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Ocean wave transmission, reflection and
absorption by rows of vertical structures along

the coastline
Alexis Mérigaud, Benjamin Thiria, and Ramiro Godoy-Diana

Abstract—Large arrays of wave-absorbing structures
could serve the double objective of coastal protection
against erosion and clean, renewable electrical power pro-
duction. In this work, the principle of an artificial canopy is
explored, which consists of vertical structures, arranged in
rows parallel to the coastline. Sea waves, which propagate
towards the shore, interact with the obstacle rows. A part
of the wave energy is reflected back towards the ocean,
another part is transmitted to the shoreline, while the rest
of the energy is, in theory, available for energy production
(although losses, due to viscous effects within the fluid, or
imperfect efficiency of the power conversion mechanism,
will unavoidably take place). First, a simple geometric
representation of the reflection/transmission properties of
individual, fixed rows is presented. In the case of mov-
ing rows, relationships are drawn between the internal
stiffness and damping parameters of the devices, on the
one hand, and their reflection, transmission and absorption
characteristics, on the other hand. Array properties are
then examined, depending on both individual row design
parameters and row-to-row spacing values, using the wide-
spacing approximation. A numerical case study illustrates
the capabilities of the proposed modelling framework, with
arrays of vertical, oscillating rectangular plates. The trans-
mitted, reflected and absorbed wave spectra are examined,
along with their dependencies on individual oscillator
control tuning and array design parameters.

Index Terms—Oscillating wave surge converter, WEC
arrays, optimal control, wave spectrum, Bragg resonances

I. INTRODUCTION

OCEAN waves transport vast amounts of energy,
with the potential to be transformed into useful,

exploitable energy forms [1]. For instance, in Europe,
wave energy could be a significant contributor to the
electricity supply, with an estimated 300 to 400 GW
potential along European Atlantic coastlines alone [2].
In addition to purveying clean, renewable power, large
arrays of wave energy absorbing structures may also
serve the objective of mitigating coastal erosion along
the shoreline [3], by mimicking the wave reduction
effect of natural coastal defences such as mangroves,
salt-marshes or seagrass and kelp beds [4], [5]. Such
coastal protection effects are only seldom addressed
in the wave energy literature; see however [6] for

In Proceedings of the 11th European Wave and Tidal Energy Conference
5-9th Sept 2021, Plymouth, UK. This project has received funding
from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No
842967.
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CNRS UMR 7636, ESPCI Paris—PSL University, Sorbonne Uni-
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a recent review of possible synergies between wave
energy harvesting and other applications.

Among wave energy converter concepts, oscillat-
ing wave surge converters (OWSCs), which primarily
exploit the horizontal fluid motion, are identified as
one of the most promising and mature technological
options [2]. Traditional OWSC designs consist of a rigid
flap with a flat geometry, pitching around a rotation
point, which can be fixed to the sea bed or floating [7].
Recent work has investigated the benefits of an array
of rigid flaps with curved geometry [8]. Alternatively,
[3], [9] has explored an artificial canopy of bio-inspired,
flexible OWSCs, with the two objectives of coastline
protection and energy harvesting. These arrays of flex-
ible structures may indeed present benefits in terms of
survivability and absorption capabilities, in the same
way that aquatic vegetation can withstand and dissi-
pate surface wave energy [10], [11].

From the theoretical point of view, on the one hand,
each element of the artificial canopy acts as an oscil-
lator, with its intrinsic natural frequency and damping
coefficient - that is the most commonly-adopted per-
spective in the wave energy literature. On the other
hand, the array as a whole can be viewed as a metama-
terial, with properties related to its internal structure,
such as the existence of crystallographic effects analog
to those observed in solid-state physics or acoustics—
e.g. Bragg resonances [12]–[14]. In a broader context
than wave energy harvesting, several studies have ex-
plored those ideas in different systems, designed with a
view to water wave propagation engineering, ranging
from the refraction phenomena of water waves propa-
gating through an array of bottom-mounted structures
[14], [15], to the tuning of the sea bed topography [16],
[17], or the deployment of floating membranes with a
crystalline array of defects that confer unique propaga-
tion features to the resulting hydroelastic waves [18].

In this work, an artificial canopy of generic OWSCs
is numerically studied, where the devices are ar-
ranged into a number of rows parallel to the coast-
line. Each row is considered infinite, and consists of
regularly-spaced devices. Incident waves can be rea-
sonably assumed long-crested, with crests also parallel
to the coastline, due to nearshore refraction effects. The
OWSC array behaviour is mathematically and numer-
ically determined using a recursive approach, based
on the so-called wide-spacing approximation (WSA) [19],
more often termed “plane wave approximation” in
the wave energy literature [20]. The principle of the
approach employed here is as follows: First, solving the
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hydrodynamic diffraction-radiation problem for any
row, taken in isolation, allows the determination of
complex wave transmission and reflection coefficients
for that specific row. Then assuming that transmis-
sion and reflection coefficients have been calculated
for every such row, and relying on the WSA, which
neglects evanescent wave modes in the calculation
of interaction effects, the reflection and transmission
properties of the whole array can be solved recursively,
as new rows are successively added to the array.
Furthermore, in the special case of regularly-spaced,
identical rows, analytical formulae can be derived for
the global transmission and reflection coefficients.

The WSA, on which the recursion outlined above
relies, is rarely used in the wave energy literature (see
[20] and references therein), and encounters theoretical
limitations which must not be overlooked. In particu-
lar, the row-to-row spacing should be, in theory, larger
than the wavelength, whence the terminology wide-
spacing approximation, while individual device dimen-
sions must be assumed smaller than the wavelength.
Nevertheless, a number of numerical and experimental
results, e.g. [21], Chap. 3 of [22], Chap. 6 of [23],
suggest that the WSA remains accurate, even when
the former underlying assumption is clearly violated.
Experimental results in a small scale wave tank, re-
cently reported in [24], confirm the appropriateness of
the WSA to model interaction effects in an array of two
and three rows of flexible OWSCs, even when the row-
to-row spacing is only a fraction of the wavelength.
Overall, for the present problem, the proposed WSA
approach seems appropriate and computationally at-
tractive, because of the large array size to be treated. In
spite of its relative simplicity, the approach highlights
a rich variety of array behaviours, and allows the
determination of quantities of interests, in particular
the reflected and transmitted wave fields, as well as
the array energy absorption.

This study begins, in Section II, by showing the
fundamental connections that exist between, on the
one hand, the distinctive features of a single OWSC
row, i.e. its geometrical, hydromechanical and power
take-off (PTO) characteristics, and, on the other hand,
the corresponding transmission, reflection and energy
absorption properties. The aforementioned connections
are visually represented in a simple geometrical frame-
work. Section III briefly explains how, based on the
WSA, the transmission, reflection and absorption prop-
erties of an array with multiple rows can be recursively
determined. An analytical solution is given for the
case of an infinite number of identical, regularly-spaced
rows. A numerical case study is described in Section
IV, and its results are reported in Section V. The case
of fixed structures is first examined, before arrays of
moving structures, in other words, OWSCs, are inves-
tigated. The reflected, transmitted and absorbed wave
power spectra are given special attention. Finally, in
Section VI, results are summarised and discussed, and
avenues for future work are outlined.

Fig. 1. An array of wave absorbing vertical blades

II. REFLECTION, TRANSMISSION AND ABSORPTION BY
A PERIODIC ROW OF OSCILLATING WAVE SURGE

CONVERTERS

In this section, the properties of a single row of
obstacles, in terms of wave transmission, reflection
and absorption, are examined. We follow [24] in II-A
and II-B for the presentation of the classical theoretical
framework, while II-C introduces the case of moving,
wave-absorbing structures and the effect of their con-
trol parameters onto their transmission, reflection and
absorption properties.

A. Problem formulation and notations
Consider an array of thin, vertical structures ar-

ranged in parallel rows, such as that illustrated in
figure 1, where the extent of each row is infinite along
the y axis. The water depth is assumed constant and
equal to 20 m. Linear potential flow theory is assumed.

The undisturbed incident wave is a plane wave
propagating in the x direction, orthogonal to the rows.
The array is assumed periodic in the transverse y direc-
tion, with periodicity smaller than the wavelength; in
other words, λ > W . Therefore, there are no transverse
modes in the flow velocity potential propagating away
from a single row [25], and the waves propagating
across consecutive rows can thus be represented as
plane waves.

The incoming wave is described by means of the
free-surface elevation (FSE), η0, given by the following
equation:

η0(x, t) = <{η̂0ej(kx−ωt)} (1)

where k = 2π/λ is the wave number, ω is the wave
frequency and η̂0 is the complex wave amplitude.
As the incoming plane wave travels through a given
row, the wave-row interaction results in a transmitted
plane wave and a reflected plane wave, away from
the row, due to the transverse periodicity smaller than
λ. Because of the problem linearity, the transmitted
and reflected complex wave amplitudes are linearly
related to the incoming plane wave through (complex)
transmission and reflection coefficients, respectively.

Such a simple representation omits the evanescent
modes in the row-to-row interaction process, which
are essential to describe the flow in the close vicinity
of each row of obstacles. The WSA implies, in par-
ticular, that the rows are sufficiently far from each
other [19], although, as mentioned in the introduction,
the latter assumption may not be strictly required in
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practice. Also note that the WSA does not assume that
evanescent modes are nonexistent: it merely assumes
that they can be neglected when analysing row-to-row
interaction. The wave field, as computed through the
wide-spacing approximation, is only a description of
the flow outside the close vicinity of each row.

Finally, the interaction theory employed in this work
does not assume identical rows: The obstacle char-
acteristics, as well as their spacing, may vary across
rows, but not within a given row; furthermore, the
distance between consecutive rows may also vary - as
illustrated in Fig. 1. However, for simplicity and results
interpretation, the numerical case study in Sections IV
and V will only consider identical, regularly-spaced
rows.

B. The case of fixed structures (diffraction problem)
First consider the diffraction problem for a single

row of (fixed) obstacles, located in x = 0. The fixed
row is subject to an incoming wave described as in (1).
The reflected and transmitted waves can be written as
follows:{

ηt(x, t) = <{t̂η̂0ej(kx−ωt)}, x > 0

ηr(x, t) = <{r̂η̂0ej(−kx−ωt)}, x < 0
(2)

In (2), t̂ and r̂ are the complex-valued transmission
and reflection coefficients, which apply a change in
amplitude and a phase shift to the incoming wave as it
reaches the obstacle position. t̂ and r̂, for a fixed row,
depend on the obstacle geometry, and on the incoming
wave frequency. The row is symmetrical with respect
to the Oyz plane; therefore the reflection coefficient
is identical for incoming waves propagating in the
positive and in the negative x directions.

It is possible to state a few general properties which
r̂ and t̂ must satisfy [26], regardless of the precise row
geometry. In linear wave theory, and considering no
viscous dissipation at the interface with the obstacles,
preservation of energy implies that the row reflec-
tion and transmission coefficients satisfy the following
equality:

|t̂|2 + |r̂|2 = 1 (3)

Note that the energy-preservation property of (3),
should also be satisfied by the array as a whole.
Considering thin rows with respect to the wave length,
the following relation must also hold:

t̂+ r̂ = 1 (4)

Indeed, one may think of the row, excited by two in-
coming waves of identical amplitude, and propagating
in opposite directions. The two incoming waves to-
gether form a standing wave pattern. At the antinodes
of the standing waves (i.e. at the locations where the
wave amplitude is the largest), the horizontal fluid ve-
locity is zero along the whole water column. Therefore,
by synchronising the two exciting waves in such a way
that the obstacle is at one such antinode, the no-flow
boundary conditions on the obstacle vertical boundary
are naturally satisfied. The presence of the obstacle thus
leaves the flow unchanged. Formulated in terms of the

Fig. 2. Geometrical characterisation of complex transmission and
reflection coefficients for a row of obstacles held fixed.

reflection and transmission coefficients, this is simply
written as t̂+ r̂ = 1.

The properties represented by equations (3) and (4)
may be summarised geometrically, as shown in Fig.
2. t̂ and r̂ can be visualised in the complex plane as
forming two sides of a right triangle, of which the
hypotenuse is of unitary length. In Fig. 2, C denotes
the circle, with centre (1/2; 0) and radius 1/2, on which
t̂ is located. Furthermore, relations (3) and (4) are
equivalent to expressing t̂ and r̂ as a function of a
single, real-valued parameter φ, as follows:{

t̂ = 1
2 (1 + e2jφ)

r̂ = 1
2 (1− e

2jφ)
(5)

The parameter φ, as illustrated in Fig. 2, is in fact the
angle of t̂.

At this stage, no more assumptions are made on the
specific structure geometry and lateral spacing (which
would be required to know precisely where t̂ is located
on C, as will be done in Section IV). Furthermore, Fig.
2 corresponds to a single-frequency analysis. t̂ and r̂
are, in fact, frequency-dependent quantities; however,
(3) and (4) ensure that t̂ will remain on C for all fre-
quencies, provided that the corresponding wavelength
remains below the transverse row periodicity.

C. The case of moving, wave-absorbing structures
Now consider that the vertical obstacles are allowed

to move in a single mode of motion. More specifically,
the mode of motion considered is any sort of deflection
in the x direction, i.e. a deformation profile along the
z axis, of the form:

ξ(z, t) = f(z)<{ξ̂e−jωt} (6)

where f(z) is the real-valued, unitary deflection profile
of the vertical structures and ξ̂ is the complex-valued
motion amplitude. Formulation (6) encompasses any
rigid mode of motion in pitch or surge, as well as any
mode of deformation in the case of flexible structures,
as illustrated in Fig. 3. Note that the present theory
does not imply that obstacles are surface-piercing;
generally they may occupy any fraction of the vertical
extent between the sea bottom and the still water
surface.

Let Â+ and Â− be the two coefficients such that, for
forced oscillations of the form (6), with complex velocity
amplitude ν̂ = −jωξ̂, the wave radiated backward has
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Fig. 3. Examples of rigid mode (l.h.s.) and flexible mode (r.h.s.)
deflection profiles

amplitude ω
g Â−ν̂, and the wave radiated forward has

amplitude ω
g Â+ν̂. Because of the motion anti-symmetry

with respect to the Oyz plane, Â− and Â+ verify Â− =
−Â+.

The radiating characteristics Â+ and Â− are related
to the “fixed-structure” transmission and reflection
coefficients t̂ and r̂, through Newman’s relation [27]:

r̂Â∗− + t̂Â∗+ + Â− = 0 (7)

where an asterisk ∗ denotes complex-conjugate. Also
using (5) and the fact that Â− = −Â+, equation (7)
eventually provides the following property regarding
the phase of Â+:

Â+ = −|Â+|ejφ (8)

The application of Newton’s second law to the struc-
tures oscillating in mode f(z) yields the following
frequency-domain dynamical equation:

(Z + Zu)ν̂ = ĥηeη̂0 (9)

where:

• ĥηe(ω) denotes the complex coefficient which re-
lates η̂ to the excitation force.

• Z denotes the complex impedance, defined as
Z(ω) = Brad(ω) + j(K/ω − ω(I +Arad(ω))).

• Brad(ω) and Arad(ω) are, respectively, the
frequency-dependent radiation damping and
added mass coefficients.

• K represents a stiffness coefficient, e.g. due to
hydrostatic restoring forces (in the case of struc-
tures lighter than water), or the structure material
flexural rigidity (in the case of a flexible structure).
I is the structure inertia for the mode of motion (6).
Note that K and I depend on the internal prop-
erties of the chosen structures, and thus can be
considered independent from the hydrodynamic
problem.

• Zu = Bu(ω)+jKu(ω)/ω represents the effect of the
PTO system, in the form of a possibly adjustable
impedance, which consists of a combination of
stiffness and damping terms.

First consider the structures moving freely under the
effect of waves (Zu = 0). Then the moving row trans-
mission and reflection coefficients are calculated as the

sum of the “fixed-row” (diffraction) and “moving-row”
(radiation) effects :{

T̂ = t̂+ Â+
ω
g
ĥηe
Z = 1

2 (1 + e2jφ + 2Â+
ω
g
ĥηe
Brad

1
1+jγ )

R̂ = r̂ − Â+
ω
g
ĥηe
Z = 1

2 (1− e
2jφ − 2Â+

ω
g
ĥηe
Brad

1
1+jγ )

(10)
where γ := ={Z}/Brad. It is clear that, in the absence
of any dissipation or energy absorption mechanism at
the structure level, and in the present potential flow
framework, all the incoming wave energy is eventually
transmitted or reflected; in other words, the mechanical
energy provided by the waves to the structure motion
is eventually given back to the flow in the form of
radiated waves. Thus, T̂ and R̂ must satisfy a relation
equivalent to (3), that is, |T̂ |2+ |R̂|2 = 1. Together with
(10), the following condition ensues:

∣∣(1 + jγ − 2Â∗+
ω

g

ĥηe
Brad

) 1

1 + jγ

∣∣ = 1 (11)

Recalling that γ may be chosen freely (since stiffness
and inertia are independent from hydrodynamic con-
siderations), (11) must hold for any γ, which implies
the following condition:

Â∗+
ω

g

ĥηe
Brad

= 1 (12)

Instead of the simple energetic considerations pro-
posed above, (12) can be retrieved by making use of
the 2D Haskind relation, see [28].

Finally, defining ζ = Z/Brad = 1 + jγ, interesting
expressions for T̂ and R̂ are obtained:{

T̂ = 1
2 (1−

ζ∗

ζ e
2jφ)

R̂ = 1
2 (1 +

ζ∗

ζ e
2jφ)

(13)

Defining ζu = Zu/Brad, it is now easy to generalise
(13) to the case where some PTO force Zu 6= 0 is
applied: {

T̂ = 1
2 (1−

ζ∗−ζu
ζ+ζu

e2jφ)

R̂ = 1
2 (1 +

ζ∗−ζu
ζ+ζu

e2jφ)
(14)

The expression for T̂ in (14) is illustrated in Fig. 4,
where each grey, dotted-line circle shows the locus of
T̂ for a fixed value of Bu, and Ku = −∞ → ∞, while
each grey, solid-line arc represents the locus of T̂ for a
fixed value of Ku, and Bu = 0 → ∞. By applying the
appropriate resistive and reactive control, any T̂ can
be reached in the interior of C. Additionally, defining
Pw and Pa as the incoming wave and mechanically
absorbed power values, respectively, it is easy to find
the following expression for the power absorption ratio
µ:

µ =
Pa
Pw

=
1− 4d2

2
(15)

where d := |T̂ − 1
2 | is the geometrical distance between

T̂ and the centre of C.
Several special cases are interesting, some of which

are illustrated by circular markers in Fig. 4:
• With no PTO damping (Bu = 0), all the energy

remains in the flow; accordingly, T̂ can only move
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Fig. 4. Position, in the complex plane, of the transmission coefficient
of a row of vertical OWSCs, depending on its mechanical impedance.
Each grey, dotted-line circle shows the locus of T̂ , for a fixed value
of Bu, and Ku = −∞→∞. Each grey, solid-line arc represents the
locus of T̂ for a fixed value of Ku, and Bu = 0 → ∞. Through an
appropriate choice of Bu and Ku.

along C, and µ = 0. At resonance (either be-
cause the wave frequency is such that ={Z} = 0,
or because the control impedance is such that
={Zu} = −={Z}), then T̂ = 1

2 (1 − e2jφ), i.e.
T̂ is the diametrical opposite of t̂, the fixed-row
transmission coefficient.

• A purely passive control (Ku = 0) can only drive
T̂ anywhere along the green arc.

• The well-known complex-conjugate control condi-
tion [29] is Zu = Z∗. In this case, one finds the
well-known 2D energy absorption optimum for
devices symmetric around the Oyz plane, that is,
µ = 1/2. This corresponds to T̂ = R̂ = 1/2.

• As either Ku or Bu grow to infinity, the structures
become unable to move and therefore T̂ → t̂.

In practice, for a specific geometry, solving for the
diffraction problem indicates the position of t̂ on C.
For freely-oscillating devices, the position of T̂Zu=0 on
C ultimately depends on the relative weight of Brad
and ={Z}. Therefore, determining T̂Zu=0 is no longer
a purely hydrodynamic problem, but depends both on
the radiation problem solution (which is related to the
deflection mode f(z)) and on the specifics of the system
considered, including inertia and internal stiffness, all
encapsulated in ={Z}.

In summary of this section, and leaving aside, for the
moment, the practical difficulties that may arise with
the application of an arbitrary, possibly non-causal
PTO impedance Zu(ω), there is, theoretically, a one-to-
one relation between the impedance of the OWSC row (due
to the combination of its hydrodynamic, mechanical and
PTO/control characteristics) and its reflection-transmission-
absorption properties.

III. ROW-TO-ROW INTERACTION MODELLING USING
THE WIDE-SPACING APPROXIMATION

We follow, in this section, the model derived in [24].

Fig. 5. Wave transmission and reflection through a domain S (top),
a domain S′ (middle), and a domain S′′ that is the combination of
S and S′ (bottom) (figure reproduced from [24]).

A. General case

Define a fluid domain S = [x;x′] between two lon-
gitudinal positions x and x′, comprising one or more
rows of vertical structures such as those considered in
Section II. Assume that the reflection and transmission
problems have been solved for the domain S , i.e. that
complex coefficients R−, R+, T+ = T− = T have
been found, such that, for incident wave components
η̂+ and η̂′− propagating into the domain S, the wave
components η̂− and η̂′+, propagating away from S, are
derived as follows:

η̂− = R+η̂+ + T η̂′−
η̂′+ = R−η̂

′
− + T η̂+

(16)

In the above expression, the “forward” and “back-
ward” transmission coefficients, T+ and T−, are as-
sumed identical, which will receive proper justification
subsequently.

Similarly, let S ′ be the domain comprised between
x′ and another position x′′ > x′, and also represented
in Fig. 5. Complex coefficients R′−, R′+, T ′ have been
found, such that, for incident wave components η̂′+ and
η̂′′−, the wave components η̂′− and η̂′′+ are determined
as follows:

η̂′− = R′+η̂
′
+ + T ′η̂′′−

η̂′′+ = R′−η̂
′′
− + T ′η̂′+

}
(17)

Now define S ′′ as the domain extending from x to
x′′, as represented in figure 5. By combining (16) and
(17), it is straightforward to obtain a linear relation
between {η̂+, η̂′′−}, on the one hand, and {η̂−, η̂′′+} on
the other hand, such that:{

η̂− = R′′+η̂+ + T ′′η̂′′−
η̂′′+ = R′′−η̂

′′
− + T ′′η̂+

(18)
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where the coefficients R′′+, R′′− and T ′′ are calculated as
follows: 

R′′+ =
R−−R′−(R+R−−T 2)

1−R′−R+

R′′− =
R
′
+−R+(R′+R

′
−−T

′2)

1−R′−R+

T ′′+ = T ′′− = T ′′ = T ′T
1−R′−R+

(19)

Note that, in the above expression, if both S and S ′
satisfy the condition that their forward and backward
transmission coefficients are identical, the same holds
for S ′′.

For an array comprising N rows in positions
X1...XN , recursion (19) can be put into practice by
defining the elementary domains Sn for n = 1...N , only
containing the nth row, and extending from xn−1 to xn,
where, for n = 1...N − 1, xn is halfway between Xn

and Xn+1, and x0 and xN are arbitrary longitudinal
positions upwave and downwave relative to the array,
respectively. For one such domain, it is easy to find
that the transmission and reflection coefficients are as
follows:

Tn = t̂ne
ik(xn−xn−1) (20)

Rn+ = r̂ne
2ik(Xn−xn−1) (21)

Rn− = r̂ne
2ik(xn−Xn) (22)

The recursion can be initiated using the elementary
domain containing the first row, thus obtaining T1, R+

1

and R−1 . Additional rows are then added sequentially
through the use of (19). It can be seen that, for every
elementary domain, the forward and backward trans-
mission coefficients are identical, and that this prop-
erty is preserved through successive iterations of (19),
which justifies a posteriori the simplifications T+ = T−
in (16) and (17).

B. The special case of identical rows

In the special case where all rows of obstacles are
identical (i.e. T̂ is identical for every row) and regularly
spaced with spacing L, analytical expressions for the
reflection and transmission coefficients of an N -row
array can be found, see [19] and [24]. From those ex-
pressions, it is possible to derive asymptotic formulae
for the case where the number of rows grows to in-
finity. Only those asymptotic formulae are reproduced
in the following, because they will be employed as a
limiting case in the numerical experiments considered
in Sections IV and V.

Using the results of Section II, parametrise T̂ by
means of two real numbers ψ and ρ such that:

T̂ =
1

2
+ ρe2jψ, 0 ≤ ρ ≤ 1

2
(23)

For any angle θ, define the complex function g as
follows:

g(θ) =
1

2
e−iθ − ρeiθ (24)

Finally, defining β such that cosh(β) = g(kL+ψ)
g(ψ) , the

infinite array reflection coefficient can be expressed as
follows:

R∞ = e−β (25)

Fig. 6. Top view of the numerical case study layout and main
notations

Note that R∞ and all expressions above are frequency-
dependent, because T̂ (and thus ψ and ρ) as well as the
wavenumber k, are all frequency-dependent.

IV. NUMERICAL CASE STUDY

In this example numerical case study, arrays
of bottom-mounted, surface-piercing, vertical square
plates, such as those illustrated in Fig. 1, are consid-
ered. The geometry of a given row of such structures
is therefore characterised by two real numbers w and
W , where w is the structure width and W is the row
transverse periodicity, as specified in Fig. 1. Figure 6
shows a top view of the problem considered, where,
without loss of generality, the origin x = 0 is the
first row longitudinal position, and there can be any
number of rows between the first and last rows.

The diffraction problem for a single row is the
well-known “slotted barrier” problem in linear hydro-
dynamics. Analytical formulae for the reflection and
transmission coefficients are determined, based on (4)
and the following result, given in [25]:

r̂(ω)

1− r̂(ω)
=

∞∑
m=1

2k(ω)J2
0 (mπ

W−w
W )√

k2(ω)− ( 2mπW )2
(26)

where J0 denotes a Bessel function, and the sum is
truncated to M = 105. Equation (26) depends on two
ratios: transverse periodicity to wavelength, and aper-
ture to transverse periodicity. Reflection is a monotonic,
increasing function of W/λ. It can be verified that
the coefficients t̂ and r̂, thus obtained, do satisfy the
geometrical relations highlighted in Section II.

In this particular study, the transverse periodicity
is chosen to be W = 20 m. Thus, the simple reflec-
tion/transmission results of Section III remain valid for
wave frequencies below fc = 0.28 Hz (such that the
wavelength equals W ), above which transverse prop-
agating components would complicate the analysis. fc
is sufficient to cover the vast majority of the energy
contained in typical swell spectra, with peak wave pe-
riods in the range of 8−20s [2]. The norms of the fixed-
structure transmission and reflection coefficients r̂ and
t̂ are shown in Fig. 7, over the range of frequencies
considered. As can be appreciated in Fig. 7, individ-
ual rows are predominantly transmissive (except for
frequencies approaching fc), unless the blockage ratio
w/W is close to unity, which would represent a large



MÉRIGAUD et al.: OCEAN WAVE TRANSMISSION, REFLECTION AND ABSORPTION BY ROWS OF VERTICAL STRUCTURES ALONG THE COASTLINE7

Fig. 7. Complex transmission and reflection coefficient magnitude
of a row of vertical, fixed structures

barrier with tiny apertures. The latter case, however,
would not be consistent with the underlying idea of
this work, which rather consists of exploiting array
interaction effects to absorb and reflect wave energy,
without resorting to large structures.

The incident flow is a Gaussian, long-crested wave
field, characterised by a JONSWAP [30] spectral den-
sity function S0, with peak period Tp = 12 s, significant
height Hs = 1 m and peak enhancement factor γ = 2.

The case of fixed rows is first considered, described
by r̂ and t̂ determined from (26) as explained above.
Then, oscillating rows (i.e. OWSCs) are investigated. In
order to avoid going into the specifics of the devices
mode of operation, the generic considerations detailed
in Section II-C are utilised, by considering two control
strategies:
• In the “complex-conjugate control” (CCC) strat-

egy, every row of OWSCs is assumed to operate
under ideal complex-conjugate control, which cor-
responds to T̂ = R̂ = 1/2. The hydrodynamic
efficiency is µ = 1/2 for a single row of devices.

• The “over-damped control” (ODC) strategy is a
modification of the CCC strategy, whereby the
applied PTO damping is 3 times larger (Bu =
3Brad), which is easily shown to correspond to
T̂ (ω) = 1

2 (t̂(ω) + 1/2) (visually in Fig. 4, T̂ would
be halfway between 1/2 and t̂). With ODC, using
(15), the hydrodynamic efficiency is µ = 3/8 for a
single row of devices.

Assuming N identical rows and homogeneous row-
to-row spacing, the recursion of Section III is employed
frequency-wise to obtain the array reflection and trans-
mission coefficients, RN (ω) and TN (ω), using single-
row coefficients as building blocks: {r̂, t̂} in the case of
fixed rows, {R̂, T̂} for (moving) rows operating under
the two control strategies outlined above. The asymp-
totic case N → ∞ is also considered. The shoreline is
assumed to absorb all the energy that reaches it, i.e. it
does not reflect any wave back to the array. However,
the effect of total or partial wave reflection by the shore
would be easily included in the analysis, using the
recursion of Section III.

Of particular interest are the reflected (Sr), transmit-
ted (St) and absorbed (Sa) wave spectra (the latter be-
ing simply calculated as the part of the wave spectrum

which is neither transmitted, nor reflected, since in this
study losses are not considered). Furthermore, in the
up-wave zone (x < 0), reflected and incident waves to-
gether form interaction patterns, which induce spatial
inhomogeneity of the total wave spectrum Stot(x, ω).
All aforementioned spectra are calculated from S0 and
{RN , TN} as follows:

Sr(ω) = |RN (ω)|2S0(ω)

St(ω) = |TN (ω)|2S0(ω)

Sa(ω) = (1− |RN (ω)|2 − |TN (ω)|2)S0(ω)

Stot(x, ω) =
[
1 + |RN (ω)|2

+ 2<{RN (ω)e−2jk(ω)x}
]
S0(ω), x < 0

(27)

V. RESULTS

A. Fixed structures

In an array of fixed structures, no energy is absorbed,
so that the incident energy is solely split into trans-
mitted and reflected energy. With a view to coastal
protection, the objective here is to determine whether
array interaction effects can effectively mitigate wave
transmission. The array transmission and reflection co-
efficients are computed for blockage ratios w/W = 0.5
and 0.8, and different numbers of rows N = 5, 10 and
N → ∞. The row-to-row spacing L is set to λp, the
wavelength at the peak wave period. The resulting
reflected and transmitted spectra are plotted in Fig. 8,
together with the incident spectrum S0.
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Fig. 8. Incident, transmitted and reflected spectra for fixed structures,
in various array configurations and blockage ratios, keeping L = λp

Interaction effects are clearly visible in Fig. 8, in the
form of the well-known band-gap intervals, where re-
flection is higher, see e.g. [26]. Those occur in the vicin-
ity of Bragg frequencies f∗n such that 2L = nλ(f∗n), n =
1, 2, ..., where λ(f∗n) denotes the wavelength which
satisfies the dispersion relation with f∗n. With a large
number of rows (N → ∞), reflection is total within
each band-gap interval. With a finite number of rows,
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reflection exhibits oscillatory behaviour between con-
secutive band-gaps intervals.

Furthermore, it can be shown [24], [26] that the band-
gap interval width is governed by the magnitude of
the parameter φ ∈ [0;π/2] in (5), which represents
the balance between the reflection and transmission
properties of individual rows. The latter result is ex-
emplified in Fig. 8, through the differences between
the results of the two blockage ratios, where the larger
value of w/W yields wider band-gap intervals. Yet, it
is striking to observe that, even with the higher ratio
w/W = 0.8, which corresponds to 16m-wide structures
separated by 4m-wide apertures, the vast majority of
the incoming energy is transmitted to the shore, while
interaction effects can merely mitigate transmission
within frequency intervals, too narrow to effectively
protect the coastline.

B. Oscillating structures
With oscillating structures, i.e. OWSCs, the incident

energy is split into transmitted, reflected and absorbed
energy. In order to explore how relatively small struc-
tures may efficiently reflect or absorb waves, the width
of each device is set to w = 2 m only (w/W = 0.1). The
corresponding spectra are shown in Fig. 9, for various
numbers of rows, and for the two control strategies
introduced in Section IV.

(a) N = 1, <{Zu} = Brad (b) N = 1, <{Zu} = 3Brad

(c) N = 5, <{Zu} = Brad (d) N = 5, <{Zu} = 3Brad

(e) N →∞, <{Zu} = Brad (f) N →∞, <{Zu} = 3Brad

Fig. 9. Incident, transmitted and reflected spectra for OWSCs oper-
ating under the CCC (l.h.s.) and ODC (r.h.s.) strategies, in various
array layout configurations, keeping L = λp

First consider the CCC strategy (l.h.s. graphs of
Fig. 9). The case N = 1 corresponds to the well-
known 2D optimal power absorption by a single WEC
symmetric around the Oyz plane: the absorbed power
is half of the incoming power (µ = 1/2), while the
remaining energy is evenly shared into transmission
and reflection (which is why St is hidden by Sr in
Fig. 9a). As more rows are added, each additional row
absorbs a fraction of the energy it receives, so that for

large numbers of rows, the array transmission tends
to zero. The asymptotic case N → ∞ is a satisfactory
approximation to smaller array behaviour, even for as
little as N = 5 rows, see Figs. 9c and 9e.

Most interestingly, array interaction patterns are
clearly visible in Fig. 9, but they now take the form
of marked reflection peaks (as opposed to band-gap
intervals), which occur precisely at the Bragg reso-
nant frequencies f∗n, while, in the frequency intervals
between successive Bragg peaks, incoming energy is
predominantly absorbed. Note that, in the present case,
since L = λp, the peak wave period exactly corre-
sponds to the second Bragg peak location.

ODC results are now examined (r.h.s. of Fig. 9).
As can be appreciated by comparing Fig. 9b with
Fig. 9a, ODC is sub-optimal from a single-row power
absorption perspective. More specifically, from (15) the
corresponding absorption efficiency is µ = 3/8 instead
of µ = 1/2. In contrast, for arrays comprising several
or many rows, ODC becomes preferable to CCC for
energy harvesting. Intuitively formulated, in ODC, the
magnitude of T̂ increases, while that of R̂ decreases,
relatively to CCC. Therefore, front rows reflect less
energy back to the ocean (which would be lost for
harvesting purposes) while transmitting more energy
for subsequent rows to harvest. However, too large
a PTO damping value would ultimately prevent any
motion from occurring (see the location of t̂ in Fig. 4),
thus yielding the same results as in the “fixed-row”
case of Section V-A. Those considerations suggest that
non-trivial optimal control tuning parameters are yet to
be determined, informed by the array size and layout.

Finally, it is interesting to assess how the OWSC
array affects the wave field in its surroundings. Con-
cerning the area between the array and the shoreline,
Fig. 9 indicates that, for a sufficiently large number
of rows, both control strategies offer close-to-perfect
coastal protection, with almost zero wave energy trans-
mitted.

In contrast, in both strategies, a significant fraction of
the incoming energy is reflected back to the ocean, thus
modifying the wave spectral content in the up-wave
area. Since reflected wave components are linearly
obtained from incident wave components, the cross-
spectrum between incident and reflected wave fields is
non-zero, resulting in the non-homogeneous spectrum
Stot formulated in (27). For an infinite number of rows
and using the ODC strategy, Stot(x, f) is illustrated in
Fig. 10, where x = 0 represents the position of the
first row and x < 0 is the up-wave zone. Marked
interaction patterns are observed, especially around
Bragg frequencies where reflection is more significant.
At each frequency, the longitudinal positions of con-
secutive spectral energy peaks (i.e. anti-nodes, where
interaction is constructive) are separated by half the
wavelength. Such spectral interaction patterns are the
equivalent, for a polychromatic, random wave field,
of the standing wave patterns which result from the
reflection of monochromatic waves. At the Bragg fre-
quencies (where the reflection magnitude is 1), the
energy content oscillates along the x position, taking
values between 0 (at reflection nodes, where interaction
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Fig. 10. Stot(x, f) in the up-wave zone, where x denotes the
longitudinal position relative to the first row. Infinite array under
the CCC strategy, L = λp

is destructive) and 4S0 (at anti-nodes).
The localised amplifications in spectral energy con-

tent discussed above are certainly to be taken into
account when designing the OWSC array. Since the re-
flection peak locations, in the frequency space, are dic-
tated by the Bragg resonance condition 2L = nλ(f∗n),
changing the row-to-row distance could shift those
peaks to frequencies where wave energy is weaker.
In that perspective, for an array with a number of
rows N → ∞, under the ODC strategy, Fig. 11 shows
the reflected wave spectra Sr obtained for several
values of L (assuming that the WSA remains valid
for those values smaller than λp, as discussed in the
introduction). In each graph, the first Bragg peak is
highlighted by means of a circular, blue marker. Setting
L to an appropriate value can prevent the spectral peak
from coinciding with a Bragg reflection peak, either by
ensuring that the spectral peak remains between the
first and second Bragg peaks (L = 0.8λp, L = 0.6λp
in Fig. 11) or by setting L to a value small enough
so that the first Bragg peak is above the spectral peak
(L = 0.4λp in Fig. 11).

VI. DISCUSSION AND CONCLUSION

This preliminary study explores the concept of an ar-
tificial canopy, designed to reflect and absorb wave en-
ergy. Rows of relatively small OWSCs are the elemen-
tary “building blocks” of the canopy. Individual row
characteristics, together with the row-to-row spacing,
determine the array properties, seen as a meta-material.
In that respect, the results of Section II explore how
parameter tuning of individual rows (seen as “classi-
cal” wave energy converters) relates to its reflection-
transmission-absorption properties (which govern ar-
ray properties at the macro scale).

Array properties are derived from OWSC properties
and row-to-row spacing, through a recursive method
based on the WSA. In spite of its relative simplicity,
the proposed framework lends itself to a wealth of
parametric analysis and optimisation, of which the
present work only covers a handful of examples. In-
deed, the case study of Sections IV and V is limited
to regularly-spaced, identical rows, while interesting
results could also be obtained by allowing inhomo-
geneous properties across the array. However it may

Fig. 11. Sensitivity of Bragg peak locations to row-to-row spacing.
Infinite array under the ODC strategy.

be argued that, from an industry-oriented and cost-
reduction perspective, considering identical devices is
a sensible starting point.

Results of Section V suggest that interaction effects,
within arrays of small-sized, fixed structures, are un-
likely to provide effective coastal protection: the result-
ing band-gap frequency intervals, where reflection is
enhanced, are too narrow to cover a significant fraction
of the incoming wave spectrum. Note, however, that
such conclusions may change if viscous losses at each
row were taken into account.

In contrast, arrays of wave-absorbing, moving struc-
tures are able to capture almost all the incident wave
energy, except around narrow Bragg reflection peaks.
The behaviour of such arrays, even with a relatively
small number of rows (e.g. N = 5), is well described
by the “infinite-number-of-rows” approximation, for
which the incident energy is entirely shared between
absorption and reflection. At Bragg peaks, reflection
tends to unity at the expense of power absorption, but
in any case, wave energy is effectively prevented from
reaching the shoreline.

Regardless of how it is achieved, significant wave
reflection results in interaction patterns in the “up-
wave” area, whence spectral energy content can be
greatly enhanced in periodically-spaced longitudinal
positions. Those possibly undesirable effects may be
mitigated by tuning the row-to-row spacing parameter,
which governs the Bragg peak frequencies.

The two control strategies explored were primarily
chosen because they allow the explicit derivation of
T̂ and R̂, without resorting to the specifics of any
particular mode of motion, device material or PTO
system. Comparing their results suggests that there is
room for joint optimisation of the array size, layout and
control tuning parameters.

Nevertheless, all conclusions above need to be nu-
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anced and enriched, by considering more refined
modelling assumptions. At the scale of individual
rows, it will be interesting to investigate how spe-
cific modes of motion (rigid or flexible), and mate-
rial choices, influence precisely the position of T̂ and
R̂ for freely-moving devices (see Fig. 4), and how
those choices may affect the PTO and control system
requirements, needed to achieve target transmission-
reflection-absorption properties using control. In the
same perspective, the simplistic representation of CCC
and ODC strategies must be detailed further, with a
view to the difficulties which would arise from their
practical implementation, such as the non-causality of
the corresponding control law, or the need for large
amounts of reactive power [31]. Finally, loss models
will be included, both at the fluid interface (in the
form of non-linear viscous drag) and internally (in the
form of PTO losses), with possible effects on Bragg
resonance.

At the canopy scale, the distribution of power ab-
sorption and mechanical loads across the array should
be further examined. In particular, over-utilised front
rows and under-utilised back rows would certainly be
sub-optimal in an industrial production perspective.
The effect of sea bottom topography could also deserve
investigation. For example, a sloping bottom could be
considered, in the spirit of [32]. Finally, a more realistic
representation of incoming wave directionality would
enhance the practical value of the proposed modelling
framework.
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