Supporting Information for the manuscript

Impact of Magnetic field strength on Resolution and Sensitivity of Proton Resonances in Biological Solids

Kai Xue,^a Riddhiman Sarkar,^{a,b*} Daniela Lalli^d, Benita Koch,^b Guido Pintacuda,^d Zdenek Tosner,^c and Bernd Reif^{a,b*}

September 21, 2020

 ^a Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
^b Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
^c Department of chemistry, Faculty of Science, Charles University, Hlavova 8, 12842 Praha 2, Czech Republic
^d Centre de Résonance Magnétique Nucléaire a Très hauts Champs (FRE 2034 -CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1), Université de Lyon, 5

rue de la Doua, 69100 Villeurbanne, France #Present address: Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, viale Teresa Michel, 15121 Alessandria, Italia

Figure S1: to be continued

Figure S1: Simulated MAS dependent ¹H spectral intensities for all value and leucine methyl groups of the α -spectrin SH3 domain. Simulations have been carried out using the program SIMPSON. As an input, the exact geometry of the protein has been employed (PDB ID: 2NUZ).

Figure S2: Simulated methyl proton lineshapes for the α -spectrin SH3 domain at different static magnetic fields.

Figure S3: HSQC type pulse scheme to quantify residue specific magnetization transfer efficiencies.

Figure S4: Carbon line widths for the microcrystalline methyl protonated α -spectrin SH3 domain sample. HSQC spectra were obtained at a MAS frequency of 90 kHz MAS and a B₀ field of 500 MHz and 1 GHz, respectively. Data were acquired using an acquisition time of 20 ms and 35 ms in the proton and carbon dimension, respectively. Data were processed using the apodization function QSINE= 2 (squared sine bell) in Topspin.

Figure S5: Residue specific 1 H-T₂' decay curves obtained at a B₀ field of 1 GHz and a MAS frequency of 90 kHz. Experimental data are fit using a bi-exponential function.

Figure S6: 1D traces from HC correlation experiments recorded employing 500 MHz (red) and 1 GHz (black), respectively. 2D spectra are represented in Figure 1.

Figure S7: Bulk proton T_1 measurements in two magnetic fields. ~ 1.5 times of the T_1 values were set as the recycle delay in the correlation experiments.