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Improved Streaming Algorithms for Maximizing Monotone

Submodular Functions under a Knapsack Constraint∗

March 24, 2022

Abstract

In this paper, we consider the problem of maximizing a monotone submodular function
subject to a knapsack constraint in a streaming setting. In such a setting, elements arrive
sequentially and at any point in time, and the algorithm can store only a small fraction of the
elements that have arrived so far. For the special case that all elements have unit sizes (i.e., the
cardinality-constraint case), one can find a (0.5 − ε)-approximate solution in O(Kε−1) space,
where K is the knapsack capacity (Badanidiyuru et al. KDD 2014). The approximation ratio
is recently shown to be optimal (Feldman et al. STOC 2020). In this work, we propose a
(0.4− ε)-approximation algorithm for the knapsack-constrained problem, using space that is a
polynomial of K and ε. This improves on the previous best ratio of 0.363 − ε with space of
the same order. Our algorithm is based on a careful combination of various ideas to transform
multiple-pass streaming algorithms into a single-pass one.

1 Introduction

A set function f : 2E → R+ on a ground set E is submodular if it satisfies the diminishing marginal
return property, i.e., for any subsets S ⊆ T ( E and e ∈ E \ T ,

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T ).

A set function is monotone if f(S) ≤ f(T ) for any S ⊆ T . Submodular functions play a funda-
mental role in combinatorial optimization, as they capture rank functions of matroids, edge cuts of
graphs, and set coverage (to name but a few examples). In addition to their theoretical interests,
submodular functions have also attracted much attention from the machine learning community
because they can model a variety of such practical problems as online advertising [1, 26, 38], sensor
location [27], text summarization [32, 33], and maximum entropy sampling [30].

Many of the abovementioned applications can be formulated as the problem of maximizing
a monotone submodular function under a knapsack constraint. In this problem, we are given a
monotone submodular function f : 2E → R+, a size function c : E → N, and an integer K ∈ N,
where N denotes the set of positive integers. The problem is defined as

maximize f(S) subject to c(S) ≤ K, S ⊆ E, (1)

∗A preliminary version appears in The Algorithms and Data Structures Symposium (WADS) 2019. The first author
is supported by ANR-19-CE48-0016 and ANR-18-CE40-0025-01 from the French National Research Agency (ANR).
The second author is supported by JSPS KAKENHI Grant Numbers JP17K00028 and JP18H05291.
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Table 1: The knapsack-constrained problem. The algorithms [16, 39] are not for the streaming
setting. See also [15, 28].

approx. ratio #passes space running time
Ours 2/5− ε 1 O

(
Kε−4 log4K

)
O
(
nε−4 log4K

)
Huang et al. [24] 4/11− ε 1 O

(
Kε−4 log4K

)
O
(
nε−4 log4K

)
Yu et al. [43] 1/3− ε 1 O

(
Kε−1 logK

)
O
(
nε−1 logK

)
Huang et al. [24] 2/5− ε 2 O

(
Kε−4 log4K

)
O
(
nε−4 log4K

)
Huang-Kakimura [23] 1/2− ε O

(
ε−1
)

O
(
Kε−7 log2K

)
O
(
nε−8 log2K

)
Ene and Nguyễn [16] 1− e−1 − ε — — O

(
(1/ε)O(1/ε4)n log n

)
Sviridenko [39] 1− e−1 — — O

(
Kn4

)

where we denote c(S) =
∑

e∈S c(e) for a subset S ⊆ E. Note that the size c(e) for each e ∈ E is a
positive integer. When c(e) = 1 for every item e ∈ E, the constraint coincides with a cardinality
constraint. Hereafter, we assume that every item e ∈ E satisfies c(e) ≤ K, as otherwise we can
simply discard it.

The problem of maximizing a monotone submodular function under a knapsack constraint or a
cardinality constraint is classical and well-studied [21, 41]. The problem is known to be NP-hard
but can be approximated within the factor of 1− e−1; see, e.g., [3, 15, 22, 28, 39, 42].

In some applications, the amount of input data is much larger than the main memory capacity of
individual computers. In such a case, we need to process data in a streaming fashion (see e.g., [34]).
That is, we consider the situation in which each item in the ground set E arrives sequentially, and
we are allowed to keep only a small number of items in the memory at any point. This setting
effectively rules out most techniques provided in the literature, as they typically require random
access to the data. In this work, we assume that an item can be stored using O(1) space, and that
the value oracle of f is available at any point in the process. Such an assumption is standard in
the submodular function literature and in the context of a streaming setting [2, 13, 43].

Our main contribution is to propose a single-pass (2/5 − ε)-approximation algorithm for the
problem (1), which improves on previous work [24, 43] (see Table 1). Space complexity here is
independent of the number of items in E, which is denoted by n.

Theorem 1.1. There exists a single-pass streaming (2/5 − ε)-approximation algorithm for the
problem (1) requiring O

(
Kε−4 log4K

)
space.

Our Technique.
Let us first describe approximation algorithms for the knapsack-constrained problem (1) in the

offline setting. The simplest algorithm is greedy, i.e., it repeatedly takes that item with maximum
ratio between its marginal return and its cost. Although the output of such a greedy algorithm
does not guarantee any approximation, if we take the better of the output and every singleton,
we can obtain a solution with ratio roughly 0.35 [41]1. Sviridenko [39] showed that, by applying
a greedy algorithm from each set of at most three items, we can find a (1 − 1/e)-approximate
solution. Recently, it is shown in [37] that it suffices to enumerate all the sets of at most two items.
To improve running time to nearly linear time, such partial enumeration has been replaced by more

1The approximation ratio is recently improved to 0.405 [40].
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sophisticated multi-stage guessing strategies (in which fractional items are added on the basis of
the technique of multilinear extension) [16]. For implementation, however, all of them require large
space and/or a large number of passes.

For a streaming setting, Badanidiyuru et al. [2] proposed a single-pass thresholding algorithm
that achieves a (0.5 − ε)-approximation for the cardinality-constrained problem. The algorithm
simply takes an arriving item e if its marginal return exceeds a certain threshold and its addition
does not violate the feasibility constraint. This strategy, however, gives us only a (1/3 − ε)-
approximation for the knapsack-constrained problem. The drop in approximation ratio results
from the fact that, under a knapsack constraint, a new item cannot always be added into the
current set even if the latter’s size is less than K.

To overcome this drawback, in [24] a branching technique is introduced in which one stops at
some point of the thresholding algorithm and uses a different strategy to collect subsequent items.
The ratio of this branching algorithm depends on the size of the largest item o1 in the optimal
solution; the ratio becomes worse when c(o1) is overly large. Overall, the proposed approach of [24]
gives a (4/11− ε)-approximation.

How, then, might one improve the ratio further when c(o1) is large? One possible strategy is
to find o1 separately and run the thresholding algorithm to find the rest of the optimal solution
OPT − o1, which is a similar approach to that used in the offline setting. However, finding o1 is
a difficult task in a streaming setting. One can certainly find an item whose size and f -value are
close to those of o1 by guessing the size c(o1) and the f -value f({o1}). The difficulty lies in how to
identify such an item that, together with the rest OPT− o1, will guarantee a decent f -value. That
is to say, we need a good substitute for o1. In [24], a single-pass procedure, called PickOneItem, is
designed to find such an item (see Section 2 for details). Their algorithm finds a constant number
of items such that at least one among them will be a good substitute for o1. Once equipped with
such an item, it is not difficult to collect other items so as to improve the approximation ratio to
2/5− ε. The down-side of this approach is that one needs multiple passes.

In this paper, we introduce new techniques to achieve the same ratio without the need to waste
a pass in collecting a good substitute for o1. We create a combination of PickOneItem and the
thresholding algorithm in two different ways. The first is to perform both dynamically, that is,
each time we find a candidate e for an approximation of o1, we perform the thresholding algorithm
starting from e with the current set, where the thresholding algorithm is to find an approximate
solution to OPT − o1. We show that the approximation ratio depends on c(o1) and c(o2), where
o2 is the second largest item in OPT, and is at least 2/5 − ε when c(o2) is at most K/3. In
contrast to this, when c(o2) is greater than K/3, we deal with both o1 and o2 separately from the
rest of the optimal solution. The second algorithm performs the thresholding algorithm to find an
approximate solution to OPT− o1 − o2, in parallel with finding approximations of o1 and o2 using
PickOneItem. We show that a combination of their results yields a (2/5− ε)-approximate solution
when c(o2) is greater than K/3. Details regarding the two algorithms are described in Sections 3.2
and 3.3, respectively.

Related Work.
Maximizing a monotone submodular function subject to various constraints is a subject that

has been extensively studied in the literature. We do not attempt to give a complete survey
here and merely highlight the most relevant results. In addition to the knapsack constraint and
cardinality constraint mentioned above, the problem has also been studied under (multiple) matroid
constraints, p-system constraints, multiple knapsack constraints. See [9, 11, 12, 15, 20, 28, 31] and
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the references therein.
For a streaming setting, Badanidiyuru et al. [2] proposed a single-pass (0.5− ε)-approximation

algorithm with O(Kε−1 logK) space for the cardinality-constrained problem. The space complexity
has been improved to O(Kε−1) [25]. Recently, Feldman et al. [19] showed that the approximation
ratio 0.5 is optimal in the sense that, to achieve an approximation ratio better than 0.5 + ε, one
needs to use space Ω(εn/K3). Further, single-pass streaming algorithms have also been proposed
for the problem with matroid constraints [10], p-matchoid constraints [18], and knapsack con-
straint [24, 43], and for that without monotonicity [13, 36]. Multi-pass streaming algorithms, which
are allowed to read a stream of the input multiple times, have also been studied [3, 10, 23, 24].
Particularly notable is that Chakrabarti and Kale [10] gave an O(ε−3)-pass streaming algorithms
for a generalization of the maximum matching problem and the submodular maximization problem
with a cardinality constraint. Huang and Kakimura [23] designed an O(ε−1)-pass streaming algo-
rithm with approximation guarantee 1/2 − ε for the knapsack-constrained problem. In addition
to the streaming setting, recent applications of submodular function maximization to large data
sets have motivated researchers to pursue work in new directions on other computational models
including such a parallel computation model as the MapReduce model [7, 6, 29] and on adaptivity
analysis [4, 5, 14, 17].

The maximum coverage problem is a special case of monotone submodular maximization under
a cardinality constraint for which the function is a set-covering function. For the special case,
McGregor and Vu [35] and Batani et al. [8] gave a (1 − e−1 − ε)-approximation algorithm in a
multi-pass streaming setting.

2 Preliminaries

For a subset S ⊆ E and an element e ∈ E, we use the shorthand S+e and S−e to stand for S∪{e}
and S \ {e}, respectively. For a function f : 2E → R+, we use the shorthand f(e) to stand for
f({e}). The marginal return of adding e ∈ E w.r.t. S ⊆ E is defined as f(e | S) = f(S+e)−f(S).
Thus, submodularity means that f(e | S) ≥ f(e | T ) for any subsets S ⊆ T ( E and e ∈ E \ T .

Hereafter, we let I = (f, c,K,E) be an input instance of the problem (1). Letting OPT =
{o1, o2, . . . , o`}, we denote an optimal solution with c(o1) ≥ c(o2) ≥ · · · ≥ c(o`). We denote
ri = c(oi)/K for i = 1, 2, . . . , `. Let v be an approximate value of f(OPT) such that v ≤ f(OPT) ≤
(1 + ε)v.

In the following sections, we review previous results w.r.t. the thresholding algorithm and the
procedure PickOneItem.

2.1 Thresholding Algorithms

In this section, we present a thresholding algorithm with a single pass [2, 24, 43]. The algorithm
simply takes an arriving item e when the marginal return exceeds a threshold. That is, when a
new item e arrives, we decide to add e to our current set S if c(S + e) ≤ K and f(e | S) ≥ α c(e)K v,
where α is a parameter. See Algorithm 1. Performance depends on the following.

Lemma 2.1. Let S = {e1, e2, . . . , es}. Suppose that f(ei | {e1, e2, . . . , ei−1}) ≥ α c(ei)K v for each
i = 1, 2, . . . , s. It holds, then, that

f(S) ≥ αc(S)

K
v.

4



Algorithm 1 Thresholding Algorithm [2, 24, 43]
1: procedure Thresholding(v) . v is an approximation of f(OPT)
2: S := ∅.
3: while item e is arriving do
4: If f(e | S) ≥ α c(e)K v and c(S + e) ≤ K then S := S + e.

return S

Proof. This is because

f(S) =

s∑
i=1

f(ei | {e1, e2, . . . , ei−1}) ≥ α
c(S)

K
v.

By Lemma 2.1, if the thresholding algorithm returns a set S of size K, then f(S) ≥ αv holds.
For the cardinality-constrained problem, we can see that, if S has a size less than K, then f(S) ≥
(1−α)v by submodularity, which implies that, with a setting of α = 1/2, the algorithm will find a
set S such that f(S) ≥ v/2 [2]. For the knapsack-constrained problem, setting α = 2/3, together
with taking, in parallel, a singleton with maximum return, we can find, with a single pass, a set S
such that f(S) ≥ v/3 [24].

2.2 Guessing the Large Item

We here consider a procedure for approximating the largest item o1 in OPT. It is difficult to
correctly identify o1 among the items in E, but we can nonetheless find a reasonable approximation
of it in a single pass. This procedure is used to design multi-pass streaming algorithms [23, 24].
Recall that we are given an approximate value v of f(OPT) such that v ≤ f(OPT) ≤ (1 + ε)v.

Let us first consider the following:

Lemma 2.2 ([24]). Let E1 ⊆ E such that e∗ ∈ E1 ∩ OPT. Let θ be a real number such that
θv/(1 + ε) ≤ f(e∗) ≤ θv. For a nonnegative integer t with t > 1

θ − 2, define

λ = 2

(
θ

t+ 1
− 1

(t+ 1)(t+ 2)

)
. (2)

Suppose that a set X = {e1, e2, . . . , ex} ⊆ E1 satisfies that f(ei | {e1, e2, . . . , ei−1}) ≥ (θ−λ(i−1))v
for each i = 1, 2, . . . , x. Then the following holds:

(i) If x = t+ 1, then at least one item e ∈ X guarantees that f(OPT− e∗ + e) ≥ Γ(θ)v −O(ε)v.

(ii) If x < t+1 and f(e∗ | X) < (θ−λx)v, then at least one item e ∈ X satisfies f(OPT−e∗+e) ≥
Γ(θ)v −O(ε)v.

Here Γ : R→ R is the function defined by

Γ(θ) =
t(t+ 3)

(t+ 1)(t+ 2)
− t− 1

t+ 1
θ. (3)
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Algorithm 2 Procedure to guess one optimal item [24]
1: procedure PickOneItem(v, θ, E1) . θv/(1 + ε) ≤ f(OPT) ≤ θv and OPT ∩ E1 6= ∅
2: Define t and λ from θ by Lemma 2.2.
3: X := ∅.
4: while item e ∈ E1 is arriving do
5: If |X|< t+ 1 and f(e | X) ≥ (θ − λ|X|)v then X := X + e.

return X

This lemma suggests the following procedure, called PickOneItem, for finding an item that
resembles o1, and we describe this in Algorithm 2. Suppose that we are given approximations
r1, r1 of r1 such that r1 ≤ r1 ≤ r1 and r1 ≤ (1 + ε)r1. Define E1 = {e ∈ E | r1K ≤ c(e) ≤
r1K, θv/(1 + ε) ≤ f(e) ≤ θv}. We see, then, that o1 ∈ E1. In a single pass, starting from X = ∅,
we decide to add an item e ∈ E1 to X if f(e | X) ≥ (θ − λ|X|)v. We stop making this decision
when |X|= t + 1. Then, in each step, X will always satisfy the assumption in Lemma 2.2; that
is, X = {e1, e2, . . . , ex} ⊆ E1 will satisfy that f(ei | {e1, e2, . . . , ei−1}) ≥ (θ − λ(i − 1))v for each
i = 1, 2, . . . , x.

We are able to demonstrate that the output X contains an item e ∈ X such that f(OPT− o1 +
e) ≥ Γ(θ)v−O(ε)v. Let us consider the situation just before o1 arrives. If the current set X has size
t+1, then Lemma 2.2 (i) implies that there exists e ∈ X such that f(OPT−o1+e) ≥ Γ(θ)v−O(ε)v.
If X has a size less than t + 1, then either o1 is put in X, or there exists e ∈ X such that
f(OPT− o1 + e) ≥ Γ(θ)v −O(ε)v by Lemma 2.2 (ii). Hence, in any case, at least one item e ∈ X
will guarantee that f(OPT− o1 + e) ≥ Γ(θ)v −O(ε)v.

By choosing an optimal value t for a given θ, we can obtain Γ(θ) ≥ 2/3. More specifically, we
have the following theorem:

Theorem 2.3 ([24]). Let E1 ⊆ E such that e∗ ∈ E1 ∩ OPT. Suppose that we are given a real
number θ that satisfies θv/(1 + ε) ≤ f(e∗) ≤ θv. Define t to be

t =


1 if θ ≥ 1

2

2 if 1
2 ≥ θ ≥

2
5

3 if 2
5 ≥ θ ≥ 0.

(4)

Then, with a single pass and O(1) space, we can find a set X ⊆ E1 such that |X|≤ t+ 1 and some
item e ∈ X satisfies that f(OPT− e∗ + e) ≥ Γ(θ)v −O(ε)v, where

Γ(θ) ≥


2
3 if θ ≥ 1

2
5
6 −

θ
3 if 1

2 ≥ θ ≥
2
5

9
10 −

θ
2 if 2

5 ≥ θ ≥ 0.

3 Single-Pass (2/5− ε)-Approximation Algorithm

In this section, we present a single-pass (2/5 − ε)-approximation algorithm for the problem (1).
We first show in Section 3.1 that, if c(o1) is at most K/2 or more than 2K/3, then the algorithm
in [24] can be used. We then focus on the case in which c(o1) is in [K/2, 2K/3]. For this case,
we develop two algorithms by combining the technique used in Section 2.2 into the thresholding
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algorithm seen in Section 2.1. The first algorithm, which is presented in Section 3.2, is useful when
c(o2) is at most K/3, while the second in Section 3.3 is applied when c(o2) is more than K/3.

Hereafter, we often assume that we know in advance approximations of r1 = c(o1)/K and
r2 = c(o2)/K. That is, we are given r`, r` such that r` ≤ r` ≤ r` and r` ≤ (1 + ε)r` for ` ∈ {1, 2}.
These values can be guessed from a geometric series of a certain interval; this will be described in
greater detail for each algorithm.

3.1 Algorithm When c(o1) ≤ K
2

or c(o1) >
2K
3

It is known that when c(o1) ≤ K/2, it is possible to improve the thresholding algorithm so that we
can find a (2/5− ε)-approximate solution in O(Kε−4 log4K) space with a single pass.

Theorem 3.1 ([24]). Suppose that c(o1) ≤ K/2. We can find a (2/5 − ε)-approximate solution
with a single pass for the problem (1). The space complexity of the algorithm is O(Kε−4 log4K).

The algorithm for the above theorem can be extended for the problem of finding a set S of
items that maximizes f(S) subject to the relaxed constraint that the total size is at most pK, for a
given number p ≥ 1. Note here that a set S of items is a (p, α)-approximate solution if c(S) ≤ pK
and f(S) ≥ αf(OPT), where OPT is an optimal solution of the original instance.

Theorem 3.2 ([24]). For a constant number p ≥ 2r1, there exists a
(
p, 2p

2p+3 − ε
)
-approximation

single-pass streaming algorithm. The space complexity of the algorithm is O(Kε−3 log3K).

For example, when we are allowed to pack items up to 2K (i.e., when p = 2), the above algorithm
achieves a (2, 4/7− ε)-approximation.

With the aid of this algorithm, we can find a (2/5 − ε)-approximate solution for some special
cases even when c(o1) ≥ K/2.

Corollary 3.3. If c(o1) > 2K/3, then we can find a (2/5− ε)-approximate solution with a single
pass. The space complexity of the algorithm is O(Kε−3 log3K).

Proof. Suppose that c(o1) > 2K/3. We may assume that f(o1) <
2
5f(OPT), as otherwise taking a

singleton with maximum return would give a 2/5-approximation. We can see then that f(OPT−
o1) ≥ f(OPT) − f(o1) >

3
5f(OPT) and c(OPT − o1) ≤ K − c(o1) < K/3. Consider maximizing

f(S) subject to c(S) ≤ K/3 in the set {e ∈ E | c(e) ≤ K/3}. The optimal value of this instance
will be at least f(OPT − o1) > 3

5f(OPT), as OPT − o1 will be feasible for this instance. We can
now apply Theorem 3.2 with p = 3 to this instance. The output S then has a size of at most K,
and moreover, we have

f(S) ≥
(

2

3
− ε
)

3

5
f(OPT) ≥

(
2

5
−O(ε)

)
f(OPT).

Thus we obtain a (2/5−O(ε))-approximation.

Corollary 3.4. Suppose that c(o1) > K/2. If f(o1) ≤ 3
10f(OPT), then we can find a (2/5 − ε)-

approximate solution with a single pass. The space complexity of the algorithm is O(Kε−3 log3K).
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Proof. We observe that f(OPT−o1) ≥ f(OPT)−f(o1) ≥ 7
10f(OPT) and c(OPT−o1) ≤ K−c(o1) <

K/2. Consider maximizing f(S) subject to c(S) ≤ K/2 in the set {e ∈ E | c(e) ≤ K/2}. The
optimal value of this instance is at least f(OPT − o1) ≥ 7

10f(OPT). We now apply Theorem 3.2
with p = 2 to this instance. The output S then has a size of at most K, and, further, we have

f(S) ≥
(

4

7
− ε
)

7

10
f(OPT) ≥

(
2

5
−O(ε)

)
f(OPT).

Thus we obtain a (2/5−O(ε))-approximation.

3.2 Algorithm for Small c(o2)

By Theorem 3.1 and Corollary 3.3, we may assume that c(o1) is in [K/2, 2K/3]. In this section, we
describe a single-pass algorithm that works well when c(o2) is small. More specifically, we present
the following theorem.

Theorem 3.5. If c(o1) ∈ [K/2, 2K/3] and c(o2) ≤ K/3, then we can find a (2/5− ε)-approximate
solution with a single pass. The space complexity is O(Kε−4 log2K).

To prove the theorem, we first give an algorithm provided with an approximation v of the
optimal value in Section 3.2.1, and then eliminate the assumption in Section 3.2.2.

3.2.1 Algorithm with Optimal Value

In this section, we suppose that we know in advance an approximate value v of f(OPT), i.e.,
v ≤ f(OPT) ≤ (1+ε)v. This assumption can be eliminated with a dynamic update technique using
O(ε−1 logK) additional space in a way similar to that of [2, 24, 43], which will be discussed later
in Section 3.2.2. In addition, we suppose that we are given θ1 such that θ1v/(1 + ε) ≤ f(o1) ≤ θ1v.
Define E1 = {e ∈ E | c(e) ∈ [r1K, r1K], f(e) ∈ [θ1v/(1 + ε), θ1v]}. We can assume that E is the
disjoint union of E1 and E1 = {e | c(e) ≤ r2K}, as we can discard the other items. Note that
o1 ∈ E1 and OPT− o1 ⊆ E1.

We propose a single-pass streaming algorithm, called Dynamic(v). The algorithm description is
given in Algorithm 3.

In the algorithm Dynamic(v), we basically run the thresholding algorithm for E1 to collect a
set S of items. In the same pass in parallel, we try to find a subset X ⊆ E1 that contains a good
approximation of o1, on the basis of Lemma 2.2. That is, when an item e in E1 arrives, we add e
to X if |X|< t+ 1 and f(e | X) ≥ (θ1−λ|X|)v. Each time an item e is added to X, since e may be
a good approximation of o1, we create a new feasible set S + e, and start to run the thresholding
algorithm, in parallel, from S+e. Thus each item e in X will generate a feasible set, and the family
of these feasible sets will be maintained as T in the algorithm. Note that, in order to guarantee the
approximation ratio of the algorithm starting from S + e, the thresholding condition needs to be
satisfied for e in X: f(e | S) ≥ α c(e)K v for the current set S. Thus the above algorithm dynamically
performs the thresholding algorithm to E1 and E1 + e for each e ∈ X.

The above strategy does not work, however, when the size of S becomes large. Indeed, as
we perform the thresholding algorithm to S + e for each e ∈ X, it is necessary for S + e to be
feasible, i.e., for c(S) ≤ K − c(e) when e arrives. Further, since we have the additional condition
f(e | S) ≥ α c(e)K v for picking an item for X, as noted above, we may discard an approximation of
o1 when f(e | S) is small (even if Lemma 2.2 is applicable). To avoid such issues, we adopt another
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Algorithm 3
1: procedure Dynamic(v)
2: S := ∅; S′0 := ∅; T := ∅; X := ∅.
3: α := 2

5(1−r2) .
4: Define t and λ from θ1 by (4) and (2).
5: while item e is arriving do . First phase
6: if e ∈ E1 then
7: if |X|< t+ 1 and f(e | X) ≥ (θ1 − λ|X|)v and f(e | S) ≥ α c(e)K v then
8: T := T ∪ {S + e} and X := X + e.
9: else

10: if f(e | S) ≥ α c(e)K v and c(S + e) ≤ K then S := S + e.
11: for each T ∈ T do
12: if f(e | T ) ≥ α c(e)K v and c(T + e) ≤ K then T := T \ {T} ∪ {T + e}.
13: if c(S) ≥ (1− r1 − r2)K then S′0 := S and break.
14: S′ := S′0.
15: while item e is arriving do . Second phase
16: if e ∈ E1 then
17: if f(S′) < f(S′0 + e) then S′ := S′0 + e.
18: else
19: if f(e | S) ≥ α c(e)K v and c(S + e) ≤ K then S := S + e.
20: for any T ∈ T do
21: if f(e | T ) ≥ α c(e)K v and c(T + e) ≤ K then T := T \ {T} ∪ {T + e}.

return the best among {S, S′} ∪ T .

strategy when c(S) becomes large. Let S′0 be the set we have the first time that c(S) is at least
(1 − r1 − r2)K. It follows from Lemma 2.1 that f(S′0) will be relatively large, as indicated in (6)
below. Additionally, since c(S′0) will be at most (1− r1)K, we can add any item in E1 to S′0. In the
remainder of a stream after having S′0, we simply take one item e ∈ E1 that maximizes f(S′0 + e).
At the same time, we continue to run the thresholding algorithms to S and every set in T . In the
end, the algorithm returns the best among all candidates.

Theorem 3.6. Suppose that v ≤ f(OPT) ≤ (1 + ε)v. Then Algorithm Dynamic(v) returns a set S
such that c(S) ≤ K and

f(S) ≥ min

{
2

5
, 1− 2

5(1− r2)
, Γ(θ)− 2

5

(
1− r1
1− r2

)}
v −O(ε)v. (5)

The space complexity is O(K).

Let S̃ be the set S at the end of the algorithm, and S̃′ be the output obtained by adding one
item in E1 to S′0 (Line 17). Similarly, we denote by T̃e the set of T containing an item e ∈ X at
the end. Note that the sets S̃ and T̃e are obtained by adding an item satisfying the thresholding
condition repeatedly. Also, S̃′ and T̃e contain exactly one item e in E1.

It is not difficult to see that all the obtained sets will at most be of size K, as shown below.
We note that c(S′0) < (1− r1)K, since S′0 is the set the first time the size exceeds (1− r1 − r2)K
as the result of the addition of an item of a size of at most r2K.
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Lemma 3.7. It holds that c(S̃) ≤ K, c(S̃′) ≤ K, and c(T̃e) ≤ K for each e ∈ X.

Proof. We add an item e only when the addition does not exceed the knapsack capacity K, except
for Lines 8 and 17. In Line 8, since c(S) < (1− r1 − r2)K, we have c(S + e) ≤ (1− r2)K ≤ K for
e ∈ E1. In Line 17, since c(S′0) < (1− r1)K, we can add an item in E1.

In the remainder of this subsection, we show (5) in Theorem 3.6. We first demonstrate that,
by Lemma 2.1, we have

f(S′0) ≥ α(1− r1 − r2)v, (6)

since c(S′0) ≥ (1− r1 − r2)K. Let X̃ be the set X at the end of the algorithm.

Lemma 3.8. At the end of the algorithm, one of the following holds.

• There exists an item e ∈ X̃ such that f(OPT− o1 + e) ≥ Γ(θ)v −O(ε)v.

• f(o1 | S̃) < αr1v, or

• f(S̃′) ≥ 2v/5.

Proof. Suppose that o1 arrives during the first while-loop. Note that this situation includes the case
in which the algorithm ends in the first while-loop without creating S′0. Let X = {e1, e2, . . . , ex}
be the set just before o1 arrives such that items are sorted in the ordering of the addition. Then
X satisfies f(ei | {e1, e2, . . . , ei−1}) ≥ (θ − λ(i − 1))v for each i = 1, 2, . . . , x. Note that, when o1
will be added to X, clearly the first statement will hold. Thus we may assume that o1 does not
satisfy the condition in Line 7; that is, one of the following three conditions holds: |X|= t + 1,
f(o1 | X) < (θ−λ|X|)v, or f(o1 | S) < αc(o1)v ≤ αr1v. It follows from Lemma 2.2 that, if one of the
first two conditions holds, then at least one item e ∈ X will satisfy f(OPT−o1+e) ≥ Γ(θ)v−O(ε)v.
If f(o1 | S) < αr1v, then f(o1 | S̃) ≤ f(o1 | S) < αr1v, by submodularity. Thus, since X ⊆ X̃, one
of the first two statements of Lemma 3.8 will be satisfied.

Next suppose that S′0 is constructed and o1 arrives after that. We may assume that f(S̃′) <
2v/5. From Line 17, we see that f(S′0 + o1) ≤ f(S̃′) < 2v/5. Hence we have

f(o1 | S′0) = f(S′0 + o1)− f(S′0) <
2

5
v − f(S′0).

By (6), it holds that

f(o1 | S′0) <
2

5
v − α(1− r1 − r2)v ≤ αr1v,

where, we may recall, α = 2
5(1−r2) . Therefore, by submodularity, we obtain f(o1 | S̃) ≤ f(o1 | S′0) <

αr1v. Thus the lemma follows.

Let us next consider each case of Lemma 3.8.

Lemma 3.9. Suppose that there exists e ∈ X̃ such that f(OPT−o1 +e) ≥ Γ(θ)v−O(ε)v. It holds,
then, that

f(T̃e) ≥ min

{
2

5
, Γ(θ)− 2

5

(
1− r1
1− r2

)}
v −O(ε)v.
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Proof. If c(T̃e) ≥ (1 − r2)K, then we obtain f(T̃e) ≥ 2v/5 by Lemma 2.1. Thus we may assume
that c(T̃e) < (1 − r2)K. This implies that, during the algorithm, no items in OPT − o1 − T̃e are
included in T̃e due to the thresholding condition, not the capacity constraint. Hence, for each item
o ∈ OPT − o1 − T̃e, we have f(o | T̃e) < αc(o)v/K. Therefore, it holds by monotonicity and
submodularity that

f(OPT− o1 + e) ≤ f((OPT− o1 + e) ∪ T̃e) ≤ f(T̃e) + f(OPT− o1 − T̃e | T̃e)

≤ f(T̃e) +
∑

o∈OPT−o1−T̃e

f(o | T̃e)

≤ f(T̃e) + α
c(OPT− o1 − T̃e)

K
v.

Since f(OPT− o1 + e) ≥ Γ(θ)v −O(ε)v and c(OPT− o1 − T̃e) ≤ (1− r1)K, we obtain

Γ(θ)v −O(ε)v ≤ f(T̃e) + α(1− r1)v.

Thus the lemma follows, as α = 2
5(1−r2) .

Lemma 3.10. If f(o1 | S̃) < αr1v, then we have

f(S̃) ≥ min

{
2

5
, 1− α

}
v −O(ε)v.

Proof. If c(S̃) ≥ (1 − r2)K, then f(S̃) ≥ 2v/5 by Lemma 2.1. Thus we may assume that c(S̃) <
(1− r2)K. In this case, during the algorithm, all items in OPT− o1 − S̃ are not included in S̃ due
to the thresholding condition, not the capacity constraint. Hence, for each item o ∈ OPT− o1− S̃,
we have f(o | S̃) < αc(o)v/K. This implies that

f(OPT)− f(S̃) = f(OPT− S̃ | S̃) ≤ f(o1 | S̃) + f(OPT− o1 − S̃ | S̃)

≤ αr1v +
∑

o∈OPT−o1−S̃

f(o | S̃)

≤ αr1v + α
c(OPT− o1 − S̃)

K
v.

Since c(OPT− o1 − S̃) ≤ (1− r1)K, we obtain

f(OPT)− f(S̃) ≤ αr1v + α(1− r1)v ≤ αv + αεr1v = αv +O(ε)v.

Therefore, since f(OPT) ≥ v, we have f(S̃) ≥ (1− α)v −O(ε)v.

By the above two lemmas, Theorem 3.6 holds, as may be seen below.

Proof of Theorem 3.6. It follows from Lemma 3.8 that, at the end of Algorithm Dynamic(v), one
of the three conditions will be satisfied. If the first condition holds, then Lemma 3.9 implies that,
for some e ∈ X̃,

f(T̃e) ≥ min

{
2

5
, Γ(θ)− 2

5

(
1− r1
1− r2

)}
v −O(ε)v.
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If the second condition holds, then Lemma 3.10 implies that

f(S̃) ≥ min

{
2

5
, 1− α

}
v −O(ε)v.

Since the output S of the algorithm is the best among {S̃, S̃′} ∪ {T̃e | e ∈ X̃}, we can see that (5)
holds. Thus, since c(S) ≤ K by Lemma 3.7, the theorem holds.

It turns out from Theorem 3.6 and Corollary 3.4 that we can find a (2/5 − ε)-approximate
solution when c(o2) is small.

Corollary 3.11. Suppose that v satisfies v ≤ f(OPT) ≤ (1 + ε)v and that c(o1) ∈ [K/2, 2K/3].
If c(o2) ≤ K/3, then we can find, with a single pass, a set S such that c(S) ≤ K and f(S) ≥
(2/5−O(ε))v. The space complexity is O(Kε−3 logK).

Proof. Recall that r`, r` satisfy that r` ≤ r` ≤ r` and r` ≤ (1 + ε)r` for ` ∈ {1, 2}. Also, θ1 satisfies
θ1v/(1 +ε) ≤ f(o1) ≤ θ1v. These values can be guessed from a geometric series of certain intervals.
Specifically, since r1 is in [1/2, 2/3], r1, r1 can be taken from a geometric series of the interval
[1/2, 2/3]: {(1 + ε)i | i ∈ Z+, 1/2 ≤ (1 + ε)i ≤ 2/3} ∪ {1/2, 2/3}. Similarly, r2, r2 can be taken
from a geometric series of the interval [1/K, 1/3], as c(o2) is a positive integer and r2 = c(o2)/K.
For θ1, we may assume that θ1 is in [3/10, 2/5] by Corollary 3.4, because, if θ1 ≥ 2/5, then taking
a singleton e with maximum return will satisfy f(e) ≥ 2v/5. This means that θ1 can also be
taken from a geometric series of the interval [3/10, 2/5]. We run Algorithm Dynamic(v) for each
guessed value of r`, r` (` = 1, 2) and θ1, and return the best one. The space complexity for guessing
these values is O(ε−3 logK). Since Dynamic(v) requires O(K) space, total space complexity is
O(Kε−3 logK).

Since r1 ≥ 1/2 and r2 ≤ 1/3, it holds that

1− r1
1− r2

≤ 1/2

2/3
=

3

4
and

1

1− r2
≤ 3

2
.

Since Γ(θ) ≥ 9
10 −

θ
2 ≥ 0.7 for θ ≤ 2

5 , (5) implies that

f(S) ≥ min

{
2

5
, 1− 2

5
· 3

2
, 0.7− 2

5
· 3

4

}
v −O(ε)v ≥

(
2

5
−O(ε)

)
v,

which proves the lemma.

3.2.2 Algorithm with Dynamic Update

Our algorithm Dynamic requires a good approximation v for f(OPT). This requirement can be
eliminated with dynamic updates in a way similar to that of [2, 24, 43]. We describe the idea briefly
below.

Before describing the dynamic update technique, however, we should first note that, if we are
given m = maxe∈S f(e) in advance, we can easily guess v. In fact, since m ≤ f(OPT) ≤ Km, a
value v with v ≤ f(OPT) ≤ (1 + ε)v for ε ∈ (0, 1] will exist in the set V = {(1 + ε)i | m ≤ (1 + ε)i ≤
Km, i ∈ Z+}∪{m}. Hence we can run our algorithm for each v ∈ V in parallel and choose the best
output. As the size of V is O(ε−1 logK), the total space complexity required is O(Kε−4 log2K),
by Corollary 3.11.
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To eliminate the assumption that we are given m in advance, we consider an algorithm which
dynamically updates m to determine the range of guessed optimal values; it maintains the (tenta-
tive) maximum value m′ = max f(e), where the maximum is taken over the items e arrived so far,
and maintains v values in the interval between m′ and Km′/α. More specifically, we perform our
algorithm Dynamic(v) for each v in V ′ = {(1 + ε)i | m′1+ε ≤ (1 + ε)i ≤ Km′/α, i ∈ Z+}. When a new
item e arrives, we update m′ and V ′, removing the data stored for v 6∈ V ′, and decide whether or
not to add e to S and X for each v ∈ V ′.

We will see that it suffices to maintain v in V ′. Indeed, a value v with v ≤ f(OPT) ≤ (1 + ε)v
is clearly more than m′, as m′ ≤ f(OPT). Further, if v > Km′/α, then e is not selected, because,
for any subset S, we have

f(e | S) ≤ f(e) ≤ m′ < α

K
v ≤ αc(e)

K
v.

Therefore, we do not need to check the thresholding condition for v 6∈ V ′. The number of v’s in V ′ is
O(ε−1 logK), and for each v in V ′, our algorithm requires O(Kε−3 logK) space, by Corollary 3.11.
Thus, the total space required is O(Kε−4 log2K). This proves Theorem 3.5.

3.3 Algorithm for Large c(o2)

In this section, we propose our second algorithm, which is efficient when c(o2) is large. Since
o1, o2 ∈ OPT, it is clear that c(o1)+c(o2) ≤ K, and hence r2 ≤ 1−r1, for which we may recall that
r` = c(o`)/K for ` = 1, 2. As will be shown in the following lemma (see Section 3.3.3 for the proof),
we can find a (2/5− ε)-approximate solution when r2 is very large, i.e., when r1 + r2 ≥ 1− ε.

Lemma 3.12. If c(o1) + c(o2) ≥ (1− ε)K, then we can find a (2/5− ε)-approximate solution with
a single pass using O(Kε−3 log3K) space.

Below, we assume that r2 ≤ 1− r1 − ε, which implies that r1 + r2 ≤ 1. The goal of this section
is to demonstrate the following theorem.

Theorem 3.13. If c(o1) ∈ [K/2, 2K/3] and c(o2) ∈ [K/3,K − c(o1) − ε], then we can find a
(2/5− ε)-approximate solution with a single pass using O(Kε−3 logK) space.

The proof is given in the following two subsections.

3.3.1 Algorithm with Optimal Value

In a way similar to that seen in the previous section, we assume here that we know in advance an
approximate value v of f(OPT), i.e., v ≤ f(OPT) ≤ (1 + ε)v. We also assume that we are given θ`
such that θ`v/(1 + ε) ≤ f(o`) ≤ θ`v for ` ∈ {1, 2}. Define E` = {e ∈ E | c(e) ∈ [r`K, r`K], f(e) ∈
[θ`v/(1 + ε), θ`v]} for ` ∈ {1, 2}. Then o` ∈ E` holds. We also define E = {e | c(e) ≤ r2K}. We
may then assume that E = E1 ∪ E2 ∪ E, as we can discard the other items.

In the algorithm (Algorithm 4), which we call Parallel, we perform, in parallel, the thresholding
algorithm and the procedure PickOneItem from Section 2.2. We apply PickOneItem to both E1 and
E2 to obtain approximations of o1 and o2. The set X` will then include an approximation of o` for
` = 1, 2. While finding X1 and X2, we check in Line 11 as to whether there exists a pair of items,
one each from X1 and X2, respectively, whose f -value is more than 2v/5. In parallel, we run the
thresholding algorithm with α` := 2

5(1−r`) to E to obtain a set S` for ` = 1, 2. If the output S` has
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Algorithm 4
1: procedure Parallel(v)
2: S` := ∅; X` := ∅ for ` = 1, 2.
3: α` := 2

5(1−r`) for ` = 1, 2.
4: Define t` and λ` from θ` by (4) and (2) for ` = 1, 2.
5: while item e is arriving do
6: for each ` ∈ {1, 2} do
7: if e ∈ E` then
8: if |X`|< t` + 1 and f(e | X`) ≥ (θ` − λ`|X`|)v then
9: X` := X` + e.

10: else if e ∈ E3−` then
11: if there exists an item ē ∈ X` such that f({ē, e}) ≥ 2

5v then return {ē, e}.
12: else
13: if f(e | S`) ≥ α` c(e)K v and c(S` + e) ≤ K then S` := S` + e.

14: if c(S`) ≥ (1− r`)K for some ` ∈ {1, 2} then return S`.
15: else return the set that achieves max`∈{1,2},e∈X`

f(S` + e).

a size larger than (1 − r`)K for some ` ∈ {1, 2}, then the algorithm will return S`. In this case,
Lemma 2.1 guarantees that f(S`) will be large. Otherwise, i.e., if c(S`) is small, there will be room
for adding an item from X`. The algorithm returns the set that maximizes f(S` + e) for e ∈ X`

and ` = 1, 2. Intuitively speaking, the algorithm partitions the ground set E into three parts E1,
E2 and E, and it then returns the best set that can be obtained from two of the three parts.

Theorem 3.14. Suppose that v ≤ f(OPT) ≤ (1+ε)v. If r1+r2 ≤ 1−ε, then Algorithm Parallel(v)
returns a set S such that c(S) ≤ K and f(S) ≥ γv −O(ε)v, where

γ = min

{
2

5
, Γ(θ2) + θ2 −

2

5

(
2− 2r2 − r1

1− r2

)
,Γ(θ1) + θ1 −

2

5

(
2− 2r1 − r2

1− r1

)}
. (7)

The space complexity is O(K).

In the rest of the section, we prove Theorem 3.14.
Let S̃` (` = 1, 2) be the set S` at the end of the algorithm. We also denote by X̃` the set X` at

the end. Let S̃′` be the set that achieves maxe∈X̃`
f(S̃` + e) for ` = 1, 2. The set S̃` is obtained by

adding an item on the basis of the thresholding condition f(e | S`) ≥ α` c(e)K v.
In the algorithm, each item in E is added to S1 or S2 only when it does not exceed the knapsack

capacity. Hence c(S̃`) ≤ K for ` = 1, 2. Also clearly c(S̃′`) ≤ K for ` = 1, 2 if c(S̃`) ≤ (1 − r`)K.
On the other hand, if the algorithm terminates in Line 11, then the output has only two items each
from E1 and E2, and hence the size will be at most K since r1 + r2 ≤ 1 by the assumption. Thus
the output of the algorithm will be of a size of at most K.

Let us next show (7) in Theorem 3.14. We consider the following two cases separately: the case
in which o2 arrives before o1 and that in which o1 arrives before o2.

Case 1: Suppose that o2 arrives before o1. Consider the case in which ` = 2. We may
assume that the algorithm terminates at the end (not in Line 11). Further, if c(S̃2) ≥ (1 − r2)K,
then f(S̃2) ≥ 2v/5 by Lemma 2.1. Thus we may assume that c(S̃2) < (1− r2)K.
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Let X2 = {e1, e2, . . . , ex} be the set collected just before o2 arrives. Then X2 satisfies f(ej |
{e1, e2, . . . , ej−1}) ≥ (θ2 − λ2(j − 1)) for each j = 1, 2, . . . , x. When o1 arrives, we return the set
{e, o1} for some e ∈ X2 if f({o1, e}) ≥ 2v/5 at Line 11. Thus we may assume that f({o1, e}) < 2v/5
for any e ∈ X2.

Lemma 3.15. Suppose that c(S̃2) < (1−r2)K and that, for any e ∈ X2, we have f({o1, e}) < 2v/5.
Then there exists an item e ∈ X2 such that

f(S̃2 + e) ≥ Γ(θ2)v + θ2v −
2

5

(
2− 2r2 − r1

1− r2

)
v −O(ε)v.

Proof. By Lemma 2.2, we have e ∈ X2 such that f(OPT − o2 + e) ≥ Γ(θ2)v − O(ε)v. Since
f({o1, e}) < 2v/5 and f(e) ≥ θ2v/(1 + ε), we can see that

f(o1 | e) = f({o1, e})− f(e) <

(
2

5
− θ2 +O(ε)

)
v.

It then holds by submodularity that

f(OPT− o2 + e) ≤ f(o1 | e) + f(OPT− o1 − o2 + e)

≤
(

2

5
− θ2 +O(ε)

)
v + f(OPT− o1 − o2 + e).

Hence, since f(OPT− o2 + e) ≥ Γ(θ2)v −O(ε)v, we have

Γ(θ2)v −
(

2

5
− θ2

)
v −O(ε)v ≤ f(OPT− o1 − o2 + e).

On the other hand, it follows from submodularity that

f(OPT− o1 − o2 + e) ≤ f(S̃2 + e) + f(OPT− o1 − o2 − S̃2 | S̃2 + e)

≤ f(S̃2 + e) + f(OPT− o1 − o2 − S̃2 | S̃2)

≤ f(S̃2 + e) +
∑

o∈OPT−o1−o2−S̃2

f(o | S̃2)

≤ f(S̃2 + e) + α2
c(OPT− o1 − o2 − S̃2)

K
v

≤ f(S̃2 + e) + α2(1− r1 − r2)v,

where the second to the last inequality follows from the fact that, since c(S̃2) ≤ (1− c(o2))K, any
item o ∈ OPT− o1− o2− S̃2 will not be included in S̃2 due to the thresholding condition, implying
f(o | S̃2) < α2

c(o)
K v. Combining these, we obtain

f(S̃2 + e) ≥
(

Γ(θ2)−
(

2

5
− θ2

)
− α2(1− r1 − r2)

)
v −O(ε)v

≥
(

Γ(θ2) + θ2 −
2

5

2− 2r2 − r1
1− r2

)
v −O(ε)v,

where, we may recall, α2 = 2
5(1−r2) . The proof is complete.
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Case 2: Suppose that o1 arrives before o2. Let X1 be the set just before o1 arrives. We can
apply a symmetrical argument to Case 1. Here, we omit the proof.

Lemma 3.16. Suppose that c(S̃1) < (1−r1)K and that, for any e ∈ X1, we have f({o2, e}) < 2v/5.
Then there exists an item e ∈ X1 such that

f(S̃1 + e) ≥ Γ(θ1)v + θ1v −
2

5

(
2− 2r1 − r2

1− r1

)
v.

We are now ready to prove Theorem 3.14.

Proof of Theorem 3.14. As mentioned at the beginning of the consideration of Case 1, we may
assume that the algorithm terminates at the end (not in Line 11), and that c(S̃`) < (1− r`)K for
any ` ∈ {1, 2}.

Suppose that o2 arrives before o1. Lemma 3.15 implies that there will exist an item e ∈ X2

such that

f(S̃2 + e) ≥ Γ(θ2)v + θ2v −
2

5

(
2− 2r2 − r1

1− r2

)
v.

Hence we can see that f(S̃′2) will at least be the RHS.
Next suppose that o1 arrives before o2. In a way similar to that seen above, Lemma 3.16 implies

that there will exist an item e ∈ X1 such that

f(S̃1 + e) ≥ Γ(θ1)v + θ1v −
2

5

(
2− 2r1 − r2

1− r1

)
v.

Hence we see f(S̃′1) will at least be the RHS. This completes the proof.

3.3.2 Proof of Theorem 3.13

In the algorithm Parallel(v), we need θ` for ` = 1, 2, which are approximations of f(o`)/v. We first
observe that we may assume that θ1 is in [3/10, 2/5] by Corollary 3.4. We may further assume that
θ2 is in [1/5, 2/5] by Theorem 3.2 as may be seen below.

Corollary 3.17. Suppose that c(o1) ∈ [K/2, 2K/3] and c(o2) > K/3. If f(o2) < f(OPT)/5, then
we can find, with a single pass, a set S such that c(S) ≤ K and f(S) ≥ (2/5−O(ε))f(OPT). The
space complexity is O(Kε−4 log3K).

Proof. We may assume that we are given r2, r2 such that r2 ≤ r2 ≤ r2 and r2 ≤ (1 + ε)r2. In fact,
since r2 ∈ [1/3, 1/2], they can be guessed from a geometric series of the interval [1/3, 1/2]. The
number of guessed values is O(ε−1). For each guessed value, we do the following.

We see that f(OPT − o2) ≥ f(OPT) − f(o2) ≥ 4
5f(OPT) and c(OPT − o2) ≤ (1 − r2)K.

Consider maximizing f(S) subject to c(S) ≤ (1− r2)K in the set {e ∈ E | c(e) ≤ (1− r2)K}. The
optimal value will be at least f(OPT − o2) > 4

5f(OPT). Now set p = 1
1−r2

. Since r2 ≥ 1/3, we
have p ≥ 3

2 ≥ 2r1. Hence we can apply Theorem 3.2 to this instance in which p ≥ 3
2 . The output

S will then have a size of at most K, and, further,

f(S) ≥
(

2p

2p+ 3
−O(ε)

)(
4

5
f(OPT)

)
≥
(

1

2
−O(ε)

)(
4

5
f(OPT)

)
≥
(

2

5
−O(ε)

)
f(OPT).
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Thus we obtain a (2/5−O(ε))-approximation.

Theorem 3.14, together with the above corollary, implies the following theorem.

Theorem 3.18. Suppose that v ≤ f(OPT) ≤ (1 + ε)v. If c(o1) ∈ [K/2, 2K/3] and c(o2) ∈
[K/3,K − c(o1) − ε], then we can find, with a single pass, a set S such that c(S) ≤ K and
f(S) ≥ (2/5−O(ε))v. The space complexity is O(Kε−4 log3K).

Proof. In a way similar to that seen in the proof of Corollary 3.11, we guess necessary parameters
from a geometric series of certain intervals, and run the algorithm Parallel(v) for each set of guessed
parameters. Since r1 is in [1/2, 2/3] and r2 is in [1/3, 1/2], r`, r` can be guessed from a geometric
series of the intervals. This will require O(ε−1) space for each ` = 1, 2. Additionally, since we may
assume that θ1 is in [3/10, 2/5] by Corollary 3.4, and that θ2 is in [1/5, 2/5] by Corollary 3.17, θ`
can be guessed using O(ε−1) space for each ` = 1, 2. Since we can run the case of ` = 1, 2 separately
in Parallel(v), the space complexity for guessing parameters is O(ε−2). Therefore, since Parallel(v)
takes O(K) space, the total space complexity is O(Kε−2).

By Theorem 3.14, we can find a set S such that f(S) ≥ γv −O(ε)v, where

γ = min

{
2

5
, Γ(θ2) + θ2 −

2

5

(
2− 2r2 − r1

1− r2

)
, Γ(θ1) + θ1 −

2

5

(
2− 2r1 − r2

1− r1

)}
.

By the definition of Γ, since θ` ≤ 2v/5 for ` = 1, 2, it holds that

Γ(θ`) ≥
9

10
− θ`

2
.

Further, since θ1 ≥ 3v/10 and θ2 ≥ v/5, we see that

Γ(θ1) + θ1 ≥
9

10
− θ1

2
+ θ1 ≥ 1.05

Γ(θ2) + θ2 ≥
9

10
− θ2

2
+ θ2 ≥ 1.

Hence, since 2/3 ≥ r1 ≥ 1/2 and r2 ≥ 1/3, it holds that

Γ(θ1) + θ1 −
2

5

(
2− 2r1 − r2

1− r1

)
≥ 1.05− 2

5

(
2− r2

1− r1

)
−O(ε)

≥ 0.51−O(ε),

where the minimum of r2
1−r1 is attained when r1 = 1/2 and r2 = 1/3. Further,

Γ(θ2) + θ2 −
2

5

(
2− 2r2 − r1

1− r2

)
≥ 1− 2

5

(
2− r1

1− r2

)
−O(ε)

= 0.5−O(ε),

where the minimum of r1
1−r2 is attained when r1 = 1/2 and r2 = 1/3. Thus the ratio γ is at least

2/5−O(ε).

It is not difficult to see that the dynamic update technique in Section 3.2.2 can be applied
directly by replacing α with the minimum of α1 and α2. Thus we can perform the algorithm
without having v using O(Kε−3 logK) space. This proves Theorem 3.13.
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3.3.3 Algorithm When c(o1) + c(o2) ≈ K

Let us prove Lemma 3.12, which considers the case r2 ≥ 1− r1− ε. In this case, we can use an idea
similar to but simpler than that used in Section 3.3.1.

Let us first show that, if the optimal solution OPT has a size of two, we will be able to find a
(2/3− ε)-approximate solution with a single pass.

Lemma 3.19. Suppose that OPT = {o1, o2} for some o1, o2 ∈ E. We can then find a set S using
a single pass and O(Kε−2 logK) space such that c(S) ≤ K and

f(S) ≥
(

2

3
−O(ε)

)
f({o1, o2}).

Proof. Let v′ be an approximate value of f({o1, o2}), i.e., v′ ≤ f({o1, o2}) ≤ (1 + ε)v′. We may
assume that f(o`) ≥ v′/3 and f(o`) ≤ 2v′/3, as otherwise taking a singleton e with maximum
return would satisfy that f(e) ≥ 2v′/3. For ` = 1, 2, we guess approximations θ` of f(o`) from a
geometric series of the interval [1/3, 2/3], using O(ε−1) space, i.e., θ`/(1 + ε) ≤ f(o`) ≤ θ`.

First, suppose that o1 arrives before o2. For each i = 1, 2, . . . ,K/2, define Fi = {e ∈ E | i ≤
c(e) ≤ K − i}. We observe that, if i ≤ c(o2), then o1 ∈ Fi.

We perform in parallel to collect items from Fi for each i = 1, 2, . . . ,K/2, using Lemma 2.2
with θ1. Let Xi ⊆ Fi be the collection from Fi when o1 arrives. It then follows from Lemma 2.2
that, for each i with i ≤ c(o2), there will exist e∗ ∈ Xi such that c(e∗) ≤ K − i and

f(OPT− o1 + e∗) = f({o2, e∗}) ≥ (Γ(θ1)−O(ε))v′ ≥ (2/3−O(ε))v′.

For each arriving e after o1, we check whether or not there exists e′ ∈ Xc(e) such that f({e, e′}) ≥
(2/3 − O(ε))v′. Since o2 arrives after constructing Xi, we will be able to find at least one pair
satisfying the condition. Since |Xi|= O(1), it will take a total of O(ε−1K) space and O(ε−1n) time.

Next suppose that o2 arrives before o1. The argument can be made symmetrical by setting
Fi = {e ∈ E | 1 ≤ c(e) ≤ K − i} for each i = K/2, . . . ,K and using Lemma 2.2 with θ2. Note that,
if i ≤ c(o1), then o2 ∈ Fi.

Therefore, given an approximate value v′ of f({o1, o2}), we will be able, using a single pass and
O(Kε−1) space, to find a set S such that c(S) ≤ K and f(S) ≥

(
2
3 −O(ε)

)
v′. The pseudo-code

description is given in Algorithm 5.
Finally, we can, by means of a dynamic update technique with additional space O(ε−1 logK),

eliminate the assumption of having the approximation v′. This completes the proof.

The above lemma suggests the algorithm described below. We divide the ground set E into two
parts E′ = {e ∈ E | c(e) ∈ [r2K, r1K]} and E′ = {e | c(e) ≤ r2K}. Then {o1, o2} will be included
in E′, and we can apply the algorithm of Lemma 3.19 to E′. If f({o1, o2}) ≥ 3

5f(OPT), then it
holds by Lemma 3.19 that the obtained solution is a (2/5−ε)-approximation. Thus we may assume
that f({o1, o2}) < 3

5f(OPT), meaning that f(OPT− o1− o2) ≥ f(OPT)− f({o1, o2}) ≥ 2
5f(OPT).

Now f(OPT− o1 − o2) ≥ 2
5f(OPT) but c(OPT− o1 − o2) ≤ εK, which means that OPT− o1 − o2

will be a “dense” set. Therefore, applying Theorem 3.2 to E′, we can obtain a (1−ε)-approximation
for OPT− o1 − o2.

We are now ready to prove Lemma 3.12.
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Algorithm 5
1: procedure TwoItems(v, `, θ`) . ` ∈ {1, 2}
2: Fi := {e ∈ E | i ≤ c(e) ≤ K − i} for i = 1, 2, . . . ,K/2.
3: Fi := {e ∈ E | 1 ≤ c(e) ≤ K − i} for i = K/2, . . . ,K.
4: Set t := 1. Define λ` from θ` by Lemma 2.2 for ` = 1, 2.
5: Xi := ∅ for i = 1, 2, . . . ,K.
6: while item e is arriving do
7: If ` = 1 then I := {1, 2, . . . ,K/2} else I := {K/2, . . . ,K}.
8: for each i ∈ I do
9: if e ∈ Ei then

10: if |Xi|< t+ 1 and f(e | Xi) ≥ (θ` − λ`|Xi|)v then
11: Xi := Xi + e.
12: else
13: if f(e+ e′) ≥ 2/3v for some e′ ∈ Xc(e) then return e+ e′.

Proof of Lemma 3.12. If f({o1, o2}) ≥ 3
5f(OPT), then we have finished using Lemma 3.19, while

assuming otherwise implies that f(OPT− o1 − o2) ≥ f(OPT)− f({o1, o2}) ≥ 2
5f(OPT).

Consider maximizing f(S) subject to c(S) ≤ εK in the set {e ∈ E | c(e) ≤ εK}. Since
c(OPT − o1 − o2) ≤ εK, the optimal value of this instance will be at least f(OPT − o1 − o2) ≥
2
5f(OPT). We then apply Theorem 3.2 with p = 1/ε to this instance. The output S will then have
a size of at most K, and further, we will have

f(S) ≥
(

2p

2p+ 3
−O(ε)

)(
2

5
f(OPT)

)
=

(
1

1 + 1.5ε
−O(ε)

)(
2

5
f(OPT)

)
≥
(

2

5
−O(ε)

)
f(OPT).

In this way, we obtain a (2/5 − O(ε))-approximation. Space complexity here is O(Kε−3 log3K).
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