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Abstract 
To optimize use of the data generated from buildings, this document proposes a methodology based on a 

machine learning model in order to improve thermal comfort and energy efficiency. This methodology relies 

on measured data (e.g. indoor/outdoor temperature, relative humidity) and forecasted data (e.g. meteorological 

data) to train a multiple linear regression model to forecast the indoor temperature of the space under study. 

Applying the genetic algorithm optimization method, this model is then used to evaluate the various heating 

strategies defined. For each strategy, a score is assigned according to user-defined criteria as a means of 

prioritizing them and selecting the best one. By studying an office building simulated with the TRNSYS 

software, a multiple linear regression model could be implemented with errors of less than 1% and an adjusted 

R² coefficient close to 0.9. Compared to a conventional heating strategy, this methodology is capable of 

improving thermal comfort by up to 43%. 

I. Introduction 
In Europe, buildings are responsible for about 40% of total energy consumption and emit 36% of total CO2 

emissions, according to the European Commission (European Commission 2014). In addition, people spend 

on average roughly 90% of their time indoors, as reported by the Environmental Protection Agency (EPA 

2012). It is therefore essential for buildings to provide acceptable indoor comfort conditions, allowing users 

to enjoy a healthy environment and optimize their performance while ensuring an efficient use of building 

energy. 

In this context, several research studies in different fields have investigated various ways to improve indoor 

comfort and energy efficiency throughout the building life cycle. Regarding the design and construction 

phases, Fontenelle and Bastos (2014) developed a multi-criteria method for specifying the windows of an 

office building designed for Rio de Janeiro (Brazil), as a compromise between views of the landscape, daylight 

entering the work space and energy efficiency. In focusing on innovative materials, Saafi and Daouas (2019) 

studied the benefits of integrating phase change materials into building envelopes under Tunisian climatic 

conditions and assessed the effects of such materials on thermal insulation. In their search for the best Heating, 

Ventilation and Air Conditioning system in an energy retrofit operation, Gustafsson et al. (2014) ran a 

Dynamic Thermal Simulation with TRNSYS software to compare the energy performance of three different 

systems. Other authors have sought more comprehensive methods; Najjar et al. (2019) set up a novel 

framework for integrating mathematical optimization, Building Information Modeling, and Life Cycle 

Assessment to enhance operating energy efficiency. They concluded that sustainable building decisions can 

be achieved by optimizing the material selection and assessment of environmental impacts. Saafi and Daouas 

(2019) developed an integrated decision support tool to evaluate existing office buildings and recommend an 

optimal set of sustainable renovation measures, in considering tradeoffs between renovation cost, improved 

building quality and environmental impacts. 

Concerning the operational phase, a significant difference has been found between the predicted (as computed 

during the design phase) and the measured (during the operational phase) energy performance of buildings 

(De Wilde 2014). According to a UCL Energy Institute report on data compiled from the CarbonBuzz 

platform, which records the energy consumption of buildings across Europe, in 2013 for office buildings, the 

gap between the mean design total energy and mean actual total energy was 1.59 for heating and 1.71 for 
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electricity (UCL Energy Institute 2013). This difference may be due to several factors, including: i) prediction 

performance: oversimplified and/or unrealistic design assumptions (occupancy behavior, construction quality, 

management, control, etc.), inaccuracies, restrictive or oversimplified models (not representative of reality); 

and ii) actual performance: occupancy behavior (e.g. opening windows), building quality and management 

control (e.g. inappropriate strategies) (Menezes et al. 2012). In this context, several authors have worked on 

optimizing HVAC system control and building data-based modeling. Benzaama et al. (2020) proposed a new 

methodology for modeling the thermal behavior of residential buildings, using the PieceWise AutoRegressive 

eXogenous (PWARX) model. They concluded that solar radiation and heating power are the main influential 

inputs for modeling thermal behavior, with an influence index of 20% and 70%, respectively. In order to 

determine the optimal start time of the setback temperature during the normal occupancy period of a building, 

Moon and Jung (2016) set up a predictive Artificial Neural Network (ANN). With the aim of maintaining 

indoor thermal control, Hang and Kim (2018) demonstrated an enhanced predictive control model based on a 

Multiple Linear Regression (MLR) model applied on an Internet of Things (IoT) smart space, using Predicted 

Mean Vote (PMV) to express users' comfort satisfaction. Similarly, Brik et al. (2019) proposed ThermCont, 

a MLR-based tool to predict and control occupants' thermal comfort through the PMV model in real time in 

office buildings. They used a Genetic Algorithm (GA) to optimize the parameter values of thermal comfort. 

On the other hand, IoT is increasingly being democratized and introduced in all fields. Within the building 

sector, the term smart building, or smart city on a larger scale, has become more widespread with the aim of 

detecting, tracking, locating and monitoring things (e.g. energy consumption, fault detection) (Minoli, 

Sohraby and Occhiogrosso 2017). 

The purpose of this study is to develop a novel anticipatory control approach for heating systems by relying 

on building-generated data. This approach utilizes a multiple linear regression model capable of forecasting 

indoor temperature with high accuracy from inputs such as weather data and heating strategy. This model is 

then coupled with a genetic algorithm to optimize heating system control, while proposing a new strategy that 

takes the tradeoff between thermal comfort and energy efficiency into account. In the context of this study, as 

opposed to the studies presented above (which focus on PMV), thermal comfort is represented as an indoor 

temperature comfort range (defined by the user and/or according to standards) since the study of PMV requires 

quite extensive measurements and is often more suitable for experimental buildings. This aspect will be 

addressed in future works. 

To achieve this objective, the proposed approach consists of three main levels, as shown in Figure 1: i) Data 

Level: collection and preprocessing of measured data (Tin, relative humidity, etc.) and forecasted data 

(meteorological data), ii) Config Level: definition of user preferences (selection criteria, e.g. comfort range), 

and iii) Core Platform Level: training of the forecasting model with the collected data, testing of the derived 

heating strategies, and lastly selection of the best heating strategy according to the selection criteria. 

 

Figure 1: Functioning of the proposed platform 

This article is organized as follows. Section 2 presents the development of this novel approach in three parts: 

description of the indoor temperature forecast model, details on the heating strategy testing process, and 



explanation of the new heating strategy selection. Section 3 provides a case study and Section 4 wraps up and 

concludes the article. 

Nomenclature 

ANN Artificial Neural Network 

MLR Multiple Linear Regression 

GA Genetic Algorithm 

BIM Building Information Model 

HVAC Heating, Ventilation, Air Conditioning 

PMV Predicted Mean Vote 

R² Coefficient of Determination (0 to 1) 

Tin Indoor temperature (°C) 

Tout Outdoor temperature (°C) 

RH Indoor Relative Humidity (%) 

RHout Outdoor Relative Humidity (%) 

Hrad Horizontal solar radiation (W/m²) 

Wvelocity Wind velocity (m/s) 

Wdirection Wind direction 

 

II. Methodology 
This section generates the data input into the TRNSYS software application to simulate an office building 

located in Nice (France), composed of 8 separately controlled thermal zones as shown in Figure 2. Each zone 

is equipped with a power-controlled heating system. Initially, all systems are controlled as follows: between 

8:00 a.m. and 6:00 p.m., heating power is set to 100% and 0% for the rest of the day (Figure 3) and for 

weekends. One entire simulation year is considered with a one-hour time step, using a Typical Meteorological 

Year (TMY) weather file. 

 
Figure 2: Simulated building layout 

 
Figure 3: Initial heating system control rule 

1. Forecasting model 

On the basis of the simulated building, a data-driven model is produced according to a 3-step process yielding 

highly accurate Tin (indoor temperature) forecasts. 

a. Initial models 

First of all, the focus lies on selecting the model inputs (predictors). A preselection process was carried out 

depending on both the availability of data in actual buildings and the physical interpretability of such data. 

The following data have thus been preselected: heating power demand (Pheat), outdoor temperature (Tout), 

outdoor relative humidity (RHout), global horizontal radiation (Rad), sky opacity (OpaSky), wind speed 

(WindS), and wind direction (WindDir). Based on a typical simulation year, three datasets were formed, as 

shown in Table 1. 

Table 1: Dataset splitting 

Dataset Period Heating state 

1 January 1st to May 1st On 



2 May 1st to September 1st Off 

3 September 1st to December 31st On 

 

A Pearson correlation study was performed on each dataset. The Pearson correlation estimates the linear 

correlation between two quantitative variables; in other words, it serves as an estimation of the fit of a variable 

versus another variable by an affine relation obtained through linear regression. 

The Pearson correlation coefficient (r) was used to assess the linear relationship between two variables 

(output-input); it can range from -1 to +1. A positive r indicates a positive linear correlation while a negative 

r reveals a negative linear correlation. When the value is closer to +1 or -1, the linear correlation is strong (Fu 

et al. 2020). Generally speaking, it is considered that: 

 |𝑟| ≤ 0.39 represents weak correlations, 

 |𝑟| between 0.40 and 0.69 represents moderate correlations, 

 |𝑟| between 0.70 and 0.90 represents strong or high correlations, 

 |𝑟| ≥ 0.9 represents very high correlations (Fu et al. 2020). 

Table 2: Correlation table between the variables contained in Dataset 1 

 Tin Tout Pheat Rad RHout WindS WindDir OpaSky 

Tin 1.000 0.546 0.395 0.452 0.014 -0.059 0.015 -0.002 

Tout 0.546 1.000 0.103 0.512 -0.525 0.159 0.014 -0.100 

Pheat 0.395 0.103 1.000 0.510 -0.113 -0.031 0.085 -0.003 

Rad 0.452 0.512 0.510 1.000 -0.473 0.119 0.083 -0.255 

RHout 0.014 -0.525 -0.113 -0.473 1.000 -0.281 -0.033 0.479 

WindS -0.059 0.159 -0.031 0.119 -0.281 1.000 0.025 -0.135 

WindDir 0.015 0.014 0.085 0.083 -0.033 0.025 1.000 -0.047 

OpaSky -0.003 -0.100 -0.003 -0.255 0.472 -0.135 -0.048 1 
 

  

Table 2 shows that during the first heating period of the year (i.e. Dataset 1), the correlation of Tout with Tin 

is greater than 0.5 and the correlation of Pheat with Rad is close to 0.5 (0.395 and 0.452, respectively), while 

the other variables display correlations of close to 0. 

Table 3: Correlation table between the variables contained in Dataset 2 

 Tin Tout Pheat Rad RHout WindS WindDir OpaSky 

Tin 1.000 0.710 NaN 0.061 -0.184 -0.062 0.014 -0.152 

Tout 0.710 1.000 NaN 0.357 -0.615 0.166 -0.025 -0.142 

Pheat NaN NaN NaN NaN NaN NaN NaN NaN 

Rad 0.061 0.357 NaN 1.000 -0.590 0.239 -0.024 -0.231 

RHout -0.184 -0.615 NaN -0.590 1.000 -0.364 -0.019 0.359 

WindS -0.062 0.166 NaN 0.239 -0.364 1.000 0.042 -0.045 

WindDir 0.014 -0.025 NaN -0.024 -0.019 0.042 1.000 -0.046 

OpaSky -0.152 -0.142 NaN -0.231 0.360 -0.045 -0.046 1 
 

Table 3, which presents the results of the correlation study on Dataset 2 (heating turned off), shows that only 

Tout has a high correlation with Tin, i.e. a correlation coefficient of 0.710. All other variables display a 

correlation coefficient of close to 0, except for RHout at -0.184. 

Table 4: Correlation table between the variables contained in Dataset 3 

 Tin Tout Pheat Rad RHout WindS WindDir OpaSky 

Tin 1.000 0.799 0.240 0.356 0.207 -0.100 -0.038 0.008 

Tout 0.799 1.000 0.115 0.463 -0.188 0.001 -0.044 -0.044 

Pheat 0.240 0.115 1.000 0.500 -0.136 0.022 -0.057 -0.019 



Rad 0.356 0.463 0.500 1.000 -0.422 0.044 -0.012 -0.202 

RHout 0.207 -0.188 -0.136 -0.422 1.000 -0.171 -0.029 0.348 

WindS -0.100 0.001 0.022 0.044 -0.171 1.000 -0.001 0.082 

WindDir -0.038 -0.044 -0.057 -0.012 -0.029 -0.001 1.000 -0.013 

OpaSky 0.008 -0.044 -0.020 -0.203 0.348 0.082 -0.014 1 
 

Table 4 shows a strong correlation between Tout and Tin during the second heating period (Dataset 3). Rad 

and RHout have low, but not necessarily negligible, correlation coefficients of 0.356 and 0.207, respectively. 

Table 5: Correlation table between variables throughout the year 

 Tin Tout Pheat Rad RHout WindS WindDir OpaSky 

Tin 1.000 0.701 0.125 0.226 0.112 -0.097 0.010 -0.0829 

Tout 0.701 1.000 -0.171 0.442 -0.201 -0.017 0.025 -0.153 

Pheat 0.125 -0.171 1.000 0.199 -0.135 0.042 -0.012 0.033 

Rad 0.226 0.442 0.199 1.000 -0.441 0.103 0.026 -0.242 

RHout 0.112 -0.201 -0.135 -0.441 1.000 -0.277 -0.020 0.369 

WindS -0.097 -0.017 0.042 0.103 -0.277 1.000 0.013 -0.014 

WindDir 0.010 0.025 -0.012 0.026 -0.020 0.013 1.000 -0.042 

OpaSky -0.083 -0.153 0.033 -0.242 0.369 -0.014 -0.043 1 
 

Regarding the full year data (Table 5), it is observed that Tout has a high correlation coefficient with Tin, i.e. 

0.701, and the correlation coefficient of Rad with Tin is qualified as non-negligible, i.e. 0.226. In contrast, all 

other variables have correlation coefficients with Tin of less than 0.2 and for some close to 0 (WindS, WindDir 

and OpaSky). 

The results of these correlation studies show that Tout has a strong correlation with Tin throughout the year. 

As for Rad and Pheat, their correlations remain quite low (between 0.12 and 0.45), which can be explained by 

the intermittency of their effect since Rad depends on the presence of sunlight and Pheat on the building 

occupancy. The other variables have very low correlations (< 0.1), except for RHout with a maximum 

correlation of 0.2 when the correlation of Tout is 0.799, reflecting the strong correlation between Tout and 

RHout. It was thus decided to retain Tout, Rad and Pheat. 

Next, in examining the correlation between predictors, a high value between two variables indicates their 

collinearity, hence they share part of the variance. At the model level, this does not necessarily mean that each 

predictor's effects are cumulative, but rather that the common part plus the specific part of each predictor is 

cumulative. Subsequently, an analysis of model residuals will confirm (or refute) whether the predictors 

effectively explain the dependent variable. In other words, the dependent variable is explained by the 

dependent variables plus a residual part attributed to errors; it is therefore preferable for the residual part to be 

small. 

Based on the above analysis, a model using Tout, Rad and Pheat as inputs can be set up as shown in Figure 4. 

 
Figure 4: MLR model architecture 

The selected data are normalized and model parameters then estimated using the Least Mean Square method 

(Ciulla and D’Amico 2019). The model equation can be written according to the following general formula 

(Eq 1): 

�̂�𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖  Eq 1 

 

With, for i = n observations:  y: dependent variable 

 𝑥𝑖: explanatory variables 



 𝛽0: constant term 

 𝛽𝑝: slope coefficients for each explanatory variable 

 𝜀: model error (residuals) 

To estimate the performance of each model, three statistical metrics are employed: 

 Adjusted R² (𝑅²𝑎𝑑𝑗): the R² determination coefficient provides an estimate of the quality of model 

prediction, by measuring the fit between observed and obtained data. The advantage of 𝑅²𝑎𝑑𝑗 

compared to R² is the ability to consider the number of predictors; 

 Mean Absolute Percentage Error (MAPE): average of the absolute deviations from the observed 

values. This is a percentage and therefore a practical indicator for purposes of comparison; 

 Root Mean Square Error (RMSE): the square root of the MSE, which is the arithmetic mean of the 

errors in squares of the differences between model predictions and observations. 

To compare models and evaluate performance, the cross-validation method is used. Two techniques are 

generally available for this type of validation technique: i) the original dataset is divided into two parts, with 

the first one called the training part and the second one the test part (the model is built on the training part and 

its performance calculated on the test part, with the split typically being 2/3 training set and 1/3 test set); ii) 

the test part is left for the final evaluation and the training part divided into k smaller parts (folds), with the 

model being trained on k-1 parts and tested on the remaining part. This latter operation is repeated k times and 

k results are obtained. An average is then calculated to determine model performance. This method is referred 

to as "k-fold cross-validation". 

In this study, the 10-fold cross-validation method has been used (i.e. k=10 folds). Results obtained with the 

model developed on Datasets 1, 2 and 3 are depicted in Figure 5, Figure 6 and Figure 7, respectively. Their 

average scores are collated in Table 6. 

 
Figure 5: Evolution of model performance vs. K (folds) using Dataset 1 

 

 
Figure 6: Evolution of model performance vs. K (folds) using Dataset 2 

 



 
Figure 7: Evolution of model performance vs. K (folds) using Dataset 3 

Table 6 lists the average performances obtained by testing the model on the 3 datasets. From a close inspection 

of the model, all predictors have p-values below 5%, which is considered to be the threshold of significance; 

therefore, all predictors are significant (Kolasa-Wiecek 2015). This model will thus be used for the remainder 

of the study. 

Table 6: Average Model 1 performance using the 3 datasets 

  𝑹²𝒂𝒅𝒋 MAPE (%) RMSE (°C) 

Model 1 

Dataset 1 0.41 6.80 1.70 

Dataset 2 0.55 4.76 1.37 

Dataset 3 0.67 7.81 2.31 

b. Model optimization 

The selected model features an 𝑅²𝑎𝑑𝑗, MAPE and RMSE lying between 0.41 and 0.67, between 4.76 and 7.81 

and between 1.37 and 2.31, respectively. Such performances however are insufficient for purposes of this 

study. The objective of this section is to improve model performance by maximizing R² and minimizing both 

MAPE and RMSE. 

To achieve this goal, the authors have opted to enhance each of the initial datasets with historical values. The 

dataset is considered as a statistical population composed of n static individuals; in turn, each individual is 

composed of one (or more) outputs (Tin) and predictors (Tout, Rad and Pheat). Adding historical data consists 

of expanding each individual with its previous data series. Individual i, which contains data measured at time 

t, will be enhanced by data measured at time t-D (during the previous hour if D=1). To test this approach, only 

the Tin of the past hour has initially been added. The resulting model (Model 2) can be written in the form of 

Eq 2 and exhibits the performance reported in Table 7. 

𝑇𝑖�̂�𝑖 = 𝛽0 + 𝛽1𝑇𝑜𝑢𝑡𝑖 + 𝛽2𝑅𝑎𝑑𝑖 + 𝛽3𝑃ℎ𝑒𝑎𝑡𝑖 + 𝛽4𝑇𝑖𝑛𝑖−1 Eq 2 

 

Table 7: Average Model 2 performance using the 3 datasets 

  𝑹²𝒂𝒅𝒋 MAPE (%) RMSE (°C) 

Model 2 

Dataset 1 0.97 1.05 0.34 

Dataset 2 0.99 0.12 0.04 

Dataset 3 0.99 0.84 0.34 

 

By only adding the Tin of the past hour, the average MAPE over the 3 datasets improves from 6.45 to 0.67. 

A parametric study was conducted by varying the D of each predictor from 0 to 3, as follows: 

𝑇𝑖�̂�𝑖 = 𝛽0 + 𝛽1𝑇𝑜𝑢𝑡𝑖 + 𝛽2𝑅𝑎𝑑𝑖 + 𝛽3𝑃ℎ𝑒𝑎𝑡𝑖 + ∑ 𝛽𝑖𝑇𝑖𝑛𝑖−𝐷

4

1
+ ∑ 𝛽𝑖𝑇𝑜𝑢𝑡𝑖−𝐷

4

1
+ ∑ 𝛽𝑗𝑅𝑎𝑑𝑖−𝐷

4

1
+ ∑ 𝛽𝑘𝑃ℎ𝑒𝑎𝑡𝑖−𝐷

4

1
 Eq 3 

 



Next, a parametric study was conducted by varying the D of each predictor from 0 to 4 (Eq 3), in order to 

identify the best delay for each parameter. A total of 32,768 models on each dataset were studied, yielding Eq 

4, Eq 5 and Eq 6, corresponding to Datasets 1, 2 and 3, respectively. 

𝑇𝑖�̂�𝑖 = 𝛽0 + 𝛽1𝑇𝑜𝑢𝑡𝑖 + 𝛽2𝑃ℎ𝑒𝑎𝑡𝑖 + 𝛽3𝐻𝑟𝑎𝑑𝑖 + 𝛽4𝑇𝑖𝑛𝑖−1 + 𝛽5𝑇𝑜𝑢𝑡𝑖−1 + 𝛽6𝑃ℎ𝑒𝑎𝑡𝑖−1 + 𝛽7𝑇𝑖𝑛𝑖−2 + 𝛽8𝑇𝑜𝑢𝑡𝑖−2 + 𝛽9𝑃ℎ𝑒𝑎𝑡𝑖−2

+ 𝛽10𝑇𝑖𝑛𝑖−3 + 𝛽11𝑇𝑜𝑢𝑡𝑖−3 + 𝛽12𝑃ℎ𝑒𝑎𝑡𝑖−3 
Eq 4 

𝑇𝑖�̂�𝑖 = 𝛽0 + 𝛽1𝑇𝑜𝑢𝑡𝑖 + 𝛽2𝑇𝑖𝑛𝑖−1 + 𝛽3𝑇𝑜𝑢𝑡𝑖−1 + 𝛽4𝑇𝑖𝑛𝑖−2 + 𝛽5𝑇𝑜𝑢𝑡𝑖−2 + 𝛽6𝑇𝑖𝑛𝑖−3 + 𝛽7𝑇𝑜𝑢𝑡𝑖−3 + 𝛽8𝐻𝑟𝑎𝑑𝑖−3 Eq 5 

𝑇𝑖�̂�𝑖 = 𝛽0 + 𝛽1𝑇𝑜𝑢𝑡𝑖 + 𝛽2𝑃ℎ𝑒𝑎𝑡𝑖 + 𝛽3𝑇𝑖𝑛𝑖−1 + 𝛽4𝑇𝑜𝑢𝑡𝑖−1 + 𝛽5𝑃ℎ𝑒𝑎𝑡𝑖−1 + 𝛽6𝑇𝑖𝑛𝑖−2 + 𝛽7𝑇𝑜𝑢𝑡𝑖−2 + 𝛽8𝑃ℎ𝑒𝑎𝑡𝑖−2 + 𝛽9𝑇𝑖𝑛𝑖−3

+ 𝛽10𝑇𝑜𝑢𝑡𝑖−3 + 𝛽6𝑃ℎ𝑒𝑎𝑡𝑖−3 + 𝛽12𝐻𝑟𝑎𝑑𝑖−3 
Eq 6 

 

By comparing the equations obtained, it turns out, unsurprisingly, that Eqs 4 and 6 are nearly identical by 

virtue of the fact that these two models are driven over two heating periods. Eq 4 assumes the instantaneous 

value of Rad, while Eq 6 takes its value with a 2-hour delay. As for Eq 5, heating power is excluded since this 

is a non-heating period. Since the objective of this work is to implement a scalable model for use throughout 

the year and since the goal is to optimize heating control, the model based on Eq 5 has been eliminated from 

consideration. 

Table 8: Average performance of Models 3 and 4 using the 3 datasets 

  𝑹²𝒂𝒅𝒋 MAPE (%) RMSE (°C) 

Model 3 

Dataset 1 0.99 0.07 0.02 

Dataset 2 0.99 0.07 0.02 

Dataset 3 1 0.05 0.02 

Model 4 

Dataset 1 0.99 0.07 0.02 

Dataset 2 0.99 0.07 0.02 

Dataset 3 1 0.05 0.02 

 

 
Figure 8: The model's raw residuals 

 



 
Figure 9: The model’s residuals distribution 

 

In examining the residuals presented in Figure 8 and Figure 9, it can be noticed that: 

 After fitting the model on the training dataset, its residual errors are independent and identically 

distributed (i.e. random variables), 

 The residual errors are normally distributed (Figure 9), 

 The residual errors reveal constant variance (i.e. homoscedastic). 

Table 8 displays the performance of Models 3 and 4, as based on Eq 4 and Eq 6 respectively. The highly 

accurate performances of these two models are nearly identical. Assuming the effect of the sun to be non-

instantaneous, the authors selected Model 4 for the remainder of the study. Figure 10 shows an example of 

results obtained when testing Model 4 on a portion of Dataset 3. The forecasted Tin (solid line) lies very close 

to the observed Tin (dashed line). Figure 11 shows a marked linear relationship between the response variable 

(forecasted Tin) and the observation. 

 
Figure 10: Evolution of the measured Tin and the forecasted Tin 

between the December 30th at 7 pm and January 1st at 12 am 

 
Figure 11: Response variable (forecasted) vs. observed variable 

In conclusion, an analysis of the above residuals has enabled verifying the 3 hypotheses necessary for model 

validation, namely: normality assumption, equality of variances assumption, and independence assumption 

(Pineda Becerril et al. 2019). 

2. Selection of heating strategies 

In order to improve thermal comfort and energy consumption of the studied zone, an optimal heating strategy, 

established on the basis of predefined criteria (comfort interval, occupancy period, etc.), must be identified. A 



heating strategy is a control sequence composed of n setpoint values, whereby each setpoint corresponds to a 

defined time step that depends on both building type (inertia) and heating system type. As an example, for a 

power-controlled heating system with an hourly step, each setpoint corresponds to one hour. To identify the 

optimal heating strategy, one solution worth considering is the brute force optimization method, which as 

shown in a previous work (Abdellatif, Chamoin, and Defer 2019) consists of testing all possible solutions and 

then choosing the best one. However, this approach can become very time-consuming. As an example, for a 

heating system with 2 modes (Mode 1: 100% power, Mode 2: 0%) and a 24-hour sequence, the number of 

solutions to be tested equals 224, i.e. over 16 million. To avoid this kind of constraint, two solutions can be 

considered: the first one calls for shortening the command sequence, while the second one uses a more 

comprehensive optimization method. 

In this study, the authors opted for the second solution since heating systems often have several modes (e.g. 

from 0% to 100% with a 1% step); moreover, limiting the control sequence would prevent anticipating 

potential anomalies. As such, the genetic algorithm optimization method has been chosen. 

Genetic algorithms are a family of computational models inspired by evolution. These algorithms encode a 

potential solution to a specific problem onto a simple chromosome-like data structure and then apply 

recombination operators to these structures so as to preserve critical information (Whitley 1994). Genetic 

algorithms are often viewed as function optimizers, although the range of problems suitable for these 

algorithms is quite broad. The purpose of genetic algorithms is to obtain an approximate solution to a specific 

optimization problem when no precise method exists to solve it within a reasonable amount of time (or when 

the solution is unknown); they attempt to simulate the natural evolutionary process according to the Darwinian 

model in a given environment. The focus here is on individuals in a population. Each individual is represented 

by a chromosome composed of genes containing the hereditary characteristics of the individual. The principles 

of selection, crossing and mutation are inspired by natural processes (Barnier et al. 2014); its general mode of 

operations is diagrammed in Figure 12. 

In this work, the individuals constituting the population are in fact heating strategies. This population then 

evolves according to three operators: crossover, mutation, and selection. Crossover contributes to renewing 

the population by combining two parent solutions to yield daughter solutions that form a new population of 

the same size. Mutation consists of changing (mutating) a single element of the population solutions. Selection 

is critical to keeping the best individuals for the fitness function. Algorithm performance depends heavily on 

the stopping criterion (e.g. iteration number) (Janbain 2020). For this study, the fitness function is composed 

of the forecasting model and score calculation function. Each heating strategy generated is tested using the 

forecasting model, in deriving its corresponding Tin. According to the predefined comfort criteria, a score is 

assigned to each heating strategy (calculated on both Tin) and energy consumption level. 

 
Figure 12: General flowchart of the genetic algorithm 

 



III. Results 
To test the logic developed herein, the simulated building has been cloned. Heating of the initial building is 

controlled according to a deterministic scenario, as described in Section 2, while heating of the cloned building 

is controlled according to the adaptive logic described above. The authors have defined the comfort criteria 

listed in Table 9. 

Table 9: Comfort criteria relative to building occupancy 

  Weekdays Weekend 

Occupied 8:00 am to 6:00 pm [21 ; 24] 16 

Unoccupied 6:00 pm to 8:00 am 16 16 

 

This study focuses on two distinct time periods: from February 17 to March 3, and from December 6 to 

December 16. Two databases were initially built: one of measured parameters and a second of forecasted 

parameters (e.g. weather). The weather forecast data herein stem from the weather file used in the TRNSYS 

simulation. Data from these two databases have been cleaned and preprocessed by means of removing outliers, 

replacing missing values and performing normalization to standardize the effect of all parameters. 

At the first iteration, the MLR model receives a 24-hour data matrix composed of the weather forecast data, 

the heating strategy over the next 24 hours, and historical data relevant to each parameter. The historical Tin 

data are extracted from the database of measurement values and replaced by forecasted data whenever the 

measurements are unavailable, as explained in Figure 13. For example, after 3 iterations, to forecast Tin at i+2 

(Tini+2), the Tin measured three hours prior (Tini−1), two hours prior (Tini) and one hour prior (Tini+1) are all 

used. Since the loop was started at time i, Tini−1 is available, while Tini and Tini+1 are not. These values are 

therefore replaced by their forecasted values, respectively Tinî and Tini+1̂. This protocol runs the risk of 

propagating errors, especially prediction errors. To mitigate this problem, the heating strategy is recalculated 

at each time step. 

 

Figure 13: Schematic explanation of the evolution of predictors and predictions during the prediction loop 

Using the forecasting model in the fitness function of the genetic algorithm, several heating strategies have 

been tested. The best strategy is then selected according to the set of predefined criteria, as diagrammed in 

Figure 14. 



 

Figure 14. Schematic diagram of the scoring process 

Accordingly, the final score of each strategy is the sum of: a first part calculated on the Tin vs. comfort criteria 

comparison, and a second part calculated on energy consumption (normalized). The first part is multiplied by 

a weighting coefficient W in order to favor strategies satisfying the comfort criteria. At the end of the 

optimization process using the applicable genetic algorithm, the heating strategy with the lowest score is 

selected; this process serves to identify the optimal heating strategy for the next 24 hours, in taking both the 

weather forecast and the future behavior of the study zone into account. 

Figure 15 and Figure 18 present the evolution of Tin both before (initial building) and after (clone building) 

application of the methodology developed for the periods of February 17 to March 3 and December 6 to 

December 16, respectively. Moreover, Figure 16 and Figure 19 display the forecasted Tin vs. the Tin of the 

clone building. This graph follows a near-perfect straight line; it reflects the model's strong performance (less 

than 1% error). Lastly, Figure 17 and Figure 20 chart the evolution of heating activation and deactivation for 

these same periods, where 1 corresponds to the heating switch being turned on and 0 to turned off. Two distinct 

periods are analyzed, one at the beginning of the year the other at the end of the year, in order to demonstrate 

that the proposed logic works throughout the year. 

 
Figure 15: Evolution of Tin for both the initial building and clone 

building, after the February 17th and March 3rd corrections 

 
Figure 16: Forecasted Tin vs. clone building Tin,  

after the February 17th and March 3rd corrections 

 



 
Figure 17: Evolution of heating in both the initial and clone buildings, after the February 17th and March 3rd corrections 

 

In Figure 15 and Figure 18, the black curves show the evolution of Tin for the initial building using a 

deterministic heating scenario: heating is turned on between 8:00 am and 6:00 pm and turned off outside of 

this time period, as described in Section 2. This type of heating scenario is commonly used for actual buildings. 

The blue curves correspond to the Tin of the clone building using the new heating strategies suggested by the 

logic proposed in this paper. 

In this case study, the comfort interval ranges from 21°C to 24°C during occupied hours and above 16°C 

during unoccupied hours. In Figure 15, the Tin of the initial building (black curve) does not at all meet these 

comfort criteria. However, by applying the customized heating strategy, the Tin of the clone building fully 

satisfies these criteria; this could be achieved through anticipating the switching-on and switching-off of the 

heating, as shown in Figure 17. 

 
Figure 18: Evolution of Tin for both the initial and clone buildings, 

after the December 6th and December 16th corrections 

 
Figure 19. Forecasted Tin vs. clone building Tin,  

after the December 6th and December 16th corrections 

 



 
Figure 20: Evolution of heating in both the initial and clone buildings, after the December 6th and December 16th corrections 

To the same extent, for the period between December 6th and December 16th (Figure 18), the new heating 

strategy does allow for the thermal comfort criteria to be met. 

 
Figure 21: Evolution of Tin for both the initial and clone buildings, 

after the December 6th and December 7th corrections 

 
Figure 22: Evolution of heating in both the initial and clone 

buildings, after the December 6th and December 7th corrections 

Heating strategies are chosen to ensure thermal comfort as a priority and to save energy whenever possible. 

Figure 21 and Figure 22 provide close-up views on the first day of Figure 18 and Figure 20, respectively. It 

can be noticed that the thermal comfort criteria are being respected, and energy savings have been realized. 

Indeed, the heating is initially switched on continuously between 12:00 pm and 6:00 pm, while the new heating 

strategy proposes switching it off for 3 hours. Over this period, an energy savings of nearly 43% could thus 

be achieved. 

  



IV. Conclusion 
In this paper, we have proposed a new thermal control methodology based on a machine learning forecasting 

model and a genetic algorithm optimization method for indoor heating. This methodology is mainly based on 

two modules: a MLR model to forecast indoor temperature with an error of less than 1%, and a second module 

to define new heating strategies in order to improve thermal comfort while seeking to save energy whenever 

possible. The second module uses a genetic algorithm that integrates the MLR model in order to identify the 

best heating strategy according to the fitness function. 

The MLR forecast model was developed according to a statistical approach implemented herein. By 

comparing the initial model, which only uses raw data, to the optimized model using both raw data and their 

historical values, the error was reduced from 8% to less than 1%. This approach is applicable to any type of 

instrumented building; the model derived is self-adjusting and can be used throughout the year. 

The best heating strategy was selected by running a genetic algorithm. Based on the MLR model, this 

algorithm allowed testing several heating strategies, with each strategy consisting of n heating setpoints 

corresponding to n time steps. By performing tests, it was found that setting n to 24 is a good compromise 

between computational time and physical effect. Next, according to the predefined comfort criteria, a score 

was assigned to each heating strategy. 

As part of our future works, an actual building located in northern France will be studied. A propagation error 

analysis will be conducted during this study. Thereafter, the scoring function will be enhanced with features 

to encourage energy consumption when least expensive, as well as the integration of parameters that take the 

comfort perceived by users into account. 
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