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A NOTE ON THE DISCRIMINANT AND PRIME RAMIFICATION OF SOME
REAL KUMMER EXTENSIONS

ANDREA LESAVOUREY

Abstract. In this note, we establish some facts about real Kummer extensions of the form L =
Q( p

√
m1, . . . , p

√
mr), and L = K( p

√
m1, . . . , p

√
mr) where K = Q( q

√
n1, . . . , q

√
ns). In particular,

we study the ramification of primes in L and exhibit fairly canonical and simple Q-bases of L and
dL ∈ N such that the order it generate contains dLOL.

1. Introduction

The discriminant DL of a number field L gives important information about the structure of the
field. For instance, the volume of the ring of integers OL under Minkowski’s embedding is equal to√
|DL|. Another example is that a prime integer p ramifies in L if, and only if, it divides DL. Thus,

knowing DL can be particularly interesting. However, obtaining a closed formula can be difficult.
Conversely, studying how primes ramify in L can help in determining a formula for DL, notably
through computing the different D(L/Q) [3].

Computationally, computing the discriminant amounts to computing the ring of integers. The
generic algorithms start with an order O = Z[θ] for some θ such that L = Q(θ), and augment O in
directions depending on the index [OL : O] [4]. They run in subexponential time as they require to
factorise [OL : O]. Hence, being able to identify an order O with a known factorisation of [OL : O]
is interesting since it allows for the computation of OL in polynomial time. In fact, knowing the
set of primes dividing [OL : O] is sufficient.

Given a ∈ Z and n > 3 odd, denote by n
√
a the only real n-th root a. In this note, we will focus

on Kummer extensions of the form L = K( p
√
m1, . . . , p

√
mr) such that K is Q or Q( q

√
n1, . . . , q

√
ns),

where mi, nj ∈ Z for any i ∈ J1, rK, j ∈ J1, sK, and p, q are odd prime integers. Orders satisfy-
ing the aformentioned property have been identified for multiquadratic fields Q(√m1, . . . ,

√
mr) by

Schmal [9], together with the discriminant of these fields. Similar results have been obtained for
bicubic fields [2] and multicubic fields [5]. Following these works, we study how primes ramify in
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2 ANDREA LESAVOUREY

the two types of Kummer extensions considered and identify similar orders, see Theorem 4 and
Theorem 6. Moreover, in the case where K = Q, we study further the splitting of p in L an
determine the exact factorisation of DL in most cases, see Theorem 5.

2. Background and notation

First let us fix some notations and give some background required for the understanding. We
refer the reader to [6, 8, 7] for anything related to number fields. Most of Subsections 2.1 and 2.3
is standard knowledge about discriminants and the splitting of primes in number field extensions.
Therefore, an informed reader can easily skip those and go to Subsection 2.3 where we recall some
facts and fix some notations connected to Kummer extensions.

Notations. Algebraic closures of number field extensions considered will be designated by Ω. Given
a number field extension L/K we will denote by L̃ its Galois closure. We will write δ(P(n)) for the
indicator function of proposition P(·), i.e. δ(P(n)) is equal to 1 if P(n) is true and 0 otherwise.
Finally, given two ordered sets A and B we will denote by A ⊗ B the tensor product of A and B

(when it makes sense), i.e. A⊗B = {ab, b ∈ B | a ∈ A}. If A and B are not ordered A⊗B will be
the collection of all the products ab such that a ∈ A and b ∈ B. Finally, we also use this notation
for the tensor product of vectors and matrices. If g is an element of a group G, we will write o(g)
its order in G.

2.1. Discriminants.

Definition 1 (Discriminant of a family). Consider an extension of number fields L/K of degree n,
(x1, . . . , xn) ∈ Ln, and write σ1, . . . , σn the elements of Hom(L/K,Ω). Then the discriminant of
(x1, . . . , xn) relative to L/K, denoted by DK(x1, . . . , xn) is the element

DL/K(x1, . . . , xn) = det [σi(xj)]i∈J1,nK
j∈J1,nK

.

Proposition 1 ([8]). Consider an extension of number fields L/K of degree n. The following
properties are true.

(1) For any x ∈ OL, NL/K(x) are elements of OK .
(2) For any family (x1, . . . , xn) ∈ OnL, the discriminant DL/K(x1, . . . , xn) is belongs to OK .

Moreover the norm map is transitive, i.e. if M/L/K is a tower of number fields NM/K = NL/KNM/L.

Definition 2 (Discriminants). (1) Let K be a number field. The (absolute) discriminant of
an order O of K is the integer DK/Q(b1, . . . , bn), where (b1, . . . , bn) is any Z-basis of O.
The (absolute) discriminant of K is the discriminant of its ring of integers OK .
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(2) Given an extension of number fields L/K, its relative discriminant is defined to be the
(well-defined) ideal of OK generated by the discriminants of all basis of L/K which are
contained in OL. It is denoted by d(L/K).

Notation. The absolute discriminant of an order will be denoted by DK(O). The discriminant of
K is simply denoted by DK .

Proposition 2 ([4]). Consider O1 and O2 two orders of a number field K. Then the following is
true.

O1 < O2 ⇐⇒ ∃f ∈ Z, DK(O1) = DK(O2)f2.

Now let us consider part of the arithmetic of number fields and number fields extensions, by
considering their ideals.

Definition 3 (Relative norm of ideals). Let L/K be a number fields extension. The norm of an
ideal I of L relative to L/K, denoted by NL/K(I), is the fractional ideal of K generated by the norms
of elements of I relative to L/K. In mathematical terms, one has NL/K(I) = 〈NL/K(x) | x ∈ I〉OK

.

Proposition 3. Let M/L/K be a tower of number fields, and I be an ideal of M . Then NM/K =
NL/KNM/L, and d(M/K) = d(L/K)[M :L]NL/K(d(M/L)).

2.2. Splitting of an ideal in an extension.

Lemma 1 ([8]). Consider L/K an extension of number fields, p an ideal of K, and P an ideal of
L. Then P divides p in L if, and only if, P ∩K = p.

Definition 4. Given an extension of number fields L/K, p an ideal of K and P an ideal of L.
Then we say that P is above p if P | p.

Theorem 1 ([8]). Consider L/K an extension of number fields, p an ideal of K, and p =∏g
i=1 P

vPi
(p)

i its factorisation in L. Then the following propositions are true.

(1)
∑g
i=1 vPi(p)[OL

Pi
: OK

p ] = [L : K].

(2) For all i ∈ J1, gK, NL/K(Pi) = p
[OL
Pi

:OK
p ].

Definition 5 (Residual degree and ramification index). Consider L/K an extension of number
fields, p an ideal of K, and p =

∏g
i=1 P

vPi
(p)

i its factorisation in L. Moreover fix j ∈ J1, gK.

(1) The residual degree or inertial degree of Pj over p is the index [OL

Pj
: OK

p ]. It is denoted by
f(Pj |p).

(2) The exponent vPj (p) is called the ramification index of Pj over p, and is denoted by e(Pj |p).
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One can rewrite the formulae in Theorem 1 as [L : K] =
∑g
i=1 e(Pi|p)f(Pi|p) and NL/K(Pi) =

pf(Pi|p). Moreover the factorisation is even simpler if the extension is Galois, as shown by Propo-
sition 4.

Proposition 4 ([8]). Consider L/K an extension of number field which is Galois, and p a prime
ideal of K. Then the maps e(·|p) and f(·|p) are constants over the primes of L dividing p. If
e and f are the respective constant values and g the number of prime ideals of L above p, then
[L : K] = efg.

Definition 6 (Types of splitting [4]). Let L/K be an extension of number fields and p be a prime
ideal of OK . Let p =

∏g
i=1 P

e(Pi|p)
i the factorisation of p in L.

(1) The ideal p ramifies in L/K if there is i ∈ J1, rK with e(Pi|p) > 1.
(2) If g = 1 and f(P1|p) = 1, we say that p ramifies completely in L.
(3) We say that p is completely split or totally split (or splits completely) in L if for all i ∈ J1, gK,

e(Pi|p) = f(Pi|p) = 1.
(4) If g = 1 and e(P1|p) = 1 then p is said to be inert in L.

Now let us state how the discriminant ideal of an extension L/K is related to the splitting of
prime ideals.

Theorem 2 ([3]). Given L/K an extension of number fields, a prime ideal p of K ramifies in L

if, and only if, it divides the relative discriminant ideal d(L/K).

Another important object, related to the discriminant is the different.

Definition 7 (Different). Consider an extension of number fields L/K. The relative different
D(L/K) is the ideal defined as follows,

D(L/K)−1 = {x ∈ L | TrL/K(xOL) ⊂ OK}.

As it is the case for norm, the different is transitive.

Proposition 5. Let M/L/K be a tower of number field extensions. Then D(M/K) = D(M/L)D(L/K).

The different is useful because it can be used to compute the discriminant.

Proposition 6 ([3]). Let L/K be an extension of number fields. Then the prime ideals of L dividing
D(L/K) are exactly the ones ramified in L/K. Moreover NL/K(D(L/K)) = d(L/K).

Proposition 7 ([7]). Consider L/K an extension of number fields, p an ideal of K, P and ideal
of L above p and p the characteristic of OK/(p). Then if p and e(P | p) are coprime, one has
vP(D(L/K)) = e(P | p)− 1.
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Definition 8. Consider a Galois extension L/K, P a prime ideal of L and p = P ∩K. Then the
decomposition group of P, denoted by D(P | p), is {σ ∈ Gal(L/K) | σ(P) = P}.

Proposition 8. Consider a Galois extension L/K, P a prime ideal of L. Then one has |D(P |
p)| = e(P | P ∩K)f(P | P ∩K).

2.3. Kummer extensions.

Notation. Given p a prime integer, we will denote by τp a generator of the Galois group of the
cyclotomic field Q(ζp).

Definition 9. A number field extension L/K is called a Kummer extension of exponent n if ζn ∈ K
and there are elements m1, . . . ,mr of K such that L = K( n

√
m1, . . . , n

√
mr).

Remark 1. In our work we relax this definition to allow ζn to not belong to L. We will also only
consider extensions of prime exponents p. First let us recall some facts and fix some notations
about the structure of Kummer extensions, and Hom(L/K,Ω). We refer the reader interested in a
more general and in-depth presentation of Kummer extensions to [3].

2.3.1. Simple extensions:

Definition 10. Consider L/K an extension of number fields, and prime number p. Then L/K

is called a simple Kummer extension of exponent p if there is m ∈ K such that p
√
m 6∈ K and

L = K( p
√
m).

Proposition 9. Consider L = K( p
√
m) a simple Kummer extension. Then the following properties

are true.

(1) L/K is a field extension of degree p.
(2) The elements of the set Hom(L/K,Ω) can be fully described by their action on p

√
m as

σ(i) : p
√
m 7−→ ζip

p
√
m, i ∈ J0, p− 1K.

(3) If ζp ∈ L then L/K is Galois. If ζp 6∈ K then the Galois closure of L/K is L̃ = L(ζp) and if
p is odd then Gal(L̃/K) = 〈τp〉n 〈σ〉 where σ is the extension of the embedding σ(1) which
acts trivially on ζp. If p is 2 then L is Galois.

Proposition 10. Let L = K( p
√
m) be a simple Kummer extension of exponent p, and n ∈ K. Then

L = K( p
√
n) if, and only if, there is a ∈ K such that n = map.

2.3.2. General extensions: The properties described for simple Kummer extensions can be extended
to general extensions.
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Proposition 11. Consider L = K( p
√
m1, . . . , p

√
mr) a Kummer extension. Then the following

assertions are equivalent.

(1) [L : K] = pr;
(2) (∀α ∈ Zr), mα1

1 mα2
2 · · ·mαr

r ∈ (K∗)p ⇐⇒ ∀i ∈ J1, rK, p | αi.

Definition 11. Given a prime p, an integer r ∈ N∗ and a sequence m of rational numbers
m1, . . . ,mr we will say that m is p-reduced for K if it satisfies the condition of Proposition 11.

Proposition 12. Consider p a prime number and L = K( p
√
m1, . . . , p

√
mr) a Kummer extension of

exponent p. Then L can be described as K( p
√
n1, . . . , p

√
ns) with n = (n1, . . . , ns) being a p-reduced

sequence.

From now on all Kummer extensions are considered to be generated by reduced sequences.

Notation. Consider m = (m1, . . . ,mr) ∈ Kr such that L = K( p
√
m1, . . . , p

√
mr) is an extension of

degree pr. For i ∈ J1, rK the field Lmi = K( p
√
mi) is a simple Kummer extension of K of exponent

p. Given any j ∈ J0, p − 1K, write σ(j)
mi the embeddings of Lmi

following the notation described
previously and σjmi

the corresponding element of Gal(L̃mi
/K).

Proposition 13. Consider L/K which satisfies the equivalent assertions of Proposition 11. Then
the following assertions are true.

(1) L/K has exactly pr−1
2 simple subextensions of degree p over K and they are of the form

Lα := L(
∏r
i=1

p
√
mi

αi) with α ∈ J0, p− 1Kr. Moreover Lα and Lβ are equal if, and only if,
there is an integer λ such that α = λ · β (mod p).

(2) Any subextension of L/K can be written as K( p
√
M1, . . . ,

p
√
Mr′) where 0 6 r′ 6 r and

Mj =
∏r
i=1

p
√
mi

α
(j)
i with α(j) ∈ J0, p− 1Kr for any j ∈ J1, r′K.

The Galois group of L̃/Q can also be fully described with the ones of the subfields Lmi
.

Proposition 14. Consider L/K which satisfies the equivalent assertions of Proposition 11. Then
the following assertions are true.

• Hom(L/K,Ω) ∼=
⊗r

i=1 Hom(Lmi/K,Ω) = {⊗ri=1σ
(βi)
mi | β ∈ J0, p− 1Kr}.

• L(ζp)/K(ζp) is abelian with Galois group isomorphic to 〈σm1〉 × · · · × 〈σmr
〉 ; if ζp ∈ K

then the previous extension is L/K.
• If ζp 6∈ K then L(ζp)/K is Galois with Galois group isomorphic to 〈τp〉n〈σm1〉×· · ·×〈σmr

〉.

Notation. Given a tuple β we will write σ(β) the embedding ⊗ri=1σ
(βi)
mi and σβ its extension in

Gal(K̃/Q). Given a subset S of Hom(K,Ω) we will denote by S̃ the subset of Gal(K̃/Q) whose
elements are the direct extension of elements of S.
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3. Extensions with one exponent

First we will study fields of the form K = Q( p
√
m1, . . . , p

√
mr).

Notation. Given a tuple m = (m1, . . . ,mr), we will write P(m) the set {p ∈ P, p |
∏r
i=1 mi}.

Givenm ∈ Q and an integer n we will denote by PF (m,n) the rational number
∏
p∈P m

vp(m) (mod n).
Similarly if m ∈ Qr then PF (m,n) = (PF (m1, n), . . . , PF (mr, n)). We extend PF (·, p) to elements
in Q1/p and sequences in Q1/p with PF (x, p) = PF (xp, p)1/p. Finally, given a tuple m ∈ Qr and
α ∈ Zr, we will write mα to designate the product

∏
i∈J1,rKm

αi
i .

3.1. A canonical Q−basis of K. One can define two fairly natural bases of K. One has already
been mentioned earlier.

Definition 12. Let K = Q( p
√
m1, . . . , p

√
mr) be a real Kummer field. Then the naive basis of K

relative to m is (
∏r
i=1 m

αi/p
i )α∈J0,p−1Kr . It will be denoted by B(p,m). The power-free basis of K

relative to m is PF (B(p,m), p). It will be denoted by IB(p,m).

Remark 2. Both bases were considered in several work on Kummer fields such as [9, 1, 10].

The first property that can be proven is that IB(p,m) is somehow independent of the choice of
m.

Lemma 2. Let K be a real Kummer field. Consider m and n two sequences defining K. Then
IB(p,m) and IB(p, n) are equal as sets.

Proof. Consider q ∈ P(m). First let us prove that if q 6∈ P(n) then vq(mα) ≡ 0 (mod p) for all
α ∈ J0, p− 1Kr. Let us fix such α. Since m and n define the same field K, one can use the simple
subfields and conclude that Q( p

√
mα) = Q( p

√
nβ) for some β. This is equivalent to mα = njβap for

some j ∈ J0, p− 1K and a ∈ Q. Then we obtain the equality

(1) vq(mα) =
r∑
i=1

αivq(mi) =
r∑
i=1

jβivq(ni) + pvq(a)

and taking it modulo p gives
r∑
i=1

αivq(mi) = 0 (mod p), since vq(ni) = 0, for all i ∈ J1, rK. This

is true for all α. Thus we obtain that none of q ∈ P(m) ∪ P(n) \ (P(m) ∩ P(n)) can be found in
IB(p,m) nor IB(p,m).

Now let us consider only q ∈ P(m) ∩ P(n). Let α ∈ Frp \ {0}. Then for all q ∈ P(m) ∩ P(n)
and all j ∈ J1, p − 1K, (vq(mjα)) = jvq(mα) (mod p). Following Equation (1), if β is such that
nβ defines the same simple field as mα, then (vq(mα))q = j(vq(nβ))q for some j ∈ J1, p − 1K.
Therefore the sets {(vq(mjα))q | j ∈ J1, p − 1K} and {(vq(njβ))q | j ∈ J1, p − 1K} are identical.
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Finally, if α and α′ define distinct simple subfields of K then they are not colinear in Frp, thus
{jα | j ∈ J1, p− 1K} ∩ {jα′ | j ∈ J1, p− 1K} = ∅. �

The equality given by Lemma 2 shows that the set of power-free basis of a real Kummer field is
a canonical choice of a Q-basis of K.

Definition 13. Let K be a real Kummer field with one exponent p defined by a sequence m. The
power-free basis of K is the unordered sequence set IB(p,m). It will be denoted IB(K).

Now let us prove another simple result on defining sequences, that will be used later.

Lemma 3. Let m ∈ Qr be a sequence defining a real Kummer extension K with one exponent
p, and i0 ∈ J1, rK. Consider q ∈ P(m) such that ∃i ∈ J1, rK, vq(mi) 6≡ 0 (mod p). Then there is
m′ ∈ Qr defining K such that

∀i ∈ J1, rK, q | m′i ⇐⇒ i = i0.

Proof. One can always assume vq(mi0) 6≡ 0 (mod 0), modulo a permutation on m. Then fix
m′i0 = PF (mi0 , p), and m′i = PF (mi, p) for all i ∈ J1, rK such that q - mi. Finally consider
i ∈ J1, rK such that q | mi. Let ei > 0 such that ei ≡ −vq(mi)vq(mi0)−1 (mod p). Then fix
m′i = PF (mim

ei
i0
, p). �

We will now determine the discriminant of IB(K).

Theorem 3. Let K = Q( p
√
m1, . . . , p

√
mr) be a real Kummer field, and q a prime integer. Moreover

write b = δ(p∈P(m)). Then the discriminant DK(IB(K)) satisfies the following:

(2) vq(DK(IB(K))) =

p
r−1(p− 1), if q ∈ P(m) \ {p},

pr−1(p− 1)× b+ rpr, if q = p.

Proof. Given a sequence m such that K = Q( p
√
m1, . . . , p

√
mr), let us denote by Mm the matrix

(σ(β)(IB(p,m)j))β,j , where as usual σ(β) : p
√
mi 7−→ ζβi

p
p
√
mi. Moreover we will write MB the

matrix [σ(β)(bj)]β,j for any Q−basis B = (b1, . . . , bpr ).

First remark that DK(IB(K)) = DK(IB(p,m)) for any sequence m defining K. Indeed,
considering different sequences amounts to applying permutations on the rows and columns of
a fixed matrix Mm. Moreover, if m′ = (m1, . . . ,mr−1) then B(p,m) = B(mr) ⊗ B(m′) and
IB(p,m) = PF (IB(p,mr)⊗ IB(p,m′), p). Let us denote by B the basis IB(p,mr)⊗ IB(p,m′).
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Now let us start with the proof per se. Let m be a defining sequence of K. One can assume it is
p-reduced and composed of integers. Let q ∈ P(m) \ {p}. Following Lemma 2 and Lemma 3, one
can also assume that q | mr and for all i < r, q - mi. We mentioned that IB(p,m) = PF (IB(mr)⊗
IB(m′), p). The action of PF amounts to dividing elements of the basis by an integer. Let us denote
by c1, . . . , cpr these integers. Since q divides only mr and IB(mr) is already reduced, none of said
coefficients is divided by q. Now remark that Mm = MIB(p,m) = [C1(MB)

c1
| . . . |Cpr (MB)

cpr
], where

Cj(MB) is the j-th column of MB. Therefore we have detMm = detMB

c1c2...cpr
. Consequently we obtain

vq(detMm) = vq(detMB), and we can consider the discriminant of the basis B. Now let us denote
by b1, . . . , bp the elements of IB(mr). Then we have B = [IB(m′)b1|IB(m′)b2| . . . |IB(m′)bp] and
for β ∈ J0, p− 1Kr, σ(β) = σ

(β1)
1 ⊗ · · · ⊗ σ(βr)

r acts on IB(m′)bi as

σ
(β1)
1 ⊗ · · · ⊗ σ(βr−1)

r−1 (IB(m′))σ(βr)
r (bi).

Thus we obtain that MB is equal to

b1MIB(m′) b2MIB(m′) . . . bpMIB(m′)

σ
(1)
r (b1)MIB(m′) σ

(1)
r (b2)MIB(m′) . . . σ

(1)
r (bp)MIB(m′)

...
...

...

σ
(p−1)
r (b1)MIB(m′) σ

(p−1)
r (b2)MIB(m′) . . . σ

(p−1)
r (bp)MIB(m′)


,

which is Mmr
⊗Mm′ . Therefore, we have detMB = detMpr−1

mr
detMp

m′ , and

vq(DK(IB(K))) = pr−1vq(detM2
mr

) + pvq(detM2
m′).

Westlund showed that vq(detM2
mr

) = p − 1 and since q - mi for all i ∈ J1, r − 1K one has
vq(detM2

m′) = 0, by induction and remarking that vq(detM ′m) = vq(detMm1 ⊗ · · · ⊗Mmr−1) [10].
Finally we obtain vq(DK(IB(K))) = (p− 1)pr−1.

Now consider q = p. As before we have vp(detM2
m) = vp(detM2

m1
⊗ · · · ⊗ detM2

mr
), and

detM2
1 ⊗ detM2

r =
∏r
i=1(detM2

mi
)pr−1 . If p 6∈ P(m) then vp(detM2

mi
) = p for all i ∈ J1, rK [10],

so vp(DK(IB(K))) =
∑r
i=1 p

r−1vp(detM2
mi

) = rpr. If p ∈ P(m) then vp(detM2
mi

) = p for all i ∈
J1, r−1K and vp(detM2

mr
) = 2p−1 [10]. Therefore we have vp(DK(IB(K))) =

∑r−1
i=1 p

r−1vp(detM2
i )+

pr−1(2p− 1) = rpr + pr−1(p− 1). �

We established that IB(K) is a fairly canonical basis for a real Kummer field K, and determined
its discriminant. We will show that the order it generates contains [K : Q]OK . For this we will
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study the discriminant of K. Indeed recall that we have the following result. Given O1 and O2 two
orders of a number field, then O1 < O2 ⇐⇒ DK(O2) | DK(O1).

Lemma 4. Let K ∈ Q( p
√
m1, . . . , p

√
mr) be a real Kummer extension defined by a p-reduced sequence

m. Then q ramifies in K/Q if, and only if, q ∈ P(m) ∪ {p}.

Proof. We know that K = ⊗ri=1Q( p
√
mi), and given two linearly disjoints fields K1 and K2,

the discriminant of their compositum DK1K2 divides D[K2:Q]
K1

D
[K1:Q]
K2

. Therefore we have DK |∏r
i=1 D(Q( p

√
mi))p

r−1 . Following Westlund [10], q | D(Q( p
√
mi)) if, and only if, q ∈ P(mi)∪{p}. �

In order to study the q−valuation of DK , we will study the splitting of q in K/Q. A similar
approach has been done over multiquadratic fields [9] and bicubic fields [2]. We will use some results
over dihedral groups, which are stated and proved in Appendix B.

3.1.1. Splitting of primes in K. To study the splitting of primes we will use the different of the
extensions. Westlund established the splitting for simple fields.

Proposition 15 (Westlund [10]). Let K = Q( p
√
m) be a simple Kummer extension and q a prime

integer. Then one has the following possibilities:

(1) q 6= p and q | m =⇒ (q) = qp;
(2) p | m =⇒ (p) = pp;
(3) p - m and mp−1 ≡ 1 mod p2 =⇒ (p) = pp−1q;
(4) p - m and mp−1 6≡ 1 mod p2 =⇒ (p) = pp.

One can see that for simple Kummer field, the splitting of p depends on a condition satisfied
by m: whether mp−1 ≡ 1 mod p or not. The splitting of primes in a general number field K will
then be influenced by their splitting in the simple subfields of K. We can identify different types
of Kummer fields.

Lemma 5. Let K = Q( p
√
m1, p
√
m2) be a Kummer extension of degree p2 such that mi 6≡ 0 mod p

and mi 6≡ 1 mod p2, for i ∈ {1, 2}. Then one can find m′ a sequence defining K such that m′2 ≡
1 mod p2.

Proof. For i ∈ {1, 2}, since mi 6≡ 0 mod p then mi can be seen as an element of G = ( Z
p2Z )×.

Moreover the order of mi in G is p or p(p − 1), and we want to prove that we can find a defining
sequence m′ such that o(m′2) | p− 1. The group G is isomorphic to Z

(p−1)Z ×
Z
pZ . Let us denote by

φ = (φ1, φ2) this isomorphism. Then φ(mi) = (φ1(mi), φ2(m2)) with φ2(mi) 6= 0. Let m′ defined
by m′1 = m1 and m′2 = m1m

k
2 with k ∈ J1, p − 1K such that kφ2(m2) = −φ2(m1). Then one has

φ2(m′2) = 0 so o(m′2) | p− 1 in G. Clearly m′ also defines K. �
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Using Lemma 5, we obtain only a few possibilities for general real Kummer extensions.

Proposition 16. Let K be a real Kummer extension of degree pr for an integer r > 1. Then one
can find a sequence m = (m1, . . . ,mr) defining K and satisfying one of the following properties.

(1) p 6∈ P(m) and ∀i ∈ J1, rK,mp−1
i ≡ 1 mod p2.

(2) p 6∈ P(m), mp−1
1 6≡ 1 mod p2 and ∀i ∈ J2, rK,mp−1

i ≡ 1 mod p2.
(3) p | m1 and ∀i ∈ J2, rK,mp−1

i ≡ 1 mod p2.
(4) p | m1, mp−1

2 6≡ 1 mod p2 and ∀i ∈ J3, rK,mp−1
i ≡ 1 mod p2.

Proof. This is just an application of Lemma 3 and Lemma 5. �

Now we can express how primes split in K depending on which type of Kummer field it is. How-
ever remark than only the splitting of p will be influenced by the types identified in Proposition 16.
Therefore, let us start by q 6= p.

Proposition 17. Consider K = Q( p
√
m1, . . . , p

√
mr) a real Kummer extension with one exponent,

and q ∈ P(m). Then q splits in K as Qp
1 . . .Q

p
s for s > 1, and vq(DK) = (p− 1)pr−1.

Proof. By Lemma 3, one can suppose that ∀i ∈ J2, rK, q | mi ⇐⇒ i = 1. Let us fix K1 = Q( p
√
m1)

and K2 = Q( p
√
m2, . . . , p

√
mr). By [10] the prime q ramifies in K1 as qp. Moreover q is unramified

in K2 so qOK2 = q1 · · · qs with s > 1. By multiplicativity of the ramification index, for all i ∈ J1, sK,
the ideal qi ramifies completely in K as Qp

i . Therefore qOK = (Q1 · · ·Qs)p.

Q
(q)

K1qp

K2 q1 · · · qs

K (Q1 · · ·Qs)p

Now recall that the different of K/Q satisfies D(K/Q) =
∏

Q QsQ where the product is over the
prime ideals of OK which are ramified over Q. Thus the part of D(K/Q) above q is

∏s
i=1 Q

si
i for

some integers si. For all i ∈ J1, sK we know that e(Qi|q) = p and q are coprime. Therefore si is
equal to e(Qi|q)− 1 = p− 1. Thus one has for the discriminant

vq(DK) = vq(NK/Q(D(K/Q))) = vq(NK2/Q(NK/K2(
s∏
i=1

qp−1
i ))).
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Finally since NK/K2(Qi) = qi we obtain

vq(DK) = vq(NK2/Q(
s∏
i=1

qp−1
i )) = vq(NK2/Q(qOK2)p−1) = (p− 1)pr−1.

�

With Proposition 17 one is able to prove the result we were looking for.

Theorem 4. Let K = Q( p
√
m1, . . . , p

√
mr) be a real Kummer extension, and denote by O the order

Z[IB(K)]. Then the following propositions are true:

• ∀q ∈ P(m) \ {p}, O is q−maximal;
• [K : Q]OK < O.

Proof. Proposition 17 and Theorem 3 show that vq(O) = vq(OK) for all q ∈ P(m) \ {p}, so O is
indeed q−maximal. Concerning p one has

vp(DK([K : Q]OK)) > 2[K : Q]vq([K : Q]) = 2rpr > rpr + pr−1(p− 1)

so the second property is also true. �

3.2. Splitting of the exponent. Despite the fact that Theorem 4 shows that IB(K) is a basis
satisfying the properties we were looking for, we can still study further the splitting of p in K in
each of the four types of real Kummer fields established in Proposition 16. It allows us to have a
finer knowledge of DK . First let us establish a result concerning extensions of number fields such
that the Galois group of their Galois closure is dihedral.

Lemma 6. Let L/K be an extension of number fields. Suppose additionally that Gal(L̃/K) is
isomorphic to 〈τ〉n 〈σ〉, with 〈τ〉 ∼= Z

(p−1)Z and 〈σ〉 ∼= Z
pZ for some prime integer p. Any prime ideal

p of OK satisfies
pOL̃ = (P1 . . .Pp)p−1 =⇒ pOL = p1p

p−1
2 ,

where each Pi is a prime ideal of L̃ and each pi is a prime ideal of L.

It is similar to part of the proof for Proposition 10.1.26 of Cohen’s book [3]. In fact several facts
and their proofs that we will establish are generalisations of this Proposition.

Proof. Let G = Gal(L̃/K). By hypothesis we are in the following situation :
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K

p

K̃

L

L̃ (P1 · · ·Pp)p−1

p− 1

p

σ p

p− 1
τ

The group G acts transitively on the Pi and by conjugation on the inertia groups I(Pi | p) for
i ∈ J1, pK. Clearly one has |I(Pi/p)| = p − 1. By Lemma 9 there are p distinct subgroups of G of
order p− 1. Moreover they are of the form 〈τσb〉 with b ∈ J0, p− 1K. Therefore the action of G on
the set of such subgroups is transitive. Thus there is a unique i0 ∈ J1, pK such that I(Pi0 | p) = 〈τ〉,
and I(Pi0 | Pi0 ∩ OL) = I(Pi0 | p) ∩ Gal(L̃/L) = 〈τ〉. Therefore e(Pi0 | Pi0 ∩ OL) = p − 1
so by multiplicativity e(Pi0 ∩ OL | p) = 1. Now consider i 6= i0. Then I(Pi | p) = 〈τσb〉 for
some b ∈ J1, p − 1K, and I(Pi | Pi0 ∩ OL) = I(Pi0 | p) ∩ Gal(L̃/L) = 〈1〉. Therefore again by
multiplicativity of the ramification index, e(Pi ∩ OL | p) = p− 1. �

Theorem 5. Consider K = Q( p
√
m1, . . . , p

√
mr) a real Kummer extension with exponent p. Then

depending on the type of field as described in Proposition 16 the splitting of p in K and vp(DK) are
as follows :

(1) (p) = p(p1 . . . ps)p−1 for s = pr−1
p−1 , and vp(DK) = pr−1

p−1 (p− 2);
(2) (p) = pp(p1 . . . ps)p(p−1) for s = pr−1−1

p−1 , and vp(DK) = pr + pr−1−1
p−1 (p− 2);

(3) (p) = pp(p1 . . . ps)p(p−1) for s = pr−1−1
p−1 , and vp(DK) = pr−1(2p− 1) + pr−1−1

p−1 (p− 2).

Remark 3. We were not able to prove similar results for the fourth type of field for a general
exponent p. However we did so for p = 3 in [5].

Proof. We will prove the results one type of fields after another.

Fields of the first type. We will prove the factorisation by induction. For r = 1, K is a simple
Kummer extension. Then the splitting is correct, following Westlund [10]. Now consider r > 1 and
assume the result is true for r. Let K = Q( p

√
m1, . . . , p

√
mr+1) a real Kummer field such that for all

i ∈ J1, r + 1K,mp−1
i ≡ 1 mod p2. Let us fix K1 = Q( p

√
m1, . . . , p

√
mr) and K2 = Q( p

√
mr+1). If one
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denotes pr−1
p−1 by s, one has the following decompositions by using the induction hypothesis, where

the numbers are the dimensions of the respective extensions.

Q
(p)

K1ppp−1
1 · · · pp−1

s

K2 q1q
p−1
2

KK̃1

K̃2

K̃

pr
p

p pr
p− 1

p− 1

p
pr

p

Moreover p is totally ramified as ap−1 in k = Q(ζp). First we consider the splitting of p in the Galois
closure K̃1 and K̃2. We focus on K̃2, and the situation in K̃1 is similar. First remark that K̃2/Q is
Galois with dimension [K̃2 : Q] = p(p − 1) so the decomposition of p satisfies efg = p(p − 1) with
the functions e(·|p) and f(·|p) being constant – equal to e and f respectively – over prime ideals
q̃ of K̃2 such that q̃ | (p). Considering the factorisation pOK2 = q1q

p−1
2 we obtain p − 1 | e(q̃|p).

Moreover for the decomposition of qi in K̃2, since K̃2/K2 is Galois, we have eifigi = p − 1. Since
p − 1 | e and e = e1 we have e1 = p − 1, f1 = 1 and g1 = 1. Therefore q1OK̃2

= q̃p−1. Moreover
f = f1 = f2 and e = (p − 1)e2 so e2 = 1 and g2 = p − 1. Thus q2 splits completely in K̃2 as
q̃1q̃2 . . . q̃p−1. Finally we obtain the factorisation (p) = q̃p−1q̃1

p−1
q̃2
p−1

. . . q̃p−1
p−1 in K̃2. Similarly

we have pO
K̃1

= p̃p−1 and pi splits completely in K̃1 for all i ∈ J1, sK. Therefore the factorisations
of (p) in K̃1 and K̃2 are as follows:

(p) =

q̃p−1(q̃1q̃2 . . . q̃p−1)p−1, in K̃2/Q,

p̃p−1(p̃1p̃2 . . . p̃s)p−1, in K̃1/Q.

Consequently the splitting of a in the same two fields is

(a) =

q̃q̃1q̃2 . . . q̃p−1, in K̃2/Q,

p̃p̃1p̃2 . . . p̃s, in K̃1/Q.

Remark that the residual degree is 1 everywhere. We will now consider the decomposition of p in K̃.
We will in fact look at the decomposition of a. Consider P̃ a prime ideal of K̃ above p. Remark it is
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also above a in K̃/k. For i ∈ {1, 2}, denote by Di the decomposition group D(P̃ | P̃∩OK̃i
). Let us

write G = Gal(K̃/k), G1 = Gal(K̃/K̃1) and G2 = Gal(K̃/K̃2). Each Di is a subgroup of Gi < G.
Moreover recall that G1 ∼= 〈σr+1〉, G2 ∼= 〈σ1〉 × · · · × 〈σr〉 and G ∼= G1 × G2. Remark also that
|D1| = |D2|. Since |G1| = p then one has D1 = 〈1〉 or D1 = G1. Let us show that D1 = 〈1〉. Suppose
that we have D1 = 〈σr+1〉. Then |D2| = p so there is σ ∈ G2 such that o(σ) = p and D2 = 〈σ〉. Now,
since for i ∈ {1, 2} we have Di = D(P̃ | a) ∩ G, we obtain 〈σr+1〉 < D(P̃ | a) and 〈σ〉 < D(P̃ | a).
Therefore, 〈σr+1〉×〈σ〉 < D(P̃ | a) which implies that ef = |D(P̃ | a)| > p2. However if we consider
the splitting of a in K̃1 and K̃, we have e1 = f1 = 1 in K̃1/k and [K̃ : K̃1] = p, so ef 6 p in K̃/k.
Thus we have an absurdity so D1 is trivial as announced, D1 = D2 = 〈1〉 and a splits completely in
K̃/k. Finally p splits in K̃/K1 as

(P̃P̃ . . . P̃p)p−1,

and
Gal(K̃/K1) ∼= 〈τp〉n 〈σr+1〉 ∼=

Z
(p− 1)Z n

Z
pZ
.

We see that p and K̃/K1 satisfy the hypothesis of Lemma 6, so p splits in K/K1 as

P̃P̃p−1
1 .

Moreover, for each i ∈ J1, sK, the ideal pi splits completely in K̃ so it splits completely in K. We
obtain the final decomposition for p in K/Q as

(p) = P(P1 . . .Pt)p−1

with t = 1 + sp = 1 + pr−1
p−1 p = pr+1−1

p−1 . Thus the decomposition is correct for r + 1, which ends
the proof by induction. Let us now fix K = Q( p

√
m1, . . . , p

√
mr) and look at the p-valuation of DK .

Remark that gcd(1, p) = gcd(p − 1, p) = 1, and that for any prime ideal Q of K above p we have
e(Q | p) = 1 or e(Q | p) = p− 1. Therefore the part of D(K/Q) above p is

s∏
i=1

Pp−2
i

where s = pr−1
p−1 . Since the inertial degree f(Pi | p) = 1, we have NK/Q(Pi) = p for all i ∈ J1, sK.

Thus we obtain

vp(DK) = vp
(
NK/Q(D(K/Q))

)
= vp

(
s∏
i=1

NK/Q(Pi)p−2

)
= (p− 2)s,

which is the required value.
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Fields of the second type: Let us now consider a fieldK = Q( p
√
m1, . . . , p

√
mr) such that p /∈ P(m),

mp−1
1 6≡ 1 mod p2 and ∀i ∈ J2, rK,mp−1

i ≡ 1 mod p2. The proof is simpler in this case. Fix
K1 = Q( p

√
m1) and K2 = Q( p

√
m2, . . . , p

√
mr). Remark that K2 is a real Kummer field of the first

type. Therefore, following Westlund [10] and the previous result, for s = pr−1−1
p−1 we obtain the

following situation.

Q
(p)

K1pp

K2 qqp−1
1 · · · qp−1

s

K

p
pr−1

pr−1
p

By multiplicativity of the ramification index, for any P above p in K, one has p | e(P | p). Thus
the splitting of p in K is as follows:

(p) = Pp(P1 . . .Ps)p(p−1).

Now let us find vp(DK). We have

DK = D
[K:K1]
K1

NK1/Q(d(K/K1)) = D
[K:K1]
K1

NK1/Q(NK/K1(D(K/K1)))

and the part of D(K/K1) over p is (P1 · · ·Ps)p−2. Indeed p is coprime to 1 and p − 1. We know
by [10] that vp(DK1) = p so

vp(DK) = [K : K1]p+ vp
(
NK/Q((P1 · · ·Ps))p−2) .

Since the inertial degree is trivial everywhere, NK/Q(Pi) = p for all i ∈ J1, sK. Finally we obtain

vp(DK) = pr + vp(ps(p−2)) = pr + s(p− 2).

Fields of the third type: Let us now consider a field K = Q( p
√
m1, . . . , p

√
mr) such that p ∈ P,

and ∀i ∈ J2, rK,mp−1
i ≡ 1 mod p2. Again fix K1 = Q( p

√
m1) and K2 = Q( p

√
m2, . . . , p

√
mr). Remark

that K2 is a real Kummer field of the first type. Therefore, following Westlund [10] and the previous
result, for s = pr−1−1

p−1 we obtain the decomposition as the previous case. Therefore the proof is
identical. The only thing which changes is vp(DK1). It is equal to 2p− 1 in this case [10]. �
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4. Extensions with two exponents

We were not able to prove similar results for general Kummer extensions with two exponents,
but only on a restricted family of them.

Definition 14. Let L/K be a real Kummer extension with two exponents p, q. We will call a
power-free basis of L/K and denote by IB(L/K) the basis IB(M)⊗ IB(K).

Proposition 18. Let L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) be a real Kummer

extension with two exponents. Let a ∈ P(m) ∪ P(n). Write δm = δ(a∈P(m)) and δn = δ(a∈P(n)). If
a 6∈ {p, q}, then one has

va(DL(IB(L/K))) = [L : Q]
(
p− 1
p

δm + q − 1
q

δn

)
.

If a ∈ {p, q} then one has

va(DL(IB(L/K))) =


[L : Q]

(
r + p− 1

p
δm + q − 1

q
δn

)
if a = p,

[L : Q]
(
s+ p− 1

p
δm + q − 1

q
δn

)
if a = q.

Proof. With the notations used during the proof of Theorem 3, remark that MIB(L/K) = MIB(L′)⊗
MIB(K) where L′ = Q( p

√
m1, . . . , p

√
mr). Then apply va to detM2

IB(L/K) in the different cases. �

Remember that to prove Theorem 4, one only has to study the splitting of primes different
from the exponent p, as the p-valuation of the discriminant of the order generated by IB(K) is
automatically smaller than the one of the discriminant of [K : Q]OK . We will see that it is not as
simple over extensions with two exponents.

Proposition 19. Let L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) be a real Kummer

extension with two exponents. Let a ∈ P(m) ∪ P(n) \ {p, q}. Then the splitting of a in L/Q and
va(DL) satisfy the following:

(1) a ∈ P(m) \ P(n) =⇒ ∃t > 1, (a) = (a1 . . . at)p and va(DL) = [L : Q]p−1
p ;

(2) a ∈ P(n) \ P(m) =⇒ ∃t > 1, (a) = (a1 . . . at)p and va(DL) = [L : Q] q−1
q ;

(3) a ∈ P(m) ∩ P(n) =⇒ ∃t > 1, (a) = (a1 . . . at)pq and va(DL) = [L : Q]pq−1
pq .

Proof. The proof is quite similar to the one of Proposition 17. Using Lemma 3, one can assume
that there is at most one i0 ∈ J1, rK such that a | mi0 and at most one j0 ∈ J1, sK such that a | nj0 .
Assume also that i0 and j0 are equal to 1 when they exist. Fix l the field equal to the compositum
of the simple subfields of L′ and K generated by mi0 and ni0 . Depending on the cases, l is equal
to Q( p

√
m1), Q( q

√
n1) or Q( p

√
m1)Q( q

√
n1). Now let k be the field such that lk = L. Now it is easy
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to see that a completely ramifies in l and does not ramify in k. Thus there is t > 1 such that the
splitting of a is as follows.

Q
(a)

lp[l:Q]
k p1 · · · pt

L (a1 · · · at)[l:Q]

Since a 6∈ {p, q}, gcd(a, [l : Q]) = 1, therefore the part of the different D(L/Q) above a is equal to
t∏
i=1

a[l:Q]−1.

One can conclude by using the same arguments than in the proof of Proposition 17. �

Remark 4. One can remark from Proposition 18 and Proposition 19 that if a ∈ P(m)∩P(n)\{p, q}
then va(DK) > va(Z[IB(L)]). Therefore if P(m) ∩ P(n) \ {p, q} 6= ∅ then the counterpart of
Theorem 4 for Kummer extension with two exponents does not hold.

Theorem 6. Let L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) be a real Kummer extension

with two exponents. Denote by O the order Z[IB(L)], and A = (P(m) ∩ P(n)) \ {p, q} and PA =∏
a∈A a. Then the following properties are true.

• ∀a ∈ P(m) ∪ P(n) \ (A ∪ {p, q}), O is a−maximal.
• PA[L : Q]OL < O.

Proof. Let a ∈ P(m)∪P(n) \ (A ∪ {p, q}). From Proposition 18 and Proposition 19, va(DL(O)) =
va(DL(OL)) so O is indeed a−maximal. Consider a ∈ A. Then we have va(DL(O)) = [L :
Q]
(
p−1
p + q−1

q

)
, and

va (DL(PA[L : Q]OL)) = va(P 2[L:Q]
A DL) = 2[L : Q] + va(DL).

Since va(DL) = [L : Q]pq−1
pq , we obtain

va (DL(PA[L : Q]OL)) = [L : Q](2pq + pq − 1
pq

) > va(DL(O)).
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Now consider a ∈ {p, q}. Since the situation is the same for p or q, we can choose a = p for example.
First assume that p 6∈ P(m)∪P(n). Then again from Proposition 18 we have vp(DL(O)) 6 r[L : Q].
Moreover since vp([L : Q]) = r we get

vp (DL(PA[L : Q]OL)) > 2r[L : Q] > r[L : Q].

Now let us assume that p ∈ P(m) ∪ P(n). Then we have

vp(DL(O)) = [L : Q]
(
r + p− 1

p
+ q − 1

q

)
6 [L : Q](r + 2).

Since p ∈ P(m)∪P(n), there is a subfield l of L of the form Q( p
√∏

imi) (resp. Q( q
√∏

i ni)), such
that p | m (resp. p | n). Consequently, p ramifies completely in l and we know that vp(Dl) = 2p− 1
(resp. vp(Dl) = p). Recall that DL = D

[L:l]
l Nl/Q(d(L/l)) > D[L:l]

l . Thus we obtain

vp (DL(PA[L : Q]OL)) > 2r[L : Q] + [L : Q] > [L : Q](r + 2).

�
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Appendix A: Proofs of some result on dihedral groups

Here we consider a prime p, t a generator of the multiplicative group F∗p and the semi-direct
product G ∼= 〈τ, σ | τp−1 = σp = 1, τστ−1 = σt〉. Recall that for any u ∈ 〈σ〉 and any a ∈ J0, p− 1K

one has τauτ−a = ut
a so any element of G can be written in the form τaσb or σcτd for some a, b, c, d.

Remark further that if g =
∏
i τ
aiσbi ∈ G then the corresponding a and d are equal to

∑
i ai.

Lemma 7. The subgroups of G are of the form 〈τa, σ〉 with a ∈ J0, p − 2K or of the form 〈τaσb〉
with a ∈ J1, p− 2K and b ∈ J0, p− 1K

Proof. Consider a subgroup H = 〈g1, . . . , gr〉 = 〈τa1σb1 , . . . , τarσbr 〉 with (ai, bi) ∈ J0, p − 2K ×
J0, p − 1K. First assume τ ∈ H. Then one can write H = 〈τ, σb1 , . . . , σbr 〉 i.e. H is either 〈τ〉 or
〈τ, σ〉. Now assume σ ∈ H instead. Then H = 〈σ, τa1 , . . . , σar 〉 and there is d ∈ J0, p− 2K such that
H is 〈τd, σ〉. Finally assume that neither τ nor σ belongs to H. One can see that for i 6= j two
integers in J1, rK

(ai = aj) ∧ (bi 6= bj) =⇒ ∃b 6= 0 | σb ∈ H =⇒ σ ∈ H

from which we deduce
∀(i, j) ∈ J1, rK, i 6= j =⇒ ai 6= aj .

Let d = gcd(a1, . . . , ar). Using Bézout’s identity one can see that there is b ∈ J0, p − 1K such that
τdσb is an element of H. Let us show that H is in fact equal to 〈τdσb〉. Consider i ∈ J1, rK and
write hi = (τdσb)

ai
d . There is ci ∈ J0, p− 1K such that hi = τaiσci . Following a previous reasoning

we conclude that hi = gi. This is true for all i ∈ J1, rK so H = 〈τdσb〉. �

Lemma 8. The subgroups of G of the form 〈τaσb〉 with (a, b) ∈ J1, p − 2K × {0, 1} have order
o(τa) = o(ta).

Proof. Given an integer k one has (τaσb)k = σeτak with

e = bta + bt2a + · · ·+ btka = bta
1− tka

1− ta .

thus
σeτa = 1 ⇐⇒ (ak ≡ 0 mod (p− 1)) ∧ (e = bta

1− tka

1− ta ≡ 0 mod p).
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Then remark that one has also

ak ≡ 0 mod (p− 1) =⇒ tak = 1 mod p =⇒ e ≡ 0 mod p.

�

Lemma 9. The subgroups of G with order p−1 are the p groups of the form 〈τσb〉 with b ∈ J0, p−1K.

Proof. A subgroup of G of order p − 1 does not contain σ so it is necessarily of the form 〈τaσb〉.
Since o(τaσb) = o(τa) one has

o(τaσb) = p− 1 =⇒ 〈τa〉 = 〈τ〉

therefore there is c ∈ J0, p− 1K such that τσc ∈ 〈τaσb〉. �
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