prey pursuits 

and captures were similar in duration (3.9 ± 3.5 s) and intensity (0.78 ± 0.31 g) as shallow-diving species reported by similar 

studies. As accelerometry signatures were distinct, accelerometry-derived variables were almost twice as accurate (Mean- 

squared error = 8.6) at predicting prey-capture events as depth-derived variables (“wiggles”, Mean-squared error = 16.0). As 

in the shallow-diving species, accelerometry outperforms traditional depth-derived models at measuring the foraging intake 

in deep-diving animals, highlighting the usefulness of accelerometers for measuring animal behavior. 
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Introduction 
 

Knowing where and when animals forage is an important 

aspect in ecology and conservation (Grémillet et al. 2004; 

Pichegru et al. 2010; Scheff et al. 2010, Hays 2016). In 

deep-diving species, the identification of foraging hotspots 

has been mainly facilitated by the analysis of horizontal 

movements obtained from satellite or GPS technology (e.g., 

Trathan et al. 2008; Zimmer et al. 2008). Analytical tech- 

niques applied to horizontal movements employ animal's 

speed, tortuosity, and step length to define Area Restricted 

Searches (ARS) and determine whether the animal is travel- 

ling or foraging (Fauchald and Tveraa 2003; Langrock et al. 

   2012). 
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As recent bio-logging devices record much more infor- 

mation than just the location of an animal, several devices, 

such as camera loggers, mouth opening sensors, temperature 

loggers inserted in the digestive track, depth loggers and 

accelerometers, have been used to remotely assess foraging 

success (e.g., prey capture rate) in diving animals (Kokobun 

et al. 2011; Viviant et al. 2014; Volpov et al. 2015). In addi- 

tion, some species-specific methods have been used, such as 

buoyancy change in seals (Adachi et al. 2021), echolocation 

clicks in whales (Miller et al. 2004) and visceral warming in 

tunas (Bestley et al. 2008). While most of these approaches 
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are in theory widely applicable across taxa, their use has 

been limited, because their deployment on wild animals can 

be challenging. For instance, mouth opening sensors use 

a magnet on one part of the mouth and a Hall sensor on 

the opposing part to detect whenever the animal opens its 

mouth or beak, and are typically a precise and powerful tool 

to detect prey captures (Wilson et al., 2002; Hanuise et al. 

2010; Viviant et al. 2014). However, the equipping of these 

loggers can require invasive surgical procedures to conceal 

beneath the skin the electrical lead between the Hall sen- 

sor and data logger. Temperature loggers detect drops in 

temperature in the oesophageal track due to the ingestion 

of prey. While these loggers provide very good estimates 

of prey-capture rates, they are again quite invasive for the 

animal (Charrassin et al. 2001; Horsburgh et al. 2008). Fur- 

thermore, only a small proportion of Hall sensors or tem- 

perature loggers deployed provide useful information, due to 

difficulties with wiring or retrieval (Charrassin et al. 2001; 

Wilson et al. 2002). 

Camera loggers attached to the back or head of the animal 

have been used more recently, with high-quality miniature 

cameras now available on the market (Kokobun et al. 2011; 

Watanabe and Takahashi 2013; Watanabe et al. 2014; Vol- 

pov et al. 2015). However, success of this method on deep- 

diving animals is mixed, as prey captures are not systemati- 

cally detected at low-light depths, despite the use of external 

LEDs (Naito et al. 2013, Brisson-Curadeau et al. 2019). 

For this reason, camera-loggers equipped on deep-diving 

animals have been mostly used to evaluate the diet of an 

animal—which requires only a few “good” pictures/footage 

to be assessed—rather than systematically quantifying prey 

capture (Naito et al. 2013, Naito et al. 2017, Adachi et al. 

2021, Yoshino et al. 2020; but see Watanabe et al. 2020). 

As most of the previously described approaches are dif- 

ficult to apply in the field, the use of depth profiles has been 

historically one of the most widely used methods to estimate 

prey capture in deep-diving animals (e.g., Kirkwood and 

Robertson 1997; Zimmer et al. 2011; Hanuise et al. 2013; 

Scheff et al. 2016). Depth loggers are generally easy to 

deploy and can provide information on foraging behav- 

ior. In particular, many derived variables (descent angle, 

maximum depth, dive shape, etc.) are indicative of foraging 

dives (Schreer et al. 1996; Halsey et al. 2007, 2010). The 

presence of short up-and-down motions (called “wiggles”, 

see Fig. 1) has been particularly used in the literature to 

estimate the number of prey captures in a dive (e.g., Char- 

rassin et al. 2001; Bost et al. 2007; Zimmer et al. 2011; 

Scheffer et al. 2016; Tessier & Bost 2020). Other commonly 

used depth-derived variables include maximum depth, dive 

duration and dive shape, where deeper dives with propor- 

tionally longer bottom time are indicative of increased feed- 

ing activity (Ropert-Coudert et al. 2000; Mori et al. 2002; 

Elliott et al. 2008). While these variables are easy to collect 

 

 
 

Fig. 1 Depth-profile, Hall events, raw acceleration and filtered accel- 

eration of a representative king penguin dive. Point A represents a 

false positive under the 0.15 g threshold, but a true negative under 

the 0.3 g threshold. Point B represents a true positive under the 0.15 g 

threshold, but a false negative under the 0.3 g threshold. Point C rep- 

resents a true positive under both thresholds 
 

 
and compute, their accuracy to quantify prey capture can be 

rather low, at least in some species (Bost et al. 2007; Hanuise 

et al. 2010; Carroll et al. 2014). 

Accelerometers, such as depth loggers, are small and eas- 

ily deployable, with few effects on the fitness of the equipped 

animal (Chivers et al. 2016). They can detect movement in 

three dimensions (x,y and z axis) and at a higher resolution 

than depth loggers, therefore, providing more information 

on the behavior of the animals. Moreover, recent studies 

have shown accelerometers to be more accurate at estimat- 

ing prey capture than the traditional use of wiggles (e.g., Del 

Caño et al. 2021). Consequently, their use to quantify prey 

capture has been increasing in the past few years (Gallon 

et al. 2013; Carroll et al. 2018; Yoshino et al. 2020). Yet, 

testing the accuracy of accelerometry at predicting foraging 

events in the wild has been mainly limited to animals diving 

above 100 m depth (hereafter referred as “shallow-diving 
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species”), mostly feeding on plankton and crustaceans, 

with validation on camera loggers (Kokobun et al. 2011, 

Watanabe and Takahashi 2013; Watanabe et al. 2014; Sato 

et al. 2015; Volpov et al. 2015). While acceleration has been 

used on deep-diving animals to compute prey-capture rates 

(Yoshino et al. 2020; Adachi et al. 2021), true validation 

at deeper depths is rare in the literature, because low-light 

conditions limit the potential of camera loggers for valida- 

tion (but see Watanabe et al. 2020). In addition, it is possible 

that prey-pursuits near or below the limit of the euphotic 

zone are shorter in duration and amplitude, as predator–prey 

perception occurs at closer range. The “visual-interaction 

hypothesis” states that since the escape behavior is less effi- 

cient at depth due to reduced detection distance by both prey 

and predator, deep ectothermic fish are less reactive and have 

a low metabolism (Childress et al. 1990; Drazen and Sei- 

bel 2007). This could potentially reduce the detectability of 

prey-capture attempts in the acceleration signal, as predators 

do not need dynamic chases to capture prey. 

The objective of this study is to validate the use of accel- 

erometry as a reliable tool to estimate prey-capture rate in a 

deep-diving bird. We first aim to describe the typical prey- 

capture acceleration signature at depth, and evaluate whether 

the “visual-interaction hypothesis” complicates detection of 

prey capture as depth increases. We predict that deeper cap- 

tures will generate acceleration peaks with a lower ampli- 

tude and duration than shallower captures. Second, we aim 

to build a model predicting prey capture using accelerometry 

data as inputs. We chose machine learning algorithms to 

compute our model, as their outputs are typically more accu- 

rate than those of linear models—especially when fed with 

a high data volume like that of accelerometry data—and 

hence have been increasingly used to convert accelerometry 

signals into behavioral classification (Brewster et al. 2018; 

Pucci et al. 2020; Sutton et al. 2020). The validation of such 

algorithms requires a gold standard, which can be done in 

deep-diving seabirds using either beak-opening sensors or 

esophageal temperature sensors. We use a unique data set 

that combines a beak-opening sensor and a 1D-accelerom- 

eter on the wild king penguins (Aptenodites patagonicus), 

and compare our results with the traditional methods using 

wiggles and other depth-derived variables. 

 

 

Methods 
 

The data set was collected in February and March 2006 on 

Possession Island, Crozet (46.4°S, 51.8°E), and was used by 

Hanuise et al. (2010) to compare wiggles and a combination 

of two sensors measuring esophageal temperature and beak- 

opening amplitude to detect prey captures. While accelera- 

tion data was also collected, it was unused in Hanuise et al. 

(2010) study. The ethics committee of the Institut polaire 

français Paul-Émile Victor approved all fi  procedures. 

All analysis were conducted using R version 4.0.3 (R Core 

Team 2020). 

Two brooding king penguins (named E1 and H1) were 

equipped with one SMAD data logger (DEPE-IPHC, 

France) attached externally to their back. The SMAD is a 

TDR equipped with a single axis accelerometer (capturing 

the surge or x axis) and a long and single connector, buried 

under the skin from the back to the corner of the beak. From 

this position, one temperature probe was inserted 10 cm 

depth inside the esophagus, while a Hall sensor was glued 

on the orange tip of the mandible, just in front of a miniatur- 

ized magnet, glued on the maxilla. Depth and esophageal 

temperature were continuously recorded at 2 Hz, while beak- 

opening amplitude and acceleration were recorded at 16 Hz 

during two daily periods of 1 h starting at 7 AM and 4 PM. 

Only dives with a maximal depth deeper than 40 m were 

considered in our analysis, as shallower dives in king pen- 

guins are travelling or exploratory dives not associated with 

foraging and only anecdotally contain prey captures. King 

penguins prey are quasi absent in the 0–70 m depth range 

during the day (Bost et al. 2002). For this reason, shallow 

dives in this species are often removed from foraging analy- 

sis (e.g., Hasley et al. 2010; Le Vaillant et al. 2013; Scheffer 

et al. 2016; Tessier and Bost 2020). Indeed, only 0.39% of all 

prey captures in our data set occurred above 40 m. 

Because Hall sensors were determined to be the most 

accurate method to detect prey capture in the earlier study 

(Hanuise et al. 2010), we ignore esophageal sensors in this 

study and used prey-capture events recorded by the Hall 

sensors as the gold standard. In any cases, both esophageal 

sensor and Hall sensor provide similar estimations of prey 

capture (Hanuise et al. 2010). 

 

Accelerometry data 
 

Raw acceleration profiles for each dive were filtered twice 

with two different Local Polynomial Regressions using the 

“loess” function available in R. Loess is a nonparametric 

method using locally weighted polynomial regressions 

to fi a smooth curve through datapoints (Cleveland et al. 

1992). The smoothness of the curve is decided by the alpha 

parameters, which controls the size of the sliding widow that 

locally fits the regressions. Alpha = 1.0 means that the slid- 

ing widow is as wide as the data (smoother curves), while 

alpha = 0.0 means that the window includes only one point 

at a time (coarser curve). 

The first filter was used to remove the pitch signal from 

the 1-D accelerometry data. We, therefore, ran the first Loess 

with a running window of 120 s (alpha ≈ 0.4), determined 

empirically to capture general trends in acceleration due 

to changes in main directional pitch during the dive. We 

ran a second Local Regression with a running window of 
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6 s (alpha ≈ 0.02) to remove wing beat noise, leaving only 

the pitch variation plus medium-scale peaks, assumed to be 

mostly associated with prey captures. The final output was 

obtained by subtracting the 6 s-window regression (pitch 

plus prey-capture acceleration) from the 120 s-window 

regression (pitch only), leaving solely the acceleration peaks 

that we hypothesized were mostly associated with prey cap- 

ture (see Fig. S1 for a graphical representation of the two- 

filter method). 

Once we fi ed the acceleration profi we visually 

scanned a sample of all prey-capture events to determine 

which parameters could be used by the machine learning 

(ML) algorithm to automatically detect prey captures. We 

determined that feeding events caused acceleration peaks, 

either of positive or negative force, of at least ± 0.15 g, with 

varying maximal intensity but rarely over± 1.2 g. By count- 

ing peaks above/below ± 0.15 g, we, therefore, concluded 

that the ML algorithm would detect nearly all capture events. 

However, preliminary analyses also showed that some accel- 

eration peaks above/below ± 0.15 g were not related to feed- 

ing events, potentially leading to false positive errors by 

the algorithm. Fortunately, these peaks were rarely above/ 

below ± 0.35 g. We, therefore, used two distinct values to 

feed the algorithm: a conservative threshold, a high value 

that would reduce the amount of false positive but omit 

true positives, and a liberal threshold, that would poten- 

tially include all true positives but allow false positives as 

well. To determine the best values for these two thresholds, 

we ran the ML algorithm with all combinations of values 

between ± 0.15 g and ± 0.40 g in incrementation of 0.05 g 

and determined which combination gave the best results. 

The threshold duo of ± 0.15 g and ± 0.30 g were thereby 

determined to be the best combination (see Fig. 1). 

 

Diving data and Hall events 
 

Wiggles are defi    as an increase in the depth, followed 

by a decrease and another increase, creating a bump in the 

profile (Schreer et al. 1996; Halsey et al. 2007). We used the 

method for king penguins described in Bost et al. (2007) to 

automatically detect wiggles in our data set, with a minimal 

threshold of 2 m in vertical deviation for depth deviations 

to be considered wiggles. We also calculated the proportion 

of the dive occurring in the bottom phase, which is an index 

of dive shape (Halsey et al. 2007). The bottom of the dive 

was defined as the dive portion occurring below 90% of the 

maximum depth (Bost et al. 2007). 

Hall events from beak-opening sensors were classifi 

as type A and B using Hanuise et al. (2010). Type A Hall 

events are very short beak opening of less than a second of 

duration and are associated with non-feeding beak opening 

(i.e., unsuccessful attempts). Type B are longer (> 1 s) beak 

opening events associated with prey capture and handling, 

as validated with esophageal temperature sensors (Hanuise 

et al. 2010). Only type B events were considered for analysis 

and will refer to the gold standard of a feeding event, i.e., 

successful feeding attempts. 

 

Machine learning algorithm and linear models 
 

Four neural networks were designed to evaluate the effi- 

ciency of accelerometry-derived data compared with depth- 

derived data to predict the number of prey capture per dive. 

All neural networks consisted of one layer and ten nodes, 

with Hall events used as gold standard. The first neural net- 

work (named “NN1”) used the two accelerometry variables 

(number of peaks above/below ± 0.15 g and ± 0.3 g per dive) 

as inputs. First, 65% of the data set (both birds combined) 

was used to train the algorithm. Then, the algorithm was 

tested on the remaining 35% of the data set. Because our 

sample size of different birds is small (n = 2), we also made 

a diff ent neural network with accelerometry data (NN2) 

which we trained on one bird and tested on the other, so that 

we could further assess inter-individual variability. The third 

and fourth neural networks (NN3 and NN4) used two of the 

most common depth-derived variables as predictors of prey 

captures: number of wiggles and dive-shape per dives. As 

with the accelerometer-derived variables, one model used 

65% to predict the remaining 35% (NN3), while the other 

used one bird as training to predict the other (NN4). Pack- 

age neuralnet was used to create neural network models 

(Günther and Fritsch 2010). 

We made a fifth model, a linear model labelled “LM1”, 

which only used wiggles as predictors. The linear model 

using wiggles is, to our knowledge, the most widely used 

method in the literature to directly estimate prey capture in 

penguins (e.g., Bost et al. 2007; Zimmer et al. 2011; Hanuise 

et al. 2013; Scheffer et al. 2016; Tessier and Bost 2020). 

The linear model served as the “traditional” method and was 

directly compared with our neural network models using 

standardized metrics (see the next section). 

 

Model validation and statistics 
 

To test whether the “visual-interaction hypothesis” infl - 

enced the acceleration signatures, we compared accelera- 

tion peaks associated with prey captures below or near the 

euphotic limit (> 150 m) with those in shallower water 

(< 150 m). We used a Student’s t test to assess the difference 

in peak amplitudes (absolute value) and durations between 

those two groups. 

To compare capture-rate prediction models, we calcu- 

lated the Mean Square Error (hereafter “MSE”) of all five 

models. We also modeled the predicted outputs of the fi e 

models over the observed values (Hall sensor data) using 

linear models and compared those outputs with the 1:1 
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regression. Finally, we calculated the R2 of each regression 

to evaluate dispersion of the predictions (as done in Bost 

et al. 2007 and Hanuise et al. 2010). Direct comparison 

with two other studies using wiggles as predictors on king 

penguins were possible using the slope, origin and R2 of 

the regressions of the predicted over observed values (Bost 

et al. 2007; Hanuise et al. 2010). 

 

 

 

Results 
 

The loggers recorded 206 dives deeper than 40 m. The bird 

labelled E1 recorded 127 dives over 8 days of foraging, 

while H1 recorded 79 dives over 8 days. Mean maximal 

dive depth was 113 ± 34 m (range: 40–219 m). The aver- 

age number of Hall events B in a dive was 3.70 ± 6.92 

(range: 0–46), while the average number of wiggles was 

0.95 ± 1.23 (range: 0–7). Acceleration peaks associated 

with prey captures were on average 0.78 ± 0.31 g in maxi- 

mum amplitude and 3.9 ± 3.5 s in total duration. There was 

no signifi     diff   ence between the maximum intensity 

of peaks occurring below 150 m and those occurring above 

150 m (t176 = − 0.33, p = 0.74), but acceleration peaks 

occurring above 150 m were shorter in duration compared 

to deeper peaks (above: 3.8 s ± 3.4, below: 4.8 s ± 4.2, 

t170 = -2.96, p = 0.004). 

Using the ± 0.3 g or the ± 0.15 g threshold, the number 

of accelerometry peaks in a dive was highly correlated 

with the number of Hall events-B (Fig. 2). As expected, 

the number of peaks beyond ± 0.3 g slightly underes- 

timated the number of Hall events, while the ± 0.15 g 

threshold slightly overestimated the number of Hall events. 

Models with accelerometry-derived variables (NN1 and 

NN2) scored signifi y better than those with depth- 

derived variables (NN3 and NN4) in all metrics (Table 1, 

Fig. 3). For models NN2 and NN4, bird H1 was used as 

the training data set, as the number of dives performed was 

comparable to the sample size of the training data set for 

model NN1 and NN3 (127 dives for NN2/NN4, 132 for 

NN1/NN3). The two models which used accelerometry- 

derived data had similar accuracy (Δ4.5 in MSE, Δ0.12 

in R2). In contrast, the diff ence between depth-derived 

models NN3 and NN4 was much greater (Δ25.4 in MSE, 

Δ0.24 in R2). 

The traditional approach, with a linear model using 

only the number of wiggles as predictor, did poorly 

compared to most neural network models (MSE = 32.4, 

slope = 0.32 ± 0.06, intercept = 2.5 ± 0.50, R2 = 0.32, see 

Fig. 4). Nonetheless, the R2 (0.32) was similar to other 

studies that used similar methods (Bost et al. 2007: 0.26, 

Hanuise et al. 2010: 0.39). 

 

 
 

Fig. 2 Number of acceleration peaks in a king penguin dive relative 

to the number of Hall events (dotted line) compared to the 1:1 line 

(solid line). The 0.15 g threshold (top panel) slightly overestimates 

the number of captures, while the 0.3 g threshold (bottom panel) 

underestimates the number of captures over most of the regression. 

Darker data points show overlapping values 
 

 

Discussion 
 

Prey captures at depth in the king penguin produced dis- 

cernable acceleration signatures of considerable intensity 

and length. Furthermore, neural networks using accelera- 

tion inputs accurately predicted the number of prey-capture 

events in a dive. These results add to the growing number 

of studies showing the benefi of using accelerometry to 

predict prey capture (e.g., Gallon et al. 2013, Kokobun et al. 

2011, Watanabe and Takahashi 2013, Watanabe et al. 2014, 

Sato et al. 2015, Volpov et al. 2015, Carroll et al. 2018, 

Yoshino et al. 2020, Adachi et al. 2021), and provides one 

of the first validations for deep-diving species. Our models 

were significantly more accurate than the previous studies 

using depth-derived variables on king penguins. 
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Table 1 Model outputs predicting prey captures (Hall sensor data) using either acceleration-derived or depth-derived data 
 

Model Variable Training dataset Validation dataset    Slope Intercept R2
 Mean 

Square 

error 

Graph 

Neural Network 1 Accelerometry 

derivaed 

65% of dataset 

(n = 132) 

35% of dataset 

(n = 72) 

0.88 ± 0.12 0.6 ± 0.8 0.79 8.6 Figure 2 

Neural Network 2 Accelerometry Bird E1 (n = 127 Bird H1 (n = 79 0.96 ± 0.15 1.0 ± 1.0 0.67 13.1 Figure 3a 

 derivaed dives) dives)      
Neural Network 3 Depth-derived 65% of dataset 

(n = 132) 

35% of dataset 

(n = 72) 

0.51 ± 0.11 1.8 ± 0.8 0.52 16.0 Figure 2b 

Neural Network 4 Depth-derived Bird E1 (n = 127 

dives) 

35% of dataset 

(n = 79 dives) 

0.75 ± 0.24 3.6 ± 1.5 0.28 41.4 Figure 3b 

Linear Model 1 Wiggle Whole dataset Whole dataset This study: This study: This study: 32.3 Figure 4 

    0.32 ± 0.6 2.5 ± 0.5 0.32 

    Bost et al. Bost et al. Bost et al. 

    2007:0.45 2007:1.77 2007:0.26 

Hanuise 

et al. 

2010: 0.8 

Hanuise 

et al. 

2010: 1.82 

Hanuise 

et al. 

2010: 0.39 
 

 

Validation variables are calculated on the prediction ~ observation relationship 

 

 

 

 
 

Fig. 3 Predicted relative to observed prey-capture rates for king pen- 

guins from all four neural network models (dotted lines) compared 

to the 1:1 line (solid lines). Models NN1 and NN2 used accelerom- 

etryderived variables as predictors, while models NN3 and NN4 used 

depth-derived variables. Models NN1 and NN3 were trained and vali- 

dated with data from both birds combined, while models NN2 and 

NN4 trained with one bird and validated with another. Darker data 

points show overlapping values 
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Fig. 4 Predicted relative to observed prey-capture rates for king pen- 

guins (dotted line) compared to the 1:1 line (solid line) for the tra- 

ditional linear model using the number of wiggles in a dive as the 

explanatory variable. Darker data points show overlapping values 
 
 

 

Acceleration signature of prey captures 
 

The “visual-interaction hypothesis” stipulates that, at depth, 

the escape behavior of fish is less effective, as predator–prey 

detection occurs so close that evasion is futile (Childress 

et al. 1990; Drazen and Seibel 2007). This, combined with 

a lower water temperature at depth, leads fish such as myc- 

tophids to reduce their metabolism when in deeper, dark 

waters (Drazen and Seibel 2007; Catul et al. 2011). In con- 

trast, fish well above the euphotic zone have high metabo- 

lism to accommodate a more explosive escape response. 

King penguins feed on mesopelagic myctophids near or 

below the euphotic zone and exclusively use vision to detect 

their prey (Martin 1999; Bost et al. 2002; Cherel et al. 2007). 

It was, therefore, expected that the acceleration needed to 

pursue and capture prey would not contrast well with the 

acceleration noise of regular underwater movements. This 

was not the case, as the filtered acceleration peaks associated 

with prey capture was discernable (0.78 g in average) and 

total pursuit and capture time lasted several seconds (3.9 s in 

average). This is comparable to similar-size seabirds diving 

closer to the surface: the surge acceleration of Magellanic 

penguins Spheniscus magellanicus when capturing school- 

ing fish averaged 0.31–0.64 g in maximum amplitude, while 

the optimal tri-axial acceleration thresholds for detecting 

fi captures in Adelie penguins Pygoscelis adeliae were 

0.25–0.45 g, similar to our 0.15 g and 0.30 g thresholds for 

surge acceleration (Watanabe and Takahashi 2013; Del caño 

et al. 2021). Both of these penguins feed on fi in shal- 

low waters above 50 m. Similarly, prey chase and capture 

in the little penguin Eudyptula minor averages 2.9 ± 3.3 s, 

which is quite similar to our results (Ropert-Coudert et al. 

2006). Obviously, the prey-capture acceleration signature 

associated with different predator species depends on much 

more than solely the depths at which they forage. Predator 

and prey size, diving speed and foraging tactics are all fac- 

tors that could influence the prey-capture signatures. Further 

study is needed to assess whether, with a larger species sam- 

ple size, deeper species will tend to display fainter accelera- 

tion signatures compared to shallow-diving species. 

Another unexpected result was the signifi diff  - 

ence between the duration of prey captures occurring above 

and below 150 m, with shallower captures taking less time 

than deeper captures. The opposite result was anticipated 

by the visual-interaction hypothesis assuming that darkness 

reduces chasing initiation distance. However, king penguins 

may opportunely feed on smaller fish larvae and/or plank- 

ton when diving in shallow water. These prey types, which 

are more abundant near the surface, might not require great 

acceleration to be captured. On the other hand, larger fi 

near the euphotic zone targeted by the penguin might be 

more mobile, especially considering that these fish initiate 

vertical migration at night. Even in poor light conditions, the 

prey might require considerable acceleration to be captured 

compared to fish larvae and plankton in shallow waters. Fur- 

ther study is needed to validate this idea. 

 

Advantage of accelerometry data to estimate 
feeding activity 

 
Accelerometers provide one of the most convenient and 

accurate methods to estimate prey capture (Watanabe & 

Takahashi 2013; Volpov et al. 2015; Del Caño et al. 2021). 

They are small and can be deployed with relative ease, while 

their low power consumption allows for extensive data 

recording. However, validation of accelerometry requires a 

gold standard, which is often easier obtained using camera- 

loggers. Hence, most validations of accelerometry on wild 

animals have been conducted on shallow divers feeding in 

the euphotic zone (e.g., pygoscelid penguins: Watanabe et al. 

2014, fur seals: Volpov et al. 2015, Del magellanic penguin: 

Caño et al. 2021). 

While deep-divers feeding on mesopelagic fi are a 

crucial key to understand food-chain mechanisms in the 

open-ocean, the use of accelerometry to quantify foraging 

success is recent in these species (Watanabe et al. 2020; 

Yoshino et al. 2020; Adachi et al. 2021). Furthermore, true 

validation with a gold-standard is very rare: Watanabe et al. 

(2020) showed that the number of accelerometry peaks was 

highly correlated with the number of video-confirmed feed- 

ing events in a deep-diving pinniped. Yet again, the heavy 

camera-loggers used in their study would exceed 3% of body 

mass ethical guidelines to equip on deep-diving birds, such 

as Uria alcids and Aptenodytes penguins. For this reason, 

foraging activity and success on these species have been 
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almost exclusively determined using depth-derived vari- 

ables (Kirkwood and Robertson 1997; Zimmer et al. 2011; 

Hanuise et al. 2013; Scheffer et al. 2016; Orgeret et al. 2019; 

Tessier and Bost 2020). Accelerometry provides a more 

accurate alternative: our results show that accelerometry 

greatly outperforms wiggles in quantifying foraging success. 

Even foraging activity cannot be determined accurately with 

depth-derived variables, as many deep-dives—some even 

containing wiggles—were not associated with prey captures 

in our study (see Fig. 4). Therefore, identification of foraging 

dives cannot be made reliably with depth-derived variables, 

such as wiggles. By combining a conservative acceleration 

threshold at ± 0.3 g with a more liberal one at ± 0.15 g, we 

were able to obtain accurate machine-learning models for 

the king penguin that surpassed the wiggle method. 

 

Limitations and next step 
 

While neural networks are superior than linear models at 

making accurate predictions, they are usually more so with 

very large sample sizes and many input variables (Bonac- 

corso 2017). Our sample size was moderate in size and only 

two variables were used as inputs. Ideally, a larger sample 

size would likely increase the accuracy of the algorithm, 

fully taking advantage of the ML method. Data on more 

individuals is necessary for better testing of the inter-indi- 

vidual variability. 

One limitation of our method is the pre-determination of 

the acceleration thresholds to identify acceleration peaks. 

These thresholds likely differ from one species to another. 

Repeating the experiment for each species would provide 

accurate estimates of prey-capture rate, but would be unre- 

alistic considering the difficulty of obtaining gold standard 

data. Depth-derived variables also suff   from the same 

fl ws and need species-specifi validations; the minimum 

deviation for a change in the depth profile to be considered a 

wiggle is species-specific (Hasley et al. 2007). Nonetheless, 

these values are often easy to determine without validation 

by simply looking at trends in the depth-profi data (e.g., 

Zimmer et al. 2011; Crossin et al. 2012). The same logic can 

be used with accelerometry data without validation to specu- 

late on which accelerometry signatures are associated with 

feeding events (e.g., Naito et al. 2010). Still, we encourage 

similar methods to be tested on more deep-diving species, 

avian or not, to assess variation among taxa. 

 

 

Conclusion 
 

Despite a small sample size, this study confirmed the poten- 

tial of accelerometry as an input to neural network models 

to predict prey-capture rates in a deep-diving seabird, using 

Hall sensor data as validation. We concur with other studies 

on shallow-diving species that accelerometry outperforms 

depth-derived variables at detecting and quantifying prey 

capture, and provide one of the very few validation on a 

deep-diving animal. 
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