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Abstract

The fluctuation analysis (FA) and the detrended fluctuation analysis (DFA)

make it possible to estimate the Hurst exponent H, which characterizes the self-

similarity of a signal. Both are based on the fact that the so-called fluctuation

function, which can be seen as an approximation of the standard deviation of the

process scaled in time by multiplying the time variable by a positive constant,

depends on H. The main novelty of the paper is to provide the expression of the

variance of the square of the fluctuation function, by using a matrix formulation.

We show that it depends on the correlation function of the signal under study

when it is zero-mean and Gaussian. Illustrations are given when dealing with

a zero-mean white Gaussian noise. Moving average processes and first-order

autoregressive processes are also addressed.

Keywords: DFA, FA, statistical analysis, variance.

1. Introduction

In signal processing, combining signal feature extraction and classification

is commonly used even if deep-learning based approaches become more and

more popular. There are various types of features that can be considered: the

signal power in some frequency bands or the power ratio such as the so-called

”LF/HF ratio”. As an alternative, quantities such as the mean of the signal,

its power, the zero-crossing rate but also the parameters of an a priori model

representing the data can be used. Autoregressive moving average parameters
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(ARMA) and mel frequency cepstral coefficients (MFCC) are often chosen by

the practitioners. Other types of approaches aim at quantifying the regularity

of the signal, which can be seen as the propensity to chaos. These techniques

can be based on entropy analysis such as Shannon entropy or the multi-scale

entropy [1]. When dealing with monofractal signals, the fluctuation analysis

(FA) and the detrended fluctuation analysis (DFA) initially proposed by Peng

early in the 90ies [2] [3] make it possible to estimate the Hurst coefficient, which

characterizes the overall regularity of a signal.

In the FA, the temporal mean of the signal that has been integrated and low-pass

filtered is computed whereas the DFA aims at addressing not only wide-sense-

stationary processes but also non-stationary ones. It is based on the following

ideas: 1/ removing the trend of the centered integrated signal. 2/ decimating

the resulting signal by a factor N , estimating the variance of the N sequences

that are obtained and averaging the estimated variances to get what the authors

usually call the square of the fluctuation function 3/ combining the values of

the fluctuation function computed for different values of N to deduce the Hurst

exponent.

A great deal of interest has been paid to these methods and various types

of contributions were presented. It should be noted that as various authors

working in different fields from mathematics to signal processing passing by

biomedical applications are interested in these methods, some topics may have

been addressed in a similar manner at the same period:

1/ due to the simplicity of execution, these methods have been applied in various

fields and more particularly in biomedical applications to classify biosignals such

as electroencephalograms [4], eye movements [5] speech signals [6] in order to

detect a pathology, a stress, etc.

2/ as the DFA is based on the estimation of the trend of the centered integrated

signal, different variants have been proposed and differ by the way the trend is

estimated. While the standard DFA is based on a discontinuous piecewise linear

function, extensions to higher-order polynomials have been proposed, leading to

the higher-order DFA. In addition, the adaptive fractal analysis (AFA) [7], the
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regularized DFA (RDFA) [8] and the continuous DFA (CDFA) [9] were devel-

oped to avoid discontinuities in the global trend. Low-pass linear filter based

methods such as the detrending moving average (DMA) [10] were also devel-

oped. Finally, methods bridging the gap between the DFA and the DMA have

been proposed. The higher-order DMA [11] can be interpreted as a solution

based on the locally estimated scatterplot smoothing (LOESS) whereas the one

based on the locally weighted scatterplot Smoothing (LOWESS) has been re-

cently accepted for publication [12]. See figure 1.

Figure 1: State of the art: three families of the DFA and its variants

3/ the extension to the analysis of multifractal time series have been addressed

for intance in [13] as well as fast versions [14].

4/ mathematical analyzes were also led to better understand the behaviors of

the DFA and its variants. In [15–25], the authors often aim at analyzing some

properties of the square of the fluctuation function. Thus in [26], Bardet et al.

study the time series defined by the square of the fluctuation function computed

for one part of size N . Among the results presented, they give an asymptotic1

expression of its statistical mean, its variance but also its covariance function

when a fractional Gaussian Noise is studied. These expressions depend on N and

H. They also show that the expectation of the square of the fluctuation function

of the sum of two independent zero-mean processes is the sum of the square of

1i.e. when N becomes large.
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the fluctuation function of the processes. In [27], Höll et al. propose to express

the square of the fluctuation function from an estimation of the correlation

function while in [23] the problem is presented differently, but the ideas are

quite similar. Thus, the signal under study is assumed to be the sum of two

terms: one being deterministic and the second being stochastic. After defining

the so-called path as the integrated version of the stochastic part of the signal,

Höll et al. analyze what they called the mean squared displacement (MSD) of

the path, which is the correlation function of the path for a lag equal2 to 0. They

express it from the correlation function of the stochastic part and from the Hurst

exponentH for different types of random parts. Instead of presenting the various

steps of the approaches as a set of equations to be implemented, other authors

have introduced a matrix formulation. Thus, Lovsletten in [22] and our team

[25, 28] independently took advantage of the matrix form to conduct statistical

analysis or to give physical interpretations of some steps of the DFA. Their

approach slightly differ: the mean is not necessarily removed in the algorithms;

the detailed expressions of the matrices for each variant can be given or not; some

simplifications are made or not. In [28], when the signal is wide sense stationary

(w.s.s.), the matrix formulation is a good way 1/ to express the statistical mean

of the square of the fluctuation function from the theoretical correlation function

of the signal3 2/ to represent the processing chain from the integration step to

the detrending step by an ”equivalent” linear filter whose impulse response

depends on the way to estimate the trend. The differences between the DFA

and its variants can hence be highlighted by comparing the frequency responses

of the equivalent filters. The non-stationary case is also addressed. In [25],

abacuses are derived to link the parameters of the processes modeling the signal

under study, the number of samples available and the value provided by the DFA

2If the deterministic part was the trend, this would correspond to the statistical mean of

the square of the fluctuation function.
3It is consistent with the results obtained by Höll [27] when the number of the samples

tends to infinity provided the signal is w.s.s. and ergodic.
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when the statistical mean of the square of the fluctuation function is considered.

In [24], the authors focus their attention on the distribution of the fluctuation

function of the DFA when a centered Gaussian process is studied. Starting from

the definition of the square of the fluctuation function as the sum of the square of

elementary differences between the integrated signal and the trend, they propose

to express each elementary error as a quadratic form and more particularly as the

product of one ”difference vector” storing the samples of difference between the

signal and its trend in each frame multiplied by its transpose. Then, the authors

propose to derive the statistical mean and the variance of each elementary error.

They express them in terms of the eigenvalues of the correlation matrix of the

difference vector. They apply it to a Gaussian white noise and a fractionally

integrated noise. Moreover, the specificity of the DFA has been also studied in

[29] and [30] where an empirical analysis for autoregressive (AR) processes is

led. The analysis of the fluctuation function of the DFA when dealing with a

first-order AR process was also addressed in [31].

Remark: a more exhaustive state of the art is provided in [9] and [25]. As they

have been recently published, the reader may refer to both papers.

In this paper, based on a matrix formulation, we derive the expression of the

variance of the square of the fluctuation function for any process under study.

It appears that it depends on the correlation function of the signal when the

latter is zero-mean. The reasoning is first illustrated with a zero-mean white

Gaussian noise for which an analytical expression of the variance depending on

the parameters of the DFA and the noise variance is provided. The impact of the

order of the variant is presented. A comparison with the statistical properties of

the square of the fluctuation function obtained with the FA is also done. Then,

the case of the qth-order moving average (MA) process and a first-order AR

process is addressed, by presenting the methodology to follow. The illustrations

are provided for short-memory processes, but similar results could be obtained

with long-memory processes.

The remainder of the paper is organized as follows: after introducing some

notations in section 2, section 3 recalls the main steps of the FA and the DFA.
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The matrix form is used at each step. In section 4, some comments are done and

serve as a basis to derive the variance of the square of the fluctuation function

of the DFA or its higher-order variant. The white noise case is first considered.

Then, and more generally, a way to study random processes is proposed.

2. Notations

Let us first define some notations that will be useful to present the main

steps of the FA and the DFA. They are the same as the ones used in [9] or [25].

• 0j×k is a matrix of size j × k filled with 0s and 1j×k is a matrix of size j × k

filled with 1s.

• Jj = Ij − 1
j1j×j , with Ij the identity matrix.

• HM =
∑M−1
r=0 diag(11×M−r,−r) is a lower triangular matrix filled with 1s.

HN is similarly defined, except that M is replaced by N .

• Tr(X, r) is the sum of the elements of the rth diagonal of the matrix X.

• Y and Yint are two column vectors of size M storing {y(n)}n=1,...,M and

{yint(n)}n=1,...,M , being respectively the samples of the signal and the integrated

centered ones. Given the notations introduced above, one has:

Yint = [yint(1), yint(2), ..., yint(M)]T = HMJMY (1)

Introducing Cj,k = [0j×k Ij 0j×(M−(j+k))] a matrix of size (j,M), the first

LN elements of the vector Yint denoted as Yint(1 : LN) can be expressed as

follows:

Yint(1 : LN) = [yint(1), yint(2), ..., yint(LN)]T = CLN,0Yint =
(1)
CLN,0HMJMY (2)

• Yl = Y ((l − 1)N + 1 : lN) is the lth part of size N of the vector Y .

3. Presentation of the FA and the DFA

A time-continuous process y is said to be self-similar with parameter H if

and only if y(Nt)
d
= NHy(t), where

d
= means an equivalency in terms of finite

joint distribution and H is the self-similarity parameter or the Hurst exponent.
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Therefore, the standard deviation of y(Nt) is equal to the standard deviation

of y(t), up to a multiplicative factor equal to NH .

In [2], Peng suggested estimating H on discrete-time signals with the FA, oper-

ating with the following two steps:

Step 1. the signal y is integrated.

Step 2. By denoting < . > the temporal mean, the square of the fluctuation

function F 2
000 (N) is computed for different values of the lag N .

F 2
000 (N) =

〈(
i+N∑

j=i+1

y(j)

)2〉
=

〈
i+N∑

j=i+1

y2(j) + 2

N−1∑
r=1

i+N−r∑
j=i+1

y(j)y(j + r)

〉
(3)

Due to the integration step, F 2
000 (N) is proportional to N2(H+1). Therefore,

log(F 2
000 (N)) is represented as an affine function of log(N) to estimate H in the

least-square (LS) sense.

Since the FA was sensitive to the existence of a trend, the DFA was devel-

oped by Peng in [3]. Using a matrix formalism on M consecutive samples

{y(m)}m=1,...,M of the signal, the standard DFA is defined by the following

steps:

Step 1. The profile is computed as follows: yint(m) =
∑m
i=1(y(i)− µy) where

µy = 1
M

∑M
m=1 y(m) is the mean of y.

Step 2. Splitting the profile into L non-overlapping parts of length N , i.e.

{yint,l(n)}l=1,...,L with4 n ∈ [[1;N ]], the dth-degree-polynomial based trend of

the lth part is given by:

Tloc,l,d = Al,dθl,d ∀l ∈ [[1;L]] (4)

with θl,d =
[
al,0 al,1 ... al,d

]T
storing the (d+1) polynomial parameters and Al,d

a N × (d+1) matrix whose cth column is defined by {[(l−1)N +n]c−1}n=1,...,N ,

with c = 1, ..., d+ 1.

By introducing Θ111,d =
[
θT1,d . . . θ

T
L,d

]T
and the (LN × (d+ 1)L) block diagonal

matrix A111,d defined from the set of matrices {Al,d}l=1,...,L, the parameters of

4The first LN ≤ M samples of the profile are processed, with L the integer part of the

ratio M
N

.
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all the local trends can be estimated in the LS sense for d > 0 as follows:

Θ̂111,d = (AT111,dA111,d)
−1AT111,dCLN,0Yint (5)

Using (1) and (5), the global trend vector T111,d can be expressed by:

T111,d = A111,dΘ̂111,d = A111,d(A
T
111,dA111,d)

−1AT111,dCLN,0HMJMY (6)

Step 3. The residual vector R111,d, also known as detendred profile, is:

R111,d = CLN,0HMJMY− T111,d = B111,dY (7)

Then, given Γ111,d = 1
LNB

T
111,dB111,d, the power of the residual F 2

111,d(N), which cor-

responds to the square of the fluctuation function, can be deduced as follows:

F 2
111,d(N) = Tr

(
Γ111,dY Y

T
)

(8)

In a recent paper [25], we analyzed the structure of the matrix Γ111,d and pointed

out the fact that it was a block-diagonal matrix, where each block of dimension

N ×N is equal to γ111,d defined by:

γ111,d =
1

N
HT
NA111,d

TA111,dHN (9)

where A111,d = IN −A1,d(A
T
1,dA1,d)

−1AT1,d.

Taking into account the structure of the matrix Γ111,d and its link with γ111,d,

the square of the fluctuation function F 2
111,d(N) given in (8) can be rewritten as

follows:

F 2
111,d(N) =

1

L

L∑
l=1

Y Tl γ111,dYl (10)

Remark: as we will see in the rest of the paper, (8) and (10) can be used to

derive the statistical mean of F 2
111,d(N) whereas (10) will be rather considered to

get the variance.

Step 4. Steps 2 and 3 are repeated for different values of N . As F 2
111,d(N) is

proportional to N2α with α = H + 1 due to the signal integration, log(F 2
111,d(N))

is plotted as a linear function of log(N). The final step consists in searching the

straight line fitting the log-log representation. Its slope is estimated in the LS

8



sense. Depending on the number of samples that are available, the practitioner

can select the values of N he can use to deduce the slope. Note that H is a non

linear function of the signal due to the logarithm function.

4. Statistical analysis

Given the above brief presentation, after recalling the expression of the sta-

tistical mean, let us derive the variance of the square fluctuation function when

the DFA (or the higher-order DFA) is used.

4.1. About the statistical mean of the square of the fluctuation function

When the signal is w.s.s., the expectation of the square of the fluctuation

function can be expressed the same way. Indeed, using (3), one has:

E[F 2
000 (N)] =

N−1∑
r=1−N

Tr(Γ000, r)Ry,y(r) (11)

where Ry,y(τ) is the autocorrelation function of the signal y and Γ000 is a square

matrix of size N whose every element is equal to 1.

Similarly, as initially shown in [9], taking the statistical mean of (8) and due to

the link between Γ111,d and γ111,d, one gets:

E[F 2
111,d(N)] =

N−1∑
r=−N+1

Tr(Γ111,d, r)Ry,y(r) =

N−1∑
r=−N+1

Tr(γ111,d, r)Ry,y(r) (12)

Remark: The above result is not new. See [9] and [25]. It is recalled in the paper

because it will be useful to compute the variance of the square of the fluctuation

function.

Remark 2: The same result could be obtained using the new expression (10) we

introduce in this paper. Indeed, one has:

E[F 2
111,d(N)] =

1

L

L∑
l=1

E[Y Tl γ111,dYl] =
1

L

L∑
l=1

E[Tr(γ111,dYlY
T
l )] (13)

=
1

L

L∑
l=1

Tr(γ111,dE[YlY
T
l ])
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When y is w.s.s., E[YlY
T
l ] = RY,N for any l = 1, ..., L. This is the correlation

matrix of a vector storing N consecutive samples of the process y. It is a Toeplitz

matrix. This leads to:

E[F 2
111,d(N)] =

1

L

L∑
l=1

Tr(γ111,dRY,N ) = Tr(γ111,dRY,N ) (14)

=

N−1∑
r=−N+1

Tr(γ111,d, r)Ry,y(r)

Let us now address the variance of the square of the fluctuation function of the

DFA, which is the main novelty of the paper.

4.2. About the variance of the square of the fluctuation function

To get the variance of the square of the fluctuation function, F 4
111,d(N) needs

to be first expressed because E[F 4
111,d(N)] must be computed. It satisfies:

F 4
111,d(N) =

1

L2

(
L∑
l=1

Y Tl γ111,dYl

)2

(15)

=
1

L2

L∑
l=1

Y Tl γ111,dYlY
T
l γ111,dYl +

2

L2

L−1∑
l=1

L∑
m=l+1

Y Tl γ111,dYlY
T
mγ111,dYm

The next step of the reasoning is to express F 4
111,d(N) using a matrix form. There-

fore, let us introduce the following two column vectors of length N(N+1)
2 :

Y T
l =

[
y2((l − 1)N + 1) ... y2(lN) (16)

y((l − 1)N + 1)y((l − 1)N + 2) ... y((l − 1)N + 1)y(lN)

y((l − 1)N + 2)y((l − 1)N + 3) ... y((l − 1)N + 2)y(lN) ... y(lN − 1)y(lN)
]

The above vector Y Tl is defined from the squares of the N samples of the vector

Yl and the N2−N
2 cross-products that can be defined from two different samples

of Yl.

γT
111,d

=
[
γ111,d(1, 1) ... γ111,d(N,N) 2γ111,d(1, 2) ... 2γ111,d(1, N) (17)

2γ111,d(2, 3) ... 2γ111,d(2, N) ... 2γ111,d(N − 1, N)
]

10



where γ111,d(i, j) is the element of the matrix γ111,d located at the ith row and the

jth column.

Remark: there are other ways to define the vector Y Tl and consequently γT
111,d

.

Thus, another definition could be:

Y T
l =

[
y2((l − 1)N + 1) ... ... ... y((l − 1)N + 1)y(lN) (18)

y2((l − 1)N + 2) ... ... y((l − 1)N + 2)y(lN)

y2((l − 1)N + 3) ... y((l − 1)N + 3)y(lN)

...

y2(lN)
]

In this case, the vector Y l consists of N blocks whose dimension decreases from

N to 1, starting by the element equal to y2((l − 1)N + bl) and ending by the

element equal to y((l − 1)N + bl)y(lN) with bl = 1, ..., N . In this case, γT
111,d

becomes:

γT
111,d

=
[
γ111,d(1, 1) ... γ111,d(1, N) 2γ111,d(1, 2) ... 2γ111,d(1, N) (19)

2γ111,d(2, 3) ... 2γ111,d(2, N) ... 2γ111,d(N,N)
]

As we will see, depending on the random process under study, the second defi-

nition can be more convenient than the first one.

At this stage and whatever the definition chosen for Y l (i.e. (16) or (18)), let

us rewrite the scalar Y Tl γ111,dYl as follows:

Y Tl γ111,dYl = Y Tl γ111,d = γT
111,d
Y l (20)

This hence leads to: Y Tl γ111,dYlY
T
l γ111,dYl = Y Tl γ111,dγ

T
111,d
Y l = Tr(γ

111,d
γT
111,d
Y lY

T
l )

E[Y Tl γ111,dYlY
T
l γ111,dYl] = Tr(γ

111,d
γT
111,d
E[Y lY

T
l ])

(21)

where E[Y lY
T
l ] is the correlation matrix of the vector Y l defined from the cross

moments of different orders of the process y.

Similarly, one has: Y Tl γ111,dYlY
T
mγ111,dYm = Y Tl γ111,dγ

T
111,d
Y m = Tr(γ

111,d
γT
111,d
Y mY

T
l )

E[Y Tl γ111,dYlY
T
l γ111,dYm] = Tr(γ

111,d
γT
111,d
E[Y mY

T
l ])

(22)
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where E[Y mY
T
l ] is the cross-correlation matrix of the vectors Y m and Y l.

When the signal is w.s.s., RY is the correlation matrix of Y l for any value of

l = 1, ..., L. Combining (15), (21) and (22) leads to:

E[F 4
111,d(N)] =

1

L2

L∑
l=1

Tr(γ
111,d
γT

111,d
E[Y lY

T
l ]) +

2

L2

L−1∑
l=1

L∑
m=l+1

Tr(γ
111,d
γT

111,d
E[Y mY

T
l ])

(23)

=
1

L
Tr(γ

111,d
γT

111,d
RY ) +

2

L2

L−1∑
l=1

L∑
m=l+1

Tr(γ
111,d
γT

111,d
E[Y mY

T
l ])

Therefore, using (14) and (23), the variance of the square of the fluctuation

function is given by:

V ar([F 2
111,d(N)]) = E[F 4

111,d(N)]− E2[F 2
111,d(N)] (24)

=
1

L
Tr(γ

111,d
γT
111,d
RY ) +

2

L2

L−1∑
l=1

L∑
m=l+1

Tr(γ
111,d
γT
111,d
E[Y mY

T
l ])− Tr2(γ111,dRY,N )

The method we present provides an expression of the variance using a matrix

form. In terms of methodology, no approximation is done whatever the value

of N and no assumption is made on the number of samples available or on the

ergodicity of the random process under study. This expression can be considered

for any w.s.s. process provided that RY,N , E[Y mY
T
l ] and RY are available. In

the next section, let us apply this approach on different processes.

5. Applications

We first propose to apply our analysis on a toy example which is a zero-mean

white Gaussian noise. For this case, the means and the variances of the square

of the fluctuation functions of the FA and the DFA are compared. Note that

we provide analytical expressions of these quantities, which depend on L, N ,

the elements of the matrix Γ111,d and the variance of the white noise. Then, we

focus our attention on the way to proceed to obtain the variance of the square of

fluctuation when applying the DFA or its higher-order variant on MA processes

or on a first-order AR process.
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5.1. Case of a white noise

Let us consider a w.s.s. zero-mean white Gaussian noise with variance σ2
m

whose properties are recalled below: E[y2(k)] = σ2
m E[y4(k)] = 3σ4

m

E[y2(k)]E[y2(l)] = σ4
m with k 6= l

(25)

5.1.1. Statistical mean and variance of the square of the fluctuation function

Since the Hurst exponent is equal to − 1
2 , F 2

000 (N) should be proportional

to N2(H+1) = N . Similarly, F 2
111,d(N) should be proportional to N . Thus, for

this particular random process, when the square of the fluctuation functions are

represented as functions of N , a straight line passing by the origin should be

obtained, no matter what the value of the slope can be5.

On the one hand, given the information provided above, one has for the FA:

E[F 2
000 (N)] = Nσ2

m (26)

This confirms the statement presented above. Then, starting from (3), after

development and simplification, one can show that the second-order moment

F 2
000 (N) for a white noise is given by E[F 4

000 (N)] = 3N2σ4
m. This makes it possible

to express the variance of the square of the fluctuation function when the FA is

used:

V ar[F 2
000 (N)] = 3N2σ4

m −N2σ4
m = 2N2σ4

m (27)

On the other hand, one has for the DFA:

E[F 2
111,d(N)] = σ2

mTr(Γ111,d, 0) (28)

The study made in [27] and confirmed by numerical simulations in [25] showed

that:

E[F 2
111,1(N)] = σ2

m

N2 − 4

15N
(29)

5Let us recall that looking at the slope is useful when representing the logarithm of the

fluctuation function with respect to log(N).
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This means that E[F 2
111,1(N)] tends to become proportional to N provided that

N takes large values.

Let us now address V ar[F 2
111,d(N)]. More particularly, let us express the three

terms of the sum defining V ar([F 2
111,d(N)]) in (24). In this case, Y l and Y m are

independent. E[Y lY
T
l ] = E[Y l]E[Y Tl ]. In addition, RY,N = σ2

mIN . Thus, using

(22), one has:

Tr(γ
111,d
γT
111,d
E[Y mY

T
l ]) = Tr(γT

111,d
E[Y mY

T
l ]γ

111,d
) = γT

111,d
E[Y mY

T
l ]γ

111,d
(30)

=
indep.

γT
111,d
E[Y m]E[Y Tl ]γ

111,d

=
(20)

E[Y Tmγ111,dYm]E[Y Tl γ111,dYl] = Tr2(γ111,dRY,N )

= σ4
mTr

2(γ111,d)

Note that the trace is removed in the second equality presented in (30) because

the quantity γT
111,d
E[Y mY

T
l ]γ

111,d
is a scalar.

Using the above result, the expression of the variance becomes:

V ar([F 2
111,d(N)]) =

1

L
Tr(γ

111,d
γT
111,d
RY ) +

2

L2

L2 − L
2

σ4
mTr

2(γ111,d)− σ4
mTr

2(γ111,d)

(31)

=
1

L
Tr(γ

111,d
γT
111,d
RY )− σ4

m

L
Tr2(γ111,d)

The next step is to express Tr(γ
111,d
γT
111,d
RY ). First of all, let us give the expression

of RY based on the first definition (16) of Y l. It is a block diagonal matrix.

The first block of size N ×N is defined by:

RY (1 : N, 1 : N) =


3σ4

m σ4
m . . . σ4

m

σ4
m

. . .
. . .

...
...

. . .
. . . σ4

m

σ4
m . . . σ4

m 3σ4
m

 (32)

The N−1 other blocks are square and of dimensions l that decreases from N−1

14



to 1. They are equal to σ4
mIl. Therefore, one has:

1

L
Tr(γ

111,d
γT
111,d
RY ) =

σ4
m

L

[
3

N∑
k=1

γ2111,d(k, k) + 2

N−1∑
k=1

N∑
l=k+1

γ111,d(k, k)γ111,d(l, l) (33)

+ 4

N−1∑
k=1

N∑
l=k+1

γ2111,d(k, l)
]

To end up, let us express Tr2(γ111,d):

Tr2(γ111,d) =

N∑
k=1

(γ111,d(k, k))2 + 2

N−1∑
k=1

N∑
l=k+1

γ111,d(k, k)γ111,d(l, l) (34)

Therefore, the variance of the square of the fluctuation function for the DFA -in

its standard version where d = 1 or in its higher-order variant- can be rewritten

as follows:

V ar[F 2
111,d(N)] =

2σ4
m

L

( N∑
k=1

(γ111,d(k, k))2 + 2

N−1∑
k=1

N∑
l=k+1

(γ111,d(k, l))
2
)

(35)

5.1.2. Illustration

In Fig. 2, 3, 4 and 5, E[F 2
000 (N)]±

√
V ar(F 2

000 (N)) and E[F 2
111,d(N)]±

√
V ar(F 2

111,d(N))

are represented as functions of N when M = N, 2N, 3N, 4N (or equivalently

L = 1, 2, 3, 4).

Concerning the variance of the square of the fluctuation function, it becomes

smaller and smaller when L increases. This is consistent with the expression

obtained in (35). One can also look at the influence of the order d. For instance,

for N = 110, the larger the order, the smaller the variance.

A comparison between the values of log(E[F 2
000 (N)] +

√
V ar(F 2

000 (N))) and

log(E[F 2
111,1(N)] +

√
V ar(F 2

111,1(N))) as functions of log(N) is finally shown Fig. 6

to illustrate all the steps of the FA and the standard DFA.

5.2. Case of a Gaussian moving average process or a first-order autoregressive

process

Let us now address the case of a w.s.s. real Gaussian qth-order moving

average process, whose kth sample, denoted as y(k), is defined as follows:

y(k) =

q∑
j=0

bju(k − j) (36)
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Figure 2: Evolution of E[F 2
000 (N)]±

√
V ar(F 2

000 (N)), i.e. the statistical mean of the square of

the fluctuation function in the FA case, plus or minus its standard deviation, when N increases

Figure 3: Evolution of E[F 2
111,1(N)] ±

√
V ar(F 2

111,1(N)), i.e. the statistical mean of the square

of the fluctuation function in the 1st-order DFA case, plus or minus its standard deviation,

when N increases. The different colors and symbols represent different values of the length

M : M = N, 2N, 3N, 4N etc.

where u(k) is the kth sample of the driving process, assumed to be white, Gaus-

sian, zero-mean with variance σ2
m. b0 = 1 and {bj}j=0,...,q denote the MA

16



Figure 4: Evolution of E[F 2
111,2(N)] ±

√
V ar(F 2

111,2(N)), i.e. the statistical mean of the square

of the fluctuation function in the 2nd-order DFA case, plus or minus its standard deviation,

when N increases. The different colors and symbols represent different values of the length

M : M = N, 2N, 3N, 4N etc.

parameters.

As done for the white noise, let us recall some statistical properties of the MA

process. It is a zero-mean process since:

E(y(k)) =

q∑
j=0

bjE(u(k − j)) = 0 (37)

Its correlation function Ryy(τ) = Ryy(−τ) satisfies for τ ≥ 0:

E(y(k)y(k − τ)) = E(y(k)y(k + τ)) =


σ2
u

q∑
j=τ

bjbj−τ for τ ≤ q

0 otherwise

(38)

As the MA process is zero-mean, its third-order moment6 M3,y(τ1, τ2) is equal

to the third-order cumulant C3,y(τ1, τ2) of the process y. As the process is

Gaussian, it is equal to 0. Similarly, its fourth-order moment M4,y(τ1, τ2, τ3)

6The lags {τi}i are assumed to be positive and usually ordered.
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Figure 5: Evolution of E[F 2
111,3(N)] ±

√
V ar(F 2

111,3(N)), i.e. the statistical mean of the square

of the fluctuation function in the 3rd-order DFA case, plus or minus its standard deviation,

when N increases. The different colors and symbols represent different values of the length

M : M = N, 2N, 3N, 4N etc.

can be expressed from the fourth-order cumulant C4,y(τ1, τ2, τ4) of the process

and the correlation function as follows:

M4,y(τ1, τ2, τ3) = E(y(k)y(k + τ1)y(k + τ2)y(k + τ3)) = C4,y(τ1, τ2, τ4) (39)

+Ryy(τ1)Ryy(τ2 − τ3) +Ryy(τ2)Ryy(τ3 − τ1) +Ryy(τ3)Ryy(τ1 − τ2)

As the process is Gaussian, the fourth-order cumulant is null and the fourth-

order moment of the MA process reduces to:

M4,y(τ1, τ2, τ3) = Ryy(τ1)Ryy(τ2 − τ3) +Ryy(τ2)Ryy(τ3 − τ1) +Ryy(τ3)Ryy(τ1 − τ2)

(40)

where the correlation function is defined from the MA parameters and the vari-

ance of the driving process in (38). Usually, the lags τ1, τ2 and τ3 are ordered,

but this does change the result if this is not the case.

Let us now recall the case of a w.s.s. real Gaussian 1st-order autoregressive

process defined by:

y(k) = −a1y(k − 1) + u(k) (41)
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Figure 6: Comparison between log(E[F 2
iii (N)] +

√
V ar(F 2

iii (N))) plus its standard deviation,

when log(N) increases. The different colors and symbols represent the different approaches

(FA and DFA d = 1) and the values of the length M considered for the DFA: M = N, 2N, 3N .

where a1 is the AR parameter whose modulus is strictly smaller than 1.

Due to the statistical property of the driving process u, E(y(k)) = 0. In addi-

tion, its correlation function satisfies:

Ryy(τ) =
(−a1)|τ |

1− a21
σ2
u (42)

As the process is zero-mean and Gaussian, its third-order moment M3,y(τ1, τ2)

is equal to 0. The fourth-order moment also satisfies (40) and hence can be

expressed from the correlation function (42).

As the mean of the square of the fluctuation function has been already addressed

in a recent paper [25] and for the sake of space, let us focus on how to get its

variance, without any approximation.
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5.2.1. How to get the variance of the square of the fluctuation function?

Let us express the three terms of the sum defining V ar([F 2
111,d(N)]) in (24) given

the properties presented above. Firstly, Tr2(γ111,dRY,N ) can be expressed from

the correlation function. Moreover, 1
LTr(γ111,dγ

T
111,d
RY ) = 1

LTr(γ111,dγ
T
111,d
E[Y lY

T
l ])

and E[Y mY
T
l ]) depend on the correlation between vector Y m and Y l, m and

l being able to equal or not. It is hence defined from the fourth-order mo-

ment given in (40) and consequently on products between different values of the

correlation function.

To simplify the way to present the result we propose to use the second definition

(18) of the vector Y l. In this case, at the cth row of the bthl block of the row

vector Y Tl , the element is defined by y((l − 1)N + bl)y((l − 1)N + bl + c − 1),

where bl = 1, ..., N and c = 1, ..., N − bl + 1. Similarly, Y m is defined by

y((m − 1)N + bm)y((m − 1)N + bm + r − 1), where bm = 1, ..., N and r =

1, ..., N − bm+ 1. Therefore, E[y((m−1)N + bm)y((m−1)N + bm+ r−1)y((l−
1)N + bl)y((l − 1)N + bl + c− 1)] is given by:

M4,y(r − 1, (l −m)N + bl − bm, (l −m)N + bl − bm + c− 1) if l > m

M4,y(c− 1, (m− l)N + bm − bl, (m− l)N + bm − bl + r − 1) if l < m

M4,y(c− 1, bm − bl, bm − bl + r − 1) if l = m and bm ≥ bl

M4,y(r − 1, bl − bm, bl − bm + c− 1) if l = m and bl > bm

(43)

It should be noted there are different cases because the minimum index among

(m−1)N + bm, (m−1)N + bm+r−1, (l−1)N + bl and (l−1)N + bl+ c−1 has

to be searched to define the three lags characterizing the fourth-order moment.

Thus, when l > m, the smallest value is necessary (m−1)N +bm. When m > l,

the smallest value is necessary (l − 1)N + bl. When m = l, this depends on bl

and bm.

Combining (38) and (40) for the MA process and (42) and (40) for the AR

process, one can express the element of the block matrix E[Y mY
T
l ]) located at

the rth row and cth column of the block of dimension of (N − br) × (N − bc).
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Thus, as an example, when l = m and N = 3, one has:

RY =



M4,y(0, 0, 0) M4,y(1, 0, 0) M4,y(2, 0, 0) M4,y(0, 1, 1) M4,y(0, 1, 2) M4,y(0, 2, 2)

M4,y(0, 0, 1) M4,y(1, 0, 1) M4,y(2, 0, 1) M4,y(1, 1, 1) M4,y(1, 1, 2) M4,y(1, 2, 2)

M4,y(0, 0, 2) M4,y(1, 0, 2) M4,y(2, 0, 2) M4,y(2, 1, 1) M4,y(2, 1, 2) M4,y(2, 2, 2)

M4,y(0, 1, 1) M4,y(1, 1, 1) M4,y(2, 1, 1) M4,y(0, 0, 0) M4,y(1, 0, 0) M4,y(0, 1, 1)

M4,y(0, 1, 2) M4,y(1, 1, 2) M4,y(2, 1, 2) M4,y(0, 0, 1) M4,y(1, 0, 1) M4,y(1, 1, 1)

M4,y(0, 2, 2) M4,y(1, 2, 2) M4,y(2, 2, 2) M4,y(0, 1, 1) M4,y(1, 1, 1) M4,y(0, 0, 0)


(44)

The above matrix is symmetric. The block located on the main diagonal has

even a Toeplitz structure as the order of the lags does not have an influence.

The reader will understand that, as done for the white noise, one could combine

all the equations that have been presented in this section to get an analytical

expression of the variance V ar[F 2
111,d(N)], but the latter would be quite long.

The matrix form remains more convenient.

6. Conclusions

Evaluating the variance of the square of the fluctuation function appearing

in the DFA is of interest as the estimation of the Hurst exponent is more reliable

when the variance of the square of the fluctuation function is small. The matrix

formulation we introduced in [9] and used in [25] brings in much to derive it as

there is no approximation. Then, we chose to illustrate our reasoning with a

white noise. When comparing the DFA and the FA, one can see that the variance

is much smaller with the DFA. We also show how to deal with moving average

process and autoregressive process. We can see that the variance depends on the

correlation function of the process when the process under study is Gaussian and

zero mean. Finally, the standard DFA was considered, but the same reasoning

could be done for the higher-order DFA.
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