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Generic Trajectory Planning Algorithm for Urban Autonomous Driving

Thibaud Duhautbout1,2, Reine Talj1, Véronique Cherfaoui1, François Aioun2, Franck Guillemard2

Abstract— In this paper, a new local planning algorithm for
urban autonomous driving is presented. Our main contribution
is to define a fully algorithmic method, based on a geometrical
representation of the environment, to compute predictive speed
profiles on multiple paths, to ensure safety and comfort with
respect to the scene and its predicted evolution. Simulation
results are provided to evaluate the behaviour of the proposed
algorithm on various scenarios. Those results show a good,
comfortable and safe reaction of the vehicle to its static and
dynamic environment with processing times compatible with
real-time control.

I. INTRODUCTION
Autonomous driving is a complex task and remains a

challenge for industrial and academic actors. While more
and more advanced assistance systems become available on
highways, urban navigation is still highly manual. Urban
environment is very complex: the network is dense, the roads
can be narrow and have sharp turns, lots of driving rules
have to be respected and the space is shared with other
users, such as cars, pedestrians, bicycles, etc. To handle
this complexity, the autonomous driving system has to be
divided in different modules working together, each of which
realizing a particular task. This paper describes a generic
planning architecture, focuses on a local planning method
which uses a path and velocity decomposition, and introduces
an algorithmic speed planning method to improve existing
path planning approaches.

In Section II, existing works about motion planning are
covered. This work focuses entirely on a local trajectory
planning algorithm, which has to be included in a larger
architecture described in Section III. The proposed method
is presented in Section IV and some results are discussed in
Section V. Finally, a conclusion and some thoughts about
future works are given in Section VI.

II. RELATED WORKS
Motion planning for self-driving cars has been widely cov-

ered in the literature, with various techniques and algorithms
[1]. Methods based on random trees have been used for
urban navigation [2], using incremental sampling to find a
path from the initial position of the vehicle to a goal point.
Each sampled configuration is checked for collision with the
environment, so that only valid positions are added to the
tree. Lattices planners [3] make use of a graph structure and
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efficient search algorithms to find a valid path to a goal point
in a given environment. Both of these methods perform a
direct search of one final path with static obstacle avoidance
and do not account for moving obstacles. In [4], a temporal
dimension is added to the lattice to allow the vehicle to adapt
its speed to moving obstacles. However, the corresponding
speed profile depends strongly on the time-discretization of
the lattice.

Recent works try to solve the self-driving problem with
an end-to-end machine learning process. In [5], a neural
network is trained to steer the vehicle directly from a camera
sensor. However, it is hard to prove that such methods always
provide appropriate results. To provide interpretable results,
[6] train a neural network to compute a cost volume from raw
sensor data. A set of candidate trajectories is then sampled
and evaluated with this cost volume to select the optimal
trajectory. Although this provides interesting results, large
amounts of labelled data are required to train the networks.

The tentacles method presented in [7] explicitly generates
a fixed number of candidate paths and evaluates them against
the environment. The best path is then tracked by the
controllers for a short time period and the process is restarted.
Initially represented by circle arcs, [8] enhances the method
by constructing paths with clothoid arcs to ensure curvature
continuity. The clothoid shape is well-suited to account for
vehicle dynamics, but is not consistent with the behaviour of
a vehicle on urban roads because most of the curves end up
out of the road. In [9], [10] and [11], the paths are constructed
as “parallel tentacles” and are defined by a lateral offset to
the reference road, usually the center of the current lane.
In [12], moving obstacles are considered by being extended
in the underlying occupancy grid according to their heading
and speed to provide some anticipation with respect to their
expected motion. In these methods, the speed is not explicitly
defined along the path.

In [13], speed values are defined on each point of the
path depending on the curvature of the path, the speed
of a preceding vehicle and the applicable speed limit. In
[14], an hybrid trajectory planner for static environment is
introduced, which separates the path and speed planning
in two distinct tasks. In [15], the method is improved to
consider moving obstacles in highway scenarios. Both of
these methods use numerical optimization to compute speed
profiles. [16] considers the urban environment by adapting
the speed to the predictions of the moving obstacles. In this
work, a similar approach is used: the “parallel tentacles”
path-planning algorithm is used to sample candidate paths
on the road, and a discrete adaptation method is introduced
to compute a safe and comfortable speed profile on each
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Fig. 1: Global architecture

path, by taking into account static and dynamic obstacles,
and visibility limits. This algorithm is generic and adapted
to different urban situations.

III. PLANNING ARCHITECTURE

As explained in the introduction, this work focuses on
a local planning algorithm. However, it is clear that local
planning alone can’t provide all necessary functions for
an autonomous vehicle. Figure 1 presents the complete
architecture considered in this article, in which local planning
is integrated. The dashed lines materialize the limits of
the tactical components: global planning, decision and local
planning. The aim of each of these components and the
assumptions made are detailed in the following. Sensor data
acquisition and processing, as well as vehicle control, are not
covered in this paper. It is assumed that perception modules
provide the data required for the tactical layer, and that
efficient and predictive controllers are available to track the
generated trajectories.

The global planning module is used to define the route
from the starting point to the destination. The output of this
module is called the mission path and contains the geomet-
rical description of the route. If an HD map is available,
the mission path can be enhanced with a priori information
about the lane to use, the maximum allowed speed, expected
signalization and any other useful information.

The decision module is the high-level reasoning module
of this architecture. Its role is to define the decision path,
representing the local path to follow to achieve the mission
path. This path is an ordered set of ND points defined by
Equation 1. Each point Pd is defined in a global 2D reference
frame with coordinates x and y, heading θ and curvature κ,
and contains a speed value vdec representing the maximum
speed allowed, determined from the analysis of the situation
(speed limit, stop signs, traffic lights, priorities...).

D =
{
Pd =

(
x, y, θ, κ, vdec

)
, d ∈ [1, ND]

}
(1)

The decision module also defines a lateral displacement
interval Qlat = [qmin, qmax] which defines the drivable
space around D and allows or forbids the vehicle to overtake.

Finally, the local planning module is responsible for the
generation of a reference trajectory which will be tracked
by the control system. This trajectory is a timely discretized
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Fig. 2: Architecture of the proposed local planning method

representation of the path and speed profile to follow. The lo-
cal planning tries to respect the lateral and speed constraints
given by the decision, avoid static and moving obstacles,
ensure dynamical feasibility and safety and maximize lateral
and longitudinal comfort for the passengers.

The three planning modules do not function at the same
rate. The global planning module can run at a very low
frequency, or on-demand when the initial mission path can’t
be followed. The decision module should run at a moderate
frequency to provide responsiveness to complex situations
while keeping consistent and stable constraints for the local
planning, which should run at a high frequency to adapt the
reference trajectory to fast changes in the environment. In
this paper, we detail the local planning module.

IV. PATH AND SPEED PLANNING ON TENTACLES

Method overview

The proposed planning algorithm is derived from the
tentacles method. Figure 2 illustrates the different steps of
the proposed method, each of which being described in the
next sections. As in [14] and [15], path and speed planning
are separated. A set of local candidate paths is generated
from the trajectory constraints and the vehicle state. On
each generated path, a speed profile is defined and adapted
with respect to the environment to produce feasible and safe
candidate trajectories. Defining a speed profile is key to
provide anticipation and comfort for the passengers. Finally,
the best trajectory is selected and provided to the controllers.
All this process is executed at regular time steps to integrate
new perception data.

A. Paths generation

As proposed in [11], candidate paths are composed of a
transition part followed by a part parallel to D, which seems
close to a human behaviour.

The final points of the transition parts are defined by
lateral offsets qi from D and longitudinal offsets lj from
X0, as in [17]. The lateral offsets are used to define multiple
alternatives to avoid eventual obstacles, and are sampled in
the Qlat interval. The longitudinal offsets provide different
transition shapes for each lateral offset, to generate more or
less aggressive transitions. The lj values can be fixed, or
chosen relative to the vehicle speed. Figure 3 illustrates the
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result of the path generation process with 5 lateral and 3
longitudinal offsets.

The transition part is generated from the initial position
of the vehicle to one final point as a parametric curve,
with x and y being 5th degree polynomial functions. This
representation is chosen because the paths can be computed
by a direct linear system resolution. The parameters of each
functions are determined to ensure position, heading, and
curvature continuity at both extremities of the transition part.

Once the transition part of a path is generated, it is
extended by a part parallel to D to reach a final length lmax.
This value should be at least the same as the comfortable
stop distance of the vehicle to provide enough anticipation.
The transition and the parallel parts are discretized using
a fixed number of points for each. Finally, a set of K
paths {Pk}k∈[1,K] is computed. Equation 2 defines the path
Pk composed of NPk successive 2D points in a global
reference frame. Each point holds speed v and acceleration
a components which will be used in the adaptation steps.

Pk =
{
Pi = (x, y, θ, κ, v, a, s) , i ∈

[
1, NPk

]}
(2)

B. Paths adaptation

The paths adaptation steps (see Fig. 2) define a speed
profile on each candidate path Pk to ensure safety and
compliance with the given constraints. In these steps, the
spatial components of Pk are fixed, and only the speed profile
is adapted to satisfy the different constraints.

1) Speed constraints: The first step is to integrate speed
constraints on the path. First, each point Pi of Pk is projected
on D to retrieve the maximum speed vdeci . The speed is
also adapted to the curvature of the path to maintain lateral
comfort. Lateral acceleration alat is linked to v and κ by
alat = κ · v2. Therefore, given a lateral acceleration bound

acomf
lat > 0, one can compute vcomf

i =
√
acomf
lat · |κi|−1.

Then, the speed value of Pi is set to vi = min(vdeci , vcomf
i ).

2) Static obstacles and visibility limits: The second step
is to define an eventual stop point linked to static obstacles
and visibility limits. Figure 4 presents the algorithm used to
adapt the speed on Pk. Static obstacles, such as curbs or
stopped cars, will not move and then require the ego-vehicle
to fully stop to avoid a collision on the fixed path. For each
point of the path, the algorithm checks for overlaps between
the polygon of the ego-vehicle and the polygon representing
the obstacles, given by the perception. The advantages of
this geometric method are to be generic over the shape
and the position of the obstacles, and to consider the full
shape of the car. The contact point C is the last position
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Fig. 5: Moving obstacles adaptation process for Pk

without collision on Pk. If the ego-vehicle stops there before
an obstacle, it will not likely be able to maneuver due to
non-holonomic constraints. To prevent this, a longitudinal
safety distance ssafe is introduced to move back the stop
point. Visibility limits are treated as static obstacles, but
without safety distance to ensure security while limiting
conservatism when driving in occluded turns. The stop point
is then inserted on Pk with vi = 0.

3) Moving obstacles: The third step of the adaptation
concerns dynamic obstacles. The process for a path Pk is
described on Figure 5. To predict the trajectory of the ego-
vehicle, the speed profile on Pk needs to be smoothed,
because no dynamic consideration about acceleration has
been introduced yet. The smoothing algorithm is presented
in the next section. From the smoothed speed profile on Pk,
a time-based trajectory Tk with a sample time δt can be
computed, as shown on Equation 3.

Tk =
{
Pt = (x, y, θ, κ, v, a) , t ∈

[
1, NTk

]}
(3)

The value of δt must match the sample time of the pre-
dictions of moving obstacles. Here, collisions are checked
against the predicted state of moving obstacles given by the
perception module. If a collision is detected at Pt, the point
Pt−1 (which is collision-free) is set as stop point. Then, a
new verification is required because the modification of the
speed profile induces a new behaviour of the vehicle, which
may collide with other moving obstacles. Figure 6 illustrates
this iterative process with an overtaking example.

To ensure a safety distance between the ego-vehicle and
moving obstacles, the shape of each actor used for the inter-
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Fig. 6: Illustration of the adaptation of the speed profile
with a moving obstacle. The ego-vehicle plans to overtake a
static obstacle and a vehicle comes on the opposite lane. At
iteration 1, a collision is detected at time t6, the point at t5 is
then marked as stop point. At iteration 2, the vehicle slows
down to stop at the right position but is still in collision with
the moving obstacle at time t7.

section tests is extended to a time period dt corresponding to
the desired inter-vehicular time. To determine that there is no
collision at time t, there must be no collision on the predicted
evolution from time t to t+dt. This brings some anticipation
in the planning process and induces safety distances when
crossing or following other vehicles. Contrary to the second
step of adaptation (IV-B.2), no dichotomy is performed
here to precisely estimate the stop point, in order to save
processing time.

This speed adaptation process can be seen as conservative.
Indeed, the global policy induced is to stop and pass after
all other vehicles. This policy is chosen to ensure safety and
to plan solutions in the worst case. However, the reactive
scheme allows to adjust the plan according to the evolution
of the environment.

4) Speed smoothing: On a path, the speed profile is
represented as a spatial profile, because the constraints
we conider are linked to a certain position. Each point
is defined by its curvilinear abscissa si and holds speed
vi and longitudinal acceleration ai values. It is assumed
that values of v0 and a0 are set from the current state of
the vehicle. The following smoothing algorithm is used to
create a speed profile which integrates a target longitudinal
behaviour while ensuring the respect of the speed constraints
set during the adaptation steps. It is based on three temporal
profiles: comfortable acceleration, comfortable deceleration
and maximal deceleration. Each profile is defined by a fixed
acceleration and a variation rate. These profiles are illustrated
on Figure 7.

The comfort acceleration profile is used when the car
needs to accelerate. When the car needs to slow down
without stopping, the comfort deceleration profile is used,
but if the car needs to stop, the algorithm is allowed to find
an optimal deceleration profile between the comfort and the
maximal ones to ensure that the stop will occur at the right
position. This optimization trades comfort for safety: in this
case, in order to respect the stop point and avoid a potential
collision, comfort requirements may be discarded.

The speed profile is smoothed in a two-pass iterative way.
The first pass smoothes the accelerations: for each point
(si, vi, ai) of the path, the maximum reachable acceleration

t

a

dlon,c

dlon,max

alon,c

comfort deceleration profile

maximal deceleration profile

optimization space

−∆a,c

−∆a,max

∆a,c

acceleration profile

Fig. 7: Illustration of the different acceleration/deceleration
profiles used

amax
i+1 and speed vmax

i+1 at the next position si+1 are computed
from the appropriate profile. The next speed is then updated
by vi+1 ← min(vi+1, v

max
i+1 ), and ai+1 is updated the same

way. The second pass smoothes the decelerations, which
are treated the same way as accelerations when the path
is processed backwards. This algorithm makes it possible
to define smooth speed and acceleration profiles and to
anticipate the decelerations before a stop or a sharp curve.

The smoothing algorithm also considers the initial speed of
the vehicle to ensure the generation of a coherent profile. Due
to that, in some cases, speed constraints may be impossible
to meet, and the resulting profile may present higher speeds
than requested. This usually happens when processing a
path with a sharp lateral transition, which creates high
lateral acceleration values. To avoid consequent dangerous
maneuvers, the selection step performs a check to filter these
cases. Also, if a stop is requested too close from the initial
position of the vehicle, the maximal braking speed profile
will be computed but the stop constraint might not be met.

C. Trajectory selection

When all the candidate trajectories have been adapted, the
algorithm needs to decide which one will be sent to the
control systems. The first step is to remove the trajectories
that could threaten the stability of the vehicle. The lateral
acceleration is computed on each candidate trajectory, and if
it exceeds a security bound aseclat , the trajectory is discarded.
In the case where all trajectories are discarded, the filter is
considered irrelevant and all trajectories are kept for the rest
of the selection.

The trajectories are then divided into 4 groups: 1) tra-
jectories without collision; 2) trajectories without collision
but which stop too close to static obstacles; 3) trajectories
colliding with a static obstacle; 4) trajectories colliding with a
moving obstacle. Only the trajectories of the first non-empty
group are kept and all others are discarded. This gives a first
layer of selection based on a safety principle.

Then, a cost function C is defined as:

C(Tk) = Ck + δk,1 · σ1 + δk,2 · σ2 (4)

where the cost Ck is given by:

Ck = δt ×
NT

k∑
t=1

(
alon,t

2 + alat,t
2
)



and the two decision variables δk,1 and δk,2 are defined by:

δk,1 = 1 if Tk leads to a stop, 0 otherwise

δk,2 = 1 if ∃t ∈ [1, NTk ], |alat,t| > acomf
lat , 0 otherwise

In Equation 4, Ck represents the integral of the squared
total acceleration of the trajectory Tk, with alon,t and alat,t
representing the longitudinal and lateral acceleration. σ1 and
σ2 are high costs defined such that ∀k, σ2 > σ1 > Ck.
Those costs are linked to the decision variables δk,1 and δk,2.
δk,1 activates the cost σ1 to penalize stopping trajectories,
and δk,2 activates the cost σ2 to penalize non-comfortable
trajectories. Finally, the trajectory with the lowest cost value
is selected and provided to the control modules.

D. Processing time optimization

All candidate paths are not systematically generated. To
improve processing time, especially in easy situations, a first
set of paths without lateral offset (i.e., with qi = 0) is
generated. Those paths are then processed by the adaptation
steps previously described. If at least one resulting path does
not lead to a full stop, the algorithm directly goes to the
selection step. If all paths lead to a full stop, it means
that the decision path can’t be followed and that a lateral
displacement might be required. A second set of paths with
lateral offsets around D is then generated, adapted, merged
with the first one and provided to the selection function.

V. RESULTS

Table I summarizes the theoretical differences between the
proposed algorithm and the closest works of Section II.

Simulations have been conducted to study the results of the
presented algorithm in different situations. The algorithm is
implemented on MATLAB-Simulink R© with code generation
and tested on a laptop with an Intel R© i7 processor running
at 2.70GHz. The environment is manually defined, and is
perfectly known by the vehicle. The global trajectory of the
moving obstacles is also fully defined, and the exact future
motion is used for the predictions. No sensors were simulated
and no uncertainties were introduced in the scenarios.

The local planning algorithm is executed every 200ms
and the reference trajectory is perfectly followed. For path
generation, lj values are taken in {5, 10, 15, 20, 25, 30}, and
lmax = 80m to cover the visibility range of the vehicle. 11
qi values with a 0.5m lateral interval are used to cover the
road, leading to a total of 66 paths. The paths are discretized
with NPk = 100 points, and the trajectories with NTk = 51
points with δt = 0.1s. Speed and acceleration constraints
used are described in Table II.

Results are presented on 3 different environments: 1) a
classic crossing with occulting obstacles, 2) a two-lanes
roundabout and 3) a straight road with a static obstacle
on the ego-vehicle’s lane. In the following figures, better
viewed on the PDF version of the paper, the blue lines
represent the center of the different lanes of the network. A
simple implementation of the decision uses a local portion
of the mission path given by the scenario to compute D.
The gray areas represent the static obstacles and the outside
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Fig. 9: Roundabout merging with one moving obstacle
(purple)

of the road, and the red squares represent obstacles limiting
the visibility of the vehicle. The trajectory followed by the
vehicle is displayed with a color ramp indicating the speed.

The first environment presents the behaviour of the vehicle
without moving obstacles and with occlusions in the turns.
As can be seen on Figure 8, the speed of the vehicle
decreases before entering the turn due to the limited visibility
and to respect the lateral acceleration bounds.

The second environment shows the results of the algorithm
with curved roads with another vehicle (displayed in light
purple). Figure 9 shows that the ego-vehicle slows down
before entering the roundabout to let the other vehicle pass
before. The dots on the trajectory show the position of each
actor at the indicated time. When the way is clear, the vehicle
reaches the maximum speed which respects the comfort
bound.

The last environment presents a complex case where the
ego-vehicle’s lane is blocked by an obstacle, and two other
vehicles come on the opposite lane. On Figure 10, the ego-
vehicle starts an overtaking trajectory but then detects the
other vehicles and comes back in its lane to stop before the
static obstacle, and waits until the left lane is free to perform
the overtaking.



Method [15] (highway) [16] (urban) Proposed method

Path planning Sampling-based with 5th degree polynomial
offset function Sampling-based with 5th degree Bezier curves Sampling-based with 5th degree spatial

polynomial curves
Static obstacles
adaptation Not considered Path validity checked by polygon overlap

Trajectory shortened to stop before collision
Positions validity checked by polygon overlap
Stop point defined to stop before collision

Moving obstacles
adaptation

Generation of a safety corridor in the path-time
space

Trajectory validity checked by spatial
projection overlap
Speed adjustment based on motion direction

Predicted position validity check by polygon
overlap
Stop point defined to stop before collision

Speed planning Speed profile optimization
Computed on all candidate paths

Speed smoothing based on speed constraints
Computed only on the selected path

Speed smoothing based on speed constraints
Computed on all candidate paths

Selection Cost function over candidate trajectories Cost function over candidate paths Cost function over candidate trajectories

TABLE I: Comparison summary of the method
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Fig. 10: Overtaking with moving obstacles on the left lane

Table III summarizes the processing time of the local
planning step for the presented results. The scenarios with
the highest processing times correspond to scenarios with
moving obstacles, which are complex cases and thus take
more time to process. The highest processing time obtained
for the presented results is lower than the replanning time
(200ms). Generally, the median processing time seems effi-
cient enough to use the algorithm in embedded conditions.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a new trajectory planning algorithm is
presented. Based on the tentacle algorithm, it introduces
explicit speed planning in urban environment by finding stop
points with respect to static and dynamic obstacles, and by
computing smoothed speed profiles on each candidate path.
Simulations are carried out to analyze the behaviour of the
algorithm and show encouraging results.

Future works will focus on studying the behaviour of the
vehicle in a realistic closed-loop simulation, in challenging
situations with more moving obstacles. Uncertainties, occlu-

longitudinal profile comfort maximal
target speed 10m · s−1 NC
acceleration 1m · s−2 NC
deceleration −2m · s−2 −10m · s−2

variation 3m · s−3 10m · s−3

lateral bounds comfort security
lateral acceleration 3m · s−2 5m · s−2

TABLE II: Speed and acceleration arameters constraints used

Scenario min time (ms) median time (ms) max time (ms)
1 (fig. 8) 2.6 3.6 6.5
2 (fig. 9) 3.9 7.2 51.7
3 (fig. 10) 3.1 4.9 76.6

TABLE III: Processing time distribution for the presented
simulations

sions, and tracking errors will be introduced to study the
strengths and limits of this algorithm.
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