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A PTAS for Capacitated Vehicle Routing on Trees∗

Claire Mathieu† Hang Zhou‡

Abstract
We give a polynomial time approximation scheme (PTAS) for the unit demand capacitated

vehicle routing problem (CVRP) on trees, for the entire range of the tour capacity. The result
extends to the splittable CVRP.

1 Introduction

Given an edge-weighted graph with a vertex called depot, a subset of vertices with demands, called
terminals, and an integer tour capacity k, the capacitated vehicle routing problem (CVRP) asks for a
minimum length collection of tours starting and ending at the depot such that those tours together
cover all the demand and the total demand covered by each tour is at most k. In the unit demand
version, each terminal has unit demand, which is covered by a single tour;1 in the splittable version,
each terminal has a positive integer demand and the demand at a terminal may be covered by multiple
tours.

The CVRP was introduced by Dantzig and Ramser in 1959 [DR59] and is arguably one of the
most important problems in Operations Research. Books have been dedicated to vehicle routing
problems, e.g., [TV02, GRW08, CL12, AGM16]. Yet, these problems remain challenging, both from
a practical and a theoretical perspective.

Here we focus on the special case when the underlying metric is a tree. That case has been
the object of much research. The splittable tree CVRP was proved NP-hard in 1991 [LLM91], so
researchers turned to approximation algorithms. Hamaguchi and Katoh [HK98] gave a simple lower
bound: every edge must be traversed by enough tours to cover all terminals whose shortest paths
to the depot contain that edge. Based on this lower bound, they designed a 1.5-approximation in
polynomial time [HK98]. The approximation ratio was improved to (

√
41 − 1)/4 by Asano, Katoh,

and Kawashima [AKK01] and further to 4/3 by Becker [Bec18], both results again based on the lower
bound from [HK98]. On the other hand, it was shown in [AKK01] that using this lower bound one
cannot achieve an approximation ratio better than 4/3. More recently, researchers tried to go beyond
a constant factor so as to get a (1 + ε)-approximation, at the cost of relaxing some of the constraints.
When the tour capacity is allowed to be violated by an ε fraction, there is a bicriteria PTAS for the
unit demand tree CVRP due to Becker and Paul [BP19]. When the running time is allowed to be
quasi-polynomial, Jayaprakash and Salavatipour [JS22] very recently gave a quasi-polynomial time
approximation scheme (QPTAS) for the unit demand and the splittable versions of the tree CVRP.
In this paper, we close this line of research by obtaining a (1+ ε)-approximation without relaxing any
of the constraints – in other words, a polynomial-time approximation scheme (PTAS).

∗This is the full version of the extended abstract that was accepted at the 49th EATCS International Colloquium
on Automata, Languages, and Programming (ICALP) 2022.

†CNRS Paris, France, e-mail: claire.mathieu@irif.fr.
‡Ecole Polytechnique, Institut Polytechnique de Paris, France, e-mail: hzhou@lix.polytechnique.fr.
1Thus we may identify the demand coverd with the number of terminals covered.
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Theorem 1. There is an approximation scheme for the unit demand capacitated vehicle routing
problem (CVRP) on trees with polynomial running time.

Corollary 2. There is an approximation scheme for the splittable capacitated vehicle routing problem
(CVRP) on trees with running time polynomial in the number of vertices n and the tour capacity k.

To the best of our knowledge, this is the first PTAS for the CVRP in a non-trivial metric and for
the entire range of the tour capacity. Previously, PTASs for small capacity as well as QPTASs were
given for the CVRP in several metrics, see Section 1.1.3.

1.1 Related Work

Our algorithms build on [JS22] and [BP19] but with the addition of significant new ideas, as we now
explain.

1.1.1 Comparison with the QPTAS in [JS22]

Jayaprakash and Salavatipour noted in [JS22] that

“it is not clear if it (the QPTAS) can be turned into a PTAS without significant new ideas.”

The running time in [JS22] is nOε(log4 n). Where do those four log n factors in the exponent come
from? At a high level, the QPTAS in [JS22] consists of three parts: (1) reducing the height of the
tree; (2) designing a bicriteria QPTAS; (3) going from the bicriteria QPTAS to a true QPTAS. Our
approach builds on [JS22] but differs from it in each of the three parts, so that in the end we get rid
of all of four log n factors, hence a PTAS.

(1) Jayaprakash and Salavatipour [JS22] reduce the input tree height from O(n) to Oε(log2 n);
whereas instead of the input tree, we consider a tree of components (Lemma 9) and reduce its height
to Oε(1), see Fig. 1. Pleasingly, the height reduction (Section 4) is much simpler than in [JS22]. The
analysis differs from [JS22] and uses the structure of a near-optimal solution established in Section 3
and the bounded distance property (Definition 3 and Theorem 5).

(2) In the adaptive rounding used in [JS22], they consider the entire range [1, k] of the demands
of subtours and partition the subtour demands into buckets, resulting in Ωε(log k) different subtour
demands after rounding. In our approach, we define large and small subtours inside components,
depending on whether their demands are Ωε(k) (Definition 14). Then we transform the solution
structure to eliminate small subtours (Section 3), hence only Oε(1) different subtour demands after
rounding. This elimination requires a delicate handling of small subtours. Thanks to the additional
structure, our analysis of the adaptive rounding is simpler than in [JS22], and in particular, we do
not need the concept of buckets.

(3) Jayaprakash and Salavatipour show that the orphan tokens, which are removed from the tours
exceeding capacity, can probably be covered by duplicating a small random set of tours in the optimal
solution. Their approach requires remembering the demands of Ω(log n) subtours passing through
each edge.2 To avoid this Ω(log n) factor, our approach to cover the orphan tokens (Section 3.1) is
different, see Fig. 2. The analysis of our approach (Sections 3.2 and 3.3) contains several novelties of
this paper.

2See the proofs of Lemma 2 and Lemma 3 in the full version of [JS22] at https://arxiv.org/abs/2106.15034.
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Figure 1: Height reduction for a tree of components. The left figure represents the initial tree of
components, where each triangle represents a component. We partition the components into classes
(indicated by blue, yellow, and orange), according to the distances from the roots of the components
to the root of the tree, and we reduce the height within each class to 1 (right figure), see Section 4.
The thick green path in the left figure represents a tour in an optimal solution. The red circular
nodes are the terminals visited by that tour. The corresponding tour in the new tree (right figure)
spans the same set of terminals.

1.1.2 Comparison with the Bicriteria PTAS in [BP19]

Why is the algorithm in [BP19] a bicriteria PTAS, but not a PTAS?
Becker and Paul [BP19] start by decomposing the tree into clusters. (1) They require that each

leaf cluster is visited by a single tour. When the violation of the tour capacity is not allowed, this
requirement does not preserve a (1 + ε)-approximate solution, see Fig. 5. (2) They also require that
each small internal cluster is visited by a single tour. To that end, they modify the optimal solution
by reassigning all terminals of a small cluster to some existing tour at the cost of possibly violating
the tour capacity. Such modifications do not seem achievable in the design of a PTAS.

In this paper, we start by defining components (Lemma 9), inspired by clusters in [BP19]. Unlike
[BP19], we allow terminals in any component to be visited by multiple tours. However, allowing many
subtours inside a component could result in an exponential running time for a dynamic program. To
prevent that, we modify the solution structure inside a component so that the number of subtours
becomes bounded (Theorem 13). Instead of considering all subtours simultaneously as in [BP19], we
distinguish small subtours from large subtours (Definition 14). Inspired by [BP19], we combine small
subtours and reallocate them to existing tours such that the violation of the tour capacity is an O(ε)
fraction, see Steps 1 to 3 of the construction in Section 3.1. Next, we use the iterated tour partitioning
(ITP) and its postprocessing to reduce the demand of the tours exceeding capacity (Fig. 2), which is
a novelty in this paper, see Steps 4 to 6 of the construction in Section 3.1. The ITP algorithm and
its postprocessing are analyzed in Sections 3.2 and 3.3. In particular, we bound the cost due to the
ITP algorithm thanks to the bounded distance property (Theorem 5) and to the parameters in our
component decomposition that are different from those in [BP19], see Remark 10. Besides the above
novelties in our approach, the height reduction (Fig. 1, see also Section 4), the adaptive rounding
(Section 5), the reduction to bounded distances (Section 7), as well as part of the dynamic program
(Section 6) are new compared with [BP19]. These additional techniques are essential in the design
of our PTAS, because of the more complicated solution structure inside components in our approach
compared with the solution structure inside clusters in [BP19].
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(a) (b)

Figure 2: Covering the orphan tokens (in red). In Fig. 2a, the orphan tokens are contained in the
small pieces (in brown) that are removed from the tours exceeding capacity. We add the thick paths
(in green) to connect all of the small pieces to the root of the tree. The cost of the thick paths is
an O(ε) fraction of the optimal cost (Lemma 17 and Corollary 18), thanks to the bounded distance
property. The induced traveling salesman tour is a double cover of the tree spanning the orphan
tokens. Next, we apply the iterated tour partitioning (ITP) algorithm on that tour. In Fig. 2b, the
two paths (in blue and in orange) represent the connections to the depot added by the ITP algorithm.
Their cost is again an O(ε) fraction of the optimal cost (Lemma 19), thanks to the bound on the
number of orphan tokens and the bounded distance property.

1.1.3 Other Related Work

Constant-factor approximations in general metric spaces. The CVRP is a generalization of
the traveling salesman problem (TSP). In general metric spaces, Haimovich and Rinnooy Kan [HR85]
introduced a simple heuristics, called iterated tour partitioning (ITP). Altinkemer and Gavish [AG90]
showed that the approximation ratio of the ITP algorithm for the unit demand and the splittable
CVRP is at most 1 +

(
1− 1

k

)
CTSP, where CTSP ≥ 1 is the approximation ratio of a TSP algorithm.

Bompadre, Dror, and Orlin [BDO06] improved this bound to 1 +
(
1− 1

k

)
CTSP − Ω

(
1
k3

)
. The ratio

for the unit demand and the splittable CVRP on general metric spaces was recently improved by
Blauth, Traub, and Vygen [BTV21] to 1 + CTSP − ε, for some small constant ε > 0.

QPTASs. Das and Mathieu [DM15] designed a QPTAS for the CVRP in the Euclidean space;
Jayaprakash and Salavatipour [JS22] designed a QPTAS for the CVRP in trees and extended that
algorithm to QPTASs in graphs of bounded treewidth, bounded doubling or highway dimension.
When the tour capacity is fixed, Becker, Klein, and Saulpic [BKS17] gave a QPTAS for planar graphs
and bounded-genus graphs.

PTASs for small capacity. In the Euclidean space, there have been PTAS algorithms for the
CVRP with small capacity k: work by Haimovich and Rinnooy Kan [HR85], when k is constant;
by Asano et al. [AKTT97] extending techniques in [HR85], for k = O(log n/ log log n); and by
Adamaszek, Czumaj, and Lingas [ACL10], when k ≤ 2logf(ε)(n). For higher dimensional Euclidean
metrics, Khachay and Dubinin [KD16] gave a PTAS for fixed dimension ` and k = O(log

1
` (n)).

Again when the capacity is bounded, Becker, Klein and Schild [BKS19] gave a PTAS for planar
graphs; Becker, Klein, and Saulpic [BKS18] gave a PTAS for graphs of bounded highway dimension;
and Cohen-Addad et al. [CFKL20] gave PTASs for bounded genus graphs and bounded treewidth
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graphs.

Unsplittable CVRP. In the unsplittable version of the CVRP, every terminal has a positive integer
demand, and the entire demand at a terminal should be served by a single tour. On general metric
spaces, the best-to-date approximation ratio for the unsplittable CVRP is roughly 3.194 due to the
recent work of Friggstad et al. [FMRS21]. For tree metrics, the unsplittable CVRP is APX-hard:
indeed, it is NP-hard to approximate the unsplittable tree CVRP to better than a 1.5 factor [GW81]
using a reduction from the bin packing problem. Labbé, Laporte and Mercure [LLM91] gave a 2-
approximation for the unsplittable tree CVRP. The approximation ratio for the unsplittable tree
CVRP was improved to (1.5 + ε) very recently by Mathieu and Zhou [MZ22], building upon several
techniques in the current paper.

1.2 Overview of Our Techniques

The main part of our work focuses on the unit demand tree CVRP, and we extend our results to the
splittable tree CVRP in the end of this work.

Definition 3 (bounded distances). Let Dmin (resp. Dmax) denote the minimum (resp. maximum)
distance between the depot and any terminal in the tree. We say that an instance has bounded
distances if Dmax <

(
1
ε

) 1
ε
−1 ·Dmin.

Theorem 1 follows directly from Theorems 4 and 5.

Theorem 4. There is a polynomial time (1+4ε)-approximation algorithm for the unit demand CVRP
on the tree T with bounded distances.

Theorem 5. For any ρ ≥ 1, if there is a polynomial time ρ-approximation algorithm for the unit
demand (resp. splittable, or unsplittable) CVRP on trees with bounded distances, then there is a poly-
nomial time (1 + 5ε)ρ-approximation algorithm for the unit demand (resp. splittable, or unsplittable)
CVRP on trees with general distances.

Theorem 5 may be of independent interest for the splittable and the unsplittable versions of the
tree CVRP.

Outline of the PTAS for unit demand instances with bounded distances (Theorem 4).
In Sections 3 to 5, we show that there exists a near-optimal solution with a simple structure, and in
Section 6, we use a dynamic program to compute the best solution with that structure.

In Section 3, we consider the components of the tree T (Lemma 9) and we show that there exists
a near-optimal solution such that terminals within each component are visited by a constant Oε(1)
number of tours and that each of those tours visits Ωε(k) terminals in that component (Theorem 13).
The proof of Theorem 13 contains several novelties in our work. We start by defining large and
small subtours inside a component, depending on the number of terminals visited by the subtours.
To construct a near-optimal solution with that structure, first, we detach small subtours from their
initial tours, combine small subtours in the same component, and reallocate the combined subtours
to existing tours. Then we remove subtours from tours exceeding capacity. To connect the removed
subtours to the root of the tree, we include the spines subtours (Definition 12) of all internal compo-
nents, and we obtain a traveling salesman tour. Next, we apply the iterated tour partitioning (ITP)
algorithm on that tour, see Fig. 2. Finally, in a postprocessing step, we eliminate the small subtours
created due to the ITP algorithm. The complete construction is in Section 3.1; the feasibility of the
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v1

v2 v3

v4 v5

Figure 3: At each vertex of the tree, the dynamic program memorizes the capacities used by the
subtours in the subtree and their total cost. Terminals within each component are visited by Oε(1)
tours and each of those tours visits Ωε(k) terminals in that component. Here is an example of
the flow of execution in the dynamic program. First, independent computation in each component
(Algorithm 2). Next, computation in the subtrees rooted at vertices v4 and v5 (Algorithm 4). Then
computation for the subtrees rooted at vertices v2 and v3 (Algorithm 3). Finally, computation for
the subtree rooted at vertex v1 (Algorithm 4). The output is the best solution in the subtree rooted
at v1. Vertices v1, v4, and v5, whose degrees may be arbitrarily large, are where adaptive rounding
of the subtour demands is needed to maintain polynomial time (Algorithm 4). The cost due to the
rounding is small thanks to the way components are defined and the bounded distance property, and
does not accumulate excessively because the height is bounded (Section 4).

construction is in Section 3.2; and the analysis on the constructed solution is in Section 3.3, which in
particular uses the bounded distance property.

In Section 4, we transform the tree T into a tree T̂ that has Oε(1) levels of components (Fig. 1)
and satisfies the following property.

Fact 6. The tree T̂ defined in Section 4 can be computed in polynomial time. The components in the
tree T̂ are the same as those in the tree T . Any solution for the unit demand CVRP on the tree T̂ can
be transformed in polynomial time into a solution for the unit demand CVRP on the tree T without
increasing the cost.

Thanks to the structure of the near-optimal solution on T (Section 3) and to the bounded distance
property, the optimal cost for T̂ is increased by an O(ε) fraction compared with the optimal cost for
T (Theorem 23).

In Section 5, we apply the adaptive rounding on the demands of the subtours in a near-optimal
solution on T̂ . Recall that in the design of the QPTAS by Jayaprakash and Salavatipour [JS22], the
main technique is to show the existence of a near-optimal solution in which the demand of a subtour
can be rounded to the nearest value from a set of only poly-logarithmic threshold values. In our work,
we reduce the number of threshold values to a constant Oε(1) (Theorem 26). To analyze the adaptive
rounding, observe that an extra cost occurs whenever we detach a subtour and complete it into a
separate tour by connecting it to the depot. We bound the extra cost thanks to the structure of a near-
optimal solution inside components (Section 3), the reduced height of the components (Section 4), as
well as the bounded distance property.

In Section 6, we design a polynomial-time dynamic program that computes the best solution on
the tree T̂ that satisfies the constraints on the solution structure imposed by previous sections. The
algorithm combines a dynamic program inside components (Section 6.1) and two dynamic programs
in subtrees (Section 6.2), see Fig. 3. Thus we obtain the following Theorem 7.

Theorem 7. Consider the unit demand CVRP on the tree T̂ . There is a dynamic program that
computes in polynomial time a solution with cost at most (1 + 4ε) ·opt, where opt denotes the optimal
cost for the unit demand CVRP on the tree T .

6



Theorem 4 follows directly from Theorem 7 and Fact 6.

Reduction from general distances to bounded distances (Theorem 5). In Section 7, we
prove Theorem 5. We use Baker’s technique to split tours into pieces such that each piece covers
terminals that are within a certain range of distances from the depot. This requires duplicating some
parts of the tours so that each piece of the tour is connected to the depot.

Extension to the splittable setting (Corollary 2). In Section 8, we extend the result in The-
orem 1 to the splittable setting, thus obtaining Corollary 2.

Open questions. Previously, Jayaprakash and Salavatipour [JS22] extended their QPTAS on trees
to QPTASs on graphs of bounded treewidth and beyond, including Euclidean spaces. While some of
our techniques extend to those settings, others do not seem to carry over without significant additional
ideas, so it is an interesting open question whether the techniques in our paper could be used in the
design of PTAS algorithms for other metrics, such as graphs of bounded treewidth, planar graphs,
and Euclidean spaces.

2 Preliminaries

Let T be a rooted tree (V,E) with root r ∈ V and edge weights w(u, v) ≥ 0 for all (u, v) ∈ E. The
root r represents the depot of the tours. Let n denote the number of vertices in V . Let V ′ ⊆ V denote
the set of terminals, such that a token is placed on each terminal v ∈ V ′. Let k ∈ [1, n] be an integer
capacity of the tours. The cost of a tour t, denoted by cost(t), is the overall weight of the edges on
that tour. We say that a tour visits a terminal v ∈ V ′ if the tour picks up the token at v.3

Definition 8 (unit demand tree CVRP). An instance of the unit demand version of the capacitated
vehicle routing problem (CVRP) on trees consists of

• an edge weighted tree T = (V,E) with n = |V | and with root r ∈ V representing the depot,

• a set V ′ ⊆ V of terminals,

• a positive integer tour capacity k such that k ≤ n.

A feasible solution is a set of tours such that

• each tour starts and ends at r,

• each tour visits at most k terminals,

• each terminal is visited by one tour.

The goal is to find a feasible solution such that the total cost of the tours is minimum.

Let OPT (resp. OPT1, OPT2, or OPT3) denote an optimal (resp. near-optimal) solution to the
unit demand CVRP, and let opt (resp. opt1, opt2, or opt3) denote the value of that solution.

Without loss of generality, we assume that every vertex in the input tree T has exactly two children,
and that the terminals are the same as the leaf vertices of the tree. Indeed, general instances can be
reduced to instances with these properties by inserting edges of weight 0, removing leaf vertices that
are not terminals, and slicing out internal vertices of degree two, see, e.g. [BP19] for details.

3Note that a tour might go through a terminal v without picking up the token at v.
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r
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c
ec

Figure 4: Decomposition into components. In this example, the tree is decomposed into four leaf
components and six internal components. An internal component c has a root vertex rc and an exit
vertex ec.

For any vertex v ∈ V , a subtour at the vertex v is a path that starts and ends at v and only visits
vertices in the subtree rooted at v. The demand of a subtour is the number of terminals visited by
that subtour. For each vertex v ∈ V , let dist(v) denote the distance between v and the depot in the
tree T . For technical reasons, we allow dummy terminals to be included in the solution at internal
vertices of the tree.

Throughout the paper, we define several constants depending on ε: Γ (Lemma 9), α (Theorem 13),
Hε (Lemma 21), and β (Theorem 26). They satisfy the relation that Hε � Γ� 1� ε� α� β.

Decomposition of the Tree into Components. The component decomposition (Lemma 9) is
inspired by the cluster decomposition by Becker and Paul [BP19]. The proof of Lemma 9 is similar
to arguments in [BP19]; we give its proof in Appendix B for completeness.

Lemma 9. Let Γ = 12
ε . There is a polynomial time algorithm to compute a partition of the edges

of the tree T into a set C of components (see Fig. 4), such that all of the following properties are
satisfied:

• Every component c ∈ C is a connected subgraph of T ; the root vertex of the component c, denoted
by rc, is the vertex in c that is closest to the depot.

• We say that a component c ∈ C is a leaf component if all descendants of rc in tree T are in c,
and is an internal component otherwise. A leaf component c interacts with other components at
vertex rc only. An internal component c interacts with other components at two vertices only:
at vertex rc, and at another vertex, called the exit vertex of the component c, and denoted by ec.

• Every component c ∈ C contains at most 2Γ · k terminals. We say that a component is big if it
contains at least Γ · k terminals. Each leaf component is big.

• If the number of components in C is strictly greater than one, then we have: (1) there exists a
map from all components to big components, such that the image of a component is among its
descendants (including itself), and each big component has at most three pre-images; and (2)
the number of components in C is at most 3/Γ times the total demand in the tree T .

Remark 10. The root and the exit vertices of components are a rough analog of portals used in
approximation schemes for other problems: they are places where the dynamic program will gather
and synthesize information about partial solutions before passing it on.

8



Compared with [BP19], the decomposition in Lemma 9 uses different parameters: the number of
terminals inside a leaf component is Θ(k/ε), whereas in [BP19] the number of terminals inside a leaf
cluster is Θ(ε · k); the threshold demand to define big components is Θ(k/ε), whereas in [BP19] the
threshold demand to define small clusters is Θ(ε2 · k).

Definition 11 (subtours in components and subtour types). Let c be any component. A subtour in
the component c is a path that starts and ends at the root rc of the component, and such that every
vertex on the path is in c. The type of a subtour is “passing” if c is an internal component and the
exit vertex ec belongs to that subtour; and is “ending” otherwise.

A passing subtour in c is to be combined with a subtour at ec. In a leaf component, there is no
passing subtour.

Definition 12 (spine subtour). For an internal component c, we define the spine subtour in the
component c, denoted by spinec, to be the connection (in both directions) between the root vertex rc
and the exit vertex ec of the component c, without visiting any terminal.

From the definition, a spine subtour in a component is also a passing subtour in that component.
Without loss of generality, we assume that any subtour in a component c either visits at least one

terminal in c or is a spine subtour; that any tour traverses each edge of the tree at most twice (once
in each direction); and that any tour contains at most one subtour in any component.4

3 Solutions Inside Components

In this section, we prove Theorem 13, which is a main novelty in this paper.

Theorem 13. Let α = ε(
1
ε
+1). Consider the unit demand CVRP on the tree T with bounded distances.

There exist dummy terminals and a solution OPT1 visiting all of the real and the dummy terminals,
such that all of the following holds:

1. For each component c, there are at most 2Γ
α + 1 tours visiting terminals in c;

2. For each component c and each tour t visiting terminals in c, the number of the terminals in c
visited by t is at least α · k;

3. We have opt1 ≤ (1 + ε) · opt.

3.1 Construction of OPT1

Definition 14 (large and small subtours). We say that a subtour is large if its demand is at least
α · k, and small otherwise.

The construction of OPT1, starting from an optimal solution OPT, is in several steps.

Step 1: Detaching small subtours. Prune each tour of OPT so that it only visits the terminals
that do not belong to a small subtour in any component, and is minimal. In other words, if a tour t
in OPT contains a small ending subtour te in a component c, then we remove te from t; and if a tour
t in OPT contains a non-spine small passing subtour tp in a component c, then we remove tp from t,
except for the spine subtour of c.

4If a tour contains several subtours in a component c, we may combine those subtours into a single subtour in c
without increasing the cost of the tour.
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Let A denote the set of the resulting tours. Note that each tour in A is connected. The removed
pieces of a non-spine small passing subtour tp may be disconnected from one another.

The parts of OPT that have been pruned consist of the set E , each element being a small ending
subtours in a component, and of the set P, each element being a group of pieces in a component
obtained from a non-spine small passing subtour by removing the corresponding spine subtour. The
demand of a group of pieces in P is the number of terminals in all of the pieces in that group.

Step 2: Combining small subtours within components.

• For each component c, repeatedly concatenate subtours in c from the set E so that in the end,
all resulting subtours in c from the set E have demands between α · k and 2α · k except for at
most one subtour.

• For each component c, repeatedly merge groups in c from the set P so that in the end, all
resulting groups in c from the set P have demands between α · k and 2α · k except for at most
one group.

Let E ′ and P ′ denote the corresponding sets after the modifications for all components c. Let
B = E ′ ∪ P ′. An element of B is either a subtour or a group of pieces in a component c. For each
component c, all elements of B in the component c have demands between α · k and 2α · k except for
at most two elements with smaller demands.

Step 3: Reassigning small subtours. Construct a bipartite graph with vertex sets A and B and
with edge set E. Let a be any tour in A, and let a0 denote the corresponding tour in OPT. Let b be
any element in B. The set E contains an edge between a and b if and only if the element b contains
terminals from a0; the weight of the edge (a, b) is the number of terminals in both b and a0. By Lemma
1 from [BP19], there exists an assignment f : B → A such that each element b ∈ B is assigned to a
tour a ∈ A with (a, b) ∈ E and that, for each tour a ∈ A, the demand of a plus the overall demand
of the elements b ∈ B that are assigned to a is at most the demand of the corresponding tour a0 plus
the maximum demand of any element in B.

Let A1 denote the set of pseudo-tours induced by the assignment f . Each pseudo-tour in A1 is
the union of a tour a ∈ A and the elements b ∈ B that are assigned to a.

Step 4: Correcting tour capacities. For each pseudo-tour a1 in A1, if the demand of a1 exceeds
k, we repeatedly remove an element b ∈ B from a1, until the demand of a1 is at most k.

Let A2 denote the resulting set of pseudo-tours. Every pseudo-tour in A2 is a connected tour of
demand at most k (Lemma 15). Let B∗ ⊆ B denote the set of the removed elements b ∈ B. The
elements in B∗ are represented by the small pieces in Fig. 2a (Page 4).

Step 5: Creating additional tours. We connect the elements of B∗ to the depot by creating
additional tours as follows.

• Let Q denote the union of the spine subtours for all internal components. Q is represented by
the green thick paths in Fig. 2a. Let X denote a multi-subgraph of T that is the union of the
elements in B∗ and the edges in Q. Observe that each element in B∗ is connected to the depot
through edges in Q. Thus X is connected, and induces a traveling salesman tour tTSP visiting
all terminals in B∗. Without loss of generality, we assume that, for any component c, if tTSP

visits terminals in c, then those terminals belong to a single subpath pc of tTSP, such that pc
does not visit any terminal from other components.

10



• If the traveling salesman tour tTSP is within the tour capacity, then let A3 denote the set
consisting of a single tour tTSP. Otherwise, we apply the iterated tour partitioning (ITP)
algorithm [HR85] on tTSP: we partition tTSP into segments with exactly k terminals each, except
possibly the last segments containing less than k terminals. For each segment, we connect its
endpoints to the depot so as to make a tour, see Fig. 2b. Let A3 denote the resulting set of
tours.

Let A4 = A2 ∪A3.

Step 6: Postprocessing. For each component c, we rearrange the small subtours in A4 as follows.

• For each tour t in A4 that contains a small subtour in c, letting tc denote this small subtour,
if tc is an ending subtour, we remove tc from t; if tc is a passing subtour, we remove tc from t,
except for the spine subtour in c. The total demand of all of the removed small subtours in c
is at most k (Lemma 16).

• We create an additional tour t∗c from the depot that connects all of the removed small subtours
in c. If the demand of t∗c is less than α · k, then we include dummy terminals at rc into the tour
t∗c so that its demand is exactly k.

Let A5 denote the resulting set of tours after removing small subtours from A4. Let A6 denote the
set of newly created tours {t∗c}c∈C .

Finally, let OPT1 = A5 ∪A6.
In Section 3.2, we show that OPT1 is a feasible solution to the unit demand tree CVRP; in

Section 3.3, we prove the three properties of OPT1 in the claim of Theorem 13.

3.2 Feasibility of the Construction

Lemma 15. Every pseudo-tour in A2 is a connected tour of demand at most k.

Proof. Let a2 be any pseudo-tour in A2. By the construction in Step 4, the demand of a2 is at most
k. It suffices to show that a2 is a connected tour.

Observe that a2 is the union of a tour a ∈ A and some elements b1, . . . , bq from B, for q ≥ 0.
From the construction, any tour a ∈ A is connected. Consider any bi for i ∈ [1, q]. Observe that
f(bi) = a, so the edge (a, bi) belongs to the bipartite graph (A,B). If bi is a subtour at rc for some
component c, then rc must belong to the tour a; and if bi is a group of pieces in some component c,
then the spine subtour of c must belong to the tour a. So the union of a and bi is connected. Thus
a2 = a ∪ b1 ∪ · · · ∪ bq is a connected tour.

Lemma 16. In any component c, the total demand of all of the removed small subtours in c at the
beginning of Step 6 is at most k.

Proof. Let c be any component. The key is to show that the number of non-spine small subtours
in c that are contained in tours in A4 is at most 4. Since A4 = A2 ∪ A3, we analyze the number of
non-spine small subtours in c that are contained in tours in A2 and in A3, respectively.

The tours in A2 contain at most two non-spine small subtours in c, since at most two elements of
B in component c have demands less than α · k.

We claim that the tours in A3 contain at most two non-spine small subtours in c. If A3 consists
of a single tour tTSP, the claim follows trivially since any tour contains at most one subtour in c from
our assumption. Next, we consider the case when A3 is generated by the ITP algorithm. From our
assumption, if tTSP visits terminals in c, then those terminals belong to a single subpath pc of tTSP,

11



such that pc does not visit any terminal from other components. By applying the ITP algorithm on
tTSP, we obtain a collection of segments. All segments that intersect pc visit exactly k terminals in c,
except for possibly the first and the last of those segments visiting less than k terminals in c. Hence
at most two non-spine small subtours in c among the tours in A3.

Therefore, the number of non-spine small subtours in c in the solution A4 is at most 4. Since each
small subtour has demand at most α · k, the total demand of the removed small subtours is at most
4 · α · k < k.

3.3 Analysis of OPT1

Let c ∈ C be any component. From Lemma 9, c contains at most 2Γ · k real terminals. Each tour in
A5 visiting terminals in c visits at least α · k real terminals in c, so there are at most 2Γ

α tours in A5

visiting terminals in c. There is a single tour in A6, the tour t∗c , that visits terminals in c. Hence the
first property of the claim. From the construction of t∗c , the second property of the claim follows.

It remains to analyze the cost of OPT1. Compared with OPT, the extra cost in OPT1 is due to
Step 5 and Step 6 of the construction. This extra cost consists of the cost of the edges in Q (Step 5),
the cost in the ITP algorithm to connect the endpoints of all segments to the depot (Step 5), and
the cost of the postprocessing (Step 6), which we bound in Corollary 18 and Lemmas 19 and 20,
respectively. Both Corollary 18 and Lemma 20 are based on Lemma 17.

Lemma 17. We have
∑

component c

dist(rc) ≤
ε

8
· opt.

Proof. For any edge e in T , let u and v denote the two endpoints of e such that u is the parent of v.
Let Te denote the subtree of T rooted at v. Let ne denote the number of terminals in Te. From the
lower bound in [HK98], we have

opt ≥
∑
e∈T

2 · w(e) · ne
k
.

Since each big component contains at least Γ · k terminals, we have

ne ≥
∑

big component c⊆Te

Γ · k.

Thus

opt ≥
∑
e∈T

2 · w(e) ·
∑

big component c⊆Te

Γ

=
∑

big component c

Γ ·
∑

e∈T such that c⊆Te

2 · w(e)

=
∑

big component c

Γ · 2 · dist(rc).

From Lemma 9, there exists a map from all components to big components such that the image of
a component is among its descendants (including itself) and each big component has at most three
pre-images. Thus

3 ·
∑

big component c

dist(rc) ≥
∑

component c

dist(rc).

Therefore,

opt ≥ 2 · Γ
3
·

∑
component c

dist(rc).

The claim follows since Γ = 12
ε .
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Corollary 18. We have cost(Q) ≤ ε
4 · opt.

Proof. Observe that every edge in Q belongs to the connection (in both directions) between the depot
and the root of some component c. By Lemma 17, we have

cost(Q) ≤ 2 ·
∑

component c

dist(rc) ≤
ε

4
· opt.

Lemma 19. Let ∆1 denote the cost in the ITP algorithm to connect the endpoints of all segments to
the depot in Step 5. We have ∆1 ≤ ε

4 · opt.

Proof. Let n′ denote the number of terminals in the tree T . First, we show that the number of
terminals on tTSP is at most 4α · n′. Observe that the number of terminals on tTSP is the overall
removed demand in Step 4. Consider any pseudo-tour a1 ∈ A1 whose demand exceeds k. Let a0

denote the corresponding tour in OPT. By the construction, the demand of a1 is at most the demand
of a0 plus the maximum demand of any element in B. Since the demand of a0 is at most k and the
demand of any element in B is at most 2α · k, the demand of a1 is at most k + 2α · k. Let a2 denote
the corresponding tour after the correction of capacity in Step 4. Since any element in B has demand
at most 2α ·k, the demand of a2 is at least k−2α ·k. So the total removed demand from a1 in Step 4
is at most 4α · k. There are at most n′

k pseudo-tours a1 ∈ A1 whose demands exceed k. Summing
over all those pseudo-tours, the overall removed demand in Step 4 is at most n′

k · 4α · k = 4α · n′.
Hence the number of terminals on tTSP is at most 4α · n′.

If 4α·n′ ≤ k, then tTSP is within the tour capacity, so the ITP algorithm is not applied and ∆1 = 0.
It remains to consider the case in which 4α ·n′ > k. By the construction in the ITP algorithm, every
segment visits exactly k terminals except possibly the last segment. Thus the number `ITP of resulting
tours in the ITP algorithm is

`IPT ≤
4α · n′

k
+ 1. (1)

Since 4α · n′ > k, we have `IPT < 8α·n′
k . Since ∆1 ≤ `ITP · 2 · Dmax and using Definition 3 and the

definition of α in the claim of Theorem 13, we have

∆1 <
8α · n′

k
· 2 ·

(
1

ε

) 1
ε
−1

·Dmin <
ε

2
· n
′

k
·Dmin.

On the other hand, the solution OPT consists of at least n′

k tours, so opt ≥ 2n′

k · Dmin. Therefore,
∆1 ≤ ε

4 · opt.

Lemma 20. Let ∆2 denote the cost of the postprocessing (Step 6). Then ∆2 ≤ ε
2 · opt.

Proof. For each leaf component c, the cost to connect the small subtours in c to the depot in Step 6
is at most 2 · dist(rc); and for each internal component c, the cost to connect the small subtours in c
to the depot is at most 2 · dist(rc) + cost(spinec). Summing over all components, we have

∆2 ≤
∑

component c

2 · dist(rc) +
∑

internal component c

cost(spinec).

By Lemma 17, we have ∑
component c

2 · dist(rc) ≤
ε

4
· opt

and ∑
internal component c

cost(spinec) = cost(Q) ≤ ε

4
· opt.

Thus ∆2 ≤ ε
2 · opt.
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From Corollary 18 and Lemmas 19 and 20, we have opt1 ≤ opt+cost(Q)+∆1 +∆2 ≤ (1+ε) ·opt.
This completes the proof for Theorem 13.

4 Height Reduction

In this section, we transform the tree T into a tree T̂ so that T̂ has Oε(1) levels of components, see
Fig. 1. We assume that the tree T has bounded distances. To begin with, we partition the components
according to the distances from their roots to the depot.

Lemma 21. Let D̃ = α · ε ·Dmin. Let Hε = (1
ε )

2
ε
+1. For each i ∈ [1, Hε], let Ci ⊆ C denote the set

of components c ∈ C such that dist(rc) ∈
[
(i− 1) · D̃, i · D̃

)
. Then any component c ∈ C belongs to a

set Ci for some i ∈ [1, Hε].

Proof. Let c ∈ C be any component. We have

dist(rc) ≤ Dmax <

(
1

ε

) 1
ε
−1

·Dmin = Hε · D̃,

where the second inequality follows from Definition 3, and the equality follows from the definition of
α in Theorem 13 and the definitions of D̃ and Hε. Thus there exists i ∈ [1, Hε] such that c ∈ Ci.

Definition 22 (maximally connected sets and critical vertices). We say that a set of components
C̃ ⊆ Ci is maximally connected if the components in C̃ are connected to each other and C̃ is maximal
within Ci. For a maximally connected set of components C̃ ⊆ Ci, we define the critical vertex of C̃ to
be the root vertex of the component c ∈ C̃ that is closest to the depot.

Fig. 1 (Page 3) is an example with three levels of components: C1, C2, and C3, indicated by different
colors. There are four maximally connected sets of components. The critical vertices are represented
by rectangular nodes.

Algorithm 1 Construction of the tree T̂ (see Fig. 1).

1: for each i ∈ [1, Hε] do
2: for each maximally connected set of components C̃ ⊆ Ci do
3: z ← critical vertex of C̃
4: for each component c ∈ C̃ do
5: δ ← rc-to-z distance in T
6: Split the tree T at the root vertex rc of the component c . vertex rc is duplicated
7: Add an edge between the root of the component c and z with weight δ
8: T̂ ←the resulting tree

Let T̂ be the tree constructed in Algorithm 1. We observe that Algorithm 1 is in polynomial time,
and Fact 6 follows from the construction. We show in Theorem 23 that the optimal cost for T̂ is
increased by an O(ε) fraction compared with the optimal cost for T .

Theorem 23. Consider the unit demand CVRP on the tree T̂ . There exist dummy terminals and a
solution OPT2 visiting all of the real and the dummy terminals, such that all of the following holds:

1. For each component c, there are at most 2Γ
α + 1 tours visiting terminals in c;

2. For each component c and each tour t visiting terminals in c, the number of the terminals in c
visited by t is at least α · k;
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3. We have opt2 < (1 + 3ε) · opt, where opt denotes the optimal cost for the unit demand CVRP
on the tree T .

In the rest of the section, we prove Theorem 23.

4.1 Construction of OPT2

Consider any tour t in OPT1. Let U denote the set of terminals visited by t.5 We define the tour t̂
as the minimal tour in the tree T̂ that spans all terminals in U , see Fig. 1. Let OPT2 denote the set
of the resulting tours on the tree T̂ constructed from every tour t in OPT1. Then OPT2 is a feasible
solution to the unit demand CVRP on T̂ .

4.2 Analysis of OPT2

The first two properties in Theorem 23 follow from the construction and Theorem 13.
In the rest of the section, we analyze the cost of OPT2.

Lemma 24. Let t denote any tour in OPT1. Let t̂ denote the corresponding tour in OPT2. Then
cost(t̂) ≤ (1 + ε) · cost(t).

Proof. We follow the notation on U from Section 4.1. Let C(U) denote the set of components c ∈ C
that contains a (possibly spine) subtour of t̂. Observe that the cost of t̂ consists of the following two
parts:

1. for each component c ∈ C(U), the cost of the subtour in c from the tour t; we charge that cost
to the subtour in t;

2. for each component c ∈ C(U), the cost of the edge (rc, z), where z denotes the father vertex of
rc in T̂ . Note that z is a critical vertex on t̂. We analyze that cost over all components c ∈ C(U)
as follows.

Let Z ⊆ V denote the set of critical vertices z ∈ V on t̂. For any critical vertex z ∈ Z, let Y (z)
denote the set of edges (z, v) in the tree T̂ such that v is a child of z and that the edge (z, v) belongs
to the tour t̂. The overall cost of the second part is the total cost of the edges in Y (z) for all z ∈ Z.

Fix a critical vertex z ∈ Z. Let (z, v1) denote the edge in Y (z) such that dist(v1) is minimized,
breaking ties arbitrarily. From the minimality of dist(v1), the z-to-v1 path in T does not go through
any component in C(U). From the construction, the cost of the edge (z, v1) in T̂ equals the cost of
the z-to-v1 path in T . It is easy to see that the z-to-v1 path in T belongs to the tour t. Indeed, tour t̂
traverses the edge (z, v1) on its way to visit some terminals of U in the subtree rooted at v1. In order
to visit the corresponding terminals in T , tour t must traverse the z-to-v1 path. We charge the cost
of the edge (z, v1) in T̂ to the z-to-v1 path in T . Next, we analyze the cost due to the other edges
in Y (z). Consider one such edge (z, v). From the construction, there exists i ∈ [1, Hε], such that
both dist(z) and dist(v) belong to

[
(i− 1) · D̃, i · D̃

)
. Thus the cost of the z-to-v path in T equals

dist(v)−dist(z) < D̃, so the extra cost in t̂ due to the edge (z, v) is at most 2 ·D̃ (for both directions).
Therefore, the extra cost in t̂ due to those |Y (z)| − 1 edges in Y (z) is at most 2 · D̃ · (|Y (z)| − 1).

Summing over all vertices z ∈ Z, and observing that all charges are to disjoint parts of t, we have

cost(t̂) ≤ cost(t) + 2 · D̃ ·
∑
z∈Z

(|Y (z)| − 1). (2)

It remains to bound
∑

z∈Z(|Y (z)| − 1). The analysis uses the following basic fact in trees.
5We assume that t is a minimal tour in T spanning all terminals in U .
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Fact 25. Let H be a tree with L leaves. For each vertex u in H, let m(u) denote the number of
children of u in H. Then ∑

u∈H
(m(u)− 1) ≤ L− 1.

We construct a tree H as follows. Starting from the tree spanning U in T̂ , we contract vertices in
each component c ∈ C(U) into a single vertex; let H denote the resulting tree. It is easy to see that
each leaf in H corresponds to a component c ∈ C(U) that contains at least one terminal in U (using
the definition of C(U) and the fact that any descending component of c do not belong to C(U)). From
the second property of Theorem 23 (which follows from Theorem 13), terminals in U belong to at
most 1/α components. Thus, by Fact 25 we have∑

z∈Z
(|Y (z)| − 1) ≤ (1/α)− 1.

Combined with Eq. (2), we have

cost(t̂)− cost(t) < 2 · D̃ · (1/α) = 2 · α · ε ·Dmin · (1/α) = 2ε ·Dmin,

using the definition of D̃ in Lemma 21. Since cost(t) ≥ 2 ·Dmin, the claim follows.

Applying Lemma 24 on each tour t in OPT1 and summing, we have opt2 ≤ (1 + ε) · opt1. By
Theorem 13, opt1 ≤ (1 + ε) · opt, thus opt2 ≤ (1 + 3ε) · opt. This completes the proof of Theorem 23.

5 Adaptive Rounding on the Subtour Demands

In this section, we prove Theorem 26. We use the adaptive rounding to show that, in a near-
optimal solution, the demands of the subtours at any critical vertex are from a set of Oε(1) values.
This property enables us to later guess those values in polynomial time by a dynamic program (see
Section 6).

Theorem 26. Let β = 1
4 ·ε

( 4
ε
+1). Consider the unit demand CVRP on the tree T̂ . There exist dummy

terminals and a solution OPT3 visiting all of the real and the dummy terminals, such that all of the
following holds:

1. For each component c, there are at most 2Γ
α + 1 tours visiting terminals in c;

2. For each critical vertex z, there exist 1
β integer values in [α · k, k] such that the demands of the

subtours at the children of z are among these values;

3. We have opt3 < (1 + 4ε) · opt, where opt denotes the optimal cost for the unit demand CVRP
on the tree T .

5.1 Construction of OPT3

We construct the solution OPT3 by modifying the solution OPT2.
Let I ⊆ V denote the set of vertices v ∈ V that is either the root of a component or a critical

vertex. Consider any vertex v ∈ I in the bottom up order. Let OPT2(v) denote the set of subtours
at v in OPT2. We construct a set A(v) of subtours at v satisfying the following invariants:

• the subtours in A(v) have a one-to-one correspondence with the subtours in OPT2(v); and

• the demand of each subtour of A(v) is at most that of the corresponding subtour in OPT2(v).

The construction of A(v) is according to one of the following three cases on v.
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Case 1: v is the root vertex rc of a leaf component c in T̂ . Let A(v) = OPT2(v).

Case 2: v is the root vertex rc of an internal component c in T̂ . For each subtour a ∈
OPT2(v), if a contains a subtour at the exit vertex ec of component c, letting t denote this subtour
and t′ denote the subtour in A(ec) corresponding to t, we replace the subtour t in a by the subtour
t′. Let A(v) be the resulting set of subtours at v.

Case 3: v is a critical vertex in T̂ . We apply the technique of the adaptive rounding, previously
used by Jayaprakash and Salavatipour [JS22] in their design of a QPTAS the tree CVRP. The idea
is to round up the demands of the subtours at the children of v so that the resulting demands are
among 1

β values.
Let r1, . . . , rm be the children of v in T̂ . For each subtour a ∈ OPT2(v) and for each i ∈ [1,m], if a

contains a subtour at ri, letting t denote this subtour and t′ denote the subtour in A(ri) corresponding
to t, we replace t in a by t′. Let A1(v) denote the resulting set of subtours at v.

Let Wv denote the set of the subtours at the children of v in A1(v), i.e., Wv = A(r1)∪· · ·∪A(rm).
If |Wv| ≤ 1

β , let A(v) = A1(v). In the following, we consider the non-trivial case when |Wv| > 1
β . We

sort the subtours inWv in non-decreasing order of their demands, and partition these subtours into 1
β

groups of equal cardinality.6 We round the demands of the subtours in each group to the maximum
demand in that group. The demand of a subtour is increased to the rounded value by adding dummy
terminals at the children of v. We rearrange the subtours in Wv as follows.

• Each subtour t ∈Wv in the last group is discarded, i.e., detached from the subtour in A1(v) to
which it belongs.

• Each subtour t ∈Wv in other groups is associated in a one-to-one manner to a subtour t′ ∈Wv

in the next group. Letting a (resp. a′) denote the subtour in A1(v) to which t (resp. t′) belongs,
we detach t from a and reattach t to a′.

Let A(v) be the set of the resulting subtours at v after the rearrangement for all t ∈Wv.

For each subtour t that is discarded in the construction, we complete t into a separate tour by
adding the connection (in both directions) to the depot. Let B denote the set of these newly created
tours. Let OPT3 = A(r) ∪B.

It is easy to see that OPT3 is a feasible solution to the unit demand CVRP, i.e., each tour in OPT3

is connected and visits at most k terminals, and each terminal is covered by some tour in OPT3.

5.2 Analysis of OPT3

From the construction, in any component c ∈ C, the non-spine subtours in OPT3 are the same as
those in OPT2. From Theorem 23, we obtain the first property in Theorem 26, and in addition, each
subtour at a child of a critical vertex in OPT2 has demand at least α · k. The second property of the
claim follows from the construction of OPT3.

It remains to analyze the cost of OPT3. Let ∆ = opt3 − opt2. Observe that ∆ is due to adding
connections to the depot to create the tours in the set B.

Fix any i ∈ [1, Hε]. Let Z ⊆ V denote the set of vertices v ∈ V such that v is the critical vertex
of a maximally connected component C̃ ⊆ Ci. For any v ∈ Z, we analyze the number of discarded
subtours in the set Wv defined in Section 5.1. If |Wv| ≤ 1

β , there is no discarded subtour in Wv; if

6We add empty subtours to the first groups if needed in order to achieve equal cardinality among all groups.
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|Wv| > 1
β , the number of discarded subtours in Wv is dβ · |Wv|e < β · |Wv| + 1 < 2β · |Wv|. Let W

denote the disjoint union of Wv for all vertices v ∈ Z. Thus W contains at most 2β · |W | discarded
subtours. Let ∆i denote the cost to connect the discarded subtours in W to the depot. We have

∆i ≤ 2β · |W | · 2 ·Dmax <
1

2
· ε(

4
ε
+1) · |W | · 2 ·

(
1

ε

) 1
ε
−1

·Dmin =
ε

Hε
· α · |W | ·Dmin, (3)

where the second inequality follows from the definition of β (Theorem 26) and Definition 3, and the
equality follows from the definitions of α (Theorem 13) and of Hε (Lemma 21). From the second
property of the claim, each subtour in W has demand at least α · k, so there are at least α · |W | tours
in OPT3. Any tour in OPT3 has cost at least 2 ·Dmin, so we have

opt3 ≥ 2 · α · |W | ·Dmin. (4)

From Eqs. (3) and (4), we have
∆i <

ε

2 ·Hε
· opt3.

Summing over all integers i ∈ [1, Hε], we have ∆ =
∑

i ∆i ≤ ε
2 · opt3. Thus

opt3 ≤
2

2− ε
· opt2.

By Theorem 23, opt2 ≤ (1 + 3ε) · opt. Therefore, opt3 ≤ (1 + 4ε) · opt. This completes the proof of
Theorem 26.

6 Dynamic Programming

In this section, we show Theorem 7. In our dynamic program, we consider all feasible solutions on the
tree T̂ satisfying the properties of OPT3 in Theorem 26, and we output the solution with minimum
cost. The first property of Theorem 26 is used in Section 6.1 in the computation of solutions inside
components, and the second property of Theorem 26 is used in Section 6.2 in the computation of
solutions in the subtrees rooted at critical vertices. These two properties ensure the polynomial
running time of the dynamic program. The cost of the output solution is at most the cost of OPT3,
which is at most (1 + 4ε) times the optimal cost on the tree T by the third property of Theorem 26.

6.1 Local Configurations

In this subsection, we compute values at local configurations (Definition 27), which are solutions
restricted locally to a component. We require that the terminals in any component are visited by at
most 2Γ

α + 1 tours, using the first property in Theorem 26. Thus the number of local configurations
is polynomially bounded.

Definition 27 (local configurations). Let c ∈ C be any component. A local configuration (v,A) is
defined by a vertex v ∈ c and a list A of `(A) pairs (s1, b1), (s2, b2), . . . , (s`(A), b`(A)) such that

• `(A) ≤ 2Γ
α + 1;

• for each i ∈ [1, `(A)], si is an integer in [0, k] and bi ∈ {“passing”, “ending”}.7

7If c is a leaf component, then bi is “ending” for each i. For technical reasons due to the exit vertex, we allow si to
take the value of 0.

18



When v = rc, the local configuration (rc, A) is also called a local configuration in the component c.

The value of a local configuration (v,A), denoted by f(v,A), equals the minimum cost of a
collection of `(A) subtours in the subtree of c rooted at v, each subtour starting and ending at v,
that together visit all of the terminals of the subtree of c rooted at v, where the i-th subtour visits si
terminals and that bi = “passing” if and only if the i-th subtour visits ec.

Let v be any vertex in c. We compute the function f(v, ·) according to one of the three cases.

Case 1: v is the exit vertex ec of the component c. For each ` ∈ [0, 2Γ/α + 1], letting A
denote the list consisting uniquely of ` identical pairs of (0, “passing”), we set f(v,A) = 0; for the
remaining lists A, we set f(v,A) = +∞.

Case 2: v is a leaf vertex of the tree T̂ . From Section 2 and the construction of T̂ , the leaf
vertices in T̂ are the same as the terminals in T̂ . Thus v is a terminal in T̂ . For the list A consisting
of a single pair of (1, “ending”), we set f(v,A) = 0; for the remaining lists A, we set f(v,A) = +∞.

Case 3: v is a non-leaf vertex of the tree T̂ and v 6= ec. Let v1 and v2 be the two children of v.
We say that the local configurations (v1, A1), (v2, A2), and (v,A) are compatible if there is a partition
P of A1 ∪ A2 into parts, each part consisting of one or two pairs, and a one-to-one correspondence
between every part in P and every pair in A such that:

• a part in P consisting of one pair (s(1), b(1)) corresponds to a pair (s, b) in A if and only if
s(1) = s and b(1) = b;

• a part in P consisting of two pairs (s(1), b(1)) and (s(2), b(2)) corresponds to a pair (s, b) in A if
and only if s = s(1) + s(2) and

b =

{
“passing”, if b(1) is “passing” or b(2) is “passing”,
“ending”, if b(1) is “ending” and b(2) is “ending”.

We set

f(v,A) = min
{
f(v1, A1) + f(v2, A2) + 2 · `(A1) · w(v, v1) + 2 · `(A2) · w(v, v2)

}
,

where the minimum is taken over all local configurations (v1, A1) and (v2, A2) that are compatible
with (v,A).

The algorithm is very simple. See Algorithm 2.

Running time. For each vertex v, since `(A) = Oε(1), the number of local configurations (v,A)
is nOε(1). For fixed (v1, A1), (v2, A2), and (v,A), there are Oε(1) partitions of A1 ∪ A2 into parts,
so checking compatibility takes time Oε(1). Thus the running time to compute the values at local
configurations in a component c is nOε(1). Since the number of components c ∈ C is at most n, the
overall running time to compute the local configurations in all components c ∈ C is nOε(1).
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Algorithm 2 Computation for local configurations in a component c.
1: for each vertex v ∈ c and each list A do
2: f(v,A) = +∞.
3: for each leaf vertex v of c do . Cases 1 & 2
4: Initialize f(v, ·)
5: for each non-leaf vertex v of c in the bottom-up order do . Case 3
6: Let v1 and v2 denote the two children of v
7: for each local configurations (v1, A1), (v2, A2), and (v,A) do
8: if (v1, A1), (v2, A2), and (v,A) are compatible then
9: f(v,A)← min(f(v,A), f(v1, A1) + f(v2, A2) + 2 · `(A1) ·w(v, v1) + 2 · `(A2) ·w(v, v2))

10: return f(rc, ·)

6.2 Subtree Configurations

In this subsection, we combine local configurations in the bottom up order to obtain subtree con-
figurations (Definition 28), which are solutions restricted to subtrees of T̂ . The number of subtree
configurations is polynomially bounded. When the subtree equals the tree T̂ , we obtain the entire
solution to the CVRP.

Definition 28. A subtree configuration (v,A) is defined by a vertex v and a list A consisting of `(A)
pairs (s̃1, n1), (s̃2, n2), . . . , (s̃`, n`(A)) such that

• v belongs to the set I (defined in Section 5.1); in other words, v is either the root of a component
or a critical vertex;

• `(A) ≤
(

1
β

) 1
α

+ 2Γ
α +1 if v is the root of a component, and `(A) ≤

(
1
β

) 1
α if v is a critical vertex;

• for each i ∈ [1, `(A)], s̃i is an integer in [0, k] and ni is an integer in [0, n].

The value of the subtree configuration (v,A), denoted by g(v,A), is the minimum cost of a
collection of `(A) subtours in the subtree of T̂ rooted at v, each subtour starting and ending at v,
that together visit all of the real terminals of the subtree rooted at v, such that ni subtours visit s̃i
(real and dummy) terminals each.

To compute the values of subtree configurations, we consider the vertices v ∈ I in the bottom up
order. See Fig. 3 (Page 6). For each vertex v ∈ I that is the root of a component, we compute the
values g(v, ·) using the algorithm in Section 6.2.1; and for each vertex v ∈ I that is a critical vertex,
we compute the values g(v, ·) using the algorithm in Section 6.2.2.

6.2.1 Subtree Configurations at the Root of a Component

In this subsection, we compute the values of the subtree configurations at the root rc of a component
c. From Section 6.1, we have already computed the values of the local configurations in the component
c.

If c is a leaf component, the local configurations in c induce the subtree configurations at rc, in
which s̃i = si and ni = 1 for all i. Thus we obtain the values of the subtree configurations at rc.

In the following, we consider the case when c is an internal component. We observe that the
exit vertex ec of the component c is a critical vertex. Thus the values of subtree configurations at
ec have already been computed using Algorithm 4 in Section 6.2.2 according to the bottom up order
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of the computation. To compute the value of a subtree configuration at rc, we combine a subtree
configuration at ec and a local configuration in c, in the following way.

Let Ae = ((s̃1, n1), (s̃2, n2), . . . , (s̃`e , n`e)) be the list from a subtree configuration (ec, Ae). Let
Ac = ((s1, b1), (s2, b2), . . . , (s`c , b`c)) be the list from a local configuration (rc, Ac). To each i ∈ [1, `c]
such that bi is “passing”, we associate si with s̃j for some j ∈ [1, `e] with the constraints that si+s̃j ≤ k
(to guarantee that when we combine the two subtours, the result respects the capacity constraint)
and that for each j ∈ [1, `e] at most nj elements are associated to s̃j (because in the subtree rooted
at ec we only have nj subtours of demand s̃j at our disposal). As a result, we obtain the list A of a
subtree configuration (rc, A) as follows:

• For each association (si, s̃j), we put in A the pair (si + s̃j , 1).

• For each pair (s̃j , nj) ∈ Ae, we put in A the pair (s̃j , nj − (number of si’s associated to s̃j)).

• For each pair (si, “ending”) ∈ Ac, we put in A the pair (si, 1).

From the construction, `(A) ≤ `(Ae) + `(Ac). Since ec is a critical vertex, `(Ae) ≤
(

1
β

) 1
α by

Definition 28. From Definition 27, `(Ac) ≤ 2Γ
α + 1. Thus `(A) ≤

(
1
β

) 1
α

+ 2Γ
α + 1 as claimed in

Definition 28.
Next, we compute the cost of the combination of (ec, Ae) and (rc, Ac); let x denote this cost.

For any subtour t at ec that is not associated to any non-spine passing subtour in the component c,
we pay an extra cost to include the spine subtour of the component c, which is combined with the
subtour t. The number of times that we include the spine subtour of c is the number of subtours at
ec minus the number of passing subtours in Ac, which is

∑
j≤`e nj −

∑
i≤`c 1 [bi is “passing”]. Thus

we have

x = f(rc, Ac) + g(ec, Ae) + cost(spinec) ·

(∑
j≤`e

nj

)
−
(∑
i≤`c

1 [bi is “passing”]
) . (5)

The algorithm is described in Algorithm 3.

Algorithm 3 Computation for subtree configurations at the root of a component c.
1: for each list A do
2: g(rc, A) = +∞.
3: for each subtree configuration (ec, Ae) and each local configuration (rc, Ac) do
4: for each way to combine (ec, Ae) and (rc, Ac) do
5: A← the resulting list
6: x← the cost computed in Equation (5)
7: g(rc, A)← min(g(rc, A), x).
8: return g(rc, ·)

Running time. The number of subtree configurations (ec, Ae) and the number of local configura-
tions (rc, Ac) are both nOε(1). For fixed (ec, Ae) and (rc, Ac), the number of ways to combine them is
Oε(1). Thus the running time of the algorithm is nOε(1).
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6.2.2 Subtree Configurations at a Critical Vertex

In this subsection, we compute the values of the subtree configurations at a critical vertex.
Let z denote any critical vertex. By Property 2 in Theorem 26, there exists a set X of 1

β integer
values in [α · k, k] such that the demands of the subtours in OPT3 at the children of z are among
the values in X. Thus the demand of a subtour at z in OPT3 is the sum of at most 1

α values in X.
Therefore, the number of distinct demands of the subtours at z in OPT3 is at most ( 1

β )
1
α = Oε(1).

To compute a solution satisfying Property 2 in Theorem 26, a difficulty arises since the set X
is unknown. Our approach is to enumerate all sets X of 1

β integer values in [α · k, k], compute a
solution with respect to each set X, and return the best solution found. Unless explicitly mentioned,
we assume in the following that the set X is fixed.

Definition 29 (sum list). A sum list A consists of `(A) pairs (s1, n1), (s2, n2), . . . , (s`(A), n`(A)) such
that

1. `(A) ≤ ( 1
β )

1
α ;

2. For each i ∈ [1, `(A)], si ∈ [α · k, k] is the sum of a multiset of values in X and ni is an integers
in [0, n].

We require that in any subtree configuration (z,A), the list A is a sum list.
Let r1, r2, . . . , rm be the children of z. For each i ∈ [1,m], let

Ai = ((s
(i)
1 , n

(i)
1 ), (s

(i)
2 , n

(i)
2 ), . . . , (s

(i)
`i
, n

(i)
`i

))

denote the list in a subtree configuration (ri, Ai). We round the list Ai to a list

Ai = ((s
(i)
1 , n

(i)
1 ), (s

(i)
2 , n

(i)
2 ), . . . , (s

(i)
`i
, n

(i)
`i

)),

where x denotes the smallest value in X that is greater than or equal to x, for any integer value x.
The rounding is represented by adding x− x dummy terminals at vertex ri to each subtour initially
consisting of x terminals. Let S ⊆ [1, k] denote a multiset such that for each i ∈ [1,m] and for each

j ∈ [1, `i], the multiset S contains n(i)
j copies of s(i)

j .

Definition 30 (compatibility). A multiset S ⊆ [1, k] and a sum list ((s1, n1), (s2, n2), . . . , (s`, n`))
are compatible if there is a partition of S into

∑
i ni parts and a correspondence between the parts of

the partition and the values si’s, such that for each si, there are ni associated parts, and for each of
those parts, the elements in that part sum up to si.

Let A = ((s1, n1), (s2, n2), . . . , (s`(A), n`(A))) be a sum list. The value g(z,A) of the subtree
configuration (z,A) equals the minimum, over all setsX and all subtree configurations {(ri, Ai)}1≤i≤m
such that S and A are compatible, of

m∑
i=1

g(ri, Ai) + 2 · n(Ai) · w(ri, z), (6)

where n(Ai) denotes
∑

j n
(i)
j . We note that n1s1 + n2s2 + · · ·+ n`(A)s`(A) is equal to the number of

(real and dummy) terminals in the subtree rooted at z.
Fix any set X of 1

β integer values in [α · k, k]. We show how to compute the minimum cost
of Eq. (6) over all subtree configurations {(ri, Ai)}1≤i≤m such that S and A are compatible. For each
i ∈ [1,m] and for each subtree configuration (ri, Ai), the value g(ri, Ai) has already been computed
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Algorithm 4 Computation for subtree configurations at a critical vertex z.
1: for each list A do
2: g(z,A)← +∞
3: for each set X of 1

β integer values in [α · k, k] do
4: for each i ∈ [0,m] and each list A do
5: DPi(A)← +∞
6: DP0(∅)← 0
7: for each i ∈ [1,m] do
8: for each subtree configuration (ri, Ai) do
9: Ai ← round(Ai)
10: for each sum list A≤i−1 do
11: for each way to combine A≤i−1 and Ai do
12: A≤i ← the resulting sum list
13: x← DPi−1(A≤i−1) + g(ri, Ai) + 2 · n(Ai) · w(ri, z)
14: DPi(A≤i)← min(DPi(A≤i), x)

15: for each list A do
16: g(z,A)← min(g(z,A),DPm(A))

17: return g(z, ·)

using the algorithm in Section 6.2.1, according to the bottom up order of the computation. We use
a dynamic program that scans r1, . . . , rm one by one: those are all siblings, so here the reasoning is
not bottom-up but left-right. Fix any i ∈ [1,m]. Let Si ⊆ [1, k] denote a multiset such that for each

i′ ∈ [1, i] and for each j ∈ [1, `i′ ], the multiset Si contains n(i′)
j copies of s(i′)

j . We define a dynamic
program table DPi. The value DPi(A≤i) at a sum list A≤i equals the minimum, over all subtree
configurations {(ri′ , Ai′)}1≤i′≤i such that Si and A≤i are compatible, of

i∑
i′=1

g(ri′ , Ai′) + 2 · n(Ai′) · w(ri′ , z).

When i = m, the values DPm(·) are those that we are looking for. It suffices to fill in the tables
DP1,DP2, . . . ,DPm.

To compute the value DPi at a sum list A≤i, we use the value DPi−1 at a sum list A≤i−1 and
the value g(ri, Ai) of a subtree configuration (ri, Ai). Let A≤i−1 = ((ŝ1, n̂1), (ŝ2, n̂2), . . . , (ŝ`, n̂`)). We

combine A≤i−1 and Ai as follows. For each p ∈ [1, `] and each j ∈ [1, `i] such that ŝp + s
(i)
j ≤ k, we

observe that ŝp + s
(i)
j is the sum of a multiset of values in X. We create np,j copies of the association

of (ŝp, s
(i)
j ), where np,j ∈ [0, n] is an integer variable that we enumerate in the algorithm. We require

that for each p ∈ [1, `],
∑

j np,j ≤ n̂p; and for each j ∈ [1, `i],
∑

p np,j ≤ n
(i)
j . The resulting sum list

A≤i is obtained as follows.

• For each association (ŝp, s
(i)
j ), we put in A≤i the pair (ŝp + s

(i)
j , np,j).

• For each pair (ŝp, n̂p) ∈ A≤i−1, we put in A≤i the pair (ŝp, n̂p −
∑

j np,j).

• For each pair (s
(i)
j , n

(i)
j ) ∈ Ai, we put in A≤i the pair (s

(i)
j , n

(i)
j −

∑
p np,j).

The algorithm is described in Algorithm 4.
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Running time. Since the numbers of sets X, of subtree configurations, of sum lists, and of ways
to combine them, are each nOε(1), the running time of the algorithm is nOε(1).

7 Reduction to Bounded Distances

In this section, we prove Theorem 5. We reduce the tree CVRP with general distances to the tree
CVRP with bounded distances. The reduction holds for the unit demand version, the splittable
version, and the unsplittable version of the tree CVRP.

7.1 Algorithm

For any subset U ⊆ V ′ of terminals, a subproblem on U is an instance to the tree CVRP, in which
the tree is T = (V,E) and the set of terminals is U . To simplify the presentation, we assume that
1/ε is an integer. For each integer i ∈ Z, let Ui ⊆ V ′ denote the set of terminals v ∈ V ′ such that
dist(v) ∈ [(1/ε)i, (1/ε)i+1).

Choose an integer i0 ∈ [0, (1/ε) − 1] uniformly at random. For each integer j ∈ Z, let Yj =
U(1/ε)·j+i0 , and let Zj ⊆ V ′ denote the union of Ui for i = (1/ε) · j+ i0 + 1, (1/ε) · j+ i0 + 2, . . . , (1/ε) ·
(j+ 1) + i0− 1. Let W denote the collection of the non-empty sets Yj ’s and the non-empty sets Zj ’s.
Note that W is a partition of the terminals in V ′.

Let A denote any polynomial time ρ-approximation algorithm for the tree CVRP with bounded
distances from the assumption in Theorem 5. Consider any set U ∈ W . From the construction, we
have

maxv∈U dist(v)

minv∈U dist(v)
<

(
1

ε

) 1
ε
−1

.

Thus the subproblem on U has bounded distances. We apply the algorithm A on the subproblem on
U to obtain a solution SOL(U).

Let SOL =
⋃
U∈W SOL(U).

It is easy to see that SOL is a feasible solution to the CVRP. Since the number of subproblems
is at most n and each subproblem is solved in polynomial time by A, the overall running time is
polynomial.

Remark 31. The algorithm can be derandomized by enumerating all of the 1/ε values of i0, and
returning the best solution found.

7.2 Analysis

We analyze the cost of the solution SOL.
For any subset U ⊆ V ′ of terminals, let opt(U) denote the optimal value for the subproblem on

U . For each set U ∈W , SOL(U) is a ρ-approximate solution to the subproblem on U . Thus we have

cost(SOL) =
∑
U∈W

cost(SOL(U)) ≤ ρ ·
∑
U∈W

opt(U) = ρ ·

∑
j

opt(Yj) +
∑
j

opt(Zj)

 . (7)

In the following, we bound
∑

j opt(Yj) and
∑

j opt(Zj).
For each i ∈ Z, define Fi ⊆ E to be

Fi =
{

(u, v) ∈ E | min(dist(u),dist(v)) ∈
[
(1/ε)i, (1/ε)i+1

) }
.
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We assume without loss of generality that, for each i ∈ Z and for each (u, v) ∈ Fi, max(dist(u), dist(v)) ≤
(1/ε)i+1. Indeed, if max(dist(u),dist(v)) > (1/ε)i+1, we may replace the edge (u, v) by a path of edges
whose total weight equals w(u, v), and such that each edge on that path satisfies the assumption.

Let F≤i denote the union of Fi′ for all i′ ≤ i.

Lemma 32.
∑

i opt(Ui) ≤ 2(1 + ε) · opt.

Proof. Consider any tour t in OPT. Let i∗ be the maximum index i such that t ∩ Ui 6= ∅. Let
ti∗ denote the tour obtained by pruning t so that it visits only the root and the terminals in Ui∗ .
Let t≤i∗−1 denote the tour obtained by pruning t so that it visits only the root and the remaining
terminals, i.e., the terminals in Ui for all i ≤ i∗− 1. Let t′ denote the common part of ti∗ and t≤i∗−1.
We duplicate t′ and charge the cost of t′ to t ∩ Fi∗−1. We have

cost(t′) ≤ cost(ti∗ ∩ F≤i∗−1) ≤ 1

1− ε
· cost(ti∗ ∩ Fi∗−1) ≤ 1

1− ε
· cost(t ∩ Fi∗−1),

where the second inequality follows from the definition of {Fi}i and using the tree structure. We
repeat on t≤i∗−1. We end up with a collection of tours, each visiting only terminals in the same set
Ui for some i. Since the charges are to disjoint parts of t, the overall cost of the duplicated parts is
at most 1

1−ε · cost(t) < (1 + 2ε) · cost(t). Summing over all tours in OPT concludes the proof.

Using Lemma 32 and since i0 ∈ [0, (1/ε)− 1] is chosen uniformly at random, we have

E
[∑

j

opt(Yj)

]
= ε ·

∑
i

opt(Ui) ≤ ε · 2(1 + ε) · opt. (8)

Next, we analyze
∑

j opt(Zj). Consider any tour t in OPT. First prune t so that it does not visit
terminals in the set Yj for any j. The rest of the analysis is similar to the proof of Lemma 32. Let j∗

be the maximum index j such that t∩Zj 6= ∅. Let tj∗ denote the tour obtained by pruning t so that
it visits only the root and the terminals in Zj∗ . Let t≤j∗−1 denote the tour obtained by pruning t so
that it visits only the root and the remaining terminals, i.e, the terminals in Zj for all j ≤ j∗ − 1.
Let t′ denote the common part of tj∗ and t≤j∗−1. We duplicate t′ and we charge the cost of t′ to
t ∩ F(1/ε)·j∗+i0 . We have

cost(t′) ≤ cost(tj∗ ∩ F≤(1/ε)·j∗+i0−1) ≤ ε

1− ε
· cost(tj∗ ∩ F(1/ε)·j∗+i0) ≤ ε

1− ε
· cost(t ∩ F(1/ε)·j∗+i0),

where the second inequality follows from the definition of {Fi}i and using the tree structure. We
repeat on t≤j∗−1. We end up with a collection of tours, each visiting only terminals in the same set
Zj for some j. Since the charges are to disjoint parts of t, the overall cost of the duplicated parts is
at most ε

1−ε · cost(t) < 2ε · cost(t). Summing over all tours in OPT, we have∑
j

opt(Zj) < (1 + 2ε) · opt. (9)

From Eqs. (7) to (9), we have

E
[
cost(SOL)

]
≤ ρ · (ε · 2(1 + ε) + (1 + 2ε)) · opt < (1 + 5ε)ρ · opt.

This completes the proof of Theorem 5.
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8 Extension to the Splittable Tree CVRP

In this section, we prove Corollary 2 by extending the PTAS in Theorem 1 to the splittable setting.

Definition 33 (splittable tree CVRP). An instance of the splittable version of the capacitated vehicle
routing problem (CVRP) on trees consists of

• an edge weighted tree T = (V,E) with n = |V | and with root r ∈ V representing the depot,

• a set V ′ ⊆ V of terminals,

• a positive integer demand d(v) of each terminal v ∈ V ′,

• a positive integer tour capacity k.

A feasible solution is a set of tours such that

• each tour starts and ends at r,

• each tour visits at most k demand,

• the demand of each terminal is covered, where we allow the demand of a terminal to be covered
by multiple tours.

The goal is to find a feasible solution such that the total cost of the tours is minimum.

We use a reduction from the splittable tree CVRP to the unit demand tree CVRP. The reduction
was introduced by Jayaprakash and Salavatipour [JS22], which we summarize. First, we reduce
an instance of the splittable tree CVRP to another instance of the splittable tree CVRP in which
d(v) ≤ k · n for any terminal v. Next, we replace each terminal v of T by a complete binary tree
T (v) of d(v) leaves, such that each leaf of T (v) is a terminal, and each edge of T (v) has weight 0. Let
T̃ denote the resulting tree. From the construction, T̃ contains at most k · n2 vertices. As observed
in [JS22], the unit-demand CVRP on T̃ is equivalent to the splittable CVRP on T .

From Theorem 1, there is an approximation scheme for the unit demand tree CVRP with running
time polynomial in the number of vertices. Therefore, we obtain an approximation scheme for the
splittable tree CVRP with running time polynomial in n and k.
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A Fig. 5

Figure 5: Bad instance for the cluster decomposition in [BP19]. Let m = 2d1
δ e + 1, where δ = Θ(ε)

is defined in [BP19]. Let the number of terminals in the tree be 2k. The 2k terminals belong to
m subtrees of 2k/m terminals each (assuming that 2k is a multiple of m). Each of the m subtrees
(represented by a triangle) is a leaf cluster according to the decomposition in [BP19]. The unique
edge incident to the root vertex (thick orange edge) has weight 1, and all other edges in the tree have
weight 0. The optimal solution consists of two tours (each visiting exactly k vertices), thus has cost
4. When the violation of tour capacity is not allowed and when each leaf cluster is required to be
visited by a single tour, the solution contains at least 3 tours, hence a cost of at least 6.

B Proof of Lemma 9

A leaf component is a subtree rooted at a vertex v ∈ V containing at least Γ · k terminals and such
that each of the subtrees rooted at the children of v contains strictly less than Γ ·k terminals. Observe
that the leaf components are disjoint subtrees of T . The backbone of T is the partial subtree of T
consisting of all edges on paths from the root of T to the root of some leaf component.

Definition 34 (key vertices). We say that a vertex v ∈ V is a key vertex if v is of one of the three
cases: (1) the root of a leaf component; (2) a branch point of the backbone; (3) the root of the tree
T .

We say that two key vertices v1, v2 are consecutive if the v1-to-v2 path in the tree does not contain
any other key vertex. For each pair of consecutive key vertices (v1, v2), we consider the subgraph
between v1 and v2, and decompose that subgraph into internal components, each of demand at most
2Γ · k, such that all of these components are big (i.e., of demand at least Γ · k) except for the upmost
component.

A formal description of the construction is given in Algorithm 5. The first three properties in the
claim follow from the construction.

It remains to show the last property in the claim. For each big component c, we define the image of
c to be itself. It remains to consider the components that are not big, called bad components. Observe
that the root vertex rc of any bad component c is a key vertex. We say that a bad component c is
a left bad component (resp. right bad component) if c contains the left child (resp. right child) of rc.
We define a map from left bad components to leaf components, such that the image of a left bad
component is the leaf component that is rightmost among its descendants, and we show that this
map is injective. Let c1 and c2 be any left bad components. Observe that rc1 and rc2 are distinct key
vertices. If rc1 is ancestor of rc2 (the case when rc2 is ancestor of rc1 is similar), then the image of c2

is in the left subtree of rc2 whereas the image of c1 is outside the left subtree of rc2 , so the images of
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Algorithm 5 Decomposition into components.
1: for each vertex v ∈ V do
2: T (v)← subtree of T rooted at v
3: n(v)← number of terminals in T (v)

4: for each non-leaf vertex v ∈ V do
5: Let v1 and v2 denote the two children of v in T
6: if n(v) ≥ Γ · k and n(v1) < Γ · k and n(v2) < Γ · k then
7: Let T (v) be a leaf component with root vertex v
8:
9: B ← set of key vertices . Definition 34

10: for each vertex v2 ∈ B such that v2 6= r do
11: v1 ← lowest ancestor of v2 among vertices in B . v1 and v2 are consecutive key vertices
12: for each vertex v on the v1-to-v2 path do H(v)← (T (v) \ T (v2)) ∪ {v2}
13: x← v2

14: while H(v1) contains at least Γ · k terminals do
15: v ← the deepest vertex on the v1-to-x path such that H(v) contains at least Γ ·k terminals
16: Let H(v) be an internal component with root vertex v and exit vertex x
17: x← v
18: for each vertex v′ on the v1-to-x path do H(v′)← (T (v′) \ T (x)) ∪ {x}
19: if v1 6= x then
20: Let H(v1) be an internal component with root vertex v1 and exit vertex x

c1 and of c2 are different. In the remaining case, the subtrees rooted at rc1 and at rc2 are disjoint,
so the images of c1 and of c2 are different. Thus the map for left bad components is injective. Note
that every leaf component is big. Therefore, we obtain an injective map from left bad components to
big components such that the image of a left bad component is among its descendants. The map for
right bad components is symmetric. Hence the first part of the last property. The second part of the
last property follows from the first part of that property and the fact that the number of components
with demands at least Γ is at most 1/Γ times the total demand in the tree T . This completes the
proof of the claim.
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