
HAL Id: hal-03456617
https://hal.science/hal-03456617

Submitted on 30 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local trajectory planning for autonomous vehicle with
static and dynamic obstacles avoidance

Abdallah Said, Reine Talj, Clovis Francis, Hassan Shraim

To cite this version:
Abdallah Said, Reine Talj, Clovis Francis, Hassan Shraim. Local trajectory planning for autonomous
vehicle with static and dynamic obstacles avoidance. 24th IEEE International Conference on In-
telligent Transportation Systems (ITSC 2021), Sep 2021, Indianapolis, United States. pp.410-416,
�10.1109/ITSC48978.2021.9565109�. �hal-03456617�

https://hal.science/hal-03456617
https://hal.archives-ouvertes.fr

Local trajectory planning for autonomous vehicle with static and
dynamic obstacles avoidance

Abdallah Said 1,2, Reine Talj 1, Clovis Francis 2 and Hassan Shraim 2

Abstract— Trajectory planning is one of the most complex
tasks that should be accomplished in order to ensure vehicle
autonomous driving. Trajectory planning can be classified into
local and global planning. The purpose of local trajectory
planning is to find the optimal trajectory to follow a global
reference trajectory while avoiding obstacles in a smooth and
comfortable way, within the constraints of road driving. This
paper presents a trajectory planning algorithm that calculates
a path according to a set of predefined way-points describing
a global map. The predefined way-points provide the basic
reference frame of a curvilinear coordinate system to generate
candidate paths, which start with a transient phase, followed by
a curve parallel to the road. Each candidate path, associated
to a desired velocity profile, is evaluated via a cost function
against several criteria including passenger’s comfort, static and
dynamic obstacles avoidance and overall trajectory tracking.
The chosen trajectory is then applied to a full vehicle model
using a coupled longitudinal/lateral controller validated on
SCANeR studio (OKtal) simulator. A challenging test scenario
of SCANeR studio is used to validate the proposed algorithm
under Matlab.

I. INTRODUCTION

For nearly two decades, autonomous vehicles have been
an important area of academic and industrial research that
aims to improve vehicles safety and passenger’s comfort.
Various competitions have been organized around the au-
tonomous vehicle: The DARPA challenges in the United
States (2004, 2005, 2007), the Korean competitions for
autonomous vehicles, the European GCDC competitions
(2013, 2016), and many others. Autonomous driving can
be divided into different stages: environment perception
and localization, trajectory planning, and vehicle control.
This paper presents a local trajectory planning algorithm
for autonomous navigation. The planning algorithm must
generate a smooth and safe trajectory based on several
criteria. To treat this problem, the perception module must
provide information about the vehicle’s environment, then,
by applying the planning algorithm, an optimal trajectory is
generated. Finally, the vehicle’s controller ensures tracking
the chosen trajectory by generating the reliable control laws.

Different trajectory planning approaches have been devel-
oped for the navigation of autonomous vehicles. State lattices
can be considered as a grids generalization [1] . They are
constructed by regularly repeating primitive paths that con-
nect the possible states for the vehicle, in terms of position,

1Université de Technologie de Compiègne, CNRS, Heudiasyc (Heuristics
and Diagnosis of Complex Systems), CS 60 319, 60 203 Compiègne Cedex,
France. Email: (abdallah.said, reine.talj)@hds.utc.fr

2Université Libanaise, Faculté de Génie, Centre de Recherche Sci-
entifique en Ingénierie (CRSI), Liban. Email: (cfrancis, hassan.shraim)
@ul.edu.lb

curvature or time. The planning problem is then reduced to a
boundary value problem. A cost function determines the best
path between the pre-calculated networks. State networks
[2], [3] overcome the efficiency limitations of network-based
techniques without increasing computing power. However, It
is not clear how to move the robot from one cell to another
adjacent cell when its dynamics are non-linear and complex.

Another approach is sampling-based planning that relies
on sampling the configuration space. This randomized ap-
proach has the advantage of providing quick solutions to
difficult problems. The disadvantage is that the solutions are
widely regarded as sub-optimal and The execution time is
unpredictable. As a result, the resulting paths tend to be jerky,
redundant, and non-curved, which is not acceptable for au-
tonomous driving applications, especially at high speeds. The
most commonly used algorithms are the roadmap method
(PRM) [4] and Rapid Exploration Trees (RRT) [5] .

Numerical optimization methods, adopted in [6], [7] and
[8], aim at minimizing or maximizing a function subject
to different constraints by using non-linear optimization
techniques to solve the trajectory planning problem where
the non-holonomy and differential constraints are represented
by a system of equality and inequality such as speed,
steering speed, acceleration, jerk, etc. They are widely used
in autonomous driving systems for their rapid convergence
towards locally optimal solutions; however, they are gener-
ally not able to find globally optimal solutions, unless an
appropriate initial estimate is provided. In addition, they are
very time consuming since the optimization of the function
takes place at each planning sampling time.

Starting from a set of points describing a global map,
the curve interpolation method seeks to generate trajectories
in a certain horizon having a specific geometric shape
and responding to one or more conditions such as vehicle
dynamics and kinematics, comfort, road shape, continuity
of curvature, etc. Each candidate is then evaluated via
a cost function taking into account several considerations
such as distance and time costs, acceleration and collision
verification. Geometric representations of trajectories include
polynomials [9], polynomial spirals [10], spline curves [11],
Bézier curves [12] and tentacles [13].

In [14], the path planner generates a finite set of paths
candidate parallel to the base path with different offset shifts
and selects the optimal path based on a discrete optimization
approach. It is a fast reactive method that reduces the
solution space and is therefore well suited for real-time
implementation. In our work, the concept of this method was
adopted. Several improvements have been proposed on the

Reference Map Map matching

Perception Path Planning

Control and model loop

Coupled
controller

Dynamic
vehicle model

Matching on desired
path

Fig. 1: Functional diagram of the algorithm

method of generating the path candidates and on the selection
criteria. Our approach is less conservative due to safety
considerations in relation to the longitudinal distance of the
obstacle. In addition, a collision checking method has been
used to reduce the time required. Our method also handles
moving obstacles and multi-lane structured environments.
The proposed algorithm was applied on a representative
scenario based on real-world driving situations and using a
fully controlled vehicle model developed in [19]. We present
in Section II the developed navigation strategy and explain
how each module works. The proposed planning module is
detailed in section III. Section IV reports some simulation
results, while the final Section V concludes the paper.

II. PRESENTATION OF THE NAVIGATION STRATEGY

The autonomous driving system consists of several com-
plementary modules. Each module receives information, pro-
cesses it and sends it to another one. In Fig. 1, the functional
diagram of the developed system is presented where all the
blocks are combined together:

• a reference map block which interpolates the reference
trajectory and calculates its characteristics which are
used in the generation of candidate paths,

• a map matching block that attempts to match the vehicle
position on the reference map,

• a perception block that generates a local occupancy grid
taking into consideration the new position of the vehicle
and mobile obstacles in order to check the navigability
of candidate paths,

• a planning block that generates the candidate paths and
corresponding desired velocity profile then selects the
best trajectory to be executed,

• a four-wheeled vehicle dynamic model implemented
with a coupled longitudinal/lateral controller and a sub
block to match the vehicle position on the desired
trajectory.

Since path planning is the goal of this paper, it is detailed
in the section III.

A. Reference Map

Generally, a road is represented by a sequence of points
and modeled by a parametric curve to define the trajectory of
the movement. There are different approaches, such as bezier
curve, poly-line model, lanlet model, cubic spline and many
others [16]. In our work, we use Piece-wise cubic spline
curves for map interpolation based on the given way-points
Pbf to ensure the continuity of the curvature profile and
to avoid discontinuities and differentiation problems when
passing over one of the way-points. However, it is essential
to efficiently link the values of the spline curve parameters to
the curvilinear abscissa s in order to simplify and improve the
planning and trajectory tracking performance of the vehicle
(see [15]). A series of arc length parameterized cubic spline
curves P (s) = (x(s), y(s)) are generated. Using these curves
equations, the curvature profile ρPbf

is calculated first. Then,
the base frame velocity profile VPbf

is calculated based on
the desired speed and road speed limit that guarantees the
stability of the vehicle.

B. Map matching

The correspondence of the vehicle’s position on the ref-
erence map is an unavoidable step. It allows to identify
the curvilinear coordinates of the vehicle (or any interesting
point) from the Cartesian coordinates in order to use the
reference information. In order to make the mapping neither
computationally demanding nor difficult to be implemented
in real-time embedded systems, we proposed a composite
algorithm that starts with the poly-line mapping method [16]
to find a rough estimate that serves as an initial guess for the
quadratic minimization method in [17] (Fig. 2a). It consists
in finding on the reference trajectory C, the closest point Pb
to the vehicle Pv . At the end, in a local curvilinear coordinate
system (−→s , −→q), the coordinates (sv , qv) of the vehicle Pv
are obtained (Fig. 2b).

 X

 Y

poly-line
s-spline
border
vehicle
closest pt poly-line
closest pt spline

(a) Correspondence on
the map

x

y
C

(b) Curvilinear coordi-
nates

Fig. 2: Map matching

C. Perception

To avoid collisions and maintain safe conditions, a can-
didate path must be checked to determine whether or not it
crosses roadsides or obstacles. The perception block is out of
the scope of this paper. The present work considers the output
of the perception block as an occupancy grid representation.
The occupancy grid is a discrete and metric representation
of the surrounding environment, where it is represented by

a set of square cells. Black cells correspond to a navigable
area, and white one may belong to the roadside or obstacles.
However, for validation by simulation, the occupancy grids
are generated in Matlab. Starting from a global map (Fig.
3), a global occupancy grid is generated (Fig. 4). The local

s-spline
border

Fig. 3: Reference map

global map

Fig. 4: Global occupancy
grid

occupancy grid is obtained from the global occupancy grid
according to the position and orientation of the vehicle to
obtain the local occupancy grid. This latter is constituted of
400 * 400 cells, each of which measures 25 * 25 cm (Fig. 6).
These dimensions are related to the horizon of the perception
system. At each planning iteration, the local occupancy grid
is updated by the new footprint occupied by the moving
obstacles existing in its perception zone. However, to take
their velocity into consideration, a longitudinal widening of
their occupancy is carried out in the grid (Fig. 5). It’s equal
to the predicted traveled distance during one iteration.

moving obstacle

fixed obstacle

Fig. 5: Vehicle and obstacles occupancy
In order to improve the accuracy, efficiency and time

consumption for collision checking, the local occupancy grid
(Fig. 6) is transformed into a clearance map as shown in Fig.
7. This map represents the distance to the nearest obstacle
using the method explained in [18]. The validation of a
circular area of the grid is then transformed into a single-
point validation: if the distance from the center of a circle
to the nearest obstacle is greater than its radius, then there
is no collision, and vice-versa.

D. Controlled vehicle dynamic model

A full longitudinal and lateral vehicle model is imple-
mented in our algorithm. It has been developed using the
multi-body formalism in [19]. The model inputs are the
wheel driving/braking torque τw and the steering angle δ.
Using Dugoff model to estimate tires forces and model
matrix calculations, the model outputs are calculated: the

local map

Fig. 6: Local occupancy
grid

clearance map

0

0.5

1

1.5

2

Fig. 7: Clearance map

longitudinal (ẍ) and lateral (ÿ) vehicle accelerations, the yaw
rate (ψ̇), and the wheels angular velocities (ẇij). For control
purposes, we choose to proceed with a higher order sliding
mode (second order) based on the super-twisting algorithm
to ensure robust stability while reducing chattering. The full
model has been validated in SCANeR studio simulator, under
several driving conditions.

III. PATH PLANNING

Our path planning algorithm must provide the optimal path
from a set of paths that helps the vehicle to track a reference
trajectory while avoiding static and mobile obstacles and en-
suring the safety and comfort of passengers. The navigation
strategy is composed of several stages: generation of a set
of candidate paths, obstacle detection and paths classification
according to their navigability, costs calculation and selection
of the optimal one from this set of candidate paths. This
selected trajectory is considered as the desired trajectory to
be executed by the vehicle at each planning iteration. The
entire procedure of the path planning is shown in Fig. 8 and
explained in the following.

A. Generation of candidate paths

The objective is to generate candidate paths while
avoiding obstacles shifted by a lateral offset from the
reference trajectory (Base Frame). The planning algorithm
generates a finite number of candidates, each of them having

Desired best path

executable ? Emergency
braking

Obstacle detection and path classification

Generation of classification zones

Check distance to first obstacle

not
navigable

Partially
navigable

Completely
navigable

Remained
navigable?

Longest path without
obstacle &

Enable Risky lane

s x y v ρ

Piecewise Cubic
spline interpolation

Generation of path candidate

Construction of
base frame

Generation of shift
polynomials

Generation of
candidate paths

calculation of characteristics
(curvature, velocity, ...)

Risky lane?
Host &

Adjacent
lanes

Host lane

Calculation of the costs of the remaining
navigable trajectories

smoothness

reference

safety

consistency

Normalisation

Sum of weighted
costs

x4

Lowest cost path
Disable Risky lane

noyes

no

yes

Fig. 8: Path planning diagram

a separate lateral offset qf to cover the entire width of
the lane (Fig. 9). The generation of these candidate paths
consists of two stages: the generation of candidate path in
the coordinate system (−→s , −→q) in order to facilitate their
representation and then their transformation into Cartesian
coordinates in the global coordinate system (

−→
X ,
−→
Y).

In the curvilinear coordinate system (−→s , −→q):
The candidate path starts from the last executed point

P t−1
des of the desired trajectory at the previous planning

iteration to ensure its continuity. It consists of a transient
phase to reach the offset already defined qf , followed by
a permanent phase where it will be parallel to the road to
continue with this offset. The P t−1

des is matched on the global
map, so the curvilinear coordinate (sP t−1

des
, qP t−1

des
) and other

characteristics of the first corresponding point P 0
bf on the

base frame of the new candidate path are obtained (Fig. 10).
First, from the width of the lane (the vehicle width is
subtracted to avoid the generation of candidate paths near
borders) and the desired lateral sampling resolution ∆q,
the number of last points (sif , qif) on the candidate paths
are determined. The arc length sf is that traveled by the
candidate path all along the reference trajectory. It consists
of two phases, sf1 for transient phase and sf2 for permanent
phase. It is proportional to the speed of the vehicle vV with
the gain Kv , bounded by the minimum ∆sf−min and the
maximum lmax acceptable length and given by:

sf1 = ∆sf1−min +Kv1Vv,

sf2 = max(∆sf2−min, 2 dss − sf1)

sf = min(lmax, sf1 + sf2)

(1)

where the safe stop distance dss is the distance required to
stop the vehicle traveling at a speed Vv with the maximum
longitudinal deceleration adec−maxx and defined by:

dss = dss0 +
V 2
v

2adec−maxx

(2)

where dss0 is a minimum safety gap.
Next, for each of candidate path, a fourth order polynomial
(eq. 3) describes the lateral shift polynomial qiM (s) to
provide a smooth change (Fig. 9) ensuring the C 2 continuity
while avoiding the discontinuity of the curvature with respect
to the desired one in the last iteration.

qiM (s) =


ai0 + ai1∆s+ ai2∆s2 sP t−1

des
6 s 6 sf1,

+ai3∆s3 + ai4∆s4,

qif , sf1 6 s 6 sf
(3)

where ∆s = s−sP t−1
des

. The coefficients of fourth order poly-
nomials ai are determined based on the boundary conditions
below:

qi(sP t−1
des

) = qP t−1
des

,
∂qi

∂s
(sP t−1

des
) = tan(θP t−1

des
− θbf),

ρi(sP t−1
des

) = ρP t−1
des

,

qi(sif1) = qif ,
∂qi

∂s
(sif1) = 0

(4)

Fig. 9: Lateral offset
polynomial in (−→s , −→q)

625

620

615
I�

610

605

600

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
\

\

\

\
\
'

'
'
'
'
'
'
'

-445

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

-440

'
'
'
'
'

-435

□vehicle
-------road center
- road border

* pb
O
J

--tansient phase
--permanent phase

SJI

-430 -425

X

-420 -415

Fig. 10: Candidate paths
in (
−→
X ,
−→
Y)

The analytic expression of the coefficients ai according
to the boundary conditions are calculated offline using
the function Matlab (SOLV E) since there is an implicit
boundary condition.

In the global coordinate system (
−→
X ,
−→
Y):

The candidate paths are generated in the curvilinear coor-
dinate system, but the planning results should be converted to
the Cartesian coordinate system approved by the maneuver
system (Fig. 10).

First, from P 0
bf , a base frame trajectory is constructed

along the reference trajectory starting from sP t−1
des

and ending
on sf , then its characteristics are calculated (curvature ρPbf

,
limit velocity V limitPbf

, desired velocity V desPbf
and normal

vector
−−−→
NPbf

).
Second, for each candidate path, we proceed, point by

point, by the transformation between the Cartesian coor-
dinate system and the curvilinear coordinate system. The
trajectories are deduced as follows:

−−−−−→
OM i(s) =

−−−→
OPbf + qi(s)

−−−→
NPbf

(5)

If the point M belongs to a circle around the vehicle (Pv ,
LPA) which represents the perception area of the vehicle, we
calculate its characteristics. First, we calculate the curvature
of each point on the candidate path ρiM as follows:

ρiM =
SiM
QiM

(
ρPbf

+
(1− qiρPbf

)∂
2qi

∂s2 + ρPbf

∂qi

∂s

2

QiM
2

)
(6)

with:

SiM = sgn(1− qiρPbf
), QiM =

√
∂qi

∂s

2

+ (1− qiρPbf
)2.

(7)
Now, we check if the candidate path is executable by the
vehicle due to the steering limitation: ρmax is the curvature
corresponding to the maximum steering angle that can be
executed by the vehicle. So, if at any point M of the candidate
path, ρM > ρmax, the candidate path is considered as
not executable and it is rejected from the available set of
paths. If all candidate paths are not executable, an emergency
braking mode is activated: the planning algorithm selects the
longest navigable path providing the maximum distance to
the obstacle, (III-B), and brake with high deceleration and
zero desired speed.
Determination of the desired velocity profile:

The vehicle must follow a predefined velocity profile
or brakes in case of obstacle detection or no executable
trajectory. Starting from desired velocity profile of the base
frame V desPbf

and for each point of candidate path, we calculate
the desired initial velocity at a point M for the candidate i,
V des0M

i , and its limit V limitM

i imposed by the velocity limit
of the base frame VP limit

bf
as follows:

V des0M

i
= SiMQ

i
MV

des
Pbf

, V limitM

i
= SiMQ

i
MVP limit

bf
(8)

Another limitation V ρM
i is imposed by the lateral acceleration

to improve vehicle stability and passenger comfort:

V ρM
i

=

√
amaxy

ρiM
(9)

where amaxy is the maximum acceptable lateral acceleration
in the comfort zone.

Finally, the desired velocity profile of each point on the
candidate path V desM

i is calculated as follows:

V desM

i
= min(V limitM

i
, V ρM

i
, V des0M

i
) (10)

Due to perception limit, the safe stop distance must be less
than the perception horizon of the vehicle. So, the desired
velocity is also maximized by the value calculated using
equation (2) for dss = LPA.

B. Obstacle detection and paths classification

For the rest of the executable candidate paths, an obstacle
detection procedure is carried out. So, on each point of this
path and as described in the sub-Section II-C, we validate
the footprint of the vehicle represented by several circles as
shown in Fig. 11: a large circle and six other small circles.

Fig. 11: Example of collision checking

First, an evaluation of the large circle is carried out: if
there are no obstacles, we pass to the next point on the
path (Fig. 11). In the case where an obstacle is present, a
more precise validation is carried out based on the test of
the 6 small circles. Once the first obstacle is detected, the
free distance traveled on the path to reach the obstacle is
called the collision distance dobs. The obstacle type, fixed
or moving, is also determined and is also associated with
its speed Vobs, if it is a moving obstacle. The next step is

to classify the trajectory based on the collision distance into
three classes as follows:
diobs < Ls → no navigable trajectory

Ls < diobs < limax → partially navigable trajectory

diobs ≥ limax → navigable trajectory
(11)

where limax is the length of corresponding candidate path
and Ls is the adapted security distance [20] that the vehicle
must keep with the vehicles that precede it and is calculated
using the following formula :

Ls =

{
dss, for fixed obstacle

dss0 + Vf∆t+
V 2
f −V

2
p

2adec−max
x

, for mobile obstacle
(12)

where ∆t is the average reaction time of autonomous ve-
hicles, Vf is the following vehicle’s speed and Vp is the
preceding vehicle’s speed.

If there is no navigable paths on the reference lane,
the generation of an additional set of paths candidate is
performed on the adjacent lanes (Fig. 12). Note that braking
is performed whenever there is no navigable paths on all the
lanes.

Fig. 12: Generation of path candidate on one and two lanes

C. Selection of the desired trajectory
The desired path is either the optimal one from the

executable and navigable set of paths. Or, if there are none,
the path who has the greatest distance to the obstacle is
chosen to brake the vehicle. Among all remained candidate
paths, we seek to choose the optimal trajectory to execute it.
These trajectories are evaluated according to different criteria
including smoothness, safety, consistency with the initial
state of the vehicle and the reference trajectory tracking.
Once these criteria have been estimated and the correspond-
ing cost function is evaluated, they are normalized, weighted
and combined in a linear manner within a cost function
which we seek to minimize.

Smoothness cost CK [i]: Low smoothness induces addi-
tional lateral acceleration which degrades passenger comfort.
The lateral acceleration of the vehicle is related to the
curvature especially at constant speed (eq. 9). So, to reduce
the slackness of a path, the integration of the curvature
squared along a trajectory i is chosen as a criterion of
smoothness for this trajectory as follows:

CK [i] =

∫
ρiM

2
dsiM =

∫
ρiM

2
QiM ds (13)

where dsiM is the curvilinear abscissa along the i path and
ds is that along the base frame.

Consistency cost Cc[i]: A sudden change in the trajectory
requires excessive energy and an extra effort of control.
Therefore, to avoid generating a trajectory that is signifi-
cantly different from that of the previous step, a measure
of similarity between the previous trajectory and the current
candidate path is required. We simplify it in our algorithm
to the difference between the index of the current path i and
that of desired path at previous planning iteration.

Cc[i] = |i− i t−1
des | (14)

Cost of tracking the reference trajectory Cr[i]: This
criterion leads the vehicle to follow the global reference
trajectory in order to position itself in the center of the
desired lane. As the candidate paths are generated around
this center by a defined lateral offset, the cost of following
the reference trajectory is proportional to this offset. The
further you go, the more the cost increases and is given by:

Cr[i] = d2
i−bf (15)

where di−bf is the lateral distance between the path i and
the base frame.

safety cost Cs[i]: we define two safety costs: a longitudi-
nal cost Csl and a lateral cost CsL. The first one measures the
navigability of the trajectory itself and how far the obstacle
is, while the lateral one takes into account the navigability
of the adjacent trajectories. The collision distance dobs (11),
is transformed into a safety cost as follows:

Csl[i] =

{
0 obstacle-free trajectory
2− 2

1+e−c1 di
obs

otherwise
(16)

g[k] =
1√
2πσ

exp

(
− (k ∆q)2

2σ2

)
(17)

CsL[i] =

∑
j∈Γi Csl[j] g[i− j]

nΓi

(18)

Cs[i] = Csl[i] +WSlLCsL[i] (19)

where c1 is a cost setting parameter, ∆q is the desired
lateral sampling resolution, σ is the standard deviation of
the discrete Gaussian convolution for the risk of collision
and is calculated by considering that g[Lv

∆q] = 0.5. Γi is the
set of indexes of executable paths without i, nΓi is their
number and WSlL is a weighting coefficient between the
two costs.

Total cost and optimal path selection:
As our different costs criteria are measured in different
units, we use the normalization technique to make them
dimensionless. Hence, we apply the following formula:

C.[i] =
C.[i]−min(C.)

max(C.)−min(C.)
(20)

Then, the total cost function CT [i] of a given trajectory is
defined as the weighted sum of the normalized cost functions

defined above:

CT [i] = WKCK [i] +WcCc[i] +WrCr[i] +WsCs[i] (21)

with WK , Wc, Wr and Ws are the weighting coefficients
of smoothness, consistency, reference tracking and safety
respectively.

At this final step, the selected trajectory is represented
by a series of points defined by the curvilinear abscissa,
x and y coordinates, velocity and curvature. This trajectory
is interpolated using the same method explained in II-A to
facilitate the vehicle’s matching in the control/model block.

IV. SIMULATION RESULTS

Fig. 13: SCANeR studio : global map

To validate our planning algorithm, it was applied to a
fairly realistic scenario taken from SCANeR studio simulator.
Several fixed and moving obstacles are introduced so as to
cover several commonly encountered driving scenarios. It
was simulated in MATLAB by taking into account the
vehicle’s dynamics. The vehicle block (model and controller)
is running at a frequency of 50 Hz, and the rest of the
system is running at 5 Hz. At each simulation step, the local
occupancy grid is updated based on the new position of the
vehicle and mobile obstacles are also added if there are any.

To show the flexibility and the safety aspects of the
presented approach, we present in Fig. 14 a one challenging
test scenario, instead of several simple scenarios, which
shows:
• passing through a tight passage
• overtaking fixed obstacles
• lane change maneuver
• vehicle speed adaptation
• overtaking a moving obstacle

The trajectory of the vehicle is represented by its colored
footprint relative to its instantaneous longitudinal speed.

As shown in Fig. 14, the vehicle starts traveling along the
center road at speed of 30 km/h. It passes through a tight
passage (t=4s) to avoid static obstacles in a straight road then
accelerate to reach the desired speed. Or, when entering the
curvy road, the vehicle encounter a fixed obstacle blocking
the lane and a mobile obstacle on the other lane (t=8s), so
the planning algorithm slows down the vehicle, leaving the
way for the moving obstacle (t=10s). Then, the vehicle is
accelerated to pass the fixed obstacle (t=15s). At t=18s, we
see an overtaking of a mobile obstacle traveling at vobs =
25km/h (t=18s). The overtaking and returning maneuvers

Fig. 14: Simulation results: trajectories and vehicle’s speed

Fig. 15: Simulation results: vehicle dynamic variables

are shown in the boxes. The overtaking is permissible while
the speed difference between vehicle and obstacle is greater
than 20 km/h. The planner start overtaking (t=22s) after
approaching from obstacle to reach the security distance
(eq.12) and selects a smooth and comfortable path on the left
lane to pass the mobile obstacle while increasing its speed.
The vehicle reach the second lane’s center at t=22s and travel
along to reach a sufficient safety distance (t=25s) to start
returning to the host lane. At t=29s, the vehicle succeeds to
reach the center of the road and travel at the desired speed
while entering a curvy road.

In Fig. 15, the base frame curvature profile is shown in
dotted line. Smooth motion can be seen from the generated
continuous curvature profile ensured by the order 4 of the
lateral offset polynomial. We see also the longitudinal speed
profile. The base frame limit speed is around 57 km/h.
Based on selected trajectories and driving situations, the
desired speed profile is shown in dashed line. Its limit based
on comfort acceleration, shown in Dash-dot line, is well
respected, especially at t=10, 15 and 18s in the three different
maneuvers. The vehicle is traveling at the desired speed with
an acceptable longitudinal speed error and track perfectly
the maximal acceptable speed between t=22 and 25s when
passing mobile obstacle on the second lane. Note that the
longitudinal acceleration is suitable for comfortable travel
and limited between ±1.5m/s2 for comfort travel and can
reach −3m/s2 in case of emergency braking (t=8s). From
the lateral acceleration profile, we can deduce that the vehicle
stability is ensured, which improves passenger comfort. The
maximal lateral acceleration (±4m/s2) reached at t=10, 15,
20 and 29s in the different scenarios shows the performance
of our proposed method on the limit of stability. Also, the
small lateral error shows that the vehicle is able to follow
accurately the trajectory generated by the planning algorithm
during the entire course. The lateral curvilinear coordinate is
presented to show its smooth variation. The vehicle position
in the mobile obstacle overtaking maneuver is displayed
between t=18 and 29s.

V. CONCLUSION

A reactive trajectory planning algorithm for on-road nav-
igation has been developed. It’s able to follow a reference
trajectory while passing fixed and mobile obstacles. Within
the road driving rules and vehicle’s dynamic constraints,
the velocity is adapted to ensure passenger’s comfort. Many
other scenarios are tested and the results show good behavior
in rather complicated driving situations. In the future, we
look to implement our planning algorithm on a real exper-
imental vehicle in Heudiasyc laboratory and to optimize
the cost function coefficients in eq. 21 in order to take
into consideration the driving situation in an optimal way
(comfort oriented, stability, reference tracking, trajectory
smoothness,...).

REFERENCES

[1] PIVTORAIKO, Mihail et KELLY, Alonzo. Efficient constrained path
planning via search in state lattices. In International Symposium on
Artificial Intelligence, Robotics, and Automation in Space. Germany,
Munich, 2005. p. 1-7.

[2] HOWARD, Thomas M. et KELLY, Alonzo. Optimal rough terrain
trajectory generation for wheeled mobile robots. The International
Journal of Robotics Research, 2007, vol. 26, no 2, p. 141-166.

[3] ZIEGLER, Julius et STILLER, Christoph. Spatiotemporal state lattices
for fast trajectory planning in dynamic on-road driving scenarios. In
2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2009. p. 1879-1884.

[4] PLAKU, Erion, BEKRIS, Kostas E., CHEN, Brian Y., et al. Sampling-
based roadmap of trees for parallel motion planning. IEEE Transac-
tions on Robotics, 2005, vol. 21, no 4, p. 597-608.

[5] KARAMAN, Sertac et FRAZZOLI, Emilio. Sampling-based algo-
rithms for optimal motion planning. The international journal of
robotics research, 2011, vol. 30, no 7, p. 846-894.

[6] WERLING, Moritz, ZIEGLER, Julius, KAMMEL, Sören, et al. Op-
timal trajectory generation for dynamic street scenarios in a frenet
frame. In 2010 IEEE International Conference on Robotics and
Automation. IEEE, 2010. p. 987-993.

[7] LIM, Wonteak, LEE, Seongjin, SUNWOO, Myoungho, et al. Hierar-
chical trajectory planning of an autonomous car based on the integra-
tion of a sampling and an optimization method. IEEE Transactions on
Intelligent Transportation Systems, 2018, vol. 19, no 2, p. 613-626.

[8] ZIEGLER, Julius, BENDER, Philipp, DANG, Thao, et al. Trajectory
planning for Bertha—A local, continuous method. In 2014 IEEE
intelligent vehicles symposium proceedings. IEEE, 2014. p. 450-457.

[9] LEE, Jin-Woo et LITKOUHI, Bakhtiar. A unified framework of the
automated lane centering/changing control for motion smoothness
adaptation. In 2012 15th International IEEE Conference on Intelligent
Transportation Systems. IEEE, 2012. p. 282-287.

[10] McNaughton Matthew. Parallel Algorithms for Real-time Motion
Planning (Doctoral dissertation, Carnegie Mellon University).

[11] WANG, Miao, GANJINEH, Tinosch, et ROJAS, Raúl. Action anno-
tated trajectory generation for autonomous maneuvers on structured
road networks. In The 5th International Conference on Automation,
Robotics and Applications. IEEE, 2011. p. 67-72.

[12] YANG, Kwangjin et SUKKARIEH, Salah. An analytical continuous-
curvature path-smoothing algorithm. IEEE Transactions on Robotics,
2010, vol. 26, no 3, p. 561-568.

[13] CHEBLY, Alia, TAGNE, Gilles, Talj, Reine, et al. Local trajectory
planning and tracking of autonomous vehicles, using clothoid tentacles
method. In 2015 IEEE intelligent vehicles symposium (IV). IEEE,
2015. p. 674-679.

[14] CHU, Keonyup, LEE, Minchae, et SUNWOO, Myoungho. Local path
planning for off-road autonomous driving with avoidance of static
obstacles. IEEE Transactions on Intelligent Transportation Systems,
2012, vol. 13, no 4, p. 1599-1616.

[15] WANG, Hongling, KEARNEY, Joseph, et ATKINSON, Kendall. Arc-
length parameterized spline curves for real-time simulation. In Proc.
5th International Conference on Curves and Surfaces. 2002.

[16] HÉRY, Elwan, MASI, Stefano, XU, Philippe, et al. Map-based curvi-
linear coordinates for autonomous vehicles. In 2017 IEEE 20th In-

ternational Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2017. p. 1-7.

[17] WANG, Hongling, KEARNEY, Joseph, et ATKINSON, Kendall. Ro-
bust and efficient computation of the closest point on a spline curve.
In Proceedings of the 5th International Conference on Curves and
Surfaces. 2002. p. 397-406.

[18] FELZENSZWALB, Pedro F. et HUTTENLOCHER, Daniel P. Dis-
tance transforms of sampled functions. Theory of computing, 2012,
vol. 8, no 1, p. 415-428.

[19] CHEBLY, Alia, TALJ, Reine, et CHARARA, Ali. Coupled longi-
tudinal/lateral controllers for autonomous vehicles navigation, with
experimental validation. Control Engineering Practice, 2019, vol. 88,
p. 79-96.

[20] Althoff, Matthias, and Robert Lösch. ”Can automated road vehicles
harmonize with traffic flow while guaranteeing a safe distance?.” In
2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), pp. 485-491. IEEE, 2016.

