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Abstract

We design step-size schemes that make
stochastic gradient descent (SGD) adap-
tive to (i) the noise σ2 in the stochastic
gradients and (ii) problem-dependent con-
stants. When minimizing smooth, strongly-
convex functions with condition number κ,
we first prove that T iterations of SGD
with Nesterov acceleration and exponentially
decreasing step-sizes can achieve a near-
optimal Õ

(
exp (−T/

√
κ) + σ2

/T
)

convergence
rate. Under a relaxed assumption on the
noise, with the same step-size scheme and
knowledge of the smoothness, we prove that
SGD can achieve an Õ

(
exp (−T/κ) + σ2

/T
)

rate. In order to be adaptive to the smooth-
ness, we use a stochastic line-search (SLS)
and show (via upper and lower-bounds) that
SGD converges at the desired rate, but only
to a neighbourhood of the solution. Next,
we use SGD with an offline estimate of
the smoothness, and prove convergence to
the minimizer. However, its convergence is
slowed down proportional to the estimation
error and we prove a lower-bound justifying
this slowdown. Compared to other step-size
schemes, we empirically demonstrate the ef-
fectiveness of exponential step-sizes coupled
with a novel variant of SLS.

1 Introduction

We study unconstrained minimization of a finite-sum
objective f : Rd → R prevalent in machine learning,

min
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w). (1)

? Correspondence to vaswani.sharan@gmail.com.

For supervised learning, n represents the number of
training examples and fi is the loss of example i.
Throughout the main paper, we assume f to be a
smooth, strongly-convex function and denote w∗ to be
the unique minimizer of the above problem. We con-
sider broader function classes in Appendix B.

We study stochastic gradient descent (SGD) and its
accelerated variant for minimizing f (Robbins and
Monro, 1951; Nemirovski and Yudin, 1983; Nesterov,
2004; Bottou et al., 2018). The empirical performance
and the theoretical convergence of SGD is governed
by the choice of its step-size, and numerous ways of
selecting it have been studied in the literature. For ex-
ample, Moulines and Bach (2011); Gower et al. (2019)
use a constant step-size for convex and strongly convex
functions. A constant step-size only guarantees conver-
gence to a neighborhood of the solution. In order to
converge to the exact minimizer, a common technique
is to decrease the step-size at an appropriate rate, and
such decreasing step-sizes have also been well-studied
in the literature (Robbins and Monro, 1951; Ghadimi
and Lan, 2012). The rate at which the step-size needs
to be decayed depends on the function class under
consideration. For example, when minimizing smooth,
strongly-convex functions using T iterations of SGD,
the step-size is decayed at an O(1/k) rate where k is
the iteration number. This results in an Θ(1/T ) con-
vergence rate for SGD and is optimal in the stochastic
setting (Nguyen et al., 2018). On the other hand, when
minimizing a smooth, strongly-convex function with
condition number κ, deterministic (full-batch) gradi-
ent descent (GD) with a constant step-size converges
linearly and has an O(exp(−T/κ)) convergence rate.
Augmenting constant step-size GD with Nesterov ac-
celeration can further improve the convergence rate to
Θ(exp(−T/

√
κ)) which is optimal in the deterministic

setting (Nesterov, 2004). Hence, the stochastic and de-
terministic variants of gradient descent use a different
step-size strategy to obtain the optimal rates in their
respective settings.

Towards noise adaptivity: Ideally, we want a noise-
adaptive algorithm such that (i) it obtains the optimal
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rates in both the deterministic and stochastic settings
(ii) its convergence rate depends on the noise in the
stochastic gradients and (iii) the resulting algorithm
does not require knowledge of the stochasticity (e.g. an
upper bound on the variance in stochastic gradients).

There have been three recent attempts to obtain such
an algorithm. For smooth, strongly-convex functions,
if σ2 is the noise level in the stochastic gradients, Stich

(2019) achieves an Õ
(

exp(−T/κ) + σ2

T

)
convergence

rate using SGD that switches between two carefully de-
signed step-sizes. When σ = 0, the resulting algorithm
achieves the deterministic GD rate, whereas for a non-
zero σ, its rate is governed by the σ2/T term. Unfortu-
nately, setting the algorithm parameters requires the
knowledge of σ and hence, it is not noise-adaptive. On
the other hand, Khaled and Richtárik (2020) and Li
et al. (2020) do not require knowledge of σ, and can
obtain the same rate for smooth functions satisfying
the Polyak-Lojasiewicz (PL) condition (Karimi et al.,
2016), a generalization of strong-convexity. For this, Li
et al. (2020) use an exponentially decreasing sequence
of step-sizes, while Khaled and Richtárik (2020) use a
constant then decaying step-size. However, neither of
these methods match the optimal

√
κ dependence in

the linear convergence term.

Contribution: Since we consider the easier (com-
pared to PL) strongly-convex setting, it is unclear
if we can achieve the above rate by using the con-
ventional polynomially decreasing step-sizes (Robbins
and Monro, 1951). Unfortunately, in Lemmas 3 and 4,
we prove that no polynomially decreasing step-size of
the form O

(
1
kδ

)
for δ ∈ [0, 1] can achieve the desired

Õ
(

exp(−T/κ) + σ2

T

)
rate1. Consequently, we will use

an exponentially decreasing step-size.

Contribution: In Section 3, we use SGD with
an exponentially decreasing step-size and a stochas-
tic variant of Nesterov acceleration (Vaswani et al.,
2019a). Under a growth-condition similar to Li et al.
(2020); Khaled and Richtárik (2020); Bottou et al.
(2018), we prove that the resulting algorithm achieves

the near-optimal Õ
(

exp(−T/
√
κ) + σ2

T

)
convergence

when minimizing smooth, strongly-convex functions.
Our algorithm thus achieves the near-optimal rate in
both the stochastic and deterministic settings and its
rate smoothly varies between the two regimes. Further-
more, our algorithm does not require knowledge of σ2

and hence satisfies three desiderata outlined above. To
the best of our knowledge, this is the first such result.

Towards noise and problem adaptivity: Typi-

1Note that this result does not cover step-size sequences
that switch between two values of δ, for example in (Khaled
and Richtárik, 2020)

cally, SGD also requires the knowledge of problem-
dependent constants (such as smoothness or strong-
convexity) to set the step-size. In practice, it is dif-
ficult to estimate these problem-dependent constants,
and one can only obtain loose bounds on them. Con-
sequently, there have been numerous methods (Duchi
et al., 2011; Li and Orabona, 2019; Kingma and Ba,
2015; Bengio, 2015; Vaswani et al., 2019b; Loizou et al.,
2021) that can adapt to the problem parameters, and
adjust the step-size on the fly. We term such methods
as problem-adaptive. Unfortunately, it is unclear if such
problem-adaptive methods can also be made noise-
adaptive. On the other hand, all the noise-adaptive
methods (Li et al., 2020; Khaled and Richtárik, 2020;
Stich, 2019) including the algorithm proposed in Sec-
tion 3 require the knowledge of problem-dependent
constants and are thus not problem-adaptive.

In order to make progress towards an SGD variant that
is both noise-adaptive and problem-adaptive, we only
consider algorithms that can achieve the (non-optimal)

Õ
(

exp(−T/κ) + σ2

T

)
convergence rate. We note that

the noise-adaptive algorithm in Li et al. (2020) only
requires knowledge of the smoothness constant and we
try to relax this requirement.

Contribution: In Section 4.2, we use stochastic line-
search (Vaswani et al., 2019b) to estimate the smooth-
ness constant on the fly. We prove that SGD in con-
junction with exponentially decreasing step-sizes and
stochastic line-search (SLS) converges at the desired
noise-adaptive rate but only to a neighbourhood of the
solution. This neighbourhood depends on the noise and
the error in estimating the smoothness. We prove a
corresponding lower-bound that shows the necessity
of this neighbourhood term. Our lower-bound shows
that if the step-size is set in an online fashion (using
the sampled function like in SLS), no decreasing se-
quence of step-sizes can converge to the minimizer.

Contribution: In Section 4.3, we consider estimat-
ing the smoothness constant in an offline fashion (be-
fore running SGD). SGD with an offline estimate of
the smoothness and exponentially decreasing step-
sizes converges to the solution, though its rate is slowed
down by a factor proportional to the estimation error
in the smoothness. Our upper-bound shows that even
if we misestimate the smoothness constant by a mul-
tiplicative factor of ν, the convergence can slow down
by a factor as large as O(exp(ν)). We complement this
result with a lower-bound that shows that such a mis-
estimation in the smoothness necessarily slows down
the rate by a potentially exponential factor.

Our results thus demonstrate the difficulty of obtain-
ing noise-adaptive rates while being adaptive to the
problem-dependent parameters.
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Contribution: In Section 5, we compare the perfor-
mance of different step-size schemes on convex, super-
vised learning problems. Furthermore, we propose a
novel variant of SLS that guarantees converges to the
minimizer and demonstrate its practical effectiveness.

Contribution: Finally, in Appendix B, we prove
matching results for SGD on strongly star-convex
functions (Hinder et al., 2020), a class of structured
non-convex functions. We also show the explicit de-
pendence of our results on the mini-batch size. Fi-
nally, we prove upper-bounds for (non-strongly-) con-
vex functions, showing that even when the smooth-
ness constant is known, exponentially decreasing step-
sizes converge to a neighbourhood of the solution.
We give some justification as to why any polyno-
mial/exponentially decreasing step-size sequence is un-
likely to be noise-adaptive in this setting.

2 Problem setup and Background

We will assume that f and each fi are differen-
tiable and lower-bounded by f∗ and f∗i , respectively.
Throughout the main paper, we will assume that f is
µ-strongly convex, and each fi is convex. Furthermore,
we assume that each function fi is Li-smooth, imply-
ing that f is L-smooth with L := maxi Li. We include
definitions of these properties in Appendix A.

We use stochastic gradient descent (SGD) or SGD with
Nesterov acceleration (Nesterov, 2004) (referred to as
ASGD) to minimize f in Eq. (1). In each iteration k ∈
[T ], SGD selects a function fik (typically uniformly)
at random, computes its gradient and takes a descent
step in that direction. Specifically,

wk+1 = wk − γkαk∇fik(wk), (2)

where wk+1 and wk are the SGD iterates, and ∇fik(·)
is the gradient of the loss function chosen at itera-
tion k. Each stochastic gradient ∇fik(w) is unbiased,
implying that Ei [∇fi(w)|wk] = ∇f(w). The prod-
uct of scalars ηk := γkαk defines the step-size for
iteration k. The step-size consists of two parts - a
problem-dependent scaling term γk that captures the
(local) smoothness of the function, and a problem-
independent term αk that controls the decay of the
step-size. Typically, αk is a decreasing sequence of
k, and limk→∞ αk = 0. The αk sequence depends
on the properties of f , for example, for convex func-
tions, αk = O(1/

√
k) while for strongly-convex func-

tions, αk = O(1/k).

Throughout the paper, we will assume that T is known
in advance (this requirement can be relaxed via the
standard doubling trick), and consider exponentially
decreasing step-sizes (Li et al., 2020) where α :=

[
β
T

]1/T
≤ 1 for some parameter β ≥ 1 and αk := αk.

Unlike SGD, ASGD has two sequences {wk, yk} and
an additional extrapolation parameter bk. ASGD com-
putes the stochastic gradient at the extrapolated point
yk and takes a descent step in that direction. Specifi-
cally, the update in iteration k of ASGD is:

yk = wk + bk (wk − wk−1), (3)

wk+1 = yk − γkαk∇fik(yk). (4)

In the next section, we will analyze the convergence
of ASGD with exponentially decreasing step-sizes for
smooth, strongly-convex functions.

3 Convergence of ASGD

For analyzing the convergence of ASGD, we will as-
sume that the stochastic gradients satisfy a growth
condition similar to Bottou et al. (2018); Li et al.
(2020); Khaled and Richtárik (2020) – there exists a
(ρ, σ) with ρ ≥ 1 and σ ≥ 0, such that for all w,

Ei ‖∇fi(w)‖2 ≤ ρ ‖∇f(w)‖2 + σ2. (5)

Note that in the deterministic setting (when using the
full-gradient in Eq. (4)), ρ = 1 and σ = 0. Similarly,
σ = 0 when the stochastic gradients satisfy the strong-
growth condition when using over-parameterized mod-
els (Schmidt and Roux, 2013; Ma et al., 2018; Vaswani
et al., 2019a). Under the above growth condition, we
prove the following theorem in Appendix C.

Theorem 1. Assuming (i) convexity and Li-
smoothness of each fi, (ii) µ strong-convexity of f
and (iii) the growth condition in Eq. (5), ASGD
(Eqs. (3) and (4)) with w0 = y0, γk = 1

ρL , α =(
β
T

)1/T
, αk = αk, rk =

√
µ
ρL

(
β
T

)k/2T
and bk com-

puted as:

bk =
(1− rk−1) rk−1 α

rk + r2k−1 α
, (6)

has the following convergence rate:

E[f(wT )− f∗] ≤ 2c3 exp

(
− T
√
κρ

α

ln(T/β)

)
[f(w0)− f∗]

+
8σ2c4κ

ρLe2
(ln(T/β))2

α2T

where κ = L
µ , c3 = exp

(
1√
ρκ

2β
ln(T/β)

)
and c4 =

exp
(

1
α
√
ρκ

2β
ln(T/β)

)
.

The above theorem implies that ASGD achieves an

Õ
(

exp
(
−T√
κρ

)
+ σ2

T

)
convergence rate. This improves



Towards Noise-adaptive, Problem-adaptive Stochastic Gradient Descent

over the non-accelerated Õ
(

exp
(−T
κ

)
+ σ2

T

)
noise-

adaptive rate obtained in Stich (2019); Khaled and
Richtárik (2020); Li et al. (2020). Under the strong-
growth condition (when σ = 0), ASGD improves (by a√
ρ factor) over the rate in Vaswani et al. (2019a) and

matches (upto log factors) the rate in Mishkin (2020).
In the general stochastic case, when σ 6= 0, Cohen
et al. (2018); Vaswani et al. (2019a) prove convergence
to a neighbourhood of the solution, while we show con-
vergence to the minimizer at a rate governed by the
O(σ2/T ) term. In the fully-deterministic setting (ρ = 1
and σ = 0), Theorem 1 implies an Õ(exp(−T/

√
κ))

convergence to the minimizer, matching the optimal
rate in the deterministic setting (Nesterov, 2004). We
note that ASGD does not require knowledge of σ2 and
is thus completely noise-adaptive. To smoothly inter-
polate between the stochastic (mini-batch size 1) and
fully deterministic (mini-batch size n) setting, we gen-
eralize the growth condition (and the above result) to
show an explicit dependence on the mini-batch size
in Appendix B.

Finally, we note that ASGD requires the knowledge of
both µ and L and is thus not problem-adaptive. In the
next section, we consider strategies towards achieving
problem-adaptivity.

3.1 Misspecified ASGD

Computing the exact values of µ and L are a challeng-
ing problem and in practice we estimate them with
some error. In this section we assume that we µ and L
are misspecified by factor νµ and νL i.e. µ̃ = νµµ and

L̃ = L
νL

. The following theorem shows the effect of this
misspecification over the convergence of ASGD.

Theorem 2. Assuming (i) convexity and Li-
smoothness of each fi, (ii) µ strong-convexity of f
and (iii) the growth condition in Eq. (5), ASGD
(Eqs. (3) and (4)) with w0 = y0, γk = νL

ρL , α =(
β
T

)1/T
, αk = αk, rk =

√
νLνµµ
ρL

(
β
T

)k/2T
and bk

computed as:

bk =
(1− rk−1) rk−1 α

rk + r2k−1 α
, (7)

has the following convergence rate:

E[f(wT )− f∗] ≤

2c3 exp

(
−
√
νT
√
κρ

α

ln(T/β)

)
[f(w0)− f∗]

+
8c4κ(ln(T/β))2

(eα)2ρLT
νσ2

+
2c4κ(ln(T/β))2

(eα)2LT
min{bln(ν)c+

ln(T/β)
, 1}νG2

where ν = νLνµ, κ = L
µ , c3 = exp

(
1√
ρκ

2β
√
ν

ln(T/β)

)
and c4 = exp

(
1

α
√
ρκ

2β
√
ν

ln(T/β)

)
and G :=

maxj∈[k0] E[‖∇f(yk)‖2] with k0 := T bln(ν)c+ln(T/β)

and bxc+ = max{bxc, 0}.

The above theorem implies that misspecified ASGD

achives Õ(exp(−T
√
ν√

κρ ) + σ2ν
T + G2ν

T ) such that compar-

ing against ASGD rate it has an extra term due to
misspecification. Assessing the upper bound of sub-
optimality in Theorem 2, we note that: (i) the term
concerning the noise and the misspecification are inde-
pendent i.e. the second term of RHS just depends on σ
and the third term just depends on G; (ii) the bound is
both noise adaptive and misspecification adaptive i.e.
if ν = 1 we recover the result of Theorem 1; (iii) and
interestingly the bound depends on the multiplication
of misspecifications of L and µ i.e. ν = νLνµ and there-
fore we still can have misspecification i.e. νL, νµ 6= 1
but ν = 1 and benefit the speed of ASGD. The proof
of Theorem 2 is presented in Appendix G.

4 Towards noise and problem
adaptivity

In this section, we consider approaches for achieving
both noise and problem adaptivity when minimizing
smooth, strongly-convex functions. In order to make
progress towards this objective, we will only consider
SGD and aim to obtain the non-accelerated noise-
adaptive rate matching Stich (2019); Li et al. (2020);
Khaled and Richtárik (2020), but do so without know-
ing problem-dependent constants.

For this section, we will consider a different weaker
notion of noise in the stochastic gradients. Instead of
using the growth condition in Eq. (5) or the more
typical assumption of finite gradient noise z2 :=
Ei[‖∇fi(w∗)‖2] < ∞, we assume a finite optimal ob-
jective difference. Specifically, we redefine the noise
as σ2 := Ei[fi(w∗) − f∗i ] ≥ 0. This notion of noise
has been used to study the convergence of constant
step-size SGD in the interpolation setting for over-
parameterized models (Zhang and Zhou, 2019; Loizou
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et al., 2021; Vaswani et al., 2020). Note that when in-
terpolation is exactly satisfied, σ = z = 0. In general,
if each function fi is µ-strongly convex and L-smooth,
then 1

2Lz
2 ≤ σ2 ≤ 1

2µz
2.

We will continue to use exponentially decreasing step-
sizes. As a warm-up towards problem-adaptivity, we
first assume knowledge of the smoothness constant
in Section 4.1 and analyze the resulting SGD algo-
rithm. In Section 4.2, we consider using a stochastic
line-search (Vaswani et al., 2019b, 2020) in order to
estimate the smoothness constant and set the step-
size on the fly. Finally, in Section 4.3, we analyze the
convergence of SGD when using an offline estimate of
the smoothness.

4.1 Known smoothness

We use the knowledge of smoothness to set the
problem-dependent part of the step-size for SGD,
specifically, γk = 1/L. With an exponentially decreas-
ing αk-sequence, we prove the following theorem in Ap-
pendix D.1.

Theorem 3. Assuming (i) convexity and Li-
smoothness of each fi, (ii) µ strong-convexity of f ,

SGD (Eq. (2)) with γk = 1
L , α =

(
β
T

)1/T
, αk = αk,

has the following convergence rate,

E ‖wT+1 − w∗‖2 ≤ ‖w1 − w∗‖2 c2 exp

(
−T
κ

α

ln(T/β)

)
+

8σ2c2κ
2

Le2
(ln(T/β))2

α2T

where κ = L
µ and c2 = exp

(
1
κ ·

2β
ln(T/β)

)
.

Compared to Moulines and Bach (2011) that use
a polynomially decreasing step-sizes, the proposed
step-size results in a better trade-off between the
bias (initial distance to the minimizer) and variance
(noise) terms. We use exponentially decreasing step-
sizes rather than the step-size schemes used in Stich
(2019); Khaled and Richtárik (2020) because both
of these also require the knowledge of the strong-
convexity parameter which is considerably more dif-
ficult to estimate.

Since strongly-convex functions also satisfy the PL
condition (Karimi et al., 2016), the above result can
be deduced from (Li et al., 2020). However, unlike (Li
et al., 2020), our result does not require the growth
condition and uses a weaker notion of noise. Moreover,
we use a different proof technique, specifically, Li et al.
(2020) use the smoothness inequality in the first step
and obtain the rate in terms of the function subopti-
mality, E[f(wT ) − f∗]. In contrast, our proof uses an

expansion of the iterates to obtain the rate in terms of
the distance to the minimizer, E ‖wT+1 − w∗‖2. This
change allows us to handle the case when the smooth-
ness constant is unknown and needs to be estimated.

Next, we use stochastic line-search techniques to es-
timate the unknown smoothness constant and set the
step-size on the fly.

4.2 Online estimation of unknown
smoothness

In this section, we assume that the smoothness con-
stant is unknown, aim to estimate it and set the
step-size in an online fashion. By online estimation,
we mean that in iteration k of SGD, we use knowl-
edge of the sampled function ik to set the step-
size, i.e. setting γk depends on ik. We only consider
methods that use the knowledge of ik in iteration k
and are not allowed to access the other functions in
f (for example, to compute the full-batch gradient
at wk). Recent methods based on a stochastic line-
search (Vaswani et al., 2019b, 2020), stochastic Polyak
step-size (Loizou et al., 2021; Berrada et al., 2020)
or stochastic Barzilai-Borwein-like step-size (Malitsky
and Mishchenko, 2019) are techniques that can set the
step-size by only using the current sampled function.

We use stochastic line-search (SLS) to estimate the
local Lipschitz constant and set γk, the problem-
dependent part of the step-size. SLS is the stochastic
analog of the traditional Armijo line-search (Armijo,
1966) used for deterministic gradient descent (Nocedal
and Wright, 2006). In each iteration k of SGD, SLS
estimates the smoothness constant Lik of the sampled
function using fik and ∇fik. In particular, starting
from a guess (γmax) of the step-size, SLS uses a back-
tracking procedure and returns the largest step-size γk
that satisfies the following conditions: γk ≤ γmax and

fik(wk − γk∇fik(wk)) ≤ fik(wk)− cγk ‖∇fik(wk)‖2 .
(8)

Here, c ∈ (0, 1) is a hyper-parameter to be set ac-
cording to the theory. SLS guarantees that resulting

the step-size γk lies in the
[
min

{
2(1−c)
Lik

, γmax

}
, γmax

]
range (see Lemma 11 for the proof). If the initial guess
is large enough i.e. γmax > 1/Lik, then the resulting

step-size γk ≥ 2(1−c)
Lik

. Thus, with c = 1/2, SLS can be

used to obtain an upper-bound on 1/Lik.

In the interpolation (σ = 0) setting, a constant step-
size suffices (αk = 1 for all k), and SGD obtains a
linear rate of convergence (for c ≥ 1/2) when min-
imizing smooth, strongly-convex functions (Vaswani
et al., 2019b). In general, for a non-zero σ, using SGD
with SLS and no step-size decay (αk = 1) results in
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O
(
exp(−T/κ) + γmaxσ

2
)

rate (Vaswani et al., 2020),
implying convergence to a neighbourhood determined
by the γmaxσ

2 term.

In order to obtain a similar rate as Theorem 3
but without the knowledge of L, we set γk with
SLS and use the same exponentially decreasing αk-
sequence. We prove the following theorem in Ap-
pendix D.2.

Theorem 4. Assuming (i) convexity and Li-
smoothness of each fi, (ii) µ strong-convexity of f ,

SGD (Eq. (2)) with α =
(
β
T

)1/T
, αk = αk and

γk as the largest step-size that satisfies γk ≤ γmax

and Eq. (8) with c = 1/2, has the following conver-
gence rate,

E ‖wT+1 − w∗‖2 ≤ ‖w1 − w∗‖2 c1 exp

(
− T
κ′

α

ln(T/β)

)
+

8σ2c1(κ′)2γmax

e2
(ln(T/β))2

α2T

+
2σ2c1κ

′ ln(T/β)

eα

(
γmax −min

{
γmax,

1

L

})
with κ′ = max

{
L
µ ,

1
µγmax

}
, c1 = exp

(
1
κ′ ·

2β
ln(T/β)

)
.

We observe that the first two terms are simi-
lar to those in Theorem 3. For γmax ≥ 1

L ,
κ′ = κ and the above theorem implies the same

Õ
(

exp(−T/κ) + σ2

T

)
rate of convergence. However,

as T → ∞, wT+1 does not converge to w∗,
but rather to a neighbourhood determined by the

last term 2σ2κ′c1 ln(T/β)
eα

(
γmax −min

{
γmax,

1
L

})
. The

neighbourhood thus depends on the noise σ2 and(
γmax −min

{
γmax,

1
L

})
, the estimation error (in the

smoothness) of the initial guess.

When σ2 = 0, this neighbourhood term disappears,
and SGD converges to the minimizer despite the esti-
mation error. This matches the result for SLS in the in-
terpolation setting (Vaswani et al., 2019b). Conversely,
when the smoothness is known and γmax can be set
equal to 1

L , we also obtain convergence to the mini-
mizer and recover the result of Theorem 3. In fact, if
we can “guess” a value of γmax ≤ 1

L , it would result
in the neighbourhood term becoming negative, thus
ensuring convergence to the minimizer. In this case,
the stochastic line-search does not decrease the step-
size in any iteration, and the algorithm becomes the
same as using a constant step-size equal to γmax. Fi-
nally, we contrast our result for SGD with SLS and
αk = 1 (Vaswani et al., 2020) and observe that instead
of the dependence on γmax, our neighbourhood term
depends on the estimation error in the smoothness.

In the next section, we prove a lower-bound that shows
the necessity of such a neighbourhood term.

4.2.1 Lower bound on quadratics

In order to prove a lower-bound, we consider a pair
of 1-dimensional quadratics fi(w) = 1/2 (xiw− yi)2 for
i = 1, 2. Here, w, xi, yi are all scalars. The overall func-
tion to be minimized is f(w) = (1/2) · [f1(w) + f2(w)].

We assume that ‖x1‖ 6= ‖x2‖, and since Li = ‖xi‖2,
this assumption implies different smoothness constants
for the two functions. For a sufficiently large value

of γmax i.e.
(
γmax ≥ 1

mini∈[2] Li

)
, using SLS with c ≥

1/2 (required for convergence) results in γk ≤ 1/Lik2

(see Lemma 11). With these choices, we prove the fol-
lowing lower-bound in Appendix E.1.

Theorem 5. When using T iterations of SGD to

minimize the sum f(w) = f1(w)+f2(w)
2 of two one-

dimensional quadratics, f1(w) = 1
2 (w − 1)2 and

f2(w) = 1
2 (2w + 1/2)

2
, setting the step-size using

SLS with γmax ≥ 1 and c ≥ 1/2, any convergent
sequence of αk results in convergence to a neigh-
bourhood of the solution. Specifically, if w∗ is the
minimizer of f and w1 > 0, then,

E(wT − w∗) ≥ min

(
w1,

3

8

)
.

The above result shows that using SGD with SLS to set
γk and any convergent sequence of αk (including the
exponentially-decreasing sequence in Theorem 4) will
necessarily result in convergence to a neighbourhood.

The neighbourhood term can thus be viewed as the
price of misestimation of the unknown smoothness
constant. This result is in contrast to the conven-
tional thinking that choosing an αk sequence such that
limk→∞ αk = 0 will always ensure convergence to the
minimizer. This result is not specific to SLS and would
hold for other methods (Loizou et al., 2021; Berrada
et al., 2020; Malitsky and Mishchenko, 2019) that set
γk in an online fashion. Since the lower-bound holds for
any convergent αk sequence, a possible reason for con-
vergence to the neighbourhood is the correlation be-
tween ik (the sampled function) and the computation
of γk. We verify this hypothesis in the next section.

4.3 Offline estimation of unknown
smoothness

In this section, we consider an offline estimation of the
smoothness constant. By offline, we mean that in iter-
ation k of SGD, γk is set before sampling ik and cannot

2For 1-dimensional quadratics, γk = 1/Lik for c = 1/2.
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use any information about it. This ensures that γk is
decorrelated with the sampled function ik. The entire
sequence of γk can even be chosen before running SGD.

For simplicity of calculations, we consider a fixed γk =
γ for all iterations. Here γ is an offline estimate of 1

L ,
and can be obtained by any method. Without loss of
generality, we assume that this offline estimate is off
by a multiplicative factor ν that is γ = ν

L for some
ν > 0. Here ν quantifies the estimation error in γ with
ν = 1 corresponding to an exact estimation of L. In
practice, it is typical to be able to obtain lower-bounds
on the smoothness constant. Hence, the ν > 1 regime
is of practical interest.

For SGD with γk = γ = ν
L and an exponentially de-

creasing αk-sequence, we prove the following theorem
in Appendix D.3.

Theorem 6. Assuming (i) convexity and Li-
smoothness of each fi, (ii) µ strong-convexity of f ,

SGD (Eq. (2)) with α =
(
β
T

)1/T
, αk = αk and

γk = ν
L for ν > 0 has the following convergence

rate,

‖wT+1 − w∗‖2 ≤ ‖w1 − w∗‖2 c2 exp

(
−ν T

κ

α

ln(T/β)

)
+

8σ2

LT
exp

(
ν

κ

2β

ln(T/β)

)
4κ2 ln(T/β)2

e2α2

+

 max
j∈
[
T

[ln(ν)]+

ln(T/β)

]{f(wj)− f∗}
(ν − 1)

L


× exp

(
ν

κ

2β

ln(T/β)

)
8κ2

νe2α2

[ln(ν)]+ ln(T/β)

T
,

where κ = L
µ , c2 = exp

(
ν
κ

2β
ln(T/β)

)
and [x]+ =

max{x, 0}.

Observe that as T → ∞, SGD converges to the min-
imizer w∗. The first two terms are similar to that
in Theorem 3 and imply an O

(
exp(−T ) + σ2

T

)
conver-

gence to the minimizer. The third term can be viewed
as the price of misestimation of the unknown smooth-
ness constant. Unlike in Theorem 4 where this price
was convergence to a neighbourhood, here, the price of
misestimation is slower convergence to the minimizer.

Analyzing the third term, we observe that when ν ≤ 1,
the third term is zero (since [ln(ν)]+ = 0), and the
rate matches that of Theorem 3 up to constants that
depend on ν. For ν > 1, the convergence rate slows
down by a factor that depends on ν. The third term de-
pends on

[
maxj∈[T [ln(ν)]+/ln(T/β)]{f(wj)− f∗}

]
because

if ν > 1, SGD can diverge and move away from the so-

lution for the initial T [ln(ν)]+
ln(T/β) iterations. This can be

explained as follows: for ν > 1, the step-size γk =
ν
L αk ≥

1
L initially, and SGD diverges in this regime.

However, since αk is an exponentially decreasing se-

quence, after k0 := T ln(ν)
ln(T/β) iterations, ν

L αk ≤
1
L , and

the distance to the minimizer decreases after iteration
k0, eventually resulting in convergence to the solution.

Finally, observe that the third term depends on
O (exp(ν)[ln(v)]+) meaning that if we misestimate the
smoothness constant by a multiplicative factor of ν, it
can slow down the convergence rate by a factor expo-
nential in ν. In the next section, we justify this depen-
dence by proving a corresponding lower-bound.

4.3.1 Lower bound on quadratics

In this section, we consider gradient descent on a one-
dimensional quadratic and study the effect of mis-
estimating the smoothness constant by a factor of
ν > 1. For simplicity, we consider minimizing a sin-
gle quadratic, thus ensuring σ2 = 0. We prove the
following lower-bound in Appendix E.2.

Theorem 7. When using gradient descent to min-
imize a one-dimensional quadratic function f(w) =

1
2 (xw−y)2, with α =

(
β
T

)1/T
, αk = αk and γk = ν

L

for ν > 3 we have

wk+1 − w∗ = (w1 − w∗)
k∏
i=1

(1− ναi).

After k′ := T
ln(T/β) ln

(
ν
3

)
iterations, we have that

|wk′+1 − w∗| ≥ 2k
′
|w1 − w∗|.

Instantiating this lower-bound, suppose the estimate
of L is off by a factor of ν = 10, then ln

(
ν
3

)
≥ 1, which

implies that k′ ≥ b T
ln(T/β)c. In other words, we do not

make any progress in the first T
ln(T/β) iterations, and at

this point the optimality gap has been multiplied by a
factor of 2T/ ln(T/β) compared to the starting optimality
gap. This simple example thus shows the (potentially
exponential) slowdown in the rate of convergence by
misestimating the smoothness.

In the next section, we design a variant of SLS that
ensures convergence to the minimizer while obtaining
good empirical control over the misestimation.

5 Experiments

For comparing different step-size choices, we consider
two common supervised learning losses – squared loss
for regression tasks and logistic loss for classification.
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(a) Squared loss
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(b) Logistic loss

Figure 1: Comparison of step-size strategies for (a) squared loss and (b) logistic loss. Observe that (i) exponentially
decreasing step-sizes result in more stable performance compared to using a constant step-size (for both SGD
and ASGD) and (ii) consistently outperform the noise-adaptive method in (Khaled and Richtárik, 2020) and
(iii) the stochastic line-search in Eq. (9) matches the performance of the variant with known smoothness.

With a linear model and an `2 regularization equal
to λ

2 ‖w‖
2
, both objectives are strongly-convex. We

use three standard datasets from LIBSVM (Chang
and Lin, 2011) – mushrooms, ijcnn and rcv1, and use
λ = 0.01. For each experiment, we consider 5 indepen-
dent runs and plot the average result and standard
deviation. We use the (full) gradient norm as the per-
formance measure and plot it against the number of
gradient evaluations.

For each dataset, we fix T = 10n, use a batch-size
of 1 and compare the performance of the following
optimization strategies: (i) the noise-adaptive “con-
stant and then decay step-size” scheme in Khaled and
Richtárik (2020, Theorem 3) (denoted as KR-20 in the

plots). Specifically, for b = max{ 2L
2

µ , 2ρL}, we use

a constant step-size equal to 1/b when T < b/µ or
k < dT/2e. Otherwise we set the step-size at iteration
k to be 2

µ((2b/µ)+k−dT/2e) , (ii) constant step-size SGD

with γk = 1
L and αk = 1 for all k (denoted as K-CNST

in the plots) (iii) SGD with an exponentially decreas-
ing step-size with knowledge of smoothness (Li et al.,

2020) i.e. γk = 1
L and αk = αk for α =

(
β
T

)1/T
(de-

noted as K-EXP) (iv) Accelerated SGD (ASGD) with
a constant step-size (αk = 1 for all k) (Vaswani et al.,
2019a; Cohen et al., 2018) (denoted as ACC-K-CNST)
and (v) ASGD with exponentially decreasing step-
sizes, analyzed in Section 3 and denoted as ACC-K-EXP.

None of the above strategies are problem-adaptive,
and all of them require the knowledge of the smooth-
ness constant L. Additionally, KR-20 and the ASGD
variants also require knowledge of ρ, the parame-
ter of the growth condition in Eq. (5) and µ, the
strong-convexity parameter. If xi is the feature vec-
tor corresponding to example i, then we obtain the-
oretical upper-bounds on the smoothness and set
L = maxi ‖xi‖2 + λ for the squared-loss and L =

maxi
1
4 ‖xi‖

2
+ λ for the logistic loss. Similarly, we set

µ = λ for both the squared and logistic loss. To set ρ,
we use a grid search over {10, 100, 1000} and plot the
variant that results in the smallest gradient norm.

Using a stochastic line-search (SLS) can result in con-
vergence to the neighbourhood (Section 4.2) because
of the correlations between ik and γk. To alleviate this,
and still be problem-adaptive, we design a decorrelated
conservative variant of SLS: at iteration k of SGD, we
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set γk using a stochastic line-search on the previously
sampled function ik−1 (we can use a randomly sampled
jk as well). This ensures that there is no correlation
between ik and computing γk, but requires computing
the gradient of two functions - one for the update and
the other for the line-search. The overall procedure can
be described as follows: starting with a backtracking
line-search from γk−1 (the conservative aspect) (with
γ0 = γmax) for a random or previously sampled functio
n (jk), find the largest step-size γk that satisfies

fjk(wk − γk∇fjk(wk)) ≤ fjk(wk)− cγk ‖∇fjk(wk)‖2 ,
(9)

and update wk according to Eq. (2). The above
procedure with c = 1/2 ensures that γk ∈
[min{γk−1, 1/L}, γk−1]. Since γk is fixed before com-
puting ∇fik(wk), this strategy can be analyzed using
the framework in Section 4.3. Specifically, it results
in γk = νk

L for some sequence of νk ≥ 1. The con-
servative aspect ensures that νk ≤ νk−1. Hence, the
convergence rate can be analyzed according to Theo-
rem 6 with ν = ν1 and the initial line-search control-
ling the misestimation error. We use this variant of
SLS with exponentially decreasing step-sizes and de-
note it as SLS-EXP in the plots. We emphasize that this
strategy is both noise-adaptive and problem-adaptive.

From Fig. 1, we observe that exponentially decreas-
ing step-sizes (i) result in more stable performance
compared to the constant step-size variants (for both
SGD and ASGD) and (ii) consistently outperform
the noise-adaptive method in (Khaled and Richtárik,
2020). We also observe that (iii) the stochastic line-
search in Eq. (9) (SLS-EXP) matches the performance
of the variant with known smoothness (K-EXP) and
(iv) ASGD does not result in improvements over SGD.
This is because these methods are quite sensitive to
their parameter values and we set these parameters by
using loose theoretical upper-bounds on both L and µ.

6 Conclusion

In this paper, we first developed a variant of SGD
with Nesterov acceleration and exponentially decreas-
ing step-sizes, and proved that it achieves the near-
optimal convergence rate in both the deterministic and
stochastic regimes. We then considered two strategies
for making SGD both noise-adaptive and problem-
adaptive. Using upper and lower-bounds, we showed
that there is always a price to pay for problem-
adaptivity – estimating the smoothness constant in
an online fashion results in convergence to a neigh-
bourhood of the solution, while an offline estima-
tion results in a slower convergence to the minimizer.
We empirically demonstrated the effectiveness of a

noise-adaptive, problem-adaptive method that uses ex-
ponential step-sizes coupled with a novel variant of
stochastic line-search. In the future, we hope to de-
velop a problem-adaptive variant of ASGD.
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Supplementary material

Organization of the Appendix

A Definitions

B Additional theoretical results

C Proof for ASGD

D Upper-bound Proofs for Section 4

E Lower-bound proofs for Section 4

F Helper Lemmas

A Definitions

Our main assumptions are that each individual function fi is differentiable, has a finite minimum f∗i , and is
Li-smooth, meaning that for all v and w,

fi(v) ≤ fi(w) + 〈∇fi(w), v − w〉+
Li
2
‖v − w‖2 , (Individual Smoothness)

which also implies that f is L-smooth, where L is the maximum smoothness constant of the individual functions.
A consequence of smoothness is the following bound on the norm of the stochastic gradients,

‖∇fi(w)‖2 ≤ 2L(fi(w)− f∗i ).

We also assume that each fi is convex, meaning that for all v and w,

fi(v) ≥ fi(w)− 〈∇fi(w), w − v〉, (Convexity)

Depending on the setting, we will also assume that f is µ strongly-convex, meaning that for all v and w,

f(v) ≥ f(w) + 〈∇f(w), v − w〉+
µ

2
‖v − w‖2 , (Strong Convexity)
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B Additional theoretical results

In this section, we relax the strong-convexity assumption to handle broader function classes in Appendix B.1 and
prove results that help provide an explicit dependence on the mini-batch size (Appendix B.2) and in Appendix B.3
show that polynomially decreasing step-sizes cannot obtain the desired noise-adaptive rate.

B.1 Relaxing the assumptions

In this section, we extend our theoretical results to a richer class of functions - strongly quasar-convex func-
tions (Hinder et al., 2020) in Appendix B.1.1, and (non-strongly) convex functions in Appendix B.1.2.

B.1.1 Extension to strongly star-convex functions

We consider the class of smooth, non-convex, but strongly star-convex functions (Hinder et al., 2020; Gower
et al., 2021), a subset of strongly quasar-convex functions. Quasar-convex functions are unimodal along lines
that pass through a global minimizer i.e. the function monotonically decreases along the line to the minimizer,
and monotonically increases thereafter. In addition to this, strongly quasar-convex functions also have curvature
near the global minimizer. Importantly, this property is satisfied for neural networks for common architectures
and learning problems (Lucas et al., 2021; Kleinberg et al., 2018).

Formally, a function is (ζ, µ) strongly quasar-convex if it satisfies the following for all w and minimizers w∗,

f(w∗) ≥ f(w) +
1

ζ
〈∇f(w), w∗ − w〉+

µ

2
‖w − w∗‖2 . (10)

Strongly star-convex functions are a subset of this class of functions with ζ = 1. If L is known, it is straightforward
to show that the results of Theorem 3 carry over to the strongly star-convex functions and we obtain the similar

O
(

exp(−T/κ) + σ2

T

)
rate. In the case when L is not known, it was recently shown that SGD with a stochastic

Polyak step-size (Gower et al., 2021) results in linear convergence to the minimizer on strongly star-convex
functions under interpolation and achieves an O

(
exp(−T ) + γmaxσ

2
)

convergence rate in general. The proposed
stochastic Polyak step-size (SPS) does not require knowledge of L, and matches the rate achieved for strongly-
convex functions (Loizou et al., 2021). However, SPS requires knowledge of f∗i , which is usually zero for machine
learning models under interpolation but difficult to get a handle on in the general case.

Consequently, we continue to use SLS to estimate the smoothness constant. Our proofs only use strong-convexity
between w and a minimizer w∗, and hence we can extend all our results from strongly-convex functions, to
structured non-convex functions satisfying the strongly star-convexity property, matching the rates in Theorem 4
and Theorem 6. Finally, we note that given knowledge of ζ, there is no fundamental limitation in extending all
our results to strongly quasar-convex functions. In the next section, we relax the strong-convexity assumption in
a different way - by considering convex functions without curvature.

B.1.2 Handling (non-strongly)-convex functions

In this section, we analyze the behaviour of exponentially decreasing step-sizes on convex functions (without
strong-convexity). As a starting point, we assume that L is known, and the algorithm is only required to adapt
to the noise σ2. In the following theorem (proved in Appendix D.4), we show that SGD with an exponentially
decreasing step-size is not guaranteed to converge to the minimizer, but to a neighbourhood of the solution.

Theorem 8. Assuming (i) convexity and (ii) Li-smoothness of each fi, SGD with step-size ηk = 1
2L αk has the

following convergence rate,

E[f(w̄T+1)− f(w∗)] ≤ 2L ‖w1 − w∗‖2∑T
k=1 αk

+ σ2

∑T
k=1 α

2
k∑T

k=1 αk
(11)

where w̄T+1 =
∑T
k=1 αkwk∑T
k=1 αk

. For αk =
[
β
T

]k/T
, the convergence rate is given by,

E[f(w̄T+1)− f(w∗)] ≤ 2L ln(T/β) ‖w1 − w∗‖2

αT − 2β
+ σ2 T

T − β
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We thus see that even with the knowledge of L, SGD converges to a neighbourhood of the solution at an O(1/T )
rate. We contrast our result to AdaGrad (Duchi et al., 2011; Levy et al., 2018) that adapts the step-sizes as
the algorithm progresses (as opposed to using a predetermined sequence of step-sizes like in our case), is able to

adapt to the noise, and achieves an O
(

1
T + σ2

√
T

)
rate.

In order to be noise-adaptive and match the AdaGrad rate, we can use Eq. (11) to infer that a sufficient
condition is for the αk-sequence to satisfy the following inequalities, (i) αk ≥ C1 T and (ii) α2

k ≤ C2

√
T where

C1, C2 are constants. Unfortunately, in Lemmas 12 and 13, we prove that it is not possible for any polynomially
or exponentially-decreasing sequence to satisfy these sufficient conditions. While we do not have a formal lower-
bound in the convex case, it seems unlikely that these αk-sequences can result in the desired rate, and we
conjecture a possible lower-bound. Finally, we note that to the best of our knowledge, the only predetermined

(non-adaptive) step-size that achieves the AdaGrad rate is min
{

1
2L ,

1
σ
√
T

}
(Ghadimi and Lan, 2012). We also

conjecture a lower-bound that shows that there is no predetermined sequence of step-sizes (that does not use

knowledge of σ2) that is noise-adaptive and can achieve the O
(

1
T + σ2

√
T

)
rate.

B.2 Dependence on the mini-batch size

In this section, we prove two results in order to explicitly model the dependence on the mini-batch size. We denote
a mini-batch as B, its size as B ∈ [1, n] and the corresponding mini-batch gradient as∇fB(w) = 1

B

∑
fi∈B∇fi(w).

The mini-batch gradient is also unbiased i.e. EB[∇fB(w)] = ∇f(w), implying that all the proofs remain un-
changed, but we need to use a different growth condition for the ASGD proofs in Section 3 and a different
definition of σ for the SGD proofs in Section 4. We refine these quantities here, and show the explicit dependence
on the mini-batch size.

Lemma 1. If
Ei ‖∇fi(w)‖2 ≤ ρ ‖∇f(w)‖2 + σ2,

then,

EB ‖∇fB(w))‖2 ≤
(

(ρ− 1)
n−B
nB

+ 1

)
‖∇f(w)‖2 +

n−B
nB

σ2.

Proof.

EB ‖∇fB(w))‖2 = EB ‖∇fB(w)−∇f(w) +∇f(w)‖2 = EB ‖∇fB(w)−∇f(w)‖2 + ‖∇f(w)‖2

(Since EB[∇fB(w)] = ∇f(w))

Since we are sampling the batch with replacement, using (Lohr, 2019),

≤ n−B
nB

(
Ei ‖∇fi(w)‖2 − ‖∇f(w)‖2

)
+ ‖∇f(w)‖2

≤ n−B
nB

(
(ρ− 1) ‖∇f(w)‖2 + σ2

)
+ ‖∇f(w)‖2 (Using the growth condition)

=⇒ EB ‖∇fB(w))‖2 ≤
(

(ρ− 1)
n−B
nB

+ 1

)
‖∇f(w)‖2 +

n−B
nB

σ2.

Lemma 2. If
σ2 := E[fi(w

∗)− f∗i ],

and each function fi is µ strongly-convex and L-smooth, then

σ2
B := EB[fB(w∗)− f∗B] ≤ L

µ

n−B
nB

σ2.
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Proof.

By strong-convexity of fi,

EB[fB(w∗)− f∗B] ≤ 1

2µ
EB ‖∇fB(w∗))‖2

Since we are sampling the batch with replacement, using (Lohr, 2019),

≤ 1

2µ

n−B
nB

Ei ‖∇fi(w∗)‖2

≤ L

µ

n−B
nB

E[fi(w
∗)− f∗i ] (By smoothness of fi)

=⇒ σ2
B ≤

L

µ

n−B
nB

σ2.

B.3 Polynomially decaying stepsizes

In this section, we analyze polynomially decreasing step-sizes, namely when ηk = η
(k+1)δ

for some constants η > 0

and 0 ≤ δ ≤ 1. We argue that even with knowledge of the smoothness constant, these step-sizes fail to converge
at the desired noise-adaptive rate even on simple quadratics. In particular, the next lemma shows that gradient
descent (GD) applied to a strongly-convex quadratic with a polynomially decreasing step-size fails to obtain the
usual linear rate of the form O(ρ−T ) for some ρ < 1.

Lemma 3. When using T iterations of GD to minimize a one-dimensional quadratic f(w) = 1
2 (xw − y)2,

setting ηk = 1
L

1
(k+1)δ

for some 0 < δ ≤ 1 results in the following lower bounds.

If δ = 1,

wT+1 − w∗ = (w1 − w∗)
1

T + 1

If 0 < δ < 1, w1 − w∗ > 0 and T is large enough,

wT+1 − w∗ ≥ (w1 − w∗)
(

1− 1

2δ

)b21/δc−1
4

2δ−1
1−δ 4−

(T+1)1−δ
1−δ

Proof. Observe that w∗ = y/x and L = x2. The GD iteration with ηk = 1
L

1
(k+1)δ

reads

wk+1 = wk −
1

L

1

(k + 1)δ
(
x2wk − xy

)
= wk

(
1− 1

(k + 1)δ

)
+
y

x

1

(k + 1)δ
= wk

(
1− 1

(k + 1)δ

)
+ w∗

1

(k + 1)δ

and thus

wk+1 − w∗ = (wk − w∗)
(

1− 1

(k + 1)δ

)
⇒ wT+1 − w∗ = (w1 − w∗)

T∏
k=1

(
1− 1

(k + 1)δ

)
If δ = 1,

wT+1 − w∗ = (w1 − w∗)
T∏
k=1

k

k + 1
= (w1 − w∗)

1

T + 1

If 0 < δ < 1 and w1 − w∗ > 0,

wT+1 − w∗ = (w1 − w∗)
T∏
k=1

(
1− 1

(k + 1)δ

)
= (w1 − w∗)

T∏
k=1

(
1− 2

2(k + 1)δ

)
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We wish to use the inequality 1− 2x
2 ≥ 2−2x which is true for all x ∈ [0, 1/2]. In our case it holds for

1

(k + 1)δ
≤ 1

2
⇒ k ≥ 21/δ − 1

Let k0 = b21/δc. Then for T ≥ k0,

wT+1 − w∗ = (w1 − w∗)
k0−1∏
k=1

(
1− 1

(k + 1)δ

) T∏
k=k0

(
1− 2

2(k + 1)δ

)
Now, for k ≤ k0 − 1, we have that 1

(k+1)δ
≤ 1

2δ
and thus

k0−1∏
k=1

(
1− 1

(k + 1)δ

)
≥
(

1− 1

2δ

)k0−1
=

(
1− 1

2δ

)b21/δc−1

For k ≥ k0, we have 1− 2
2(k+1)δ

≥ 2
−2 1

(k+1)δ and thus

T∏
k=k0

(
1− 2

2(k + 1)δ

)
≥ 2
−2
∑T
k=k0

1

(k+1)δ = 2
−2
(∑T+1

k=1
1

kδ
−
∑k0
k=1

1

kδ

)
≥ 2−2

∑T+1
k=1

1

kδ

Using the bound in the proof of Lemma 12, we have

T+1∑
k=1

1

kδ
≤ 1 +

1

1− δ
(
(T + 1)1−δ − 1

)
Putting this together we have that

2−2
∑T+1
k=1

1

kδ ≥ 2−2(1+
1

1−δ ((T+1)1−δ−1)) =
41/(1−δ)

4
4−

(T+1)1−δ
1−δ = 4

2δ−1
1−δ 4−

(T+1)1−δ
1−δ

Putting everything together we get that

wT+1 − w∗ ≥ (w1 − w∗)
(

1− 1

2δ

)b21/δc−1
4

2δ−1
1−δ 4−

(T+1)1−δ
1−δ

The next lemma shows that when δ = 0, namely when the step-size is constant, SGD applied to the sum of two
quadratics fails to converge to the minimizer.

Lemma 4. When using SGD to minimize the sum f(w) = f1(w)+f2(w)
2 of two one-dimensional quadratics:

f1(w) = 1
2 (w − 1)2 and f2(w) = 1

2 (2w + 1/2)2 with a constant step-size η = 1
L , the following holds: whenever

|wk − w∗| < 1/8, the next iterate satisfies |wk+1 − w∗| > 1/8.

Proof. First observe that w∗ = 0 and that L = 4. The updates then read

If ik = 1 : wk+1 = wk − η(wk − 1) = wk(1− 1

4
) +

1

4
=

3

4
wk +

1

4

If ik = 2 : wk+1 = wk − η2(2wk +
1

2
) = wk(1− 4

4
)− 1

4
= −1

4

Suppose that |wk − w∗| =|wk| < 1/8. We want to show that |wk+1| > 1/8. We can separate the analyses in three
cases.
If wk ∈ (−1/8, 0) and ik = 1 then

wk+1 =
3

4
wk +

1

4
> −3

4
× 1

8
+

1

4
=

5

32
>

1

8
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If wk ∈ (0, 1/8) and ik = 1 then

wk+1 =
3

4
wk +

1

4
>

1

8

If ik = 2 then

wk+1 = −1

4
< −1

8

implying that in each case, |wk+1| > 1/8.
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C Proof for ASGD

C.1 Reformulation

Let us consider a general ASGD update whose parameters satisfy the following conditions.

r2k = (1− rk)r2k−1
ηk
ηk−1

+ rkµηk. (12)

bk =
(1− rk−1)rk−1

ηk
ηk−1

rk + r2k−1
ηk
ηk−1

, (13)

It can be verified that setting ηk = γkαk = 1
ρL

(
β
T

)k/T
, rk =

√
µ
ρL

(
β
T

)k/2T
satisfies Eq. (12).

We first show that the update in Eq. (3)-Eq. (4) satisfying the conditions in Eq. (13) and Eq. (12) can be written
in an equivalent form more amenable to the analysis.

Lemma 5. The following update:

yk = wk −
rkqk

qk + rkµ
(wk − zk) (14)

wk+1 = yk − ηk∇fik(yk) (15)

zk+1 = wk +
1

rk
[wk+1 − wk] (16)

where,

qk+1 = (1− rk)qk + rkµ (17)

r2k = qk+1ηk (18)

zk+1 =
1

qk+1
[(1− rk)qkzk + rkµyk − rk∇fik(yk)] (19)

is equivalent to the update in Eq. (3)-Eq. (4).

Proof.

First we check the consistency of the update (Eq. (16)) and definition (Eq. (19)) of zk. Using Eq. (19),

zk+1 =
1

qk+1
[(1− rk)qkzk + rkµyk − rk∇fik(yk)]

= − (1− rk)

rk
wk −

rk
qk+1

∇fik(yk) + yk

[
(1− rk)(qk + rkµ)

qk+1rk
+

rkµ

qk+1

]
= − (1− rk)

rk
wk −

rk
qk+1

∇fik(yk) + yk

[
qk(1− rk) + (rkµ− r2kµ)

qk+1rk
+

r2kµ

qk+1rk

]
= − (1− rk)

rk
wk −

rk
qk+1

∇fik(yk) + yk

[
(qk+1 − rkµ) + (rkµ− r2kµ) + r2kµ

qk+1rk

]
(From Eq. (17))

= wk −
wk
rk

+
1

rk
[yk − ηk∇fik(yk)] (From Eq. (18))

zk+1 = wk +
1

rk
[wk+1 − wk] (From Eq. (15))

which recovers Eq. (16) showing that the definition of zk and its update is consistent.

Now we check the equivalence of Eq. (12) and Eq. (17)-Eq. (18). Eliminating qk using Eq. (17)-Eq. (18),

r2k
ηk

= (1− rk)
r2k−1
ηk−1

+ rkµ
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Multiplying by ηk recovers Eq. (12).

Since Eq. (4) and Eq. (15) are equivalent, we need to establish the equivalence of Eq. (3) and the updates
in Eq. (14)-Eq. (16). From Eq. (16)

zk = wk−1 +
1

rk−1
[wk − wk−1] =⇒ zk − wk =

1− rk−1
rk−1

(wk − wk−1)

Starting from Eq. (14) and using the above relation to eliminate zk,

yk = wk +
rkqk

qk + rkµ

1− rk−1
rk−1

[wk − wk−1]

which is in the same form as Eq. (3). We now eliminate qk from rkqk
qk+rkµ

1−rk−1

rk−1
. From Eq. (17) and Eq. (18),

r2k
ηk

= (1− rk)qk + rkµ =⇒ qk + rkµ =
r2k
ηk

+ rkqk

Using this relation,

rkqk
qk + rkµ

1− rk−1
rk−1

=
qkηk

rk + qkηk

1− rk−1
rk−1

Using Eq. (18), observe that ηkqk = ηk
ηk−1

ηk−1qk = ηk
ηk−1

r2k−1. Using this relation,

rkqk
qk + rkµ

1− rk−1
rk−1

=

ηk
ηk−1

r2k−1

rk + ηk
ηk−1

r2k−1

1− rk−1
rk−1

=
(1− rk−1)rk−1
rk

ηk−1

ηk
+ r2k−1

= bk

which establishes the equivalence to Eq. (3) and completes the proof.

C.2 Estimating sequences

Similar to (Nesterov, 2004; Mishkin, 2020), we will use the estimating sequence {φk, λk}∞k=1 such that λk ∈ (0, 1)
and

λ0 = 1 ; λk+1 = (1− rk)λk, (20)

φk(w) = [inf
w
φk(w)] +

qk
2
‖w − zk‖2 , (21)

and satisfies the following update condition

φk(w) ≤ (1− λk)f(w) + λkφ0(w) (22)

The above definitions impose the following update for φ∗k := [infw φk(w)],

φ∗k+1 = (1− rk)φ∗k + rk

[
f(yk)− rk

2qk+1
‖∇f(yk)‖2 +

(1− rk) qk
qk+1

(µ
2
‖yk − zk‖2 + 〈∇f(yk), zk − yk〉

)]
(23)

Finally note that the definition of φk can be used to rewrite Eq. (14) as

yk = wk −
rk

qk + rkµ
∇φk(wk). (24)



Sharan Vaswani?, Benjamin Dubois-Taine, Reza Babanezhad

C.3 Proof of Theorem 1

Given the definitions in Appendix C.2, we first prove the descent lemma for ηk = 1
ρLαk, where αk ≤ 1 is the

exponentially decreasing step-size.

Lemma 6. Using the update in Eq. (15) with ηk = 1
ρLαk, we obtain the following descent condition.

E[f(wk+1)] ≤ E[f(yk)]− ηk
2
‖∇f(yk)‖2 +

1

2ρ2L
α2
kσ

2

Proof. By smoothness, and the update in Eq. (15),

f(wk+1) ≤ f(yk)− ηk〈∇f(yk),∇fik(yk)〉+
L

2
η2k ‖∇fik(yk)‖2

Taking expectation w.r.t. ik,

E[f(wk+1)] ≤ E[f(yk)]− ηk ‖∇f(yk)‖2 +
L

2
η2kE[‖∇fik(yk)‖2] (ηk is independent of the randomness in ik.)

≤ E[f(yk)]− ηk ‖∇f(yk)‖2 +
ρL

2
η2kE[‖∇f(yk)‖2] +

L

2
η2kσ

2 (By the growth condition in Eq. (5))

= E[f(yk)]− ηk ‖∇f(yk)‖2 +
ηkαk

2
E[‖∇f(yk)‖2] +

1

2ρ2L
α2
kσ

2

≤ E[f(yk)]− ηk
2
‖∇f(yk)‖2 +

1

2ρ2L
α2
kσ

2

The main part of the proof is to show that φ∗k is an upper-bound on f(wk) (upto a factor governed by the noise
term Nk depending on σ2) for all k and is proved in the following lemma.

Lemma 7. For the estimating sequences defined in Appendix C.2 and the updates in Eq. (14)-Eq. (19), for all
k,

E[φ∗k] := E[inf
w
φk(w)] ≥ E[f(wk)]−Nk

where Nk := 2σ2

ρ2L

∑k−1
j=0 α

2
j

∏k−1
i=j+1(1− ri).

Proof. We will prove the lemma by induction. For k = 0, we define φ∗0 = f(w0), and since Nk ≥ 0 for all k,
E[φ∗] ≥ f(w0)−N0, thus satisfying the base-case for the induction. For the induction, we will use the fact that

Nk+1 = (1− rk)Nk + 2σ2

ρ2Lα
2
k.

Assuming the induction hypothesis, E[φ∗k] ≥ E[f(wk)]−Nk, we use Eq. (23) to prove the statement for k + 1 as
follows. Taking expectations w.r.t to the randomness in j = 1 to k,

E[φ∗k+1] = (1− rk)E[φ∗k] + rkE
[
f(yk)− rk

2qk+1
‖∇f(yk)‖2 +

(1− rk) qk
qk+1

(µ
2
‖yk − zk‖2 + 〈∇f(yk), zk − yk〉

)]
≥ (1− rk)E[f(wk)−Nk] + rkE

[
f(yk)− rk

2qk+1
‖∇f(yk)‖2 +

(1− rk) qk
qk+1

(µ
2
‖yk − zk‖2 + 〈∇f(yk), zk − yk〉

)]
(by the induction hypothesis)

= (1− rk)E[f(wk)] + rkE[f(yk)]− r2k
2qk+1

E ‖∇f(yk)‖2 +
rk(1− rk) qk

qk+1
E
(µ

2
‖yk − zk‖2 + 〈∇f(yk), zk − yk〉

)
− (1− rk)Nk

= (1− rk)E[f(wk)] + rkE[f(yk)]− ηk
2
E ‖∇f(yk)‖2

+
rk(1− rk) qk

qk+1
E
(µ

2
‖yk − zk‖2 + 〈∇f(yk), zk − yk〉

)
− (1− rk)Nk (Using Eq. (18))
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By convexity, f(wk) ≥ f(yk) + 〈∇f(yk), wk − yk〉,

≥ (1− rk)E[f(yk) + 〈∇f(yk), wk − yk〉] + rkE[f(yk)]− ηk
2
E ‖∇f(yk)‖2

+
rk(1− rk) qk

qk+1
E
(µ

2
‖yk − zk‖2 + 〈∇f(yk), zk − yk〉

)
− (1− rk)Nk

= E
[
f(yk)− ηk

2
‖∇f(yk)‖2

]
+
rk(1− rk) qk

qk+1
E
(µ

2
‖yk − zk‖2 + 〈∇f(yk), zk − yk〉

)
+ (1− rk)E[〈∇f(yk), wk − yk〉]− (1− rk)Nk

By Lemma 6,

≥ E
[
f(wk+1)− 1

2ρ2L
α2
kσ

2

]
+
rk(1− rk) qk

qk+1
E
(µ

2
‖yk − zk‖2 + 〈∇f(yk), zk − yk〉

)
+ (1− rk)E[〈∇f(yk), wk − yk〉]− (1− rk)Nk

= E [f(wk+1)] +
rk(1− rk) qk

qk+1
E
(µ

2
‖yk − zk‖2 + 〈∇f(yk), zk − yk〉

)
+ (1− rk)E[〈∇f(yk), wk − yk〉]

−
[
(1− rk)Nk +

1

2ρ2L
α2
kσ

2

]
Since Nk+1 =

[
(1− rk)Nk + 1

2ρ2Lα
2
kσ

2
]
,

E[φ∗k+1] ≥ E [f(wk+1)]−Nk+1 + (1− rk)E[〈∇f(yk), wk − yk〉] +
rk(1− rk) qk

qk+1
E
(µ

2
‖yk − zk‖2 + 〈∇f(yk), zk − yk〉

)

Now we show that the remaining terms (1−rk)E
[
〈∇f(yk), wk − yk〉+ rk qk

qk+1

(
µ
2 ‖yk − zk‖

2
+ 〈∇f(yk), zk − yk〉

)]
≥

0. For this, we use Eq. (14)

yk = wk −
qkrk

qk + rkµ
(wk − zk)

=⇒ zk − yk = zk − wk +
qkrk

qk + rkµ
(wk − zk) =

(
1− qkrk

qk + rkµ

)
(zk − wk)

=

(
qk(1− rk) + rkµ

qk + rkµ

)
(zk − wk) =

(
qk+1

qk + rkµ

)
(zk − wk) (By Eq. (17))

=⇒ rkqk
qk+1

〈∇f(yk), zk − yk〉 =

〈
∇f(yk),

(
− rk qk
qk + rkµ

)
(wk − zk)

〉
= 〈∇f(yk), yk − wk〉

Using this relation to simplify,

(1− rk)E
[
〈∇f(yk), wk − yk〉+

rk qk
qk+1

(µ
2
‖yk − zk‖2 + 〈∇f(yk), zk − yk〉

)]
= (1− rk)E

[
rk qk
qk+1

µ

2
‖yk − zk‖2 + (1− rk) [〈∇f(yk), wk − yk〉+ 〈∇f(yk), yk − wk〉]

]
= (1− rk)E

[
rk qk
qk+1

µ

2
‖yk − zk‖2

]
≥ 0 (Since rk ≤ 1.)

Putting everything together,

E[φ∗k+1] ≥ E [f(wk+1)]−Nk+1

and we conclude that E[φ∗k] ≥ E [f(wk)]−Nk for all k by induction.

We now use the above lemma to prove the rate for strongly-convex functions.
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Theorem 1. Assuming (i) convexity and Li-smoothness of each fi, (ii) µ strong-convexity of f and

(iii) the growth condition in Eq. (5), ASGD (Eqs. (3) and (4)) with w0 = y0, γk = 1
ρL , α =

(
β
T

)1/T
,

αk = αk, rk =
√

µ
ρL

(
β
T

)k/2T
and bk computed as:

bk =
(1− rk−1) rk−1 α

rk + r2k−1 α
, (6)

has the following convergence rate:

E[f(wT )− f∗] ≤ 2c3 exp

(
− T
√
κρ

α

ln(T/β)

)
[f(w0)− f∗]

+
8σ2c4κ

ρLe2
(ln(T/β))2

α2T

where κ = L
µ , c3 = exp

(
1√
ρκ

2β
ln(T/β)

)
and c4 = exp

(
1

α
√
ρκ

2β
ln(T/β)

)
.

Proof. Using the reformulation in Lemma 5 gives us qk = µ for all k and z0 = w0. For the estimating sequences
defined in Appendix C.2, using Lemma 18, we know that the (reformulated) updates satisfy the following relation,

E[f(wT )] ≤ E[φ∗T ] +NT ≤ E[φT (w∗)] +NT

From Eq. (22), we know that for all w and k,

φk(w) ≤ (1− λk)f(w) + λkφ0(w)

Using these relations,

E[f(wT )] ≤ (1− λT )f∗ + λTφ0(w∗) +NT
=⇒ E[f(wT )− f∗] ≤ λT [φ0(w∗)− f∗] +NT

By Eq. (21),

≤ λT
[
φ∗0 +

q0
2
‖w∗ − z0‖2 − f∗

]
+NT

Choosing φ∗0 = f(w0),

≤ λT
[
f(w0)− f∗ +

q0
2
‖w∗ − z0‖2

]
+NT

Since z0 = w0, q0 = µ,

=⇒ E[f(wT )− f∗] ≤ λT
[
f(w0)− f∗ +

µ

2
‖w∗ − w0‖2

]
+

2σ2

ρ2L

T−1∑
j=0

α2
j

T−1∏
i=j+1

(1− ri)

Using the fact that λ0 = 1 and λk+1 = (1− rk)λk, we know that that λT =
∏T
k=1(1− rk), and

E[f(wT )− f∗] ≤

[
T∏
k=1

(1− rk)

] [
f(w0)− f∗ +

µ

2
‖w∗ − w0‖2

]
+

2σ2

ρ2L

T−1∑
j=0

α2
j

T−1∏
i=j+1

(1− ri).
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Now our task is to upper-bound bound the 1− rk terms. From Eq. (18), we know that

rk =
√
qk+1ηk =

√
qk+1

ρL

√
αk ≥

√
qk+1

ρL
αk (Since αk ≤ 1 for all k)

=⇒ (1− rk) ≤
(

1−
√
qk+1

ρL
αk

)
Since qk = µ for all k, putting everything together,

E[f(wT )− f∗] ≤

[
T∏
k=1

(
1−

√
1

ρκ
αk

)] [
f(w0)− f∗ +

µ

2
‖w∗ − w0‖2

]
+

2σ2

ρ2L

T−1∑
j=0

α2
j

T−1∏
i=j+1

(
1−

√
1

ρκ
αi

)

Denoting ∆k = E[f(wk)− f∗], and using the exponential step-size αk = αk/T =
(
1
T

)k/T
,

∆T ≤ 2 exp

(
−
√

1

ρκ

T∑
k=1

αk

)
∆0 +

2σ2

ρ2L

T−1∑
k=0

α2k exp

(
−
√

1

ρκ

T−1∑
i=k+1

αi

)
Using Lemma 8, we can bound the first term as

2 exp

(
−
√

1

ρκ

T∑
k=1

αk

)
∆0 ≤ 2 exp

(
−
√

1

ρκ

(
αT

ln(T/β)
− 2β

ln(T/β)

))
∆0

= 2c3 exp

(
− T
√
κρ

α

ln(T/β)

)
[f(w0)− f∗]

where c3 = exp
(

2β√
ρκ ln(T/β)

)
. We can now bound the second term by a proof similar to Lemma 9. Indeed we

have

T−1∑
k=0

α2k exp

(
−
√

1

ρκ

T−1∑
i=k+1

αi

)
=

T−1∑
k=0

α2k exp

(
−
√

1

ρκ

αk+1 − αT

1− α

)

= exp

(
1
√
ρκ

αT

1− α

) T−1∑
k=0

α2k exp

(
−
√

1

ρκ

αk+1

1− α

)

≤ exp

(
1
√
ρκ

αT

1− α

) T−1∑
k=0

α2k

(
2(1− α)

√
ρκ

eαk+1

)2

(Lemma 15)

= exp

(
1
√
ρκ

αT

1− α

)
4ρκ

e2α2
T (1− α)2

≤ exp

(
1
√
ρκ

αT

1− α

)
4ρκ

e2α2
T ln(1/α)2

= exp

(
1
√
ρκ

αT

1− α

)
4ρκ ln(T/β)2

e2α2T

Finally,

exp

(
1
√
ρκ

αT

1− α

)
= exp

(
1

α
√
ρκ

αT+1

1− α

)
≤ exp

(
2β

α
√
ρκ ln(T/β)

)
where the inequality comes from the bound in Eq. (25) in the proof of Lemma 8. Putting everything together
we obtain

E[f(wT )− f∗] ≤ 2c3 exp

(
− T
√
κρ

α

ln(T/β)

)
[f(w0)− f∗] +

8σ2c4κ ln(T/β)2

ρLe2α2T

where c4 = exp
(

2β
α
√
ρκ ln(T/β)

)
.
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C.4 Lemmas for acceleration proofs

Lemma 8.

A :=

T∑
t=1

αt ≥ αT

ln(T/β)
− 2β

ln(T/β)

Proof.

T∑
t=1

αt =
α− αT+1

1− α
=

α

1− α
− αT+1

1− α

We have

αT+1

1− α
=

αβ

T (1− α)
=
β

T
· 1
1/α− 1

≤ β

T
· 2

ln(1/α)
=
β

T
· 2

1
T ln(T/β)

=
2β

ln(T/β)
(25)

where in the inequality we used Lemma 14 and the fact that 1/α > 1. Plugging back into A we get,

A ≥ α

1− α
− 2β

ln(T/β)

≥ α

ln(1/α)
− 2β

ln(T/β)
(1− x ≤ ln( 1

x ))

=
αT

ln(T/β)
− 2β

ln(T/β)

Lemma 9. For α =
(
β
T

)1/T
and any κ > 0,

T∑
k=1

α2k exp

(
− 1

κ

T∑
i=k+1

αi

)
≤ 4κ2c2(ln(T/β))2

e2α2T

where c2 = exp
(

1
κ

2β
ln(T/β

)
Proof. First observe that,

T∑
i=k+1

αi =
αk+1 − αT+1

1− α

We have

αT+1

1− α
=

αβ

T (1− α)
=
β

T
· 1
1/α− 1

≤ β

T
· 2

ln(1/α)
=
β

T
· 2

1
T ln(T/β)

=
2β

ln(T/β)

where in the inequality we used 14 and the fact that 1/α > 1. These relations imply that,

T∑
i=k+1

αi ≥ αk+1

1− α
− 2β

ln(T/β)

=⇒ exp

(
− 1

κ

T∑
i=k+1

αi

)
≤ exp

(
− 1

κ

αk+1

1− α
+

1

κ

2β

ln(T/β)

)
= c2 exp

(
− 1

κ

αk+1

1− α

)
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We then have

T∑
k=1

α2k exp

(
− 1

κ

T∑
i=k+1

αi

)
≤ c2

T∑
k=1

α2k exp

(
− 1

κ

αk+1

1− α

)

≤ c2
T∑
k=1

α2k

(
2(1− α)κ

eαk+1

)2

(Lemma 15)

=
4κ2c2
e2α2

T (1− α)2

≤ 4κ2c2
e2α2

T (ln(1/α))2

=
4κ2c2(ln(T/β))2

e2α2T
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D Upper-bound Proofs for Section 4

D.1 Proof of Theorem 3

Theorem 3. Assuming (i) convexity and Li-smoothness of each fi, (ii) µ strong-convexity of f ,

SGD (Eq. (2)) with γk = 1
L , α =

(
β
T

)1/T
, αk = αk, has the following convergence rate,

E ‖wT+1 − w∗‖2 ≤ ‖w1 − w∗‖2 c2 exp

(
−T
κ

α

ln(T/β)

)
+

8σ2c2κ
2

Le2
(ln(T/β))2

α2T

where κ = L
µ and c2 = exp

(
1
κ ·

2β
ln(T/β)

)
.

Proof.

‖wk+1 − w∗‖2 = ‖wk − ηk∇fik(wk)− w∗‖2

= ‖wk − w∗‖2 − 2ηk〈∇fik(wk), wk − w∗〉+ η2k ‖∇fik(wk)‖2

= ‖wk − w∗‖2 − 2γkαk〈∇fik(wk), wk − w∗〉+ γ2kα
2
k ‖∇fik(wk)‖2

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − 2γkαk〈∇fik(wk), wk − w∗〉+ γ2kα
2
k 2L[fik(wk)− f∗ik] (Smoothness)

= ‖wk − w∗‖2 −
2

L
αk〈∇fik(wk), wk − w∗〉+

2

L
α2
k [fik(wk)− fik(w∗)] +

2

L
α2
k [fik(w∗)− f∗ik]

(Since γk = 1/L.)

Taking expectation w.r.t ik,

E ‖wk+1 − w∗‖2 ≤ E ‖wk − w∗‖2 −
2

L
αk〈∇f(wk), wk − w∗〉+

2

L
α2
k [f(wk)− f(w∗)] +

2

L
α2
kσ

2

≤ E ‖wk − w∗‖2 −
2

L
αk〈∇f(wk), wk − w∗〉+

2

L
αk [f(wk)− f(w∗)] +

2

L
α2
kσ

2

(Since αk ≤ 1)

E ‖wk+1 − w∗‖2 ≤
(

1− µαk
L

)
E ‖wk − w∗‖2 +

2

L
α2
kσ

2 (By µ-strong convexity of f)

Unrolling the recursion starting from w1 and using the exponential step-sizes,

E ‖wT+1 − w∗‖2 ≤ ‖w1 − w∗‖2
T∏
k=1

(
1− µαk

L

)
+

2σ2

L

T∑
k=1

[
T∏

i=k+1

α2k

(
1− µαi

L

)]

Writing ∆k = E ‖wk − w∗‖2

∆T+1 ≤ ∆1 exp

(
− µ

L

T∑
k=1

αk︸ ︷︷ ︸
:=A

)
+

2σ2

L

T∑
k=1

α2k exp

(
− µ

L

T∑
i=k+1

αi︸ ︷︷ ︸
:=Bt

)

Using Lemma 8 to lower-bound A, we obtain A ≥ αT
ln(T/β) −

2β
ln(T/β) . The first term in the above expression can

then be bounded as,

∆1 exp
(
−µ
L
A
)

= ∆1 c2 exp

(
−T
κ

α

ln(T/β)

)
,
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where κ = L
µ and c2 = exp

(
1
κ

2β
ln(T/β)

)
. Using Lemma 9 to upper-bound Bt, we obtain Bt ≤ 4κ2c2(ln(T/β))

2

e2α2T , thus

bounding the second term. Putting everything together,

∆T+1 ≤ ∆1 c2 exp

(
−T
κ

α

ln(T/β)

)
+

8σ2c2κ
2

Le2
(ln(T/β))2

α2T

D.2 Proof of Theorem 4

Theorem 4. Assuming (i) convexity and Li-smoothness of each fi, (ii) µ strong-convexity of f ,

SGD (Eq. (2)) with α =
(
β
T

)1/T
, αk = αk and γk as the largest step-size that satisfies γk ≤ γmax

and Eq. (8) with c = 1/2, has the following convergence rate,

E ‖wT+1 − w∗‖2 ≤ ‖w1 − w∗‖2 c1 exp

(
− T
κ′

α

ln(T/β)

)
+

8σ2c1(κ′)2γmax

e2
(ln(T/β))2

α2T

+
2σ2c1κ

′ ln(T/β)

eα

(
γmax −min

{
γmax,

1

L

})
with κ′ = max

{
L
µ ,

1
µγmax

}
, c1 = exp

(
1
κ′ ·

2β
ln(T/β)

)
.

Proof.

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − 2γkαk〈∇fik(wk), wk − w∗〉+ γkα
2
k

[
fik(wk)− f∗ik

c

]
(By Lemma 11)

Setting c = 1/2,

= ‖wk − w∗‖2 − 2γkαk〈∇fik(wk), wk − w∗〉+ 2γkα
2
k [fik(wk)− f∗ik]

= ‖wk − w∗‖2 − 2γkαk〈∇fik(wk), wk − w∗〉+ 2γkα
2
k [fik(wk)− fik(w∗)] + 2γkα

2
k [fik(w∗)− f∗ik]

Adding, subtracting 2γkαk[fik(wk)− fik(w∗)],

= ‖wk − w∗‖2 + 2γkαk [−〈∇fik(wk), wk − w∗〉+ [fik(wk)− fik(w∗)]]− 2γkαk[fik(wk)− fik(w∗)]

+ 2γkα
2
k [fik(wk)− fik(w∗)] + 2γkα

2
k [fik(w∗)− f∗ik]

≤ ‖wk − w∗‖2 + 2γminαk [−〈∇fik(wk), wk − w∗〉+ [fik(wk)− fik(w∗)]]− 2γk(αk − α2
k)[fik(wk)− fik(w∗)]

+ 2γmaxα
2
k [fik(w∗)− f∗ik]

where we used convexity of fik to ensure that −〈∇fik(wk), wk−w∗〉+[fik(wk)−fik(w∗)] ≤ 0. Taking expectation,

E ‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 + 2γminαk [−〈∇f(wk), wk − w∗〉+ [f(wk)− f(w∗)]]− (αk − α2
k)E [2γk[fik(wk)− fik(w∗)]]

+ 2γmaxα
2
kσ

2

E ‖wk − w∗‖2 ≤ (1− αkγminµ) ‖wk − w∗‖2 − (αk − α2
k)E [2γk[fik(wk)− fik(w∗)]] + 2γmaxα

2
kσ

2



Sharan Vaswani?, Benjamin Dubois-Taine, Reza Babanezhad

Since αk ≤ 1, and αk − α2
k ≥ 0, let us analyze −E[[γk[fik(wk)− fik(w∗)]].

−E[[γk[fik(wk)− fik(w∗)]] = −E[[γk[fik(wk)− f∗ik]]− E[[γk[f∗ik − fik(w∗)]]

≤ −E[[γmin[fik(wk)− f∗ik]]− E[[γmax[f∗ik − fik(w∗)]] (γk ≤ γmax)

= −E[[γmin[fik(wk)− f∗ik]] + γmaxσ
2

= −E[[γmin[fik(wk)− fik(w∗)]]− E[[γmin[fik(w∗)− f∗ik]] + γmaxσ
2

= −γmin[f(wk)− f(w∗)]− γminσ
2 + γmaxσ

2

≤ (γmax − γmin)σ2

Putting this relation back,

E ‖wk − w∗‖2 ≤ (1− αkγminµ) ‖wk − w∗‖2 + 2(αk − α2
k) (γmax − γmin)σ2 + 2γmaxα

2
kσ

2

≤ (1− αkγminµ) ‖wk − w∗‖2 + 2αk (γmax − γmin)σ2 + 2γmaxα
2
kσ

2.

Setting κ′ = max{Lµ ,
1

µγmax
} we get that 1 − αkγminµ ≤ 1 − 1

κ′ . Writing ∆k = E ‖wk − w∗‖2 and unrolling the
recursion we get

∆T+1 ≤

(
T∏
k=1

(
1− 1

κ′
αk
))

∆1 + 2γmaxσ
2
T∑
k=1

α2k
T∏

i=t+1

(
1− 1

κ′
αi
)

+ 2σ2
T∑
k=1

αk(γmax − γmin)

T∏
i=k+1

(
1− 1

κ′
αi
)

≤ ∆1 exp

(
− 1

κ′

T∑
k=1

αk︸ ︷︷ ︸
:=A

)
+ 2γmaxσ

2
T∑
k=1

α2k exp

(
− 1

κ′

T∑
i=k+1

αi︸ ︷︷ ︸
:=Bt

)

+ 2σ2 (γmax − γmin)

T∑
k=1

αk exp

(
− 1

κ′

T∑
i=k+1

αi︸ ︷︷ ︸
:=Ct

)

Using Lemma 8 to lower-bound A, we obtain A ≥ αT
ln(T/β) −

2β
ln(T/β) . The first term in the above expression can

then be bounded as,

∆1 exp

(
− 1

κ′
A

)
≤ ∆1 c1 exp

(
− T
κ′

α

ln(T/β)

)
,

where c1 = exp
(

1
κ′

2β
ln(T/β)

)
. Using Lemma 9 to upper-bound Bt, we obtain Bt ≤ 4(κ′)2c1(ln(T/β))

2

e2α2T , thus bounding

the second term. Using Lemma 10 to upper-bound Ct, we obtain Ct ≤ c1 κ
′ ln(T/β)
eα , thus bounding the third term.

Finally, by Lemma 11 we have that γmin ≥ min
{
γmax,

1
L

}
.

Putting everything together,

∆T+1 ≤ ∆1 c1 exp

(
− T
κ′

α

ln(T/β)

)
+

8σ2c1(κ′)2γmax

e2
(ln(T/β))2

α2T
+

2c1σ
2κ′ ln(T/β)

eα

(
γmax −min

{
γmax,

1

L

})
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D.3 Proof of Theorem 6

Theorem 6. Assuming (i) convexity and Li-smoothness of each fi, (ii) µ strong-convexity of f ,

SGD (Eq. (2)) with α =
(
β
T

)1/T
, αk = αk and γk = ν

L for ν > 0 has the following convergence

rate,

‖wT+1 − w∗‖2 ≤ ‖w1 − w∗‖2 c2 exp

(
−ν T

κ

α

ln(T/β)

)
+

8σ2

LT
exp

(
ν

κ

2β

ln(T/β)

)
4κ2 ln(T/β)2

e2α2

+

 max
j∈
[
T

[ln(ν)]+

ln(T/β)

]{f(wj)− f∗}
(ν − 1)

L


× exp

(
ν

κ

2β

ln(T/β)

)
8κ2

νe2α2

[ln(ν)]+ ln(T/β)

T
,

where κ = L
µ , c2 = exp

(
ν
κ

2β
ln(T/β)

)
and [x]+ = max{x, 0}.

Proof. Following the steps from the proof of Theorem 3,

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − 2γkαk〈∇fik(wk), wk − w∗〉+ 2Lγ2kα
2
k [fik(wk)− fik(w∗)] + 2Lγ2kα

2
k [fik(w∗)− f∗ik]

Taking expectation wrt ik, and since both γk and αk are independent of ik,

E ‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − 2γkαk〈∇f(wk), wk − w∗〉+ 2Lγ2kα
2
k [f(wk)− f∗] + 2Lγ2kα

2
k σ

2

E ‖wk+1 − w∗‖2 ≤ (1− µγkαk) ‖wk − w∗‖2 + 2Lγ2kα
2
k σ

2 + [f(wk)− f∗] (2Lγ2kα
2
k − 2γkαk)

(By strong convexity)

Since γk = ν
L for some ν ≥ 1, we require αk ≤ 1

ν for the last term to be negative. By definition of αk, this will

happen after k ≥ k0 := T ln(ν)
ln(T/β) iterations. However, until k0 iterations, we observe that (2Lγ2kα

2
k − 2γkαk) ≤

2ν (ν−1)
L α2

k, meaning that for k < k0,

E ‖wk+1 − w∗‖2 ≤ (1− µγkαk) ‖wk − w∗‖2 + 2Lγ2kα
2
k σ

2 + max
j∈[k0]

{f(wj)− f∗}
2ν (ν − 1)

L
α2
k

Writing ∆k = E ‖wk − w∗‖2, and unrolling the recursion for the first k0 iterations we get

∆k0 ≤ ∆1

k0−1∏
k=1

(1− µν

L
αk) +

2L
ν2

L2
σ2 + max

j∈[k0]
{f(wj)− f∗}

2ν(ν − 1)

L︸ ︷︷ ︸
:=c5


k0−1∑
k=1

α2
k

k0−1∏
i=k+1

(1− µν

L
αi)

Bounding the first term similar to Lemma 8,

k0−1∏
k=1

(1− µν

L
αk) ≤ exp

(
−µν
L

α− αk0
1− α

)
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Bounding the second term similar to Lemma 9,

k0−1∑
k=1

α2
k

k0−1∏
i=k+1

(1− µν

L
αi) ≤

k0−1∑
k=1

α2
k exp

(
−µν
L

k0−1∑
i=k+1

αi

)

=

k0−1∑
k=1

α2
k exp

(
−ν
κ

αk+1 − αk0
1− α

)

= exp

(
ναk0

κ(1− α)

) k0−1∑
k=1

α2
k exp

(
− ναk+1

κ(1− α)

)

≤ exp

(
ναk0

κ(1− α)

) k0−1∑
k=1

α2
k

(
2(1− α)κ

νeαk+1

)2

≤ exp

(
ναk0

κ(1− α)

)
4(1− α)2κ2

ν2e2α2
k0

≤ exp

(
ναk0

κ(1− α)

)
4κ2

ν2e2α2

k0 ln(T/β)2

T 2

Putting everything together, we obtain,

∆k0 ≤ ∆1 exp

(
−µν
L

α− αk0
1− α

)
+ c5 exp

(
ναk0

κ(1− α)

)
4κ2

ν2e2α2

k0 ln(T/β)2

T 2

Now let us consider the regime k ≥ k0 where αk ≤ 1
ν , so that we have

E ‖wk+1 − w∗‖2 ≤ (1− µγkαk) ‖wk − w∗‖2 +
2ν2σ2

L
α2
k

Writing ∆k = E ‖wk − w∗‖2, and unrolling the recursion from k = k0 to T ,

∆T+1 ≤ ∆k0

T∏
k=k0

(1− µν

L
αk) +

2ν2σ2

L

T∑
k=k0

α2
k

T∏
i=k+1

(1− µν

L
αi)

Bounding the first term similar to Lemma 8,

T∏
k=k0

(1− µν

L
αk) ≤ exp

(
−µν
L

T∑
k=k0

αk

)
= exp

(
−µν
L

αk0 − αT+1

1− α

)
Bounding the second term similar to Lemma 9,

T∑
k=k0

α2
k

T∏
i=k+1

(1− µν

L
αi) ≤

T∑
k=k0

α2
k exp

(
−µν
L

T∑
i=k+1

αi

)

=

T∑
k=k0

α2
k exp

(
−ν
κ

αk+1 − αT+1

1− α

)

= exp

(
ναT+1

κ(1− α)

) T∑
k=k0

α2
k exp

(
− ναk+1

κ(1− α)

)

≤ exp

(
ναT+1

κ(1− α)

) T∑
k=k0

α2
k

(
2(1− α)κ

νeαk+1

)2

= exp

(
ναT+1

κ(1− α)

)
4(1− α)2κ2

ν2e2α2
(T − k0 + 1)

≤ exp

(
ναT+1

κ(1− α)

)
4κ2

ν2e2α2

(T − k0 + 1) ln(T/β)2

T 2
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Putting everything together,

∆T+1 ≤ ∆k0 exp

(
−µν
L

αk0 − αT+1

1− α

)
+

2ν2σ2

L
exp

(
ναT+1

κ(1− α)

)
4κ2

ν2e2α2

(T − k0 + 1) ln(T/β)2

T 2

Combining the above bounds, we get,

∆T+1 ≤ exp

(
−µν
L

αk0 − αT+1

1− α

)(
∆1 exp

(
−µν
L

α− αk0
1− α

)
+ c5 exp

(
µναk0

L(1− α)

)
4κ2

ν2e2α2

k0 ln(T/β)2

T 2

)
+

2c2σ2

L
exp

(
ναT+1

κ(1− α)

)
4κ2

ν2e2α2

(T − k0 + 1) ln(T/β)2

T 2

= ∆1 exp

(
−µν
L

α− αT+1

1− α

)
+ c5 exp

(
µν

L

αT+1

1− α

)
4κ2

ν2e2α2

k0 ln(T/β)2

T 2

+
2ν2σ2

L
exp

(
ναT+1

κ(1− α)

)
4κ2

ν2e2α2

(T − k0 + 1) ln(T/β)2

T 2

Using Lemma 8 to bound the first term

∆T+1 ≤ ∆1 c2 exp

(
−ν T

κ

α

ln(T/β)

)
+ c5 exp

(
µν

L

αT+1

1− α

)
4κ2

ν2e2α2

k0 ln(T/β)2

T 2

+
2ν2σ2

L
exp

(
ναT

κ(1− α)

)
4κ2

ν2e2α2

(T − k0 + 1) ln(T/β)2

T 2

where κ = L
µ and c2 = exp

(
ν
κ

2β
ln(T/β)

)
.

For bounding the second and third terms, note that αT+1

1−α ≤
2β

ln(T/β) , and k0 = T ln(ν)
ln(T/β) . Using these relations and

the fact that α ≤ 1,

∆T+1 ≤ ∆1 c2 exp

(
−ν T

κ

α

ln(T/β)

)
+ c5 exp

(
ν

κ

2β

ln(T/β)

)
4κ2

ν2e2α2

ln(ν) ln(T/β)

T

+
2ν2σ2

L
exp

(
ν

κ

2β

ln(T/β)

)
4κ2

ν2e2α2

(T − k0 + 1) ln(T/β)2

T 2

Putting in the value of c5 and rearranging, we get

∆T+1 ≤ ∆1 c2 exp

(
−ν T

κ

α

ln(T/β)

)
+

2ν2σ2

LT
exp

(
ν

κ

2β

ln(T/β)

)
4κ2 ln(T/β)2

ν2e2α2

+

[
max
j∈[k0]

{f(wj)− f∗}
2ν(ν − 1)

L

]
exp

(
ν

κ

2β

ln(T/β)

)
4κ2

ν2e2α2

ln(ν) ln(T/β)

T
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D.4 Proof of Theorem 8

Theorem 8. Assuming (i) convexity and (ii) Li-smoothness of each fi, SGD with step-size ηk =
1
2L αk has the following convergence rate,

E[f(w̄T+1)− f(w∗)] ≤ 2L ‖w1 − w∗‖2∑T
k=1 αk

+ σ2

∑T
k=1 α

2
k∑T

k=1 αk
(11)

where w̄T+1 =
∑T
k=1 αkwk∑T
k=1 αk

. For αk =
[
β
T

]k/T
, the convergence rate is given by,

E[f(w̄T+1)− f(w∗)] ≤ 2L ln(T/β) ‖w1 − w∗‖2

αT − 2β
+ σ2 T

T − β

Proof. Following the proof of Theorem 3,

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − 2γkαk〈∇fik(wk), wk − w∗〉+ 2Lγ2kα
2
k [fik(wk)− fik(w∗)]

+
2

L
γ2kα

2
k [fik(wk)− f∗ik]

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 −
αk
L
〈∇fik(wk), wk − w∗〉+

α2
k

2L
[fik(wk)− fik(w∗)] +

α2
k

2L
[fik(wk)− f∗ik]

(γk = 1
2L for all k.)

≤ ‖wk − w∗‖2 −
αk
L

[fik(wk)− fik(w∗)] +
α2
k

2L
[fik(wk)− fik(w∗)] +

α2
k

2L
[fik(wk)− f∗ik]

(By convexity)

Taking expectation,

E ‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 −
αk
L

[f(wk)− f(w∗)] +
α2
k

2L
[f(wk)− f(w∗)] +

α2
k

2L
σ2

≤ ‖wk − w∗‖2 −
αk
2L

[f(wk)− f(w∗)] +
α2
k

2L
σ2 (Since f(wk)− f(w∗) ≥ 0 and αk ≤ 1)

Rearranging and summing from k = 1 to T ,

T∑
k=1

αk[f(wk)− f(w∗)] ≤ 2L ‖w1 − w∗‖2 + σ2
T∑
k=1

α2
k

By averaging and using Jensen. Denote w̄T+1 =
∑T
k=1 αkwk∑T
k=1 αk

,

E[f(w̄T+1)− f(w∗)] ≤ 2L ‖w1 − w∗‖2∑T
k=1 αk

+ σ2

∑T
k=1 α

2
k∑T

k=1 αk

Next, we bound
∑T
k=1 αk and

∑T
k=1 α

2
k for the exponentially-decreasing αk sequence, when αk =

[
β
T

]k/T
.

From Lemma 8, we know that,

T∑
k=1

αk ≥
αT

ln(T/β)
− 2β

ln(T/β)
.
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Bounding the ratio
∑T
k=1 α

2
k∑T

k=1 αk
=
∑T
k=1 α

2k∑T
k=1 α

k where α =
[
β
T

]1/T
,

∑T
k=1 α

2k∑T
k=1 α

k
≤ α2

1− α2

1− α
α− αT+1

=
α

1 + α

1

1− αT
≤ 1

1− αT
=

T

T − β

Putting everything together,

E[f(w̄T+1)− f(w∗)] ≤ 2L ln(T/β) ‖w1 − w∗‖2

αT − 2β
+ σ2 T

T − β

D.5 Additional lemmas for upper-bound proofs

Lemma 10. For α =
(
β
T

)1/T
and any κ > 0,

T∑
k=1

αk exp

(
− 1

κ

T∑
i=k+1

αi

)
≤ c2

κ ln(T/β)

eα

for c2 = exp
(

1
κ

2β
ln(T/β)

)

Proof. Proceeding in the same way as Lemma 9, we obtain the following inequality,

T∑
k=1

αk exp

(
− 1

κ

T∑
i=k+1

αi

)
≤ c2

T∑
k=1

αk exp

(
− 1

κ

αk+1

1− α

)

Further bounding this term,

T∑
k=1

αk exp

(
− 1

κ

T∑
i=t+1

αi

)
≤ c2

T∑
k=1

αk
(1− α)κ

eαk+1
(Lemma 15)

≤ c2(1− α)
κT

eα

≤ c2 ln(1/α)
κT

eα

= c2
κ ln(T/β)

eα

Lemma 11. If fi is Li-smooth, stochastic lines-searches ensures that

γ ‖∇fi(w)‖2 ≤ 1

c
(fi(w)− f∗i ), and min

{
γmax,

2 (1− c)
Li

}
≤ γ ≤ γmax.

Moreover, if fi is a one-dimensional quadratic,

γ = min

{
γmax,

2 (1− c)
Li

}
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Proof. Recall that if fi is Li-smooth, then for an arbitrary direction d,

fi(w − d) ≤ fi(w)− 〈∇fi(w), d〉+
Li
2
‖d‖2 .

For the stochastic line-search, d = γ∇fi(w). The smoothness and the line-search condition are then

Smoothness: fi(w − γ∇fi(w))− fi(w) ≤
(
Li
2
γ2 − γ

)
‖∇fi(w)‖2 ,

Line-search: fi(w − γ∇fi(w))− fi(w) ≤ −cγ ‖∇fi(w)‖2 .

The line-search condition is looser than smoothness if(
Li
2 γ

2 − γ
)
‖∇fi(w)‖2 ≤ −cγ ‖∇fi(w)‖2 .

The inequality is satisfied for any γ ∈ [a, b], where a, b are values of γ that satisfy the equation with equality,
a = 0, b = 2(1−c)/Li, and the line-search condition holds for γ ≤ 2(1−c)/Li. As the line-search selects the largest
feasible step-size, γ ≥ 2(1−c)/Li. If the step-size is capped at γmax, we have η ≥ min{γmax, 2(1−c)/Li}, and the
proof for the stochastic line-search is complete.

From the previous discussion, observe that if γ > 2(1−c)
Li

, then we have(
Li
2 γ

2 − γ
)
‖∇fi(w)‖2 > −cγ ‖∇fi(w)‖2 .

If f is a one-dimensional quadratic, the smoothness inequality is actually an equality, and thus

fi(w − γ∇fi(w))− fi(w) =

(
Li
2
γ2 − γ

)
‖∇fi(w)‖2

So if γ > 2(1−c)
Li

,

fi(w − γ∇fi(w))− fi(w) ≥ −cγ ‖∇fi(w)‖2

and the line-search condition does not hold. This implies that for one-dimensional quadratics γ =

min{γmax,
2(1−c)
Li
}
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E Lower-bound proofs for Section 4

E.1 Proof of Theorem 5

Theorem 5. When using T iterations of SGD to minimize the sum f(w) = f1(w)+f2(w)
2 of two

one-dimensional quadratics, f1(w) = 1
2 (w − 1)2 and f2(w) = 1

2 (2w + 1/2)
2
, setting the step-size

using SLS with γmax ≥ 1 and c ≥ 1/2, any convergent sequence of αk results in convergence to a
neighbourhood of the solution. Specifically, if w∗ is the minimizer of f and w1 > 0, then,

E(wT − w∗) ≥ min

(
w1,

3

8

)
.

Proof. For SLS with a general c ≥ 1/2 on quadratics, we know that γk = 2(1−c)
Lik

(see Lemma 11 for a formal

proof). Recall that we consider two one-dimensional quadratics fi(w) = 1
2 (wxi − yi)2 for i ∈ {1, 2} such that

x1 = 1, y1 = 1, x2 = 2, y2 = − 1
2 . Specifically,

f1(w) =
1

2
(w − 1)2 ⇒ L1 = 1

f2(w) =
1

2
(2w +

1

2
)2 ⇒ L2 = 4

f(w) =
1

4
(w − 1)2 +

1

4
(2w +

1

2
)2 =

5

4
w2 +

1

4
+

1

16
⇒ w∗ = 0

If ik = 1,

wk+1 = wk − αk2(1− c)(wk − 1) = 2(1− c)αk + (1− 2(1− c)αk)wk

If ik = 2,

wk+1 = wk − 2(1− c)αk
2

4
(2wk +

1

2
) = (1− 2(1− c)αk)wk −

1

4
2(1− c)αk

Then

Ewk+1 = (1− 2(1− c)αk)wk +
1

2
2(1− c)αk −

1

8
2(1− c)αk = (1− 2(1− c)αk)wk +

3

8
2(1− c)αk

and

EwT = E(wT − w∗) = (w1 − w∗)
T∏
k=1

(1− 2(1− c)αk) +
3

8

T∑
k=1

2(1− c)αk
T∏

i=k+1

(1− 2(1− c)αi)

Using Lemma 16 and the fact that 2(1− c)αk ≤ 1 for all k, we have that if w1 − w∗ = w1 > 0,

E(wT − w∗) ≥ min

(
w1,

3

8

)
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E.2 Proof of Theorem 7

Theorem 7. When using gradient descent to minimize a one-dimensional quadratic function

f(w) = 1
2 (xw − y)2, with α =

(
β
T

)1/T
, αk = αk and γk = ν

L for ν > 3 we have

wk+1 − w∗ = (w1 − w∗)
k∏
i=1

(1− ναi).

After k′ := T
ln(T/β) ln

(
ν
3

)
iterations, we have that

|wk′+1 − w∗| ≥ 2k
′
|w1 − w∗|.

Proof. One has w∗ = y
x and L = x2. Therefore

wk+1 − w∗ = wk − w∗ − αkηkx (xwk − y)

= wk − w∗ − αk
ν

L
Lwk + αk

ν

L
xy

= wk − w∗ − αkνwk + αkρw
∗ = (1− ναk)(wk − w∗)

Iterating gives the first part of the result. Now, for k ≤ k′, we have

1− ναk ≤ 1− ναk
′
≤ 1− να

T
ln(T/β)

(ln ν−ln 3) = 1− ν
(
β

T

) 1
ln(T/β)

(ln ν−ln 3)

= 1− ν
(

3

ν

)
= −2

and thus

|wk′+1 − w∗| =|w1 − w∗|
k′∏
i=1

|1− ναk| ≥|w1 − w∗|2k
′

E.3 Lemmas for convex setting

Lemma 12. The polynomial stepsize defined as αk = (1/k)δ for some 0 ≤ δ ≤ 1 cannot satisfy
∑T
k=1 αk ≥ C1T

and
∑T
k=1 α

2
k ≤ C2

√
T for positive constants C1 and C2.

Proof. If δ = 0, αk = 1 for all k, and then
∑T
k=1 α

2
k = T . If δ = 1, then

∑T
k=1 αk = Θ(lnT ).

If 0 < δ < 1, basic calculus shows that ∫ T+1

1

1

xδ
≤

T∑
k=1

1

kδ
≤ 1 +

∫ T

1

1

xδ

and thus

1

1− δ
(
(T + 1)1−δ − 1

)
≤

T∑
k=1

1

kδ
≤ 1 +

1

1− δ
(
T 1−δ − 1

)
which shows that

∑T
k=1 αk = Θ(T 1−δ), and thus we cannot have

∑T
k=1 αk ≥ C1T for all T .
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Lemma 13. The exponential stepsize defined as αk = αk for some α < 1 cannot satisfy
∑T
k=1 αk ≥ C1T and∑T

k=1 α
2
k ≤ C2

√
T for positive constants C1 and C2.

Proof. Suppose by contradiction that the exponential stepsize satisfies the two conditions. Then

C2

√
T ≥

T∑
k=1

α2
k =

T∑
k=1

α2k =

2T∑
k=1

αk −
T∑
k=1

α2k−1 =

2T∑
k=1

αk − 1

α

T∑
k=1

α2k

By assumption,
∑2T
k=1 α

k ≥ C12T and
∑T
k=1 α

2k ≤ C2

√
T . Therefore

2T∑
k=1

αk − 1

α

T∑
k=1

α2k ≥ 2C1T −
1

α
C2

√
T

But then we obtain

C2

√
T ≥ 2C1T −

1

α
C2

√
T

which is a contradiction by taking T to infinity.

F Helper Lemmas

Lemma 14. For all x > 1,

1

x− 1
≤ 2

ln(x)

Proof. For x > 1, we have

1

x− 1
≤ 2

ln(x)
⇐⇒ ln(x) < 2x− 2

Define f(x) = 2x − 2 − ln(x). We have f ′(x) = 2 − 1
x . Thus for x ≥ 1, we have f ′(x) > 0 so f is increasing

on [1,∞). Moreover we have f(1) = 2 − 2 − ln(1) = 0 which shows that f(x) ≥ 0 for all x > 1 and ends the
proof.

Lemma 15. For all x, γ > 0,

exp(−x) ≤
( γ
ex

)γ
Proof. Let x > 0. Define f(γ) =

(
γ
ex

)γ − exp(−x). We have

f(γ) = exp (γ ln(γ)− γ ln(ex))− exp(−x)

and

f ′(γ) =

(
γ · 1

γ
+ ln(γ)− ln(ex)

)
exp (γ ln(γ)− γ ln(ex))

Thus

f ′(γ) ≥ 0 ⇐⇒ 1 + ln(γ)− ln(ex) ≥ 0 ⇐⇒ γ ≥ exp (ln(ex)− 1) = x

So f is decreasing on (0, x] and increasing on [x,∞). Moreover,

f(x) =
( x
ex

)x
− exp(−x) =

(
1

e

)x
− exp(−x) = 0

and thus f(γ) ≥ 0 for all γ > 0 which proves the lemma.
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Lemma 16. For any sequence αk

T∏
k=1

(1− αk) +

T∑
k=1

αk

T∏
i=k+1

(1− αi) = 1

Proof. We show this by induction on T . For T = 1,

(1− α1) + α1 = 1

Induction step:

T+1∏
k=1

(1− αk) +

T+1∑
k=1

αk

T+1∏
i=k+1

(1− αi) = (1− αT+1)

T∏
k=1

(1− αk) +

(
αT+1 +

T∑
k=1

αk

T+1∏
i=k+1

(1− αi)

)

= (1− αT+1)

T∏
k=1

(1− αk) +

(
αT+1 + (1− αT+1)

T∑
k=1

αk

T∏
i=k+1

(1− αi)

)

= (1− αT+1)


T∏
k=1

(1− αk) +

T∑
k=1

αk

T∏
i=k+1

(1− αi)︸ ︷︷ ︸
=1

+ αT+1

(Induction hypothesis)

= (1− αT+1) + αT+1 = 1
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G Proof for misspecified ASGD

New proofs not included in current Arxiv version

Misspecified ASGD uses the same two sequences {wk, yk} and an additional extrapolation parameter bk. However,
we do not have information about the smoothness L or the strong-convexity constant µ. Instead we estimate these
problem-dependent parameters in an offline fashion (no correlation between ik and the estimation), and obtain
L̃ and µ̃. W.l.o.g, we will assume that 1

L̃
= νL

L and µ̃ = νµµ for some νL, νµ > 0. Specifically, the extrapolation
parameter is now computed as follows:

r2k = (1− rk)r2k−1
ηk
ηk−1

+ rkµ̃ηk. (26)

bk =
(1− rk−1)rk−1

ηk
ηk−1

rk + r2k−1
ηk
ηk−1

, (27)

where ηk = γkαk = νL
ρL

(
β
T

)k/T
, rk =

√
νLνµµ
ρL

(
β
T

)k/2T
satisfy the above equations.

The above equations can be rewritten as:

r2k = (1− rk)r2k−1
ηk
ηk−1

+ rkµ νµηk. (28)

Defining η̃k := νµηk and noting that the ratio η̃k
η̃k−1

= ηk
ηk−1

,

r2k = (1− rk)r2k−1
η̃k
η̃k−1

+ rkµ η̃k. (29)

bk =
(1− rk−1)rk−1

η̃k
η̃k−1

rk + r2k−1
η̃k
η̃k−1

, (30)

where η̃k :=
νLνµ
ρL

(
β
T

)k/T
, rk =

√
νLνµµ
ρL

(
β
T

)k/2T
satisfy the above equations.

For notational convenience we will redefine γk := νγk where ν = νLνµ and hence redefine ηk := νηk. With
these redefinitions, it is easy to see that the updates can be reformulated as a 3 variable sequence as in Ap-
pendix C.1 with a different choice of ηk. Similarly, we can use the same definition of the estimating sequences as
in Appendix C.2.

Given the definitions in Appendix C.2, we first prove the descent lemma for ηk = ν
ρLαk, where αk ≤ 1 is the

exponentially decreasing step-size.

Lemma 17. Using the update in Eq. (15) with ηk = ν
ρLαk, and defining k0 := T [ln(ν)]+

ln(T/β) and G :=

maxj∈[k0] E[‖∇f(yk)‖2], we obtain the following descent lemma.

E[f(wk+1)] ≤ E[f(yk)]− ηk
2
‖∇f(yk)‖2 +

ν2

2ρ2L
α2
kσ

2 (For k ≥ k0)

E[f(wk+1)] ≤ E[f(yk)] +
G2ν2

2ρL
α2
k +

ν2

2ρ2L
α2
kσ

2 (For k < k0)

Proof. By smoothness, and the update in Eq. (15),

f(wk+1) ≤ f(yk)− ηk〈∇f(yk),∇fik(yk)〉+
L

2
η2k ‖∇fik(yk)‖2
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Taking expectation w.r.t. ik,

E[f(wk+1)] ≤ E[f(yk)]− ηk ‖∇f(yk)‖2 +
L

2
η2kE[‖∇fik(yk)‖2] (ηk is independent of the randomness in ik.)

≤ E[f(yk)]− ηk ‖∇f(yk)‖2 +
ρL

2
η2kE[‖∇f(yk)‖2] +

L

2
η2kσ

2 (By the growth condition in Eq. (5))

= E[f(yk)]− ηk ‖∇f(yk)‖2 +
ηkναk

2
E[‖∇f(yk)‖2] +

ν2

2ρ2L
α2
kσ

2

= E[f(yk)]− ηk
2
‖∇f(yk)‖2 − ηk

2
(1− ναk) ‖∇f(yk)‖2 +

ν2

2ρ2L
α2
kσ

2

For k ≥ k0, 1− ναk ≥ 0, and

E[f(wk+1)] ≤ E[f(yk)]− ηk
2
‖∇f(yk)‖2 +

ν2

2ρ2L
α2
kσ

2

whereas for k < k0, 1− ναk > −ναk, and since ηk = ναk
ρL ,

E[f(wk+1)] ≤ E[f(yk)] +
α2
kν

2

2ρL
‖∇f(yk)‖2 +

ν2

2ρ2L
α2
kσ

2

Defining G := maxj∈[k0] E[‖∇f(yk)‖2],

E[f(wk+1)] ≤ E[f(yk)] +
G2ν2

2ρL
α2
k +

ν2

2ρ2L
α2
kσ

2

With this change, the proof of Lemma 18 can be modified, and the new result can be stated as follows:

Lemma 18. For the estimating sequences defined in Appendix C.2 and the updates in Eq. (14)-Eq. (19),

E[φ∗k] := E[inf
w
φk(w)] ≥ E[f(wk)]−Nk

where Nk := σ2ν2

2ρ2L

∑k−1
j=0 α

2
j

∏k−1
i=j+1(1− ri) +

(
G2ν2

2ρL

)∑min{k0,k}−1
j=0 α2

j

∏k−1
i=j+1(1− ri)

We now use the above lemma to prove the rate for strongly-convex functions.
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Theorem 2. Assuming (i) convexity and Li-smoothness of each fi, (ii) µ strong-convexity of f and

(iii) the growth condition in Eq. (5), ASGD (Eqs. (3) and (4)) with w0 = y0, γk = νL
ρL , α =

(
β
T

)1/T
,

αk = αk, rk =
√

νLνµµ
ρL

(
β
T

)k/2T
and bk computed as:

bk =
(1− rk−1) rk−1 α

rk + r2k−1 α
, (7)

has the following convergence rate:

E[f(wT )− f∗] ≤

2c3 exp

(
−
√
νT
√
κρ

α

ln(T/β)

)
[f(w0)− f∗]

+
8c4κ(ln(T/β))2

(eα)2ρLT
νσ2

+
2c4κ(ln(T/β))2

(eα)2LT
min{bln(ν)c+

ln(T/β)
, 1}νG2

where ν = νLνµ, κ = L
µ , c3 = exp

(
1√
ρκ

2β
√
ν

ln(T/β)

)
and c4 = exp

(
1

α
√
ρκ

2β
√
ν

ln(T/β)

)
and G :=

maxj∈[k0] E[‖∇f(yk)‖2] with k0 := T bln(ν)c+ln(T/β) and bxc+ = max{bxc, 0}.

Proof. Using the reformulation in Lemma 5 gives us qk = µ for all k and z0 = w0. For the estimating sequences
defined in Appendix C.2, using Lemma 18, we know that the (reformulated) updates satisfy the following relation

E[f(wT )] ≤ E[φ∗T ] +NT ≤ E[φT (w∗)] +NT
From Eq. (22), we know that for all w and k,

φk(w) ≤ (1− λk)f(w) + λkφ0(w)

Using these relations,

E[f(wT )] ≤ (1− λT )f∗ + λTφ0(w∗) +NT
=⇒ E[f(wT )− f∗] ≤ λT [φ0(w∗)− f∗] +NT
By Eq. (21),

≤ λT
[
φ∗0 +

q0
2
‖w∗ − z0‖2 − f∗

]
+NT

Choosing φ∗0 = f(w0),

≤ λT
[
f(w0)− f∗ +

q0
2
‖w∗ − z0‖2

]
+NT

Since z0 = w0, q0 = µ,

=⇒ E[f(wT )− f∗] ≤ λT
[
f(w0)− f∗ +

µ

2
‖w∗ − w0‖2

]
+
σ2ν2

2ρ2L

T−1∑
j=0

α2
j

T−1∏
i=j+1

(1− ri) +

(
G2ν2

2ρL

)min{k0,T}−1∑
j=0

α2
j

T−1∏
i=j+1

(1− ri)

Using the fact that λ0 = 1 and λk+1 = (1− rk)λk, we know that that λT =
∏T
k=1(1− rk), and

E[f(wT )− f∗] ≤

[
T∏
k=1

(1− rk)

] [
f(w0)− f∗ +

µ

2
‖w∗ − w0‖2

]
+

2σ2ν2

ρ2L

T−1∑
j=0

α2
j

T−1∏
i=j+1

(1− ri)

+

(
G2ν2

2ρL

)min{k0,T}−1∑
j=0

α2
j

T−1∏
i=j+1

(1− ri).
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Now our task is to upper-bound bound the 1− rk terms. From Eq. (18), we know that

rk =
√
qk+1ηk =

√
qk+1ν

ρL

√
αk ≥

√
qk+1ν

ρL
αk (Since αk ≤ 1 for all k)

=⇒ (1− rk) ≤
(

1−
√
qk+1ν

ρL
αk

)
Since qk = µ for all k, putting everything together,

E[f(wT )− f∗] ≤

[
T∏
k=1

(
1−

√
ν

ρκ
αk

)] [
f(w0)− f∗ +

µ

2
‖w∗ − w0‖2

]
+

2σ2ν2

ρ2L

T−1∑
j=0

α2
j

T−1∏
i=j+1

(
1−

√
ν

ρκ
αi

)

+

(
G2ν2

2ρL

)min{k0,T}−1∑
j=0

α2
j

T−1∏
i=j+1

(
1−

√
ν

ρκ
αi

)
.

Denoting ∆k = E[f(wk)− f∗], and using the exponential step-size αk = αk/T =
(
1
T

)k/T
,

∆T ≤ 2 exp

(
−
√

ν

ρκ

T∑
k=1

αk

)
∆0 +

2σ2ν2

ρ2L

T−1∑
k=0

α2k exp

(
−
√

1

ρκ

T−1∑
i=k+1

αi

)

+
G2ν2

2ρL

min{k0,T}−1∑
k=0

α2k exp

(
−
√

1

ρκ

T−1∑
i=k+1

αi

)
Using Lemma 8, we can bound the first term as

2 exp

(
−
√

ν

ρκ

T∑
k=1

αk

)
∆0 ≤ 2 exp

(
−
√

ν

ρκ

(
αT

ln(T/β)
− 2β

ln(T/β)

))
∆0

= 2c3 exp

(
−T
√
ν

√
κρ

α

ln(T/β)

)
[f(w0)− f∗]

where c3 = exp
(

2β
√
ν√

ρκ ln(T/β)

)
. We can now bound the second term by a proof similar to Lemma 9. Indeed we

have

T−1∑
k=0

α2k exp

(
−
√

ν

ρκ

T−1∑
i=k+1

αi

)
=

T−1∑
k=0

α2k exp

(
−
√

ν

ρκ

αk+1 − αT

1− α

)

= exp

( √
ν

√
ρκ

αT

1− α

) T−1∑
k=0

α2k exp

(
−
√

ν

ρκ

αk+1

1− α

)

≤ exp

( √
ν

√
ρκ

αT

1− α

) T−1∑
k=0

α2k

(
2(1− α)

√
ρκ

eαk+1
√
ν

)2

(Lemma 15)

= exp

( √
ν

√
ρκ

αT

1− α

)
4ρκ

e2να2
T (1− α)2

≤ exp

( √
ν

√
ρκ

αT

1− α

)
4ρκ

e2να2
T ln(1/α)2

= exp

( √
ν

√
ρκ

αT

1− α

)
4ρκ ln(T/β)2

e2να2T

Similarly,

min{k0,T}−1∑
k=0

α2k exp

(
−
√

ν

ρκ

T−1∑
i=k+1

αi

)
≤ exp

( √
ν

√
ρκ

αT

1− α

)
4ρκ ln(T/β)2 min{k0, T}

e2να2T 2

= exp

( √
ν

√
ρκ

αT

1− α

) 4ρκ ln(T/β)2 min
{

ln(ν)
ln(T/β) , 1

}
e2να2T
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Finally,

exp

( √
ν

√
ρκ

αT

1− α

)
= exp

( √
ν

α
√
ρκ

αT+1

1− α

)
≤ exp

(
2β
√
ν

α
√
ρκ ln(T/β)

)
where the inequality comes from the bound in Eq. (25) in the proof of Lemma 8. Putting everything together
we obtain

E[f(wT )− f∗] ≤ 2c3 exp

(
−
√
νT
√
κρ

α

ln(T/β)

)
[f(w0)− f∗] +

8ρc4κ ln(T/β)2

e2α2T

σ2ν

ρ2L
+

2ρc4κ ln(T/β)2

e2α2T
min

{
[ln(ν)]+
ln(T/β)

, 1

}
G2ν

ρL

where c3 = exp
(

2β
√
ν√

ρκ ln(T/β)

)
and c4 = exp

(
2β
√
ν

α
√
ρκ ln(T/β)

)
.
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