

# Radial variations in wood functional traits in a rain forest from eastern Amazonia

Andrés González-Melo, Juan Manuel Posada, Jacques Beauchêne, Romain Lehnebach, Sébastien Levionnois, Katherine Rivera, Bruno Clair

# ► To cite this version:

Andrés González-Melo, Juan Manuel Posada, Jacques Beauchêne, Romain Lehnebach, Sébastien Levionnois, et al.. Radial variations in wood functional traits in a rain forest from eastern Amazonia. Trees - Structure and Function, 2022, 36, pp.569-581. 10.1007/s00468-021-02229-1. hal-03456796

# HAL Id: hal-03456796 https://hal.science/hal-03456796v1

Submitted on 30 Nov 2021

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

| 1  | Original article                                                                                                                                  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                                   |
| 3  | RADIAL VARIATIONS IN WOOD FUNCTIONAL TRAITS IN A RAIN FOREST FROM EASTERN                                                                         |
| 4  | AMAZONIA                                                                                                                                          |
| 5  |                                                                                                                                                   |
| 6  | Andrés González-Melo <sup>1*</sup> , Juan Manuel Posada <sup>1</sup> , Jacques Beauchêne <sup>2</sup> , Romain Lehnebach <sup>3</sup> , Sébastien |
| 7  | Levionnois <sup>4,5</sup> , Katherine Rivera <sup>6</sup> , Bruno Clair <sup>4,7</sup>                                                            |
| 8  |                                                                                                                                                   |
| 9  | <sup>1*</sup> Biology Department, Faculty of Natural Sciences, Universidad del Rosario. Carrera 24 # 63C-69. Bogotá                               |
| 10 | D.C., 111221, Colombia                                                                                                                            |
| 11 | <sup>2</sup> CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRA, Université des                                         |
| 12 | Antilles, Université de Guyane, 97310                                                                                                             |
| 13 | <sup>3</sup> UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Ghent University, Coupure                                   |
| 14 | Links 653, B-, 9000, Gent, Belgium                                                                                                                |
| 15 | <sup>4</sup> CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRAE, Université des Antilles, Université de Guyane,                                        |
| 16 | 97310 Kourou, France                                                                                                                              |
| 17 | <sup>5</sup> AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France.                                                         |
| 18 | <sup>6</sup> Universidad Distrital Francisco José de Caldas. Programa de Ingeniería Forestal. Avenida Circunvalar con                             |
| 19 | Venado de Oro. Bogotá, Colombia                                                                                                                   |
| 20 | <sup>7</sup> LMGC, CNRS, Université de Montpellier, 34090 Montpellier, France                                                                     |
| 21 |                                                                                                                                                   |
| 22 |                                                                                                                                                   |
| 23 | * Corresponding author : germana.gonzalez@urosario.edu.co                                                                                         |
| 24 |                                                                                                                                                   |
| 25 |                                                                                                                                                   |
| 26 | Declarations                                                                                                                                      |
| 27 |                                                                                                                                                   |
| 28 | Funding: The authors acknowledge financial support from Colciencias (Colombian Agency for Science and                                             |
| 29 | Technology) and the University of Guyane.                                                                                                         |
| 30 | Conflict of interest: The authors have no conflicts of interest to declare.                                                                       |
| 31 | Availability of data: The datasets analyzed during the current study are available in the OSF repository,                                         |
| 32 | [ DOI 10.17605/OSF.IO/HS3MA]                                                                                                                      |
| 33 | Code availability: No                                                                                                                             |

| 34 | Authors' contributions: The study was designed by A.G.M., J.M.P., B.C. and J.B. Most wood samples were          |
|----|-----------------------------------------------------------------------------------------------------------------|
| 35 | collected by R.L. and A.G.M. Additional samples were provided by B.C., J.B. and S.L. Anatomical images          |
| 36 | were processed by A.G.M. and K.R. Data analyses were performed by A.G.M. with contributions from J.M.P.         |
| 37 | The first draft of the manuscript was written by A.G.M. with inputs from J.M.P. All authors contributed equally |
| 38 | to the writing and interpretation of advanced versions of the manuscript.                                       |
| 39 | Ethics approval: Not required                                                                                   |
| 40 | Consent to participate: Not required                                                                            |
| 41 | Consent for publication: Not required                                                                           |
| 42 |                                                                                                                 |
| 43 | Key message: Positive radial trends in WSG were common among light-demanding species, and were mainly           |
| 44 | explained by radial shift in fiber and parenchyma traits.                                                       |
| 45 |                                                                                                                 |
| 46 |                                                                                                                 |
| 47 |                                                                                                                 |
| 48 |                                                                                                                 |
| 49 |                                                                                                                 |
| 50 |                                                                                                                 |
| 51 |                                                                                                                 |
| 52 |                                                                                                                 |
| 53 |                                                                                                                 |
| 54 |                                                                                                                 |
| 55 |                                                                                                                 |
| 56 |                                                                                                                 |
| 57 |                                                                                                                 |
| 58 |                                                                                                                 |
| 59 |                                                                                                                 |
| 60 |                                                                                                                 |
| 61 |                                                                                                                 |

62 ABSTRACT

| 64 | Trees can modify their wood structure in response to changes in mechanical, hydraulic and storage demands            |
|----|----------------------------------------------------------------------------------------------------------------------|
| 65 | during their life-cycles. Thus, examining radial variations in wood traits is important to expand our knowledge      |
| 66 | of tree functioning and species ecological strategies. Yet, several aspects of radial changes in wood functional     |
| 67 | traits are still poorly understood, especially in angiosperm trees from tropical humid forests.                      |
| 68 |                                                                                                                      |
| 69 | Here, we examined radial shifts in wood traits in trunks of tropical forest species and explored their potential     |
| 70 | ecological implications. We first examined radial variations in wood specific gravity (WSG). Then, we asked          |
| 71 | what anatomical traits drove radial variations in WSG, and whether WSG, vessel fraction and specific hydraulic       |
| 72 | conductivity vary independently from each other along the radius gradients.                                          |
| 73 |                                                                                                                      |
| 74 | We measured WSG and eight wood anatomical traits, at different radial positions along the trunks, in 19 tree         |
| 75 | species with contrasting shade-tolerance from a lowland tropical forest in Eastern Amazonia.                         |
| 76 |                                                                                                                      |
| 77 | Most species had significant radials shifts in WSG. Positive radial gradients in WSG (i.e., increments from pith     |
| 78 | to bark) were common among shade-intolerant species and were explained by different combinations of fiber            |
| 79 | and parenchyma traits, while negative radial shifts in WSG (e.g., decreases towards the bark) were present in        |
| 80 | shade-tolerants, but were generally weakly related to anatomical traits. We also found that, in general, WSG         |
| 81 | was unrelated to vessel fraction and specific hydraulic conductivity in any radial position.                         |
| 82 |                                                                                                                      |
| 83 | This study illustrates the contrasting radial variations in wood functional traits that occur in tree species from a |
| 84 | humid lowland tropical forest. In particular, our results provide valuable insights into the anatomical traits       |
| 85 | driving WSG variations during tree development. These insights are important to expand our knowledge on              |
| 86 | tree ecological strategies by providing evidence on how wood allocation varies as trees grow, which in turn can      |
| 87 | be useful in studying trait-demography associations, and in estimating tree above-ground biomass.                    |
| 88 |                                                                                                                      |
| 89 | Key words: Wood functional traits, radial variation, tree functioning, tropical trees, wood anatomy.                 |

#### 90 INTRODUCTION

91

92 The study of wood traits has a long tradition in wood technology and wood anatomy (e.g., Zobel and Buijtenen 93 1987, Carlquist 2001, Baas et al., 2016). Yet, with the emergence of trait-based ecology in the last decades 94 (Westoby and Wright 2006, Shipley et al., 2016), there has also been an increasing interest in studying wood 95 traits from an ecological perspective (i.e., Larjavaara and Muller-Landau 2010, Beeckman et al., 2016). One 96 basic assumption of trait-based ecology is that, in broad interspecific comparisons, trait variation among species 97 would be greater than among or within-individual trait variations (Shipley et al., 2016). Hence, most trait-based 98 studies on wood have used mean trait values per species, overlooking the often remarkable trait variation that 99 exists within trees (i.e., Hietz et al., 2013, Olson and Rosell, 2013). As a consequence, several aspects of radial 100 (i.e., from pith to bark) changes in wood traits in individual trees, and their ecological significance, are still 101 poorly understood (Lachenbruch et al., 2011, Hietz et al., 2016, Rungwattana and Hietz 2017). In this sense, 102 studying these radial changes in wood traits may increase our understanding of stem allocation patterns and 103 functioning during tree development, and consequently of life-history variations across species.

104

105 Wood specific gravity (WSG) is considered a central trait to understand tree functioning and species 106 ecological strategies (Westoby and Wright 2006, Chave et al., 2009). For instance, WSG is generally related to 107 biomechanical (King et al., 2006, Anten and Shieving 2010) or hydraulic properties (Santiago et al., 2004, 108 2018), and is hypothesized to mediate a trade-off between stem construction and maintenance costs (Larjavaara 109 and Muller-Landau 2010). Moreover, it is well established that there can be important radial changes in WSG 110 within trees (Hietz et al., 2013, Osazuwa-Peters et al., 2014, Plourde et al., 2015). These radial trends in WSG 111 may reflect the combined effects of the age of the vascular cambium, which can determine the size of wood 112 cells produced (Lachenbruch et al., 2011), or tree diameter, since trees adjust their wood anatomy in response 113 to size-related changes in mechanical and hydraulic demands (Nock et al., 2009, Williamson and Wiemann 114 2010a, Rungwattana & Hietz 2017). Alternatively, these radial changes might be a consequence of the 115 deposition of wood extractives in the inner wood during heartwood formation (Lehnebach et al., 2019, but see 116 Larjavaara and Muller-Landau 2010).

118 In angiosperms, wood is composed of three main cell types: fibers that mainly provide mechanical 119 support, vessels responsible for sap transport, and living parenchyma cells that, among others, store and 120 transport nutrients and secondary metabolites (i.e., Carlquist 2001). As specific gravity (SG) is an emergent 121 property of wood that is affected by the relative amount of fibers, vessels and parenchyma cells, quantifying 122 radial shifts in their proportions and morphologies can help us attain a broader and deeper understanding of the 123 functional bases underlying radial trends in WSG (i.e., Zieminska et al., 2015). A number of studies have 124 examined the anatomical drivers of interspecific variations in WSG of angiosperm trees. These studies have 125 shown that WSG can be driven by fiber traits such as fiber fraction or wall thickness (i.e., Martínez-Cabrera et 126 al., 2009, Fortunel et al., 2013, Zieminska et al., 2013). Yet, this trend may not always hold for all species, 127 especially for species with intermediate (c. 0.50-0.80) WSG, since some species with similar values of WSG 128 may have contrasting wood anatomies (Zieminska et al., 2015).

129

130 Studies aiming at understanding the anatomical bases of radial changes in WSG have been mostly done 131 on temperate gymnosperm species (reviewed by Lachenbruch et al., 2011), while very few studies have been 132 conducted on tropical angiosperm forest trees (e.g., McDonald et al., 1995, Rungwattana & Hietz 2017). In one 133 of these few studies, Rungwattana & Hietz (2017) showed that the anatomical drivers of radial shifts in WSG 134 varied substantially among five tree species from a dry tropical forest. Yet, these results cannot be easily 135 extrapolated to other tropical forests. First, radial variations in WSG are thought to be less pronounced in trees 136 from dry forests compared to trees from humid forests, possibly because canopy stratification and light 137 competition tend to be lower in dry forests (Wiemann & Williamson 1989). Second, WSG tend to be higher in 138 dry forests than in humid ones (Chave et al., 2009), suggesting that in dry forest wood a large stem cross-139 sectional area is occupied by fibers. Third, trees from dryland areas also tend to have higher total parenchyma 140 fractions than trees from humid areas (Morris et al., 2016). Thus, it is likely that radial gradients in wood traits 141 reported for dry forest trees may differ considerably from those of humid forest trees. Despite the existence of 142 valuable studies on WSG (i.e., Nock et al., 2009, Williamson and Wiemann 2010a, Hietz et al., 2013, Plourde 143 et al., 2015) and vessel lumen size (i.e., Olson et al., 2013, Hietz et al., 2016), detailed aspects of radial 144 variations in wood traits in trees from humid tropical forests are still unknown.

146 An additional aspect to consider when studying the underlying anatomical drivers of radial changes in 147 WSG is that, while WSG and fiber traits represent one major axis of variation in wood structure (Martínez-148 Cabrera et al., 2009, Fortunel et al., 2013, Zieminska et al., 2013), there is also substantial anatomical variation 149 that is independent of WSG (Zieminska et al., 2015). For example, vessel fraction ( $F_V$ ), i.e., the amount of stem 150 cross-sectional area allocated to vessels, is thought to reflect an axis of variation in xylem structure that is 151 largely orthogonal to WSG (i.e., Zanne et al., 2010). This independence between traits may be significant 152 because it suggests that hydraulic and mechanical functions might be decoupled (Hietz et al., 2016). There are 153 good biophysical and anatomical reasons why these functions should be independent. For example, since 154 specific hydraulic conductivity ( $K_S$ ) increases exponentially with vessel lumen area ( $V_A$ , Tyree and Zimmerman 155 2002), trees may adjust Ks by small increments in  $V_A$ , without considerable variations in  $F_V$  or WSG (Poorter 156 et al., 2010, Zanne et al., 2010). Similarly, for a constant fiber fraction ( $F_F$ ), trees can modulate WSG by 157 increasing fiber wall thickness ( $F_{WT}$ ) (i.e., Zieminska et al., 2013). Hence, it appears that trees can adjust  $F_V$  or 158 K<sub>s</sub> independently of WSG and mechanical stability (Hietz et al., 2016). It remains unclear, however, if these 159 orthogonal relationships between F<sub>V</sub>, K<sub>S</sub> and WSG are radially constant

160

In this study, we quantified radial changes in wood functional traits, and analyzed correlations between these traits, in 19 tree species from a lowland humid forest in Eastern Amazonia. Our general aim was to broaden our understanding of the anatomical bases of radial trends in wood specific gravity. In particular, we wanted to answer the following questions: (i) How does wood specific gravity change with tree diameter (ii) What are the main anatomical drivers of radial trends in wood specific gravity? (iii) Do vessel fraction and specific hydraulic conductivity vary independently of wood specific gravity as trees grow larger?

- 167
- 168
- 169
- 170
- 171
- 172
- 173

#### 174 MATERIALS AND METHODS

175

Study site — The research took place in the Paracou field station, a lowland tropical humid forest located in
northern French Guiana (5° 18' N, 52° 55' W). The site has a mean annual temperature of 28.4°C, and annual
rainfall averages 3.000 mm with a marked dry season from August to November, and a distinct rainy season
between March and June (Wagner et al., 2011). In terms of floristic composition and species richness, the forest
of Paracou is representative for northeaster Amazonia (ter Steege et al., 2006) and the Guiana Shield (ter Steege
et al., 2000). Detailed descriptions of soils of Paracou can be found in Ferry et al., (2010) and Vincent et al.,
(2011).

183

184 Species and sampling — At Paracou, a 25-ha and three 6.25-ha permanent plots were established, between 185 1991 and 1992, to study the dynamics of an undisturbed tropical rain forest, and censuses of all stems with 186 DBH > 10 cm have been conducted every five years since then (Gourlet-Fleury et al., 2004). Based on 23-year 187 census data from these plots, we selected 19 tree species with broad gradients of variation in growth rates and 188 shade-tolerance, and belong to some of the most dominant families at the site, namely Fabaceae, Lecythidaceae 189 and Chrysobalanaceae (Table 1, Hérault et al., 2011, Baraloto et al., 2012). Our study species also spanned a 190 wide spectrum of mean wood specific gravity ranging from 0.30 to 0.97 (Table 2). In total, we sampled 65 191 mature trees (DBH >10 cm), with two to five individuals per species (Table 1). All wood samples were collected 192 in Paracou, except for Cordia alliodora, Schefflera morototoni, Cecropia obtusa and Miconia tschudyoides, 193 that were collected in a nearby secondary forest. Samples of eight species (e.g., all legume species, Cordia 194 alliodora and Bagassa guianensis) were from previous studies (Bossu, 2015, Lehnebach et al., 2019).

195

Wood samples were collected, in 2014 and 2018, from stem discs taken at breast height, from cutdown trees. From each wood sample, wood segments of 2 x 2 cm size were cut and split every 0.5 cm from pith to bark. Whenever possible, heartwood and sapwood were distinguished based on color differences, and sapwood and heartwood lengths were measured. For each wood segment, we measured the radial position with respect to the pith, fresh volume and dry mass. Fresh volume was measured with the water displacement method, and dry mass was obtained after drying the segments at 103°C to a constant mass, for 24-72 h. WSG 202 per segment was defined as dry mass over fresh volume (Kollman and Coté 1968). For each tree, wood 203 anatomical analyses were conducted on the segments closest to the pith, and every 1.5 cm until reaching the 204 bark. To characterize wood anatomy, the cross-sectional surface of each wood segment was sanded using a 205 polishing machine with 1200-grit diamond discs, and then samples were cut with a GLS-1 sledge microtome 206 (Gärtner et al., 2015) to get a plane surface. Then, photographs were taken at 5-10 x objective lenses using a 207 reflected light (episcopic) microscope (BFMX, Olympus, Tokyo, Japan), equipped with a digital camera (Canon 208 EOS T6i; Canon Inc., Tokyo, Japan). For each wood segment, between 10-20 partially focused images were 209 taken and were then combined using Helicon Focus (Helicon Focus Ltd., Kharkov, Ukraine). Because of its 210 very high WSG (0.97), it was not possible to obtain high-quality anatomical images of Bocoa provacensis and 211 this species was excluded from the anatomical analyses.

212

213 From each anatomical image (see Fig. S1), fractions of fibers ( $F_F$ ), vessels (i.e., vessel lumen,  $F_V$ ), 214 axial parenchyma ( $F_{AP}$ ), radial parenchyma ( $F_{RP}$ ) and total parenchyma ( $F_{TP}$ :  $F_{AP} + F_{RP}$ ) per cross-section were 215 measured in the whole image. To calculate cell fractions, wood cell types were manually colored using 216 Photoshop (Adobe Systems Incorporated, USA) and then added automatically using the batch function in the 217 software ImageJ (https://imagej.nih.gov/ij/). Moreover, in each anatomical image, three metrics related to 218 xylem vascular strategies were measured: Vessel lumen area (V<sub>A</sub>, mm<sup>2</sup>), vessel number (V<sub>N</sub>, number of vessels 219 per mm<sup>-2</sup>) and specific hydraulic conductivity (K<sub>S</sub>, kg m MPa<sup>-1</sup> s<sup>-1</sup>h). To calculate V<sub>A</sub> and V<sub>N</sub>, all conduits within 220 each anatomical image were manualy coloured, counted and measured. K<sub>S</sub> was estimated according to the 221 Hagen-Poiseuille equation as

222

223  $K_S = \rho w/(128 \eta) V_D Dh^4 10^6$ 

224

where  $\rho w$  is the density of water at 20° C (998.2 kg m<sup>-3</sup>) and  $\eta$  is the viscosity of water at 20° C (1.002 x 10<sup>-9</sup> MPa s); Dh is the mean hydraulically weighted vessel diameter given by

227

**228**  $Dh = (\Sigma D^4 / n)^{1/4}$ 

where D is the average of the major and minor axis for each vessel cross-section (in mm) and n is the total number vessels (Tyree and Zimmermann 2002, Hietz et al., 2016). Fiber wall thickness ( $F_{WT}$ ,  $\mu$ m) was measured by taking photographs with a 100x objective lens using a laser microscope (VK 9710, Keyence). Each crosssectional image (see Fig. S2) was divided in four equal sections and 8 pairs of fibers were randomly selected in each section, for a total of 32 pairs of fibers per image. To obtain  $F_{WT}$ , double wall thickness was measured and then divided by two, using ImageJ.

236

237 Data analyses— To analyze radial gradients in WSG (question 1), we fitted separate linear models (LM) per 238 species predicting WSG based on radial distance. We also evaluated non-linear equations in these LM, as 239 curvilinear gradients in WSG are common among tropical trees (e.g., Williamson and Wiemann 2010a, 240 Osazuwa-Peters et al., 2014). Previous studies examining non-linear radial trends in WSG have considered 241 mainly quadratic equations (e.g., Ozazuwa-Peters et al., 2014) which, although widely used and flexible, cannot 242 describe some patterns commonly observed during tree growth. Therefore, we fitted linear or curvilinear 243 functions (i.e., quadratic, logistic and cubic) to each WSG-radial distance species plot and compared these 244 models based on Akaike's Information Criterion corrected for small sample sizes (AIC<sub>c</sub>), with lower AIC<sub>c</sub> 245 scores indicating a better fit to the data. When the difference in AIC<sub>C</sub> scores between two models was  $\leq 2$ , we 246 selected the simpler model with fewer parameters (Burnham and Anderson 2002). Finally, we examined 247 residual plots to confirm linear or non-linear trends. We also analyzed radial trends in wood anatomical traits 248 for each species (see Table S1), we used linear or generalized linear models (GLM) to predict each anatomical 249 trait based on radial distance. Yet, in these models we were not able to reliably test non-linear terms because 250 for several trees, particularly the small-to-medium-sized ones, we had only a few radial anatomical 251 measurements.

252

After examining radial trends in WSG, we studied the anatomical drivers of those trends (question 2). To do so, we analyzed a subset of our dataset consisting of 13 (excluding *B. prouacensis*) species that had significant radial trends in WSG (Table 3). First, we fitted linear mixed models with all possible predictors (i.e., anatomical traits) and species and individuals as random factors. The best-fit model based was selected based

| 259 |                                                                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 260 | WSG~F <sub>F</sub> +F <sub>WT</sub> +F <sub>AP</sub> +F <sub>RP</sub> +(1  Species Individuals)                                                      |
| 261 |                                                                                                                                                      |
| 262 | We then fitted separate multiple regression models for each of the 13 species, predicting radial shifts in WSG                                       |
| 263 | based on F <sub>F</sub> , F <sub>WT</sub> , F <sub>AP</sub> and F <sub>RP</sub> . F <sub>AP</sub> was log-transformed to meet normality assumptions. |
| 264 |                                                                                                                                                      |
| 265 | As Fv and Ks may vary independently from WSG across species (Zanne et al., 2010, Hietz et al., 2016),                                                |
| 266 | we tested if this assumption still holds radially within trees (question 3). To do this, we fitted separate LM per                                   |
| 267 | species predicting these traits (i.e., $F_V$ and $K_S$ ) based on radial distance. In these models, we included a radial                             |
| 268 | distance-WSG interaction term ( $DxWSG$ ). Both $F_V$ and $K_S$ were $log_{10}$ transformed to meet regression                                       |
| 269 | assumptions. Lack of significance of the DxWSG interaction term, accompanied by a significant radial change                                          |
| 270 | in F <sub>v</sub> or K <sub>s</sub> , would mean that the radial trend of a given hydraulic trait was independent of WSG. All LM, GLM                |
| 271 | and multiple regression models were fitted using the "MASS" package (Venables & Ripley 2002) in the                                                  |
| 272 | software R 3.6.1 (R Development Core Team 2019)                                                                                                      |
| 273 |                                                                                                                                                      |
| 274 |                                                                                                                                                      |
| 275 | RESULTS                                                                                                                                              |
| 276 |                                                                                                                                                      |
| 277 | Overall, there was substantial variation in mean wood trait values across species (Table 2). Mean WSG ranged                                         |
| 278 | from 0.30 in S. morototoni to 0.97 in B. prouacensis (2.9-fold variation, Table 2). Fibers, the most abundant                                        |
| 279 | cell type, occupied on average 63.3% of wood cross-section and had the lowest variation between traits (1.83-                                        |
| 280 | fold variation). Fiber wall thickness averaged 4.15 $\mu$ m and varied 4.34-fold between species. Total parenchyma                                   |
|     |                                                                                                                                                      |

on AIC<sub>C</sub>, which penalizes models with additional parameters (Burnham and Anderson 2002), and it was as

- (axial + radial) was the second most abundant cell type with a mean fraction of 27.6% and a 3.5-fold variation.
- $\label{eq:282} \mbox{Vessel fraction averaged at 8.94\% (with 4.9-fold variation). Mean $K_S$ varied from 46.9 to 330.1 (kg m MPa^{-1} s^{-1} s^{-1}$
- 283<sup>1</sup>) with 7.17-fold variation (Table 2).

284

257

258

follows:

285 Radial gradients in WSG and wood anatomical traits—We found significant radial changes in WSG in 14 out 286 of the 19 study species (74%; Fig. 1, Table 3). Among them, positive gradients in WSG were observed in nine 287 species, mostly corresponding to fast-growing species (e.g., C. obtusa, S. morototoni) or semi shade-tolerants 288 (sensu Favrichon 1994; Dicorynia guianensis or Eperua falcata); while negative gradients were present in five 289 species (e.g., B. prouacensis or Swartzia panacoco; three of them are shade-tolerants). Radial gradients in WSG 290 were best fitted by linear models in eight species (57.1%), while quadratic and cubic models best explained 291 radial gradients in WSG in four (28.5%) and two (14.2%) species, respectively (Fig. 1, Table 3). The 292 coefficients of determination of these models (Table 3) suggest that radial trends in WSG are not only common 293 in the study site, but also substantial. Five species had no significant radial shifts in WSG. Not all species 294 showed significant trends in wood anatomical traits, and the signs and coefficient of determination of these 295 trends, when significant, usually varied between species. In general,  $F_F$ ,  $F_{AP}$  and  $F_{TP}$  tended to increase with 296 increasing radial distance (Fig. 2, Table S1).

297

298 Anatomical drivers of radial gradients in WSG—For the 13 species that had significant radial changes in WSG 299 (Table 3), we examined the anatomical traits underlying those trends by fitting multiple regression models. 300 These models predicted radial changes in WSG in only six species. Among these six species, radial variations 301 in WSG were predicted by different combinations of fiber and parenchyma traits (Table 4). There were two 302 main ways in which trees modulated fiber fractions and morphologies in order to increase WSG radially: 303 increasing fiber wall thickness (F<sub>WT</sub>) (e.g., Bagassa guianensis or Shefflera morototoni), or increasing both F<sub>WT</sub> 304 and fiber fraction ( $F_F$ ) (e.g., Virola michelii or Miconia tschudyoides).  $F_{AP}$  and  $F_{RP}$  had either positive or 305 negative effects on positive radial trends in WSG (Table 4).

306

307 *Links between vessel related traits and WSG*— Vessel fraction ( $F_V$ ) changed significantly from pith to bark in 308 nine species (Table 5). Of these species, the radial distance-WSG interaction term (DxWSG) was significant in 309 only one species, indicating that these radial changes in  $F_V$  were largely independent from WSG (Table 5, Fig. 310 3). Specific hydraulic conductivity ( $K_S$ ) increased significantly with stem diameter in ten species (Table 5). In 311 three of these species, the DxWSG interaction term was significant, which indicates that variations in  $K_S$  were 312 in general independent of shifts in WSG.

- 313
- 314
- 315
- 316
- 317

### 318 DISCUSSION

319

320 Positive radial gradients in WSG and their anatomical drivers— Similar to previous research (i.e., Hietz et 321 al., 2013, Plourde et al., 2015), we found significant and positive radial gradients in WSG in all pioneer and 322 semi shade-tolerant species (Fig.1, Table 3). A number of studies have suggested that radial gradients in WSG 323 in fast-growing species reflect their growth and allocation strategy (i.e., Woodcock and Shier 2002, Hietz et al., 324 2013, Plourde et al., 2015). For instance, juveniles of fast-growing species tend to produce low specific gravity 325 (SG) wood to favor high growth rates; and later, when they reach more favorable canopy layers, they produce 326 high SG wood, probably to enable crown expansion and to increase mechanical stability (Woodcock and Shier 327 2002, Nock et al., 2009, Osazuwa-Peters et al., 2014). Then, positive radial gradients in WSG have been 328 interpreted as providing mechanical advantage, since trees with high SG wood in the outer part of the trunk can 329 achieve needed strength, at a lower construction cost, than trees with high SG in inner wood (Hietz et al., 2013, 330 Schüller et al., 2013, Bossu et al., 2018).

331

332 In contrast, our knowledge on the radial changes in wood anatomy underlying this growth strategy is 333 still limited (Rungwattana and Hietz 2017). Zieminska et al., (2013, 2015) have shown that similar values of 334 WSG, particularly intermediate ones (c. 0.50-0.80), might be the product of different combinations of wood 335 anatomies. Likewise, we found that positive radial gradients in WSG were driven by different combinations of 336 fiber and parenchyma traits (Table 4, Fig. 2). Previous studies on fast-growing species have found that radial 337 increments in WSG can be explained either by increments in fiver fractions (McDonald et al., 1995) or in fiber 338 wall thickness (Rungwattana & Hietz et al., 2017). Here, we extend these findings by showing that there are 339 two alternative ways in which trees can adjust fibers in order to increase WSG radially: (i) by simultaneously 340 increasing fiber fractions ( $F_F$ ) and fiber wall thickness ( $F_{WT}$ ) (i.e., Virola michelii or Miconia tschudyoides, 341 Table 4, Fig. 2), or (ii) by increasing F<sub>WT</sub> (i.e., *Bagassa guianensis* or *Schefflera morototoni*, Table 4, Fig. 2). 342 Fibers are the most abundant cell type and tend to have thicker walls compared to other wood cells (Zieminska 343 et al., 2013), and thus are expected to contribute to a large extent to WSG variations (Jacobsen et al., 2007, 344 Martínez-Cabrera et al., 2009). On the other hand, we found that axial parenchyma fractions ( $F_{AP}$ ) and fiber 345 fractions ( $F_{RP}$ ) can have either positive or negative effects on radial changes in WSG (Table 4). However, their 346 overall influence on radial WSG variations should be small, since both axial and parenchyma cells tend to have 347 thin walls of low tissue densities (i.e., Fujiwara 1992). The fact that positive radial gradients in WSG were 348 underpinned by different radial shifts in fiber and parenchyma traits suggests that species with similar shade-349 tolerance may differ in their stem allocation patterns and functioning. For instance, species that increase WSG 350 radially by increasing F<sub>WT</sub>, also tend to decrease F<sub>F</sub> towards the bark (Table 4). This suggests that these species 351 might achieve needed strength while leaving more wood volume available for vessels or parenchyma cells, in 352 comparison to species that adjust WSG radially by increasing both F<sub>F</sub> and F<sub>WT</sub>.

353

354 While there is a growing consensus that positive radial gradients in WSG represent a benefit in terms 355 mechanical stability (i.e., Hietz et al., 2013, Schüller et al., 2016, Bossu et al., 2018), it is still less clear what 356 are the potential disadvantages of this growth strategy. Larjavaara and Muller-Landau (2010) showed that low-357 WSG species can achieve greater strength than high WSG species, at a lower construction cost, by building 358 thicker stems. Yet, they also hypothesized that, for the same strength, low-WSG species would have higher 359 maintenance costs compared to high-WSG species, because stem respiration is thought to be proportional to 360 stem surface area. This hypothesis would hold in general for our study species, given that low WSG species 361 usually attain larger stem diameters compared to high-density species (Table 2). However, although this 362 hypothesis has received considerable interest and is partially supported by recent experimental evidence (e.g., 363 Rodríguez-Calcerrada et al., 2019), it does not consider radial variations in WSG that are prevalent in several 364 forest types. The occurrence of these radial trends in WSG suggests that stem construction costs may change 365 as trees grow. Moreover, while stem maintenance costs may be proportional to stem surface area (Larjavaara 366 and Muller-Landau 2010), it is likely that stem respiration will be more linked to the fraction of living 367 parenchyma cells (Rodríguez-Calcerrada et al., 2019). We observed contrasting radial trends in total 368 parenchyma fractions among our study species (Table S1, Fig. 2), indicating that species might also have

distinct radial changes in stem respiration. We suggest that future studies should explore both radial changes in 370 stem construction and maintenance costs in order to better understand the ecological significance of radial WSG 371 variations.

372

373 *Negative radial trends in WSG*— We found significant and negative radial trends in WSG in five species (*B.* 374 prouacensis, Recordoxylon speciosum, E. falcata, Hirtella glandulosa and Sextonia rubra; Fig. 1, Table 3). In 375 all of these species, heartwood was clearly distinguished on the basis of color difference. It has been suggested 376 that the deposition of wood extractives in the inner stem, during heartwood formation, may explain the 377 occurrence of negative radial trends in WSG (Hietz et al., 2013, Lehnebach et al., 2019). Wood extractives are 378 secondary compounds involved in defense (Hillis 1987), that can affect WSG via increments in wood dry mass. 379 For example, Lehnebach et al., (2019) showed that heartwood extractives changed the magnitude of radial 380 trends in WSG in R. speciosum, and both the magnitude and direction of radial shifts in WSG in B. prouacencis 381 and E. falcata. In the case of E. falcata and R. speciosum, our results showed that radial shifts of WSG were 382 unrelated to anatomical traits (Table 3), which indicates that heartwood extractives would be the main drivers 383 of those trends. Thus, the negative radial shifts in WSG observed in these species likely reflect defensive needs, 384 rather than mechanical requirements. Yet, the contribution of wood extractives to WSG variations may change 385 considerably among species depending on their concentration (i.e., % of wood dry mass) and radial distribution. 386 For instance, in S. rubra and B. prouacensis extractives contents are only slightly higher in heartwood compared 387 to sapwood (Rodrigues 2010, Amusant et al., 2014), suggesting that their contribution to radial changes in WSG 388 are small.

389

390 For some species, especially shade-tolerants, we did not find any significant radial shift in WSG (Table 391 3, Fig 1) nor in wood anatomical fractions (Table S1, Fig. 2). This is in agreement with prior studies showing 392 that radial shifts in WSG are less common and pronounced in shade-tolerant than in pioneer species (i.e., 393 Plourde et al., 2015). One possible explanation to this trend is that shade-tolerants have no, or modest, radial 394 shifts in wood traits because they tend to have inherent low trait plasticity (Valladares et al., 2000, Popma et 395 al., 2002, Rozendal et al., 2006). In our study, shade-tolerant species had negative (i.e., B. prouacensis) or no 396 (e.g., Lecythis persistens) radial trends in WSG or wood anatomical traits. These stem characteristics may be 397 particularly common in the forests of the Guiana Shield that have lower rates of gap formation than other 398 Amazonian forests (Molino and Sabatier 2001) and are typically dominated by shade-tolerant species (ter 399 Steege et al., 2000, 2006). Alternatively, the fact that we did not observe significant radial changes in wood 400 traits for some species might be due to our measurement strategy. Since we measured anatomical traits every 401 1.5 cm from pith to bark, we may not be able to properly capture the radial anatomical variation, when present, 402 in some trees with low or intermediate stem diameters. Moreover, for most species we sampled trees with stem 403 diameters lower than the mean diameters that species attain at our study site (Table 1). Then, much remains to 404 be known on the magnitude, and ecological implications, of radial variations in wood functional traits at our 405 study site.

406

407

408 **Radial variations in vascular strategies**— Our results show that, in general, F<sub>V</sub> and K<sub>S</sub> vary independently of 409 WSG from pith to bark (Table 5). These findings add to growing evidence indicating that these traits would be 410 decoupled across species (Zanne et al., 2010, Fortunel et al., 2013, Hietz et al., 2016), and also radially within 411 trees from tropical dry forests (Rungwattana and Hietz 2017). These results may have distinct, but non-mutually 412 exclusive explanations. First, in our study species, a direct trade-off between  $F_V$  and WSG is unlikely since 413 vessel lumens occupied, on average, a relatively small fraction of stem cross-sectional area (range: 4.30-21.1, 414 average: 8.94; Table 2). Second, at least in humid forests, trees can modulate their WSG and K<sub>s</sub>, without 415 significant increments in fiber and vessel fractions, by producing thicker fibers and wider vessels, respectively 416 (Zieminska et al., 2013, Hietz et al., 2016). Since WSG is considered in general a good indicator of 417 biomechanical properties (King et al., 2006, Anten and Shieving 2010), the orthogonal relationship of  $F_{\rm V}$  and 418 K<sub>s</sub> with WSG has been interpreted as evidence that hydraulic and mechanical functions are decoupled (Hietz 419 et al., 2016). This independence between functions may have important implications for understanding resource 420 allocation patterns in high-diversity forests (Marks and Lechowicz 2006, Li et al., 2015). If trees can modulate 421 hydraulics independently from mechanics during their life-cycles, then different trait combinations and 422 ecological strategies might be possible among coexisting species. For instance, species with similar means and 423 ranges of F<sub>V</sub> (roughly 5.77 and 2.72-11.3, respectively) may have either positive (e.g., *P. nitida*), negative (i.e., 424 *E. falcata*) or even absent radial trends in WSG (e.g., *Eschweilera sagotiana*).

- 426
- 427
- 428

## 429 CONCLUSIONS

430

431 This study illustrates the contrasting radial variations in WSG and wood anatomical traits that occurs in several 432 tree species from a humid tropical forest in Eastern Amazonia. Most of the species showed significant radial 433 shifts in WSG and/or in wood anatomical traits. Our results indicate that positive radial gradients in WSG were 434 mostly present in fast growing species and that these gradients were driven by different combinations of fiber 435 and parenchyma traits. In contrast, negative radial trends in WSG were mostly present in shade-tolerant species, 436 but were unrelated to radial changes in wood anatomy and appear to be more related, in some cases, to the 437 accumulation of secondary compounds. Interestingly, some species, mostly shade-tolerants, did not exhibit 438 significant radial changes in WSG nor in wood anatomical fractions. Previous studies at global and local scales 439 have shown that, across species, WSG, vessel fraction and specific hydraulic conductivity vary independently 440 from one another. Here we confirm that independence between these traits is in general maintained radially 441 within stems.

442

443

444 Overall, our study provides valuable insights into radial variations in wood functional traits across 445 tropical, humid forest tree species. These radial changes in wood traits are likely to be important to expand our 446 knowledge of stem allocation patterns and tree life-history strategies. First, given that some wood traits can 447 vary substantially from pith to bark, the study of wood trait variations across species or along environmental 448 gradients would be improved by taking into account the effect of tree stem diameter. For instance, the common 449 assumption that community WSG decreases with soil fertility or with mean annual precipitation may be 450 partially explained by possible differences in stem diameters between sites. Second, radial changes in wood 451 traits can be of central importance in explaining size-related variations in species demographic rates, that are 452 frequent among different forest ecosystems. Lastly, as WSG is an important predictor of above-ground biomass

| 453 | (AGB) estimations, considering radial trends in WSG may increase the accuracy of AGB estimations at both         |
|-----|------------------------------------------------------------------------------------------------------------------|
| 454 | the tree and stand level.                                                                                        |
| 455 |                                                                                                                  |
| 456 |                                                                                                                  |
| 457 | ACKNOWLEDGMENTS                                                                                                  |
| 458 |                                                                                                                  |
| 459 | We are very grateful to Jonathan Prunier for laboratory and field support, and to Pascal Petronelli for his help |
| 460 | with botanical identification. We kindly thank Soepe Koese for his help collecting and preparing the wood        |
| 461 | samples. We would also like to thank Camila Monje and Laura Baldion who assisted in processing anatomical        |
| 462 | images, and to Julie Bossu for providing some wood samples. The study was designed by A.G.M., J.M.P., B.C.       |
| 463 | and J.B. Most wood samples were collected by R.L. and A.G.M. Additional samples were provided by B.C.,           |
| 464 | J.B. and S.L. Anatomical images were processed by A.G.M. and K.R. Data analyses were performed by A.G.M.         |
| 465 | with contributions from J.M.P. The first draft of the manuscript was written by A.G.M. with inputs from J.M.P.   |
| 466 | All authors contributed equally to the writing and interpretation of advanced versions of the manuscript.        |
| 467 |                                                                                                                  |
| 468 | FUNDING                                                                                                          |
| 469 |                                                                                                                  |
| 470 | This study was funded by a student grant awarded to A.G.M by COLCIENCIAS (Colombian Agency for                   |
| 471 | Science and Technology. Grant 476), and a field grant from the University of Guyane in the framework of the      |
| 472 | Erasmus+ Program. We know of no conflicts of interest associated to this manuscript.                             |
| 473 |                                                                                                                  |
| 474 |                                                                                                                  |
| 475 |                                                                                                                  |
| 476 |                                                                                                                  |
| 477 |                                                                                                                  |
| 478 |                                                                                                                  |
| 479 |                                                                                                                  |
| 480 |                                                                                                                  |

| 481 |                                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------|
| 482 |                                                                                                             |
| 483 |                                                                                                             |
| 484 |                                                                                                             |
| 485 | REFERENCES                                                                                                  |
| 486 |                                                                                                             |
| 487 | Amusant N, Nigg M, Thibaut B, Beauchene. J. (2014). Diversity of decay resistance strategies of             |
| 488 | durable tropical woods species: Bocoa prouacencis Aublet, Voucapoua americana Aublet, Inga                  |
| 489 | alba (Sw.) Wild. International Biodeterioration and Biodegradation 94: 103-108                              |
| 490 |                                                                                                             |
| 491 | Anten NPR, Schieving, F. (2010). The role of wood mass density and mechanical constraints in the economy    |
| 492 | of tree architecture. The American Naturalist 175: 250-260.                                                 |
| 493 |                                                                                                             |
| 494 | Baas P, H Beeckman, K Čufar, V De Micco. (2016). Functional traits in wood anatomy. IAWA                    |
| 495 | Journal 37:124-126.                                                                                         |
| 496 |                                                                                                             |
| 497 | Baraloto, C., TCE. Paine, S. Patiño, D. Bonal, B. Héraul, Chave J. (2010). Functional trait variation and   |
| 498 | sampling strategies in species-rich plant communities. Functional Ecology 24: 208-216                       |
| 499 |                                                                                                             |
| 500 | Baraloto C, OJ Hardy, Paine T, et al. (2012). Using functional traits and phylogenetic trees to examine the |
| 501 | assembly of tropical tree communities. Journal of Ecology 100: 690-701.                                     |
| 502 |                                                                                                             |
| 503 | Beeckman H. (2016). Wood anatomy and trait-based ecology. IAWA Journal 37: 127-151.                         |
| 504 |                                                                                                             |
| 505 | Bosc A, A De Grandcourt, Loustau D. (2003). Variability of stem and branch maintenance respiration in a     |
| 506 | Pinus pinaster tree. Tree Physiology 23: 227-236                                                            |
| 507 |                                                                                                             |

| 508        | Bossu J. (2015). Potentiel de "Bagassa guianensis" et "Cordia alliodora" pour la plantation en                                                      |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 509        | zone tropicale. Description d'une stratégie de croissance optimale alliant vitesse de croissance                                                    |
| 510        | et qualité du bois. PhD Thesis, University of Guyane, French Guiana                                                                                 |
| 511        |                                                                                                                                                     |
| 512        | Bossu J, Lehneback R, Corn S, Regazzi A, Beauchêne J, Clair B. (2018). Interlocked grain and density                                                |
| 513        | patterns in <i>Bagassa guianensis</i> : changes with ontogeny and mechanical consequences for                                                       |
| 514        | trees. Trees 32: 1643-1655                                                                                                                          |
| 515        |                                                                                                                                                     |
| 516        | Burnham KP, Anderson DR. (2002). Model selection and multimodel inference: A practical information-                                                 |
| 517        | theoretic approach. Springer, New York, USA.                                                                                                        |
| 518        |                                                                                                                                                     |
| 519        | Carlquist S. (2001). Comparative wood anatomy: systematic, ecological and evolutionary aspects of                                                   |
| 520        | dicotyledon wood. Springer: Berlin.                                                                                                                 |
| 521        | Carneiro de Oliveira J, Mendes dos Santos MG, Santos SP, Vitória AP, Rossato DR, Pedreira de Miranda L &                                            |
| 522        | Funch LS. 2021. Leaf trait variability maintains similar leaf Exchange rhythms in <i>Hirtella glandulosa</i>                                        |
| 523<br>524 | Spreng. (Chrysobalanaceae) populations growing on contrasting soil types in the Brazilian Atlantic Forest. Brazilian Journal of Botany 44: 753-765. |
| 525        | Torest. Brazinian sournar of Botany 44. 755 765.                                                                                                    |
| 526        | Bossu J, Beauchêne J, Estevez Y, Duplais C, Clair B. (2016). New insights on wood dimensionality                                                    |
| 527        | stability influenced by secondary metabolites: The case of a fast-growing tropical species Bagassa                                                  |
| 528        | guianensis Aubl. Plos ONE 11: 1-17.                                                                                                                 |
| 529        |                                                                                                                                                     |
| 530        | Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zane A. (2009). Towards a worldwide wood                                                         |
| 531        | economics spectrum. Ecology Letters 12: 351-366.                                                                                                    |
| 532        |                                                                                                                                                     |
| 533        | De Mil T, Tarelkin Y, Hahn S, et al. (2018). Wood density profiles and their corresponding tissue fractions                                         |
| 534        | in tropical angiosperm trees. Forests 9: 763-777                                                                                                    |
| 535        |                                                                                                                                                     |

| 536 | Favrichon V. (1994). Classification des espèces arborées en groupes fonctionnels en vue de la realisation |
|-----|-----------------------------------------------------------------------------------------------------------|
| 537 | d'un modèle de dynamique de peuplement en forêt guyanaise. <i>Revue d'Ecologie Terre et Vie</i> 49:       |
| 538 | 379-403                                                                                                   |
| 539 |                                                                                                           |
| 540 | Ferry B, Morneau F, Bontemps JD, Blanc L, Freycon V. (2010). Higher treefall rates on slopes and          |
| 541 | waterlogged soils result in lower-stand biomass and productivity in a tropical rain forest. Journal of    |
| 542 | <i>Ecology</i> 98: 106–116.                                                                               |
| 543 |                                                                                                           |
| 544 | Fortunel C, Ruelle J, Beauchene J, Fine PVA, Baraloto C. (2013). Wood specific gravity and anatomy        |
| 545 | of branches and roots in 113 Amazonian rainforest tree species across environmental gradients. New        |
| 546 | Phytologist 202:79-94.                                                                                    |
| 547 |                                                                                                           |
| 548 | Fujiwara S. (1992). Anatomy and properties of Japanese hardwoods II. Variation of dimensions of ray       |
| 549 | cells and their relation to basic density. IAWA Bull Ns. 13: 397-402.                                     |
| 550 |                                                                                                           |
| 551 | Gourlet-Fleury S, Guehl JM, Laroussine O. (2004). Ecology and management of a neotropical rainforest:     |
| 552 | lessons drawn from Paracou, a long-term experimental research site in French Guiana.                      |
| 553 | Paris: Elsevier.                                                                                          |
| 554 |                                                                                                           |
| 555 | Gärtner H, Lucchinetti S, Schweingruber FH. (2015). A new sledge microtome to combine wood anatomy        |
| 556 | and tree-ring ecology. IAWA Journal 36: 452-459.                                                          |
| 557 |                                                                                                           |
| 558 | Gleason SM, Westoby M, Jansen S, et al. (2016). Weak tradeoff between xylem safety and xylem-             |
| 559 | specific hydraulic efficiency across the world's woody plant species. New Phytologist 209: 123-           |
| 560 | 136.                                                                                                      |
| 561 |                                                                                                           |
| 562 | Hacke UG, Sperry S, Wheeler JK, Castro L. (2006). Scaling of angiosperm xylem structure                   |
| 563 | with safety and efficiency. Tree Physiology 26: 689–701.                                                  |

565

566

567

568

| Hacke U, Spice R, Schreiber S, Plavcová L. (2017). An ecophysiological perspective and developmen        | t  |
|----------------------------------------------------------------------------------------------------------|----|
| perspective on variation in vessel diameter. <i>Plant Cell and Environment</i> 40: 831-845               |    |
|                                                                                                          |    |
| Hérault B, Bachelot B, Poorter L, et al. (2011). Functional traits shape ontogenetic growth trajectories | of |
| rain forest tree species. Journal of Ecology 99:1431-1440.                                               |    |

570

569

571 Hietz P., R. Valencia, SJ. Wright. (2013). Strong radial variation in Wood density follows a uniform 572 pattern in two neotropical rain forests. Functional Ecology 27: 684-692.

- 573
- 574 Hietz P, Ronser R, Hietz-Seifert U, Wrigh SJ. (2016). Wood traits related to size and life history of 575 trees in a Panamanian rainforest. New Phytologist 213:170-180.
- 576
- 577 Hillis WE. 1987. Heartwood and tree exudates. Springer, Berlin.
- 578
- 579 Jacobsen AL, Agenbag L, Esler KJ, Pratt RB, Ewers FW, Davis SD. (2007). Xylem density,
- 580 biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the 581 Mediterranean-type climate region on South Africa. Journal of Ecology 95: 171-183.
- 582
- 583 King DA, Davies SJ, Tan S, Noor NS. (2006). The role of wood density and stem support costs in the 584 growth and mortality of tropical trees. Journal of Ecology 94:670-680.
- 585
- 586 Kitajima K. (1994). Relative importance of photosynthetic and allocation traits as correlates of seedling shade 587 tolerance of 15 tropical tree species. Oecologia 98:419-428.
- 588
- 589 Kollman F, Coté WA. (1968). Principles of wood science technology. I. Solid wood. Springer-Verlag,
- 590 New York.
- 591

| 592                             | Lachenbruch B, Moore JR, Evans R. (2011). Radial variation in wood structure and function in woody                                                                                                                                                                                                                        |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 593                             | plants, and hypotheses for its occurrence. In: Meinzer FCC, Lachenbruch B, Dawson TEE, eds. Size-                                                                                                                                                                                                                         |
| 594                             | and age-related changes in tree structure and function. Dordrecht, the Netherlands: Springer, 121-                                                                                                                                                                                                                        |
| 595                             | 164.                                                                                                                                                                                                                                                                                                                      |
| 596                             |                                                                                                                                                                                                                                                                                                                           |
| 597                             | Larjavaara M, Muller-Landau H. (2010). Rethinking the value of high wood density. Functional Ecology                                                                                                                                                                                                                      |
| 598                             | <b>24</b> : 701-705.                                                                                                                                                                                                                                                                                                      |
| 599                             |                                                                                                                                                                                                                                                                                                                           |
| 600                             | Lehnbach R, Bossu J, Va S, Morel H, Amusant N, Nicolini E, Beauchêne J. (2019). Wood density                                                                                                                                                                                                                              |
| 601                             | variations of legume trees in French Guiana along the shade tolerance continuum: heartwood                                                                                                                                                                                                                                |
| 602                             | effects on radial patterns and gradients. <i>Forests</i> 10: 1-22.                                                                                                                                                                                                                                                        |
| 603<br>604<br>605<br>606        | Levionnois, S., Ziegler, C., Jansen, S., Calvet, E., Coste, S., Stahl, C., Salmon, C., Delzon, S., Guichard, C. and Heuret, P. (2020), Vulnerability and hydraulic segmentations at the stem– leaf transition: coordination across Neotropical trees. New Phytol, 228: 512- 524. <u>https://doi.org/10.1111/nph.16723</u> |
| 607                             | Li, L, McCormack ML, Ma C, et al. (2015). Leaf economics and hydraulic traits are decoupled in five                                                                                                                                                                                                                       |
| 608                             | species- rich tropical-subtropical forests. Ecology Letters 18: 899-906                                                                                                                                                                                                                                                   |
| 609<br>610<br>611<br>612<br>613 | Loubry D. 1994. La phénologie des arbres caducifoliés en forêt guyanaise (5° de latitude nord): illustration<br>d'un déterminisme à composantes endogène et exogène. <i>Canadian Journal of</i><br><i>Botany</i> 72: 1843–1857.                                                                                           |
| 614                             | Madelaine C, Pélissier R, Vincent G, Molino JF. (2007). Mortality and recruitment in a lowland tropical rain                                                                                                                                                                                                              |
| 615                             | forest of French Guiana: effects of soil type and species guild. Journal of Tropical Ecology 23:                                                                                                                                                                                                                          |
| 616                             | 277-287.                                                                                                                                                                                                                                                                                                                  |
| 617                             |                                                                                                                                                                                                                                                                                                                           |
| 618                             | Marks CO, Lechowicz MJ. (2006). Alternative designs and the evolution of functional diversity. Am. Nat.                                                                                                                                                                                                                   |
| 619                             | <b>167</b> : 55-66                                                                                                                                                                                                                                                                                                        |
| 620                             |                                                                                                                                                                                                                                                                                                                           |

| 621 | Martínez-Cabrera H, Jones CA, Espino S, Schenk HJ. (2009). Wood anatomy and density in shrubs:             |
|-----|------------------------------------------------------------------------------------------------------------|
| 622 | Responses to varying aridity along transcontinental transects. American Journal of Botany 96: 1388-        |
| 623 | 1398.                                                                                                      |
| 624 |                                                                                                            |
| 625 | McDonald S, Williamson B, Wiemann MC. (1995). Wood specific gravity and anatomy in Heliocarpus             |
| 626 | appendiculatus (Tiliaceae). American Journal of Botany 82: 855-861.                                        |
| 627 |                                                                                                            |
| 628 | Molino JF, Sabatier D. (2001). Tree diversity in Tropical Rain Forests: A validation of the Intermediate   |
| 629 | Disturbance hypothesis. Science 284, 1702                                                                  |
| 630 | Morris H, et al. (2016). A global analysis of parenchyma tissue fractions in secondary xylem of seed       |
| 631 | plants. New Phytologist 209: 1553-1565.                                                                    |
| 632 |                                                                                                            |
| 633 | Nock C, Geihofer D, Grabner M, Baker PJ, Bunyavejchewin S, Hietz P. (2009). Wood density and its radial    |
| 634 | variation in six canopy tree species differing in shade-tolerance in western Tailand. Annals of Botany     |
| 635 | 104: 297-306.                                                                                              |
| 636 |                                                                                                            |
| 637 | Olson M, Rosell J. (2013). Vessel diameter-stem diameter scaling across woody angiosperm and the           |
| 638 | ecological causes of xylem vessel diameter variation. New Phytologist 197: 1204-1213.                      |
| 639 |                                                                                                            |
| 640 | Olson M, Anfondillo T, Rosell J, et al. (2014). Universal hydraulics of the flowering plants: vessel       |
| 641 | diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters          |
| 642 | 17: 988-887.                                                                                               |
| 643 |                                                                                                            |
| 644 | Osazuwa-Peters O, Wright JS, Zanne AE. (2014). Radial variation in wood specific gravity of tropical tree  |
| 645 | species differing in growth-mortality strategies. <i>American Journal of Botany</i> <b>101</b> : 803-811.  |
| 646 |                                                                                                            |
| 647 | Pfautsch S. (2016). Hydraulic anatomy and function of trees-Basic and critical developments. Curr Forestry |
| 648 | <i>Rep</i> <b>2</b> : 236-248.                                                                             |

| 649 |                                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------|
| 650 | Plourde BT, Boukill VK, Chazon RL. (2015). Radial changes in wood specific gravity of tropical trees: inter-  |
| 651 | and intraspecific variation during secondary succession. Functional Ecology 29: 111-120.                      |
| 652 |                                                                                                               |
| 653 | Poorter L, McDonald I, Alarcon A, et al. 2010. The importance of Wood traits and hydraulic conductance        |
| 654 | for the performance and life history strategies of 42 rainforest tree species. New Phytologist 185:           |
| 655 | 481-492.                                                                                                      |
| 656 |                                                                                                               |
| 657 | Popma J, Bongers F, Werger MJ. (1992). Gap-dependence and leaf characteristics of trees in a tropical         |
| 658 | lowland rain forest in Mexico. Oikos 63: 207–214.                                                             |
| 659 |                                                                                                               |
| 660 | Rodrigues AMS. (2010). Análise e valorização bioinspirada dos metabólitos secundários responsáveis pela       |
| 661 | durabilidade natural de madeiras exploradas na Guiana Franesa. PhD Thesis, University of                      |
| 662 | Brasilia, Brazil.                                                                                             |
| 663 |                                                                                                               |
| 664 | Rodríguez-Calcerrada J, Salomon RL, Gordaliza GG, et al. (2019). Respiratory costs of producing and           |
| 665 | maintenance stem biomass in eight co-occurring tree species. Tree physiology 39: 1838-1854.                   |
| 666 |                                                                                                               |
| 667 | Rosell J, Olson M, Anfodillo T. (2017). Scaling of xylem vessel diameter with plant size: Causes, predictions |
| 668 | and outstanding questions. Current Forestry Reports 3: 46-59.                                                 |
| 669 |                                                                                                               |
| 670 | Rozendaal DM, Hurtado VH, Poorter L. (2006). Plasticity in leaf traits of 38 tropical tree species in         |
| 671 | response to light; relationships with light demand and adult stature. Functional Ecology 20: 207-216          |
| 672 |                                                                                                               |
| 673 | Rungwattana K, Hietz P. (2017). Radial variation of wood functional traits reflects size- related adaptations |
| 674 | of tree mechanics and hydraulics. Functional Ecology 32:260-272.                                              |
| 675 |                                                                                                               |

| 676 | Russo S, Jenkins K, Wiser S, Uriarte M, Duncan RP, Coomes DA. (2010). Intespecific relationships           |
|-----|------------------------------------------------------------------------------------------------------------|
| 677 | among growth, mortality and xylem traits of woody species from New Zeland. Functional                      |
| 678 | <i>Ecology</i> <b>24</b> : 253-262.                                                                        |
| 679 |                                                                                                            |
| 680 | Santiago L, Goldstein G, Meinzer FC, et al. (2004). Leaf photosynthetic traits with hydraulic conductivity |
| 681 | and wood density in Panamanian forest canopy traits. Oecologia 140: 543:550.                               |
| 682 |                                                                                                            |
| 683 | Santiago L, De Guzman M. Baraloto C, et al. (2018). Coordination and trade-offs among hydraulic            |
| 684 | safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New           |
| 685 | <i>Phytologist</i> 218: 1015-1024.                                                                         |
| 686 |                                                                                                            |
| 687 | Sarmiento C, Patiño S, Paine TCE, Beauchêne J, Thibaut A, Baraloto C. 2011. Within- individual variation   |
| 688 | of trunk and branch xylem density in tropical trees. American Journal of Botany 98:140-149                 |
| 689 |                                                                                                            |
| 690 | Schüler E, Martínez-Ramos M, Hietz P. 2016. Radial gradients in wood specific gravity, water gas           |
| 691 | content in trees of a Mexican tropical rain forest. Biotropica 45: 280-287.                                |
| 692 |                                                                                                            |
| 693 | Shipley B, De Bello F, Cornelissen JHC, Laliberté E, Laughlin D, Reich P. 2016. Reinforcing loose          |
| 694 | foundation stones in trait-based plant ecology. Oecologia 180: 923-931.                                    |
| 695 |                                                                                                            |
| 696 | Sperry JS, Hacke UG, Pittermann J. 2006. Size and function in conifer tracheids and angiosperm             |
| 697 | vessels. American Journal of Botany 93: 1490–1500.                                                         |
| 698 |                                                                                                            |
| 699 | Ter Steege H, Sabatier D, Castellanos H, et al. (2000). An analysis of the floristic composition and       |
| 700 | diversity of Amazonian forests including those of the Guiana Shield. Journal of Tropical Ecology           |
| 701 | 16: 801-828.                                                                                               |
| 702 |                                                                                                            |

| 703               | Ter Steege H, Pitman NCA, Phillips OL, et al. (2006). Continental-scale patterns of canopy tree composition    |
|-------------------|----------------------------------------------------------------------------------------------------------------|
| 704               | and function across Amazonia. Nature, 443, 444–447.                                                            |
| 705               |                                                                                                                |
| 706               | Tyree MT, Zimmermann MH. (2002). Xylem structure and the ascent of sap. Berlin: Springer.                      |
| 707               |                                                                                                                |
| 708               | Valladares F, Wright JS, Lasso E, Kitajima K, Pearcy RW. (2000). Plastic phenotypic responses to               |
| 709               | light of 16 congeneric shrubs from a Panamanian rainforest. <i>Ecology</i> 81: 1925–1936.                      |
| 710<br>711<br>712 | Van der Werff, H. 1997. Sextonia, a New Genus of Lauraceae from South America. Novon 7 (4): 436-439.           |
| 713               | Vega L. (1977). La silvicultura de Cordia alliodora (Ruiz and Pav.) Oken. como especie exótica en Surinam.     |
| 714               | Boletín del Instituto Forestal Latino-Americano de Investigación y Capacitación 52:3-26.                       |
| 715               | Venables, WN, and Ripley, BD. (2002). Modern applied statistics withS, 4th ed. Springer, New York,             |
| 716               | New York, USA.                                                                                                 |
| 717               | Vincent G, Molino JF, Marescot L, et al. (2011). The relative importance of dispersal limitation and habitat   |
| 718               | preference in shaping spatial distribution of saplings in a tropical moist forest: case study                  |
| 719               | along a combination of hydromorphic and canopy disturbance gradients. Annals of Forest Science                 |
| 720               | 68: 357-370.                                                                                                   |
| 721               |                                                                                                                |
| 722               | Visser MD, Bruijing M, Wright SJ, et al. (2016). Functional traits as predictor of vital rates across the life |
| 723               | cycle of tropical trees. Functional Ecology 30: 168-180.                                                       |
| 724               |                                                                                                                |
| 725               | Wagner F, Hérault B, Stahl C, Bonal D, Rossi V. (2011). Modeling water availability for trees in tropical      |
| 726               | forests. Agricultural and Forest Meteorology, 151, 1202–1213.                                                  |
| 727               |                                                                                                                |
| 728               | West G, Brown J, Enquist B. (1999). A general model for the structure and allometry of plant vascular          |
| 729               | systems. Nature 400: 664-667.                                                                                  |
| 730               |                                                                                                                |

| 731 | Westoby M, Wright I. (2006). Land-plant ecology on the basis of functional traits. TRENDS in Ecology and |
|-----|----------------------------------------------------------------------------------------------------------|
| 732 | Evolution 21:261-267.                                                                                    |
| 733 |                                                                                                          |
| 734 | Wheeler JK, Sperry JS, Hacke UG, Hoang N. (2005). Inter-vessel pitting and cavitation in woody Rosaceae  |
| 735 | and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant,  |
| 736 | Cell and Environment 28: 800–812.                                                                        |
| 737 |                                                                                                          |
| 738 | Wiemann, MC, Williamson GB. (1989). Wood specific gravity gradients in tropical dry and montane rain     |
| 739 | forest trees. American Journal of Botany 76 (6): 924-928.                                                |
| 740 |                                                                                                          |
| 741 | Williamson GB, Wiemann MC. (2010a). Age-dependent radial increases in wood specific gravity of           |
| 742 | tropical pioneers in Costa Rica. Biotropica 42: 590-597.                                                 |
| 743 |                                                                                                          |
| 744 | Williamson GB, Wiemann MC. (2010b). Measuring Wood specific gravitycorrectly. American Journal of        |
| 745 | Botany 97: 519-524.                                                                                      |
| 746 |                                                                                                          |
| 747 | Woodcock DW, Shier AD. (2002). Wood specific gravity and its radial variation: the many ways to make a   |
| 748 | tree. Trees 16: 437-443.                                                                                 |
| 749 |                                                                                                          |
| 750 | Woodrum CL, Ewers FW, Telewski F. (2003). Hydraulic, biomechanical, and anatomical interactions of       |
| 751 | xylem from five species of Acer (Aceraceae). American Journal of Botany 90: 693-699                      |
| 752 |                                                                                                          |
| 753 | Wright SJ, Kitajima K, Kraft NJB, et al. (2010). Functional traits and the growth-mortality trade-off in |
| 754 | tropical trees. <i>Ecology</i> 91: 3664-3674.                                                            |
| 755 |                                                                                                          |
| 756 | Zanne A, Westoby M, Falster DS, et al. (2010). Angiosperm Wood structure: Global patterns in vessel      |
| 757 | anatomy and their relation to Wood density and potential conductivity. American Journal of               |
| 758 | Botany 97 207-215.                                                                                       |
|     |                                                                                                          |

| 759        |                                                                                                        |
|------------|--------------------------------------------------------------------------------------------------------|
| 760        | Zheng J, Martinez-Cabrera H. (2013). Wood anatomical correlates with theoretical conductivity and Wood |
| 761        | density across China: evolutionary evidence of the functional differentiation of axial and radial      |
| 762        | parenchyma. Annals of Botany 112: 927-935.                                                             |
| 763        |                                                                                                        |
| 764        | Zieminska K, Butler DW, Gleason SM, Wright IJ, Westoby M. (2013). Fibre Wall and lumen fractions drive |
| 765        | Wood density variation across 24 Australian angiosperms. AoB PLANTS 5: 1-13.                           |
| 766        |                                                                                                        |
| 767        | Zieminska K, Westoby M, Wright IJ. (2015). Broad anatomical variation within a narrow wood density     |
| 768        | range-A study of twig Wood across 69 Australian Angiosperms. PLOS One 10: 1-25.                        |
| 769        |                                                                                                        |
| 770        | Zobel BJ, van Buijtenen JP. (1989). Wood variation, its causes and control. Berlin/New York, NY, USA:  |
| 771        | Springer.                                                                                              |
|            | Springer.                                                                                              |
| 772        |                                                                                                        |
| 773<br>774 |                                                                                                        |
| 775        |                                                                                                        |
| 776        |                                                                                                        |
| 777        |                                                                                                        |
| 778        |                                                                                                        |
| 779        |                                                                                                        |
| 780        |                                                                                                        |
| 781        |                                                                                                        |
| 782        |                                                                                                        |
| 783        |                                                                                                        |
| 784        |                                                                                                        |
| 785        |                                                                                                        |
| 786        |                                                                                                        |
| 787        |                                                                                                        |
| 788        |                                                                                                        |
| 789        |                                                                                                        |
| 790        |                                                                                                        |

### 791 TABLES

- 792 Table 1. Study species, family, number of trees sampled (n), mean diameter at breast height of trees sampled (DBH<sub>s</sub>), mean and maximum diameter at breast
- height of each species (DBH<sub>M and</sub> DBH<sub>MAX</sub>, respectively), ecological guilds according to Favrichon (1994), relative growth rates (RGR, mm.mm<sup>-1</sup> y<sup>-1</sup>), and leaf
- habit; for 19 tree species from Eastern Amazonia. DBH<sub>M</sub> and DBH<sub>MAX</sub> were calculated based on data from one 25-ha and three 6.25-ha permanent plots
- restablished in Paracou (see Materials and methods). DBH<sub>M</sub> of *C. alliodora* were obtained from Bossu (2015), while DBH<sub>MAX</sub> were obtained from Vega (1977).
- 796 DBH<sub>MAX</sub> for each species was estimated averaging values of the five largest individuals. RGR were calculated based on 20-year census data from permanent plots
- restablished in Paracou.

| Species                | Family           | n | DBHs<br>(cm) | DBH <sub>M</sub><br>(cm) | DBH <sub>MAX</sub><br>(cm) | Ecological guild           | RGR  | Leaf habit                           |
|------------------------|------------------|---|--------------|--------------------------|----------------------------|----------------------------|------|--------------------------------------|
| Bagassa guianensis     | Moraceae         | 5 | 25.1         | 35.8                     | 105.7                      | Long-lived pioneer-Canopy  |      | Deciduous (Loubry, 1994)             |
| Bocoa prouacensis      | Fabaceae         | 3 | 12.3         | 28.6                     | 52.7                       | Shade-tolerant-Understory  | 3.81 | Evergreen (Levionnois et al., 2020)  |
| Cecropia obtusa        | Urticaceae       | 3 | 23.1         | 15.7                     | 33.3                       | Pioneer-Understory         | 5.30 | Evergreen (Eeviolinois et al., 2020) |
| Cordia alliodora       | Boraginaceae     | 3 | 44.4         | 38.9                     | 85.2                       | Long-lived pioneer-Canopy  | 5.50 | Deciduous (Loubry, 1994)             |
| Dicorynia guianensis   | Fabaceae         | 5 | 22.2         | 47.3                     | 94.7                       | Semi shade-tolerant-Canopy | 2.76 | Deciduous (Loubry, 1994)             |
| Eperua falcata         | Fabaceae         | 5 | 45.5         | 47.7                     | 71.8                       | Semi shade-tolerant-Canopy | 1.91 | Deciduous (Loubry, 1994)             |
| Eschweilera coriacea   | Lecythidaceae    | 2 | 30.3         | 38.2                     | 63.3                       | Shade-tolerant-Canopy      | 1.55 | Evergreen (Levionnois et al., 2020)  |
| Eschweilera sagotiana  | Lecythidaceae    | 3 | 20.8         | 41.4                     | 69.2                       | Shade-tolerant-Canopy      | 1.41 | Evergreen (Levionnois et al., 2020)  |
| Hirtella glandulosa    | Chrysobalanaceae | 2 | 30.3         | 17.1                     | 40.3                       | Shade-tolerant-Understory  | 1.78 | Evergreen (Carneiro et al., 2021)    |
| Lecythis persistens    | Lecythidaceae    | 5 | 22.3         | 35.9                     | 65.8                       | Shade-tolerant-Understory  | 0.91 | Evergreen (Levionnois et al., 2020)  |
| Licania alba           | Chrysobalanaceae | 5 | 23.7         | 28.8                     | 49.3                       | Shade-tolerant-Canopy      | 0.82 | Evergreen (Levionnois et al., 2020)  |
| Miconia tschudyoides   | Melastomataceae  | 2 | 21.2         | 15.7                     | 25.8                       | Pioneer-Understory         | 1.90 |                                      |
| Oxandra asbeckii       | Annonaceae       | 2 | 24.6         | 19.5                     | 33.3                       | Shade-tolerant-Understory  | 0.72 |                                      |
| Parkia nitida          | Fabaceae         | 5 | 23.5         | 63.1                     | 101.3                      | Pioneer-Canopy             | 6.98 | Deciduous (Loubry 1994)              |
| Recordoxylon speciosum | Fabaceae         | 3 | 14.3         | 38.2                     | 64.4                       | Semi shade-tolerant-Canopy | 2.18 | Deciduous (Loubry 1994)              |
| Schefflera morototoni  | Araliaceae       | 3 | 41.2         | 38.6                     | 49.3                       | Pioneer-Canopy             | 4.3  | Deciduous (Loubry, 1994)             |
| Sextonia rubra         | Lauraceae        | 3 | 42.4         | 50.5                     | 100.2                      | Semi shade-tolerant-Canopy | 2.15 | Deciduous (van der Werff, 1997)      |
| Swartzia panacoco      | Fabaceae         | 3 | 20.5         | 25.4                     | 51.3                       | Shade-tolerant-Canopy      | 0.76 | Deciduous (Loubry, 1994)             |
| Virola michelii        | Myristicaceae    | 3 | 31.5         | 31.8                     | 64.5                       | Pioneer-Canopy             | 2.37 | Deciduous (Loubry, 1994)             |

- 799 Table 2. Summary characteristics of wood traits measured on 18 tree species from a lowland tropical forest in
- 800 Eastern Amazonia. Mean, standard deviation (SD), range and n-fold variation are shown.

| Trait                           | Abb<br>rev. | Unit                                                     | Mean  | SD    | Range      | <i>n-</i> fold<br>variation |
|---------------------------------|-------------|----------------------------------------------------------|-------|-------|------------|-----------------------------|
| Wood specific gravity           | WSG         | unitless                                                 | 0.61  | 0.07  | 0.30-0.97  | 2.9                         |
| Fiber fraction                  | $F_{\rm F}$ | % area                                                   | 63.3  | 6.89  | 42-77      | 1.83                        |
| Fiber wall thickness            | Fwt         | μm                                                       | 4.15  | 1.29  | 1.72-7.47  | 4.34                        |
| Vessel fraction                 | $F_{V}$     | % area                                                   | 8.94  | 2.96  | 4.30-21,2  | 4.9                         |
| Axial parenchyma fraction       | $F_{AP}$    | % area                                                   | 11.5  | 9.06  | 1.68-29.1  | 17.3                        |
| Radial parenchyma fraction      | $F_{RP}$    | % area                                                   | 15.8  | 3.69  | 6,09-27,7  | 4.54                        |
| Total parenchyma fraction       | $F_{TP}$    | % area                                                   | 27.6  | 5.33  | 12.6-44.2  | 3.5                         |
| Vessel lumen area               | VA          | mm <sup>2</sup>                                          | 0.015 | 0.006 | 0.01-0.03  | 3                           |
| Vessel number                   | $V_N$       | mm <sup>-2</sup>                                         | 5.68  | 4.12  | 0.87-21.1  | 26                          |
| Specific hydraulic conductivity | Ks          | kg m s <sup>-1</sup> MPa <sup>-1</sup> / mm <sup>2</sup> | 147.7 | 18.1  | 46.9-330.1 | 7.17                        |

Table 3. Linear and non-linear models predicting WSG based on radial distance. Best fit model and its
parameters are shown for each species. Coefficient of determination (R<sup>2</sup>) of each model is provided.
Significance levels are: \*, P < 0.05; \*\*P < 0.01; \*\*\*, P < 0.001. Significant radial trends (P < 0.05) are given</li>
in bold.

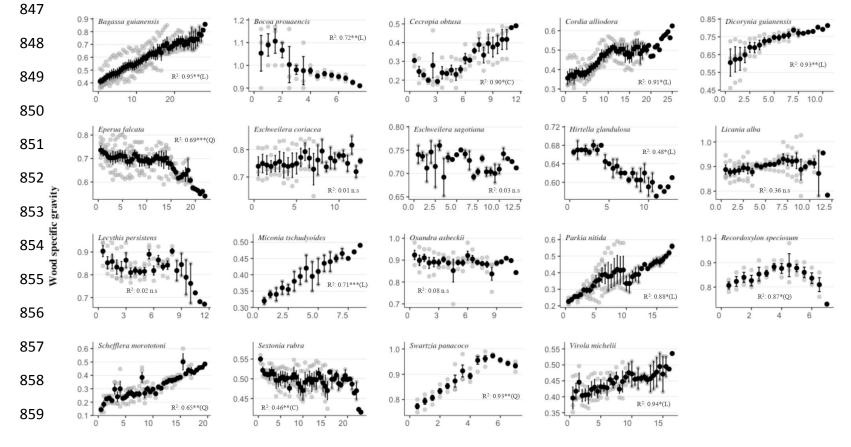
| ) |                        | WSG            |                |  |
|---|------------------------|----------------|----------------|--|
| ) | Species                | Best-fit model | $\mathbb{R}^2$ |  |
| 1 | Bagassa guianensis     | Linear         | 0.95 **        |  |
| 2 | Bocoa prouacensis      | Linear         | 0.72 **        |  |
|   | Cecropia obtusa        | Cubic          | 0.90 *         |  |
| 3 | Cordia alliodora       | Linear         | 0.91 *         |  |
| 1 | Dicorynia guianensis   | Linear         | 0.93 **        |  |
| 5 | Eperua falcata         | Quadratic      | 0.69 **        |  |
|   | Eschweilera coriacea   | Linear         | 0.01           |  |
| 5 | Eschweilera sagotiana  | Linear         | 0.03           |  |
| 7 | Hirtella glandulosa    | Linear         | 0.48 *         |  |
| 8 | Lecythis persistens    | Linear         | 0.02           |  |
|   | Licania alba           | Linear         | 0.35           |  |
| 9 | Miconia tschudyoides   | Linear         | 0.71 ***       |  |
| כ | Oxandra asbeckii       | Linear         | 0.08           |  |
| 1 | Parkia nitida          | Linear         | 0.88 **        |  |
| 2 | Recordoxylon speciosum | Quadratic      | 0.87 *         |  |
| 3 | Schefflera morototoni  | Quadratic      | 0.65 **        |  |
| 4 | Sextonia rubra         | Cubic          | 0.46 **        |  |
| 5 | Swartzia panacoco      | Quadratic      | 0.93 **        |  |
| 5 | Virola michelii        | Linear         | 0.94 *         |  |

827Table 4. Effects of wood anatomical fractions on radial variations of WSG variations for species (n = 13) that828had significant radial trends in WSG (see Table 3). Multiple R<sup>2</sup> values of the corresponding multiple regression829models, and t-values for each trait are shown. (+) or (-) gives the sign of the effects of wood anatomical traits830on WSG variations. Significance levels are: \*, P < 0.05; \*\*P < 0.01; \*\*\*, P < 0.001. Significant effects (P <</td>8310.05) are given in bold.

- 832
- 833

|                        | Wood anatomical fractions |                 |                 |            |                       |  |
|------------------------|---------------------------|-----------------|-----------------|------------|-----------------------|--|
| Species                |                           |                 |                 |            | •                     |  |
|                        | $\mathbf{F}_{\mathbf{F}}$ | F <sub>WT</sub> | F <sub>RP</sub> | FAP        | <b>R</b> <sup>2</sup> |  |
| Bagassa guianensis     | 2.41(-) *                 | 3.56(+) **      | 1.69 (+) *      | 0.59       | 0.77                  |  |
| Cecropia obtusa        | 0.21                      | 0.24            | 0.51            | 0.46       | 0.45                  |  |
| Cordia alliodora       | 1.52                      | 0.56            | 0.32            | 1.21       | 0.34                  |  |
| Dicorynia guianensis   | 0.65                      | 0.21            | 0.03            | 1.14       | 0.64                  |  |
| Eperua falcata         | 0.31                      | 0.41            | 0.98            | 1.04       | 0.53                  |  |
| Hirtella glandulosa    | 0.14                      | 0.32            | 1.02            | 1,71       | 0.51                  |  |
| Miconia tschudyoides   | 2.48(+) *                 | 3.76(+) **      | 2.05(-) *       | 0.87       | 0.79                  |  |
| Parkia nitida          | 2.15(-) *                 | 0.06            | 1.25            | 3.95(+) ** | 0.72                  |  |
| Recordoxylon speciosum | 1.12                      | 0.03            | 0.72            | 1.46       | 0.62                  |  |
| Schefflera morototoni  | 2.63(-) *                 | 2.37(+) *       | 1.42            | 2.47(-) *  | 0.92                  |  |
| Sextonia rubra         | 2.41(-) *                 | 0.02            | 2.31(+) *       | 3.22(-) ** | 0.36                  |  |
| Swartzia panacoco      | 1.41                      | 0.51            | 1.11            | 0.45       | 0.85                  |  |
| Virola michelii        | 2.70(+) *                 | 3.75(+) **      | 0.72            | 2.92(-) ** | 0.82                  |  |

834 Note: *B. prouacensis* was excluded from anatomical analyses, see Material and meth


**Table 5.** Linear models predicting vessel fraction ( $F_V$ ) and specific hydraulic conductivity ( $K_S$ ) based on radial836distance (D), and effects of WSG on significant radial trends in  $F_V$  and  $K_S$ . (+) or (-) gives the sign of  $F_V$  and837 $K_S$  radial trends. Significance levels are: \*, P < 0.05; \*\*P < 0.01; \*\*\*, P < 0.001. Significant radial trends (P <8380.05) in  $K_S$  and  $K_S$  are given in bold. Coefficient of determination ( $R^2$ ) for each model, and Chi-square statistic839( $X^2$ ) for each interaction term, are provided. Non-significant effects of the interaction term (DxWSG) indicate840that radial shifts of  $F_V$  or  $K_S$  are unrelated to WSG.

|                        | F              | V              | K                  | 8              |
|------------------------|----------------|----------------|--------------------|----------------|
| Species                | D              | DxWSG          | D                  | DxWSG          |
|                        | $\mathbb{R}^2$ | $\mathbf{X}^2$ | $\mathbb{R}^2$     | $\mathbf{X}^2$ |
| Bagassa guianensis     | 0.62(+) ***    | 30.1***        | 0.58(+) ***        | 1.29 ***       |
| Cecropia obtusa        | 0.47(+) **     | 0.04           | 0.08(+)            | 3.21           |
| Cordia alliodora       | 0.24           | 0.45           | -0.02(-)           | 4.72           |
| Dicorynia guianensis   | 0.14           | 0.71           | <b>-0.09</b> (+) * | 1.72           |
| Eperua falcata         | 0.14(-) *      | 0.82           | 0.30(+) **         | 4.24 *         |
| Eschweilera coriácea   | 0.47(+) *      | 1.88           | 0.69(-) **         | 1.37           |
| Eschweilera sagotiana  | 0.22           | 0.15           | 0.94(+) **         | 12.6 *         |
| Hirtella glandulosa    | -0.04          | 0.05           | -0.16(-)           | 0.87           |
| Lecythis persistens    | 0.08(+) *      | 0.95           | 0.41(+)            | 0.14           |
| Licania alba           | 0.10           | 1.43           | 0.07(-) **         | 3.21           |
| Miconia tschuyoides    | 0.03           | 0.28           | 0.56(-) *          | 2.84           |
| Oxandra asbeckii       | 0.17(+) *      | 1.12           | 0.32(-) *          | 1.37           |
| Parkia nitida          | 0.32           | 0.11           | -0.09(+)           | 0.98           |
| Recordoxylon speciosum | 0.04           | 0.17           | 0.04(-)            | 1.56           |
| Scheflera morototoni   | 0.51(+) *      | 0.21           | 0.30(+) *          | 2.61           |
| Sextonia rubra         | 0.54(+) **     | 0.38           | 0.54(+) **         | 2.71           |
| Swartzia panacoco      | -0.03          | 0.31           | 0.47(-)            | 5.21           |
| Virola michelii        | 0.15(-) *      | 0.26           | 0.12(-)            | 1.07           |

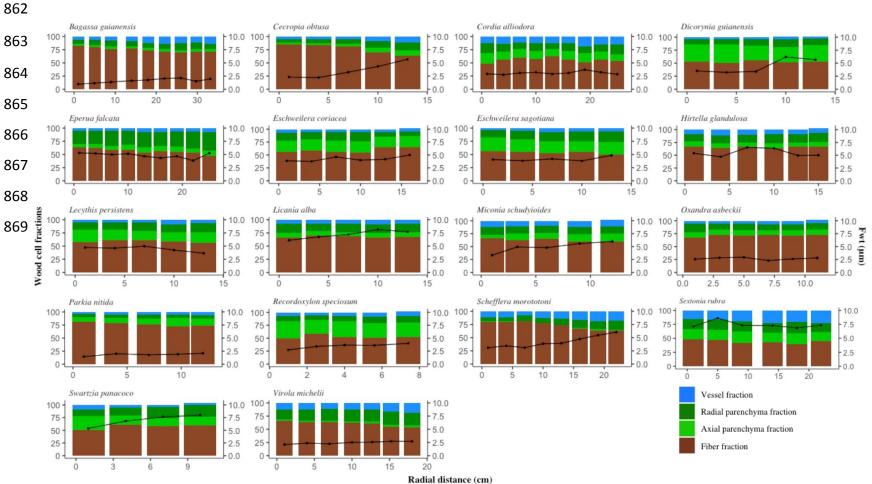

- 842 FIGURES
- 843

Fig. 1. Radial trends in WSG in 19 tree species from a lowland tropical forest in Eastern Amazonia. Grey and black dots represent individual
trees and species-mean values, respectively. Error bars denote standard deviation. Coefficients of determination (R<sup>2</sup>), significance levels (n.s:

846 P > 0.05; P < 0.05; \*\*: P < 0.01; \*\*\*: P < 0.001), and best-fit models (C, cubic; L, linear; and Q, quadratic) are provided (see Table 3).



Radial distance (cm)



#### Fig. 2. Radial variations in wood cell fractions and fiber wall thickness (black line; FwT) of 18 tree species from Eastern Amazonia.