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Since the 1990s, increasingly complex nanostructures have been reliably obtained out of self-assembled DNA strands: from "simple" 2D shapes to 3D gears and articulated nano-objects, and even computing structures. The success of the assembly of these structures relies on a fine tuning of their structure to match the peculiar geometry of DNA helices. Various softwares have been developed to help the designer. These softwares provide essentially four kind of tools: an abstract representation of DNA helices (e.g. cadnano, scadnano, DNApen, 3DNA, Hex-tiles); a 3D view of the design (e.g., vHelix, Adenita, oxDNAviewer); fully automated design (e.g., BScOR, Daedalus, Perdix, Talos, Athena), generally dedicated to a specific kind of design, such as wireframe origami; and coarse grain or thermodynamical physics simulations (e.g., oxDNA, MrDNA, SNUPI, Nupack, ViennaRNA,...).

MagicDNA combines some of these approaches to ease the design of configurable DNA origamis.

We present our first step in the direction of conciliating all these different approaches and purposes into one single reliable GUI solution: the first fully usable version (design from scratch to export) of our general purpose 3D DNA nanostructure design software ENSnano. We believe that its intuitive, swift and yet powerful graphical interface, combining 2D and 3D editable views, allows fast and precise editing of DNA nanostructures. It also handles editing of large 2D/3D structures smoothly, and imports from the most common solutions. Our software extends the concept of grids introduced in cadnano. Grids allow to abstract and articulated the different parts of a design.

ENSnano also provides new design tools which speeds up considerably the design of complex large 3D structures, most notably: a 2D split view, which allows to edit intricate 3D structures which cannot easily be mapped in a 2D view, and a copy, paste & repeat functionality, which takes advantage of the grids to design swiftly large repetitive chunks of a structure. ENSnano has been validated experimentally, as proven by the AFM images of a DNA origami entirely designed in ENSnano.

ENSnano is a light-weight ready-to-run independent single-file app, running seamlessly in most of the operating systems (Windows 10, MacOS 10.13+ and Linux). Precompiled versions for Windows and MacOS are ready to download on ENSnano website. As of writing this paper, our software is being actively developed to extend its capacities in various directions discussed in this article. Still, its 3D and 2D editing interface is already meeting our usability goals. Because of its stability and ease of use, we believe that ENSnano could already be integrated in anyone's design chain, when precise editing of a larger nanostructure is needed.

Introduction

DNA nanostructures design. Since the 1990s, increasingly complex nanostructures have been reliably obtained out of self-assembled DNA strands: from "simple" 2D shapes [START_REF] Chen | Synthesis from DNA of a molecule with the connectivity of a cube[END_REF][START_REF] Paul | Folding DNA to create nanoscale shapes and patterns[END_REF] to 3D gears and articulated nano-objects (e.g. [START_REF] Zhang | Complex wireframe DNA origami nanostructures with multi-arm junction vertices[END_REF][START_REF] Gerling | Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components[END_REF]) and even computing structures [START_REF] Paul | Algorithmic self-assembly of DNA Sierpinski triangles[END_REF][START_REF] Anupama | A cargo-sorting DNA robot[END_REF][START_REF] Woods | Diverse and robust molecular algorithms using reprogrammable DNA self-assembly[END_REF]. The success of the assembly of these structures relies on a fine tuning of their structure to match the peculiar geometry of DNA helices. Various softwares have been developed to help the designer.

A tour of existing softwares. These softwares provides essentially four kind of tools:

an abstract representation of DNA helices, e.g.: cadnano [START_REF] Douglas | Rapid prototyping of 3D DNA-origami shapes with caDNAno[END_REF], scadnano [START_REF] Doty | scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures[END_REF], DNApen [START_REF] Goyal | Dna pen: A tool for drawing on a molecular canvas[END_REF],

3DNA [START_REF] Kumar Gupta | 3DNA: A tool for DNA sculpting[END_REF], Hex-tiles [START_REF] Matthies | Triangulated wireframe structures assembled using single-stranded dna tiles[END_REF]; a 3D representation of the design, e.g.: vHelix [START_REF] Benson | DNA rendering of polyhedral meshes at the nanoscale[END_REF], Tiamat [START_REF] Williams | Tiamat: A three-dimensional editing tool for complex DNA structures[END_REF] Adenita [START_REF] De Llano | Adenita: interactive 3D modelling and visualization of DNA nanostructures[END_REF], oxDNAviewer [START_REF] Poppleton | Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation[END_REF]; a fully automated design, e.g.: BScOR [START_REF] Benson | DNA rendering of polyhedral meshes at the nanoscale[END_REF], Daedalus [32], Perdix, Talos, Athena [START_REF] Jun | Autonomously designed free-form 2D DNA origami[END_REF][START_REF] Jun | Automated sequence design of 3d polyhedral wireframe DNA origami with honeycomb edges[END_REF]17].

These are generally dedicated to a specific kind of design, such as wireframe origami; coarse grain or thermodynamic physics simulation, e.g.: oxDNA [START_REF] Jonathan | Coarse-graining DNA for simulations of DNA nanotechnology[END_REF], MrDNA [START_REF] Maffeo | MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems[END_REF], Snupi [START_REF] Young | Rapid computational analysis of dna origami assemblies at near-atomic resolution[END_REF],

Nupack [START_REF] Joseph | NUPACK: Analysis and design of nucleic acid systems[END_REF], ViennaRNA [START_REF] Lorenz | ViennaRNA package 2.0[END_REF],... Recently, the software MagicDNA [START_REF] Chao-Min | Integrated computer-aided engineering and design for DNA assemblies[END_REF] proposed to combine some of these approaches to ease the design of configurable DNA origamis. The recent article [START_REF] Glaser | The art of designing DNA nanostructures with CAD software[END_REF] presents a very detailed survey of all these solutions with their pros and cons. Here is a list of the features of interest found in these softwares:

High-level description: DNA geometry is very peculiar and hard to grasp. The seminal cadnano interface allowed to abstract from it and focus on the relevant aspects of DNA helices: it provides a framework to place DNA helices next to each other, as well as guides to connect them using crossovers, together with an easily-understandable and printable blueprint of the resulting design. In spite of its imperfection in terms of DNA geometry (incorrect turn/bp [START_REF] Woo | Programmable molecular recognition based on the geometry of DNA nanostructures[END_REF] and absence of roll of helices), cadnano is still the reference for fine tuning a design.

Live (editable) 3D view: With the raise of 3D complex designs involving DNA helices pointing in various directions or even making curves, various softwares proposed 3D rendering of a design. A notable software in this category is Tiamat [START_REF] Williams | Tiamat: A three-dimensional editing tool for complex DNA structures[END_REF] which introduced a 3D interface capable of fine tuning and editing of the design. Unfortunately, 3D views are not always the best solution to edit a design beyond placing properly DNA helices in space. Indeed, 3D views are often jammed, even for simple design, and the 3D→2D parallax effect makes it hard to evaluate the length of a crossover, especially because its direction, and thus its apparent length, changes when it is moved around.

Fine tuning and editing: As mentioned above, 3D views are not well adapted for editing or fine tuning [START_REF] Glaser | The art of designing DNA nanostructures with CAD software[END_REF], especially when the 3D view is provided by a "mother" software (Matlab, Maya, or Samson) which was not designed for the specific needs of DNA nanostructures.

As it turns out, almost all the softwares, including the all-automated ones, e.g. [START_REF] Chao-Min | Integrated computer-aided engineering and design for DNA assemblies[END_REF], recommend to export to (s)cadnano for checking and fine tuning their designs. As a matter of fact, the 2D representation of a helix as a double array, initially proposed in cadnano, remains the most practical for editing. Rotating the array representations as in [START_REF] Zhang | Complex wireframe DNA origami nanostructures with multi-arm junction vertices[END_REF][START_REF] Doty | scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures[END_REF] allows an even more convenient rendering of the design. 3D complex designs however cannot be faithfully mapped to 2D, and, no matter what, some helices that are close to each other in 3D, will be mapped at distant locations in a 2D representation. As a result, many crossovers overlay the design and make it confusing to read and edit.
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12:2 ENSnano: a 3D modeling software for DNA nanostructures Design versatility: Most softwares focus on a specific class of design: DNA origami, wireframe origami or DNA tiles (SST). Only a few provide an abstraction for dealing with all of them, e.g.: MagicDNA [START_REF] Chao-Min | Integrated computer-aided engineering and design for DNA assemblies[END_REF] proposes a common framework for classic and wireframe DNA origami. The most versatile remain (s)cadnano(for 2D editing) and Tiamat (for 3D editing). (s)cadnano make it possible to work with any class of designs, but provides almost no specific automation. It should however be noted that Tiamat comes with an integrated sequence generator.

Automation: When designing a DNA origami, many tasks are repetitive and dull, such as "stapling" a rectangle. On the opposite, some tasks require a high technical level, such as routing a scaffold in a wireframe design, or designing 3D staples in a 3D bulk. Both of these types of tasks benefit a lot from automation. Algorithms have been designed to complete these tasks and designers can save a lot of time and avoid mistakes by using them, e.g. [START_REF] Benson | DNA rendering of polyhedral meshes at the nanoscale[END_REF]32,[START_REF] Jun | Automated sequence design of 3d polyhedral wireframe DNA origami with honeycomb edges[END_REF][START_REF] Chao-Min | Integrated computer-aided engineering and design for DNA assemblies[END_REF].

Programmable designs: Many designs gain to be specified as the output of a program: either because they are very big and repetitive (e.g., SST designs); or because they require specific angles and lengths (e.g. quasi-crystals in [START_REF] Zhang | Complex wireframe DNA origami nanostructures with multi-arm junction vertices[END_REF]); or because they sometimes require many trials-and-errors to be properly configured, for instance to match the length of the holy M13mp18 scaffold strand. To achieve this goal, scadnano [START_REF] Doty | scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures[END_REF] and the prototype codenano [START_REF] Meunier | Codenano: a code-based tool for designing DNA nanostructures[END_REF] define a programming framework consisting of various function calls (in python or rust) to describe helices and strands positions. MagicDNA [START_REF] Chao-Min | Integrated computer-aided engineering and design for DNA assemblies[END_REF] proposes an interesting, user-friendlier, alternative approach, generalizing the wireframe approach, which consists in describing the design as graph embedded in space, whose edges are replaced by configurable chunks of parallel helices, along which the routing of the scaffold and its staples is algorithmically computed.

Simulation: 3D views of a design are only a wishful representation of the design, as strands may not self-assemble as forseen by the designer. If 3D views are essential to choose the right crossovers to bind strands together in order to achieve the desired assembly, they offer no guarantee in the resulting shape. Coarse grained physics simulation [START_REF] Jonathan | Coarse-graining DNA for simulations of DNA nanotechnology[END_REF][START_REF] Maffeo | MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems[END_REF][START_REF] Young | Rapid computational analysis of dna origami assemblies at near-atomic resolution[END_REF] and thermodynamic binding estimation [START_REF] Joseph | NUPACK: Analysis and design of nucleic acid systems[END_REF][START_REF] Lorenz | ViennaRNA package 2.0[END_REF] softwares allow a much more precise feedback on the feasibility and stability of a design. Their predictions are now considered good enough to demonstrate the validity of a design, e.g. [START_REF] Chao-Min | Integrated computer-aided engineering and design for DNA assemblies[END_REF]. However, they are computer-intensive and furthermore require a high level of competency to interact with.

They can hardly produce a fast-enough feedback to be use during the design process.

They are thus usually used at the end of the design chain. Design softwares usually offer to export the design into the sophisticated file format of these simulation softwares for validation.

Intuitive fast-responding interface: Various directions have been explored for designing a adequate graphic user interface for designing DNA nanostructure. As mentioned earlier, 3D views did not improve, and in many cases arguably deteriorated the usability of the interface. This is particularly true when the software is embedded in a mother software in charge of the 3D rendering, which offers, most of the time, only slow or little-to-no editing capacities. As a consequence, (s)cadnano remains the most practical interface so far and this is no wonder it is still intensively used, in spite of its limited ergonomics.

Reliability: Designing complex DNA nanostructures requires focused attention and unfortunate failures or slowness in softwares add considerable stress to the designer.

Software reliability can only be ensured by developing them in a safe programming language, that is, whose compiler imposes rigorous safeguards to the programmers and checks their code in depth to avoid as much as possible bugs at runtime. Untyped programming languages should thus be ruled out to develop reliable design softwares.

Distribution:

The most commonly cited softwares, namely cadnano, oxDNA, oxDNAviewer, MrDNA, Nupack and ViennaRNA, are the easiest to install (they are distributed either as an independent, python packages or web-based app), and are available for the most commonly used operating systems (Windows, MacOS and Linux). We have had varying experience with installing and using softwares embedded into a generic-purpose mother application. Cross-platform distribution, either as an independent or a web-based app, seems thus to be an important usability criteria.

Our contribution.

In this paper, we present our software ENSnano which introduces a 3D editable view working together with a (s)cadnano-like 2D view. As in cadnano, our helices are attached to grids organizing the helices, next to each other, in parallel subsets. We extend this grid concept in three ways: first, the grids are now freely and precisely placed and oriented in space in the 3D view; second, grids can be any 1D or 2D lattice, for now: the classic square and hexagonal grids, but also circular lattices to design nanotubes; third, we take advantage of this lattice structure to introduce a geometry-aware copypaste-&-repeat process.

▶ A 2D and a 3D view working together. 2D and 3D views are illustrated in Fig. 1. The main purpose of the 3D view is to position the grids and helices, from which the coordinates of each nucleotide is deduced. These coordinates are used to suggest crossover positions (see Sec. 3.5). Crossovers can be created indifferently in the 2D or the 3D view. The 3D view provides also indications on the length of the crossovers: crossovers of excessive length are highlighted in black. The 2D view is pretty similar to the standard (s)cadnano view with three important differences: the design of the strands in the 2D view has been drastically simplified; the 2D view can be freely organized with few mouse clicks (see Sec. In a single 2D view, the zoom factor required to see both ends of the crossover (highlighted in red) would be so small that precise editing would be impractical.

or nucleotide) with the mouse cursor in one interface will highlight it in both views, which makes the correspondence between the two representations easier to grasp.

▶ The 2D split view. As mentioned above, 3D complex structures cannot be faithfully mapped into 2D: some parts of the design that are close in 3D, will, no matter what, be mapped far apart from each other in the 2D view. The 2D split view of ENSnano allows to edit parts of the design that are mapped far apart from each other in the 2D view, as if they were next to each other, see Fig. 2. This is particularly useful for creating, moving or deleting a crossover between parts that are mapped across the 2D view. Furthermore, the 3D view interacts naturally with this feature by switching automatically to the 2D split view, when we double-left-click on a crossover that binds nucleotides that cannot be shown together in 2D view at its present zoom factor. Double-clicking on an element allows to switch easily back and forth between its locations in the 3D view and 2D view (or the 2D split view, when needed), see Sec. 3.3.

▶ Natural swift point-and-click editing in the 2D view. As shown in Fig. 3, the interface of ENSnano is organized so that most of the editing in the design can be made by clicking directly at the wanted location: the action applied is deduced from the natural mouse movement associated to the desired action together with the local configuration at the click location (see Sec. 3.3).

▶ Geometry aware copy/pasting ENSnano introduces a geometry-aware copy/pasting of strands and crossovers across the 3D structure, regardless of the actual numbering of the helices and of their arrangement in the 2D view. This allows to build in the blink of a eye a complete set of staples by duplicating repetitively the selected pattern (a subset of strands or crossovers) according to the initial translation, along the helices and across the grid lattice, of the firstly pasted copy (see Fig 9 in Section 3.4).

▶ File format, import and export. ENSnano file format is pretty similar to scadnano and codenano. It consists in a human readable and editable json file (see Sec. B). Currently, ENSnano imports files from scadnano and cadnano (with similar limitations as scadnano).

ENSnano also exports designs to oxDNA for precise physics simulation. A left click on one end of a crossover will break it. (F) Move a crossover: A left click-and-drag at one end of a crossover will move this crossover. Note that the possibly neighboring crossover will be pushed and pulled back during the dragging until the final position is set.

We do not provide yet any python framework to generate ENSnano designs. However, ENSnano files can be generated by a python program with moderate efforts. This issue will be resolved in an upcoming version of ENSnano.

▶ Sequences export. ENSnano is presently fully functional to design and edit precisely complex DNA origami and to export its staple sequences for ordering.

▶ DNA parameters. ENSnano uses the DNA helix physical data collected from [START_REF] Woo | Programmable molecular recognition based on the geometry of DNA nanostructures[END_REF][START_REF] Anupama J Thubagere | A cargo-sorting DNA robot[END_REF].

They are presented in appendix in Sec. B.2. They can easily be edited to fit specific needs directly in ENSnano file format (a json text file) as explained in Sec. B.

Distribution and Installation

ENSnano is developed in the high performance safe programming language Rust [START_REF] Matsakis | The rust language[END_REF]. We rely on the cross platform libraries winit, wgpu and iced [2, 3, 1] to produce an identical and highly responsive interface across all commonly used operating systems. ENSnano is distributed as a single-file app for Windows and MacOS, as well as an open source repository, ready to be cloned and compiled, for Linux and the brave ones. It the 2D view presents the blueprint of the design in a streamlined manner, similar to the one initially proposed in cadnano. This linear representation of the helices is easy to read and arguably more ergonomic for most editing task.

As we will see later, both views work together to facilitate the work of the designer. A particular care was given to provide a homogeneous visual experience for both views, with matching color codes between the views, for instance.

Grids.

In ENSnano, like in several other nanostructure design softwares, the strands composing a nanostructure are positioned on helices that are assumed to be rigid shapes -currently, rigid cylinders. The 3D shape of the design is greatly influenced by the relative positions and orientations of these helices. In cadnano, the helices are all parallel and their positions are given by a point on a grid. In ENSnano helices are also positioned on a grid, but several grids can coexist in a design, and these grids can have different orientations, which makes it possible to create designs in which all helices point in different directions.

By grouping helices together on a grid, one can organize their design into bulk components made of parallel helices. Each of this component can be thought as a separated cadnano design.

As pointed out in the introduction, the 2D view is typically more ergonomic to edit those components. Connecting two non-parallel components in a 2D interface is however a challenging task. This is where the 3D editing of crossovers and the crossover suggestions based on the 3D positions of the nucleotides are useful.

At the moment, ENSnano offers squared and hexagonal grids, as well as nanotubes made of 5 to 60 helices. Grids are internally implemented as a mapping Z 2 → R 2 . This flexible representation makes it easy to add new grid types in the future, and could be easily extended to arbitrary Cayley graphs.

Group-based organization of the design. Elements of the designs can be grouped in named groups. These groups can be used to quickly select one part of the design, or to adjust altogether the properties of the elements in the set. Groups can for instance be used to quickly set the color of all the helices of a groups for crossover suggestion. They can also be used to hide or show temporarily parts of the design. Groups will have extended capabilities in upcoming versions of our software. Note that the group structure in ENSnano does not requires the groups to be disjoint. This is typically useful in the case where one wants to visualize the interface between two components linked together by a set of crossovers.

One can create two groups, each of them containing one of the components and the set of crossovers. Using these groups one can chose to hide everything in the design but one of the components and the crossovers at the interface, as illustrated in As none of the three helices are parallel, finding crossover positions may be difficult. We thus assign the helices 1 and 2 (the orange and green stranded) to the green family and helix 3 (the blue stranded) to the red (note that the color family is displayed as the background color of their identifier disc in the 2D view). In the 3D view, the suggested crossovers are indicated by a translucent purple connection between two nucleotides. In the 2d view, the nucleotides that could be bound by a crossover are indicated by pairs of dots of matching color.

Design helpers.

When designing a DNA nanostructure, special care must be given when choosing the positions of the crossovers. Indeed, the length and orientation of a crossover between two points of two neighboring helices can vary greatly, because of the spiraling nature of DNA helices. For this reason, DNA nanostructure design softwares often offer a feature that suggests positions at which crossovers between two helices are possible.

▶ Crossover suggestions. In ENSnano, one can assign to each helix a color family: none, red or green. Crossover suggestions will be made between helices of color families red and green: purple translucent clues will show up in the 3D view to indicate possible crossover positions, based on the distance between the nucleotides. Dots of matching colors indicates these same locations in the 2D view. Fig. 4 illustrates this feature.

▶ Crossover length color shading. In addition to the suggestion for creating new crossovers, ENSnano also offers visual clues for assessing the length of the existing crossovers. In the 3D interface the crossovers are displayed as cylinders, whose color depends on the distance between their extremities. Short crossovers have the same color as the strand they belong to, while crossover of excessive length are shaded from light grey to dark, where a darker color indicates a longer crossover, see Fig. 5.

▶ Helices (auto)roll. Rolling a helix around its axis shifts its strands forward or backward and thus has a huge impact on the position of its possible crossovers with neighboring helices.

Reciprocally, placing some crossovers will have an impact on its optimal roll which will in turn impact all the crossovers around it. Choosing the roll of the helices gives more freedom in a design, and improves its feasibility. cadnano for instance ignores this factor. ENSnano enables to either input the value of the helix roll or to run a simple physics simulator which will auto-roll the selected helices according to the torsion forces applied by their crossovers, where each crossover is considered as a spring with free length 0.7nm, the expected length of a crossover. This allows a simple and almost instantaneous sanity check of a design as it is being built. Typical use of the auto-roll feature is when we want a specific crossover between a newly created helix and an other one: we first add this crossover regardless of its length and then we auto-roll the newly created helix so that it adjusts its roll to satisfy this desired Basic stability testing. Dependable physics engines such as oxDNA and MrDNA are computer intensive and cannot provide a fast enough feedback for a user in doubt while building up a large design. As pointed out in [START_REF] Glaser | The art of designing DNA nanostructures with CAD software[END_REF], these softwares tend to be used at the end of the design chain, to validate a complete design, before ordering the corresponding strands. In ENSnano, we propose to give up on dependable physics simulations of the resulting shape of a design, but just to focus on its immediate stability. Indeed, the commonly accepted motto of DNA nanostructures design is that DNA helices can be abstracted as rigid shapes (cylinder or curves) if correctly tied up together. Dependable physics engines are used to check the correctness of this assumption. But, during the whole design process, we take it for granted, because its correctness relies on it. What we need is thus a fast regular feedback on whether the current (assumed to be) rigid helices are "tied up" satisfyingly to keep the desired shape.

For this purpose, ENSnano includes a very basic rigid body physics simulator in which: each crossover is modelled as a spring with free length 0.7nm, the expected length of a covalent bond; each contiguous double-stranded part of a helix is modelled as an independent rigid cylinder; each single stranded part of an helix is considered as a chain of isolated points connected by crossovers (modelled as spring as above); Brownian motion is emulated by jiggling the isolated points (or not), with an adjustable intensity; the stiffness of the spring, ambient friction and mass of the nucleotide can be configured live as the simulation runs; we usually recommend to start with a high friction and to lower it slowly as the simulation progresses. This very basic model has no other ambition than to provide a quick feedback on the stability of the currently developed design and may not always produce correct results. In particular, we need to review in depth the volume exclusion procedure. Some perfectly valid design may converge to a spaghetti mess.
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To get a definitive assessment of the physical viability of their design, users are invited to export it to oxDNA.
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Graphical User Interface and tools

Getting started

The interface of ENSnano is designed so that every action is only one click away: editing either grids, helices, strands, crossovers, 5' or 3' ends of domains,. Grids are added to the design using the buttons: for square grid, for hexagonal grid, and for nanotubes. Helices are added to a grid by clicking on the desired position on the grid. One can chose to equip a helix with a double strand at its creation: just set the starting position and length of the strands in the text fields bellow. By default a phantom helix is displayed when an helix is created, this can be switched off in contextual panel after selecting the grid.

Building a first design. Fig. 6 presents step-by-step how to build a very simple design in ENSnano.

The 3D view

The main purpose of the 3D view is to visualize and organize the components in space. background (e.g., for publication) in the rendering section of the tab . One can also opt there for a cartoon rendering, where each object is outlined in black (e.g., for printing).

Editing in the 3D view. Sometimes, it is easier to edit directly in the 3D view. Left-clickand-drag on an end of a strand or a crossover allows to translate it along the helix. 1 One can build a crossover by a long-press left-click on a nucleotide (longer than 250ms): a blue ball appears, and dragging to another nucleotide creates the crossover.

The 2D view

The 2D view is the blueprint of the design. It follows and extends the streamlined interface of cadnano and scadnano by adding a list of features that improves its ergonomics:

Creation and edition of strands, creation and translation of crossovers, cutting and ligating strands are all done in the same edition mode, using only the mouse left-click, as shown in Fig. 3. Note that the selection in the 2D view is accomplished by right-clicking.

The 2D and 3D views work together: a translucide green ball indicates in the 3D view which nucleotide is hoverred by the mouse in the 2D view (e.g., see Fig. 3F and3H). Also, double-right-clicking a nucleotide in the 2D view centers it in the 3D view.

The helix representations automatically extend when needed, e.g. when elongating a strand. The helix representations can be tighten back using the buttons "All/Selected" under "Tighten 2D helices" in the edition tab , or simply by clicking on their handles.

Any helix representation can be translated and rotated arbitrarily in the 2D view, to match as closely as possible the 3D arrangement of design, or serve any other purposes, e.g. The 2D split view. As mentioned earlier, 3D complex structures cannot be faithfully mapped into 2D, and some parts that are next to each other in space, will inevitably be mapped far apart in any 2D view. This usually makes 2D representation of 3D DNA nanostructures complex to read and even more to edit. For instance, very long crossovers 1 Cutting and ligating a strand by left-click are disabled in the 3D view because it is too error-prone. cross each other in every possible direction in the cadnano representation of the double-layer origami in [START_REF] Anupama J Thubagere | A cargo-sorting DNA robot[END_REF], and make it almost impossible to edit. ENSnano's 2D split view solves this issue elegantly by allowing to zoom and to act seamlessly on two distant parts of the 2D view, as if they were next to each other. Indeed, one can build a crossover from one split view to the other just as if it was one single 2D view, see Fig. 2. Moreover, crossovers whose ends are in opposite sides of the split view, are drawn across the views, making them easy to read and edit.

Note that left double-clicking on a crossover in the 3D view, splits the 2D view as soon as both of its ends do not fit in the 2D view. We thus recommend to 1) create the desired crossover approximately in the 3D view and then 2) to double-click on it, so that it gets focused and drawn across the split view, where the user can then edit it comfortably.

Grid-aware copy, paste & repeat

Grid geometry-aware copy & paste. Many DNA nanostructure designs consist of repeating the same pattern over and over, e.g.: SST nanotubes [START_REF] Peng Yin | Programming dna tube circumferences[END_REF][START_REF] Woods | Diverse and robust molecular algorithms using reprogrammable DNA self-assembly[END_REF], rectangular DNA origami [START_REF] Woo | Programmable molecular recognition based on the geometry of DNA nanostructures[END_REF],

or SST 3D assemblies [START_REF] Ke | Three-dimensional structures self-assembled from dna bricks[END_REF][START_REF] Luvena | Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components[END_REF]... and many more contains many repeating crossover patterns.

A designer can thus save a lot of time by copying and pasting patterns, as proposed for instance in scadnano. ENSnano extends with capacity by using the grid structure to compute the 3D path followed by the pattern copied, to paste the same path at a different location, regardless of the numbering of the helices and of their relative positions in the 2D view.

Arbitrarily complex strands can thus be copied and pasted across the design, as shown on Fig. 8. For instance, a strand binding two consecutive helices in a nanotube can be copied all around the nanotube: ENSnano will automatically loop the strand around the nanotube from its last to its first helix. In addition to copying strands on empty positions, it is also possible to copy crossovers on existing strands, see Fig. 8. The basic copy and paste functionality if performed by pressing Ctrl/ +C after selecting the source strands/crossovers and then Ctrl/ +V and click to place a copy.

Paste & repeat.

In addition to the classic copy and paste feature. ENSnano features a geometry-aware paste and repeat which remembers as well the translation (in the grid and along the helices) between the original and the first pasted pattern, and keeps pasting the pattern with the same translation over and over. This is particularly useful for large repetitive designs such as rectangular part of an origami or SST nanotubes. After copying the strands N. Levy and N. Schabanel 12:13 Figure 9 Paste & repeat: Starting from the green strand made of two domains of 56 nucleotides each on helices 0 and 1 of a 8-helices nanotube, this strand is copied with Ctrl/ +C and pasted with Ctrl/ +J, one helix below and 7 nucleotides forward. Repeating Ctrl/ +J compulsively 7 more times creates automatically the other strands, applying repetitively the same translation and thus filling the nanotube with strands in no time. Note that ENSnano is aware of the nanotube-grid geometry and places the 7th pasted olive strand appropriately, binding helices 7 and 0.

or crossover pattern with Ctrl/ +C, the first duplication is made by pressing Ctrl/ +J.

Once the first copy is positioned, the path from the original to the copy is memorized.

Pressing Ctrl/ +J repetitively, will copy over and over the pattern with the same offset as long as there are helices to support them, as illustrated in Fig. 9.

Crossover suggestions

Crossover suggestions are currently done by assigning helices to either the green or the red family. Color family are assigned in the organizer, by clicking on the family button which displays either: ∅ for none, R for red, and G for green. The easiest is to create a group for each family of helix and to set the color family for each group at once by clicking on the family button of the group, see Fig. 10. Crossover suggestion is enabled as soon as there are helices of the red and green families. Setting all the families back to ∅ disable the crossover suggestion.

The basic 3D rigid body physics engine

The tab presents the three possible modes of our rigid body physics engine:

the "Roll" button executes a simple roll of all the helices (see Sec. 2). This is a good way to check the quality of the crossovers. Note that the roll of each helix can be set individually in the tab .

the "Rigid grid" button runs the physics engine considering that all the helices belonging to the same grid act as one rigid body. This allows to evaluate the interactions between the various components of a design, in particular, the balance of the crossovers between them.

the "Rigid helices" button runs the physics engine as explained in Sec. 2. In this mode, several parameters can be tuned live: the stiffness of the crossovers, the ambient friction (we recommend to start the simulation with a higher friction and to decrease it with time), and the mass of the nucleotides (beware that tuning this parameter live may explode the design as it will apply some rocket effect). We strongly recommend not to use the volume exclusion option which is inefficient and slow right now. Note that opting for "jiggling D N A 2 7

12:14 ENSnano: a 3D modeling software for DNA nanostructures Figure 10 Crossover suggestions between red and green color families. The helices are partitioned into two groups in the organizer: "Frame" and "Rocket" assigned resp. to the red and green families. On can see the pair of matching dots in the split view marking recommended positions for crossovers.

unmatched nucleotides", simulates Brownian motion by adding constantly a random noise to their positions (the rate and amplitude of the noise can be tuned as well).

The two last modes are still at their infancy. The "Rigid grid" mode is useful when combined with the "Guess grid" feature in the tab , when importing a design from (s)cadnano which has no grid and no 3D embedding. Because the volume exclusion implementation is right now inefficient, the "rigid helices" mode should only be considered as a stability indicator, as it may converge to unrealistic configurations. Note that running the rigid body engine can be undone with Ctrl/ +Z or the Undo button.

Sequences export and scaffold sequence optimization

The tab gathers the sequence-related tools. As far as sequences are concerned, ENSnano is, for now, "DNA origami-oriented" (this will change in the future). This sequence tab allows to chose the scaffold strand and to assign its sequence. One can load any text file containing a long enough sequence for that purpose. The default scaffold sequence is the This optimization phase allows usually to avoid any C 5+ or G 5+ pattern in no time.

Note that nucleotides that are not matched with the scaffold are given a ? symbol in the exported excel file.

Experimental validation

We have already annealed successfully several DNA origami designed with ENSnano. We present here one of them designed together with the students of the class CR11 on Molecular 

Conclusion and upcoming features

With this first version of ENSnano, its 3D and 2D fast, precise, and versatile editing capacities, and its stability, we have set the basis for an upcoming complete, GUI based, cross-platform, DNA nanostructure design suite. This software will evolve at a fast pace in the upcoming months. Here is a short list of features, we plan to develop next:

Versatility: presently the design is limited to straight DNA helices. We plan to add soon curved double strands and free single strands to the toolbox. We also plan to add soon "decorations" (fluorophores, biotin,...). We also plan to extend our concept of grid to more complex structures (2D as well as 3D).

Sequences: ENSnano is presently limited to DNA origami in terms of sequence export.

We are currently working on an interface to set the sequences for the parts of the design which are not matched with a scaffold.

Programmability: ENSnano file format is a standard json dictionary, very similar to scadnano file format. Its complete structure is described in appendix B. Even if it is fairly easy to develop a python code to produce ENSnano file, as it was done for the design in Automation: Designing the staples is a tedious task. Adding auto-stapling algorithms will be of great help to the designer. Automatic scaffolding will however require a new kind of abstraction of a DNA design.

Simulation: improving the rigid body physics engine will probably require a lot of work.

Adding a proper volume exclusion is certainly the most interesting direction to follow. 
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D N A 2 7 Figure A.3 Comparison between the 2D and 3D interfaces.

The 3D interface shows the shape, that we wish that our design will adopt. Since this design is made of two layers making an odd angle. It cannot be faithfully represented in 2D. By separating the helices of the two layers, and adjusting the orientation of the helices composing the rocket layer, one can build a 2D representation of the design that is as close as possible to its intended 3D structure. grids: an array containing the GridDescriptor objects, that represent the grids of the design.

scaffold_id: (optional) the id of the scaffold strand.

scaffold_sequence: (optional) the sequence of the scaffold.

scaffold_shift: (optional) the starting position of the scaffold sequence.

groups: (optional) a dictionary mapping integers (identifier of helices) to a boolean indicating in which group they belong for the cross-over suggestion.

small_spheres: (optional) a set containing identifiers of the grids whose helices do not display their nucleotides as spheres.

no_phantoms: (optional) a set containing identifiers of the grids that do not display phantom helices.

B.2 DNA parameters

The members of the field dna_parameters are:

z_step: the distance in nanometers between two consecutive bases along the axis of an helix. The default value is 0.332nm.

helix_radius: the radius of an helix in nanometers. The default value is 1nm.

groove_angle: the small angle between paired nucleotides. The default value is 2π

• 12 12+22 .
This values comes from the fact that the width of the major groove is 22 Å and the width of the minor groove is 12 Å.

inter_helix_gap: the distance between two neighbouring helices on a grid. The default value is 0.65nm as suggested in [START_REF] Woo | Programmable molecular recognition based on the geometry of DNA nanostructures[END_REF][START_REF] Anupama J Thubagere | A cargo-sorting DNA robot[END_REF].

bases_per_turn: the number of base pairs per full turn of an helix. The default value is 10.44 bases per full turn as suggested in [START_REF] Woo | Programmable molecular recognition based on the geometry of DNA nanostructures[END_REF].

These parameters are illustrated in figure B.5. The coordinates of a nucleotide at index i on an helix, in the helix referential are:

x = i • z_step, y = sin(θ i ), and z = cos(θ i )
and

θ i = ρ-i• 2π bases_per_turn + π 2 +
groove_angle if the nucleotide is on the forward strand 0 otherwise where ρ is the roll of the helix. A shift of π 2 is added so that the nucleotide at index 0 on the backward strand of an helix is at the top position, following the cadnano convention.

Note that θ i decreases as index i increases. This is because strands turn clockwise when going from 5' to 3'. 

B.3 Helix Object

The field of an helix object are position: a 3D point giving the origin of the helix.

orientation: a Rotor2 giving the orientation of the helix. See subsection B.5 to see how to obtain a rotor from a direction vector.

roll: an additional roll performed on the helix.

grid_position: (optional) the position of the helix on the grid it is attached to. This field override the position and orientation fields.

isometry2d: (optional) an isometry3 that determines the position and orientation of the helix representation in the 2D view.

B.4 Strand Object

The field of a strand object are:

domains: the (ordered) vector of domains, where each domain is either an insertion or a directed interval of a helix.

color: an integer encoding the color of the strand with the formula c = 65536

× R + 256 × G + B
where R, G, B ∈ {0, . . . , 255} are its red, green and blue components.

junctions: (optional) an array of objects representing the junctions between the strand's domains.

cyclic: a boolean indicating whether the strand is cyclic or not.

B.5 A word about rotors

In ENSnano's file format, rotations are represented by rotors. 

12:23

By properties of the scalar and exterior product of vectors, one can write ab = cos(θ) + Ω sin(θ)

where Ω = a∧b ∥a∧b∥ is the axis of the rotation that transforms a in b and θ is the angle between a and b.

Applying the rotor ab to a vector u will rotate the vector u in the oriented plane defined by a and b by twice the angle between a and b.

Obtaining a rotor from a direction vector For the reader who would like to write a program to output a design in ENSnano file format, we provide the following procedure that produces a rotor from a direction vector.

def to_rotor ( v ):

""" Transform a vector v = (x , y , z ) to a rotor describing the rotation from the x -axis to the vector 

D The rocket design

The ENSnano file for our rocket design, illustrated in The table bellow lists all of its staples as computed by ENSnano. For commodity, ENSnano lists the staples in increasing lexicographical order of the 2D coordinates of their 5 ′ -end in the 2D view (i.e., from top to bottom and left to right). 

Figure 1

 1 Figure 1 ENSnano interface: the 3D and 2D views of a design

Figure 2

 2 Figure2Editing with the 2D split view. (left) Building a crossover between "2D-distant" helices by dragging the mouse from one split view to the other. (right) In a single 2D view, the zoom factor required to see both ends of the crossover (highlighted in red) would be so small that precise editing would be impractical.

Figure 3

 3 Figure 3 Swift strand editing in the 2D view. (A) Create a strand: Left click on an empty position and drag. (B) Extend a domain: Left click on an end of a domain and drag. Note that the helix automatically extends if needed. (C) Cut & ligate a strand: A left click in the middle of strand cuts the strands. A left click on the end of a strand next to another ligates them. (D) Create a crossover: A left click and drag up-/down-wards on a strand initiates the creation of a crossover that will bind the initial click position to the position where the mouse is dragged to. (E) Double/Delete a crossover: A left click on an unconnected end of a strand next to a crossover will double the crossover. A left click on one end of a crossover will break it. (F) Move a crossover: A left click-and-drag at one end of a crossover will move this crossover. Note that the possibly neighboring crossover will be pushed and pulled back during the dragging until the final position is set.

  Fig A.1.

Figure 4

 4 Figure 4 Crossover suggestions.As none of the three helices are parallel, finding crossover positions may be difficult. We thus assign the helices 1 and 2 (the orange and green stranded) to the green family and helix 3 (the blue stranded) to the red (note that the color family is displayed as the background color of their identifier disc in the 2D view). In the 3D view, the suggested crossovers are indicated by a translucent purple connection between two nucleotides. In the 2d view, the nucleotides that could be bound by a crossover are indicated by pairs of dots of matching color.

Figure 5

 5 Figure 5 Length color shading of the crossover in the 3D view. (left) In this example, several crossovers of various lengths are visible. Crossovers that are short and don't require the designer's attention are displayed in the same color as their strand. Some crossovers are displayed in light-grey indicating that their moderately excessive length may only represents a minor problem in the design. However, one pair of crossovers is displayed in black. This should catch the designer's eyes and indicates that this pair of crossovers should be rearranged. (right) After correcting the two faulty crossovers, they are now shorter and appear in a lighter shade. This indicates that the design on the right panel is more likely to be feasible.
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 7 10 ENSnano: a 3D modeling software for DNA nanostructures (A) Create a square grid (B) Left-click to create two helices (E) Left-click-drag to create four strands (F) Left-click in the middle of a strand (I) Left-click on the neighboring nucleotide to double the crossover (J) A first design in ENSnano (G) Left-drag downwards to initiate a crossover (C) Right-click on the grid to place the pivot and right-click-drag to rotate (H) Release the mouse on the strand bellow to create the crossover

Figure 6 7 . 11 Figure 7

 67117 Figure 6Step-by-step construction of a first design in ENSnano.

  Fig. A.3 or C.6. Left-clicking on their number will translate the selected helices, while right-clicking will rotate them. Moving is the 2D view is done by middle-or Alt/ +left-click-and-drag. Zooming in and out is done by scrolling the mouse wheel.
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 78 Figure 8 Grid geometry-aware copy and paste of strands and crossovers. (left) Duplication of a strand: the red strand gets duplicated on other helices of the grid. One can check in the 3D interface that the path of the strand is correctly being copied, even if the 2D view could be reorganized to present a clearer representation of the strand. (right) Duplication of crossovers: four crossovers are being copied at once on existing strands.

M13mp18.

  In ENSnano, the user can either set the starting position of the cyclic scaffold sequence, or let ENSnano optimize it. When asked to optimize, ENSnano tries to minimize the risk of error in the strand synthesis, by finding the position that minimizes the number of problematic patterns such as C n⩾4 , G n⩾4 or (A|T ) n⩾7 . The higher the n, the heavier the weight of the problem. Once optimized, ENSnano reports on the number of remaining problematic patterns as shown in Fig. A.4. This position is retained and saved for later reuse.

Figure 11

 11 Figure 11 AFM images of our rocket design. These were obtained on a JPK Fastscan Nanoworld 4 equipped with a Nanoworld USC-F0.3-k0.3 tip in tapping mode -20µL sample of: m13mp18 scaffold at 1nM with staples at 10nM in 1× TAE buffer with 12.5mM magnesium.

Fig. C. 6 ,

 6 Fig. C.6, we plan to propose as soon as possible, a python framework to produce ENSnano design file programmatically.

Figure A. 1

 1 Figure A.1 Using ENSnano's groups to hide elements of the design. (left) The two layers of the rocket design which are spread apart to ease the reading of the crossovers in the figures. Two overlapping heterogeneous groups, gathering helices and crossovers, have been created in the organizer, and can be shown or hidden on demand in the 3D view: (middle) A first group gathering the helices in the rectangular base, and the crossovers between the two layers; (right) A second group gathering the helices of the rocket and the crossovers between the two layers.

( A )Figure A. 2

 A2 Figure A.2 The move and rotate handles to rearrange grids and helices in 3D.

Figure A. 4 In

 4 Figure A.4 Report on scaffold sequence position optimization.
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 7225 Figure B.5 The configurable DNA geometric parameters: R: the radius of an helix, labelled helix_radius; r: the distance between two neighbour helices on a grid, labelled inter_helix_gap; α: the minor groove angle, labelled groove_angle; β: the angle between two consecutive base-pairs. This angle can be obtained by the formula β = 2π bases_per_turn ; z: the distance in nanometers between two consecutive bases along the axis, labelled z_step; G: the length of the major groove; g: the length of the minor groove; G, g and α are related to each other by the formula α = 2π g G+g .

A 3 -

 3 dimensional rotor has a scalar part s ∈ R and a bivector part bv ∈ R 3 . A rotor can be obtained by taking the geometric product of two vectors. The geometric product of a and b is defined by ab = (a • b + a ∧ b), i.e. it is a rotor with scalar s = a • b and bivector bv = a ∧ b.

5 xD N A 2 7 Figure C. 6

 576 Figure C.6 Overview of ENSnano interface. (1) Open a design; (2) Save current design; (3) Export current design to oxDNA; (4) Switch between 2D/3D views and split 2D view; (5) Fit the design in the 3D and 2D views; (6) Undo/Redo; (7) Show Help/Link to tutorials in the contextual panel; (8) Tool Panel, organized in tabs (see Figure C.7 for details); (9) Camera shortcut panel; (10) Contextual panel, containing either information about the currently selected object(s), or a reminder of the mouse and keyboard commands. (11) Organizer. Panels 8-11 have a fixed height, scrolling with the mouse will reveal their possibly hidden contents.

Figure C. 7 5 )Figure C. 8

 758 Figure C.7 The tool panels. (a) Grid: The grid tab contains tool to create grids, nanotubes and helices; it also contains the tools to move and rotate grids and helices; (1) Create square and honeycomb grid; (2) Adjust the length and position of the strands created whith new helices; (3) Create a new nanotube; (4) Adjust the length and number of helices composing the nanotube; (5) Action mode: Edition/Translation/Rotation/Helix creation; (6) Create a grid from a selection of unattached helices -(b) Edition: (7): Change selection mode: Nucleotides/Strands/Helices; (8): Change action mode; (9): Adjust manually or automatically the roll of selected helices; (10) Adjust the lengtrh of the helix representation in the 2D view -(c) Camera: (11) Make selection or complementary of selection visible/invisible; (12) Enable/Disable Fog and adjust fog parameters; (13) 3D rendering options -(d) Simulation: (14) Start/Stop a simulation -(e) Sequences: (15) Show/hide DNA sequences; (16) Select/set the scaffold strand; (17) Export staples to IDT .xlsx format.

  Fig. C.8 presents its detailed 2D blueprint of its design.

Staple 0279; 5 '

 5 :h20:nt72>3':h22:nt72 AGGGAAGC TTTATCCCAATCCAA GACTTGCG Staple 0299; 5':h20:nt102>3':h38:nt102 CAGCCT TGTTTAACGTC ATTCGCCAT TGCGGGCCTCTCAGGCA Staple 0319; 5':h20:nt135>3':h22:nt135 ATTCATTT AAACATCAAGAAAACA CAAAGAACGC Staple 0329; 5':h20:nt150>3':h18:nt150 GCGCAGA GAAGGGTTAGAACCTA TCATCATA Staple 0342; 5':h20:nt166>3':h22:nt166 ACCAAGTT ACAATTTCATTTGAA TGTAAATG Staple 0406; 5':h20:nt231>3':h22:nt231 ATATACAGTA ATAACCTTGCTTCTGT AAATCAT Staple 0041; 5':h21:nt2>3':h22:nt2 CCAACGCTAACGAGCG TTTATCCTGAATCTTA Staple 0244; 5':h21:nt26>3':h19:nt26 GAGCCTA GAACAAAGTCAGAGGG CAAGAATT Staple 0254; 5':h21:nt42>3':h23:nt42 TTACAAA AGATTAGTTGCTATTT CCGTTTTT Staple 0266; 5':h21:nt58>3':h35:nt58 CATATTA GCATTAGACGGG TCACG Staple 0310; 5':h21:nt120>3':h19:nt120 ATGAAAC CAATTACCTGAGCAAA CTGATTGT Staple 0353; 5':h21:nt182>3':h19:nt182 TTTAATGG CGGATTCGCCTGATTG TTGCACGT Staple 0364; 5':h21:nt198>3':h23:nt198 CATAAATC CCTCCGGCTTAGGTT ATAAACAC Staple 0375; 5':h21:nt214>3':h19:nt214 TGAGTGA ACAGTACCTTTTACAT AGATTTTC Staple 0420; 5':h21:nt245>3':h22:nt245 GCTATTAATTAATTTTCCCTTAG GACGCTGA Staple 0280; 5':h22:nt72>3':h24:nt72 GGAGGTTT GCGCCCAATAGCAAG CCCATCCTA Staple 0320; 5':h22:nt133>3':h23:nt133 GAGAAA CTTCTGACCTAAATTT CAGCTAATGCAGAACGCGCCTGTTTATCAACA TTTAGT Staple 0330; 5':h22:nt150>3':h20:nt150 CGCAAGA AAATTAATTACATTTA ACAAAATC Staple 0343; 5':h22:nt166>3':h24:nt166 CTGATGCA GACCGTGTGATAAAT CTGTCCAGACGACGAC Staple 0407; 5':h22:nt229>3':h24:nt229 AGGTCTGA GCCTGTTTAGTATCAT GCAGAGG Staple 0422; 5':h22:nt260>3':h24:nt260 GAAGAGTC CTTACCAGTATAAAG GCCATATTTAA Staple 0417; 5':h22:nt284>3':h21:nt284 CGATAGCTTAGATTAA AATCCTTGAAAACATAG Staple 0045; 5':h23:nt2>3':h24:nt2 CCAAGTACCGCACTCA AAGAACGGGTATTAAA Staple 0245; 5':h23:nt26>3':h21:nt26 AAGCAAG TGCACCCAGCTACAAT TCTTTCCA Staple 0255; 5':h23:nt41>3':h23:nt41 ATTTTCAT ATCAATAATCGGCTGTCTTTCCTTATCATTCC TCGAGAAC Staple 0267; 5':h23:nt58>3':h21:nt58 CATTACC TGAAGCCTTAAATCA ATAAACAGC Staple 0290; 5':h23:nt88>3':h40:nt88 ATATAGAA TTTTAGCGAACCTCCC ATAAGAAA GCGATCGG TCAGGCTGCGCAACTGT Staple 0300; 5':h23:nt103>3':h23:nt103 CCGGTATTC ATAGATAAGTCCTGAACAAGAAAAATAATAT CAAATCAG Staple 0311; 5':h23:nt118>3':h21:nt118 TAATTTCAT ACTTTTTCAAATATAT AGAAGATG Staple 0354; 5':h23:nt182>3':h21:nt182 AAATAAGA GGGTTATATAACTATA TTACCTTT Staple 0365; 5':h23:nt198>3':h23:nt198 CGGAATCA ATATAAAGTACCGACAAAAGGTAAAGTAATT AAGGCGTT Staple 0376; 5':h23:nt214>3':h21:nt214 AGAAAAA GAGACTACCTTTTTAA AATATATG Staple 0421; 5':h23:nt245>3':h21:nt245 TACAAATT AATAGTGAATTTATCA AAATCGTC Staple 0281; 5':h24:nt71>3':h23:nt71 ATTTACGAGCATGTAGAAACCA CGTAGGAAT Staple 0331; 5':h24:nt158>3':h22:nt158 AATAAACAACATGTT AATGGTTTGAAATACC AATCCAAT Staple 0408; 5':h24:nt229>3':h23:nt229 CATTTTCGAGCCAGTAATAAGAGA TAATTACT Staple 0423; 5':h24:nt257>3':h23:nt257 CAACGCCAACATGTAATTTAG ATGCGTTA Staple 0419; 5':h24:nt284>3':h23:nt284 GGCTTAATTGAGAATC CCAACGCTCAACAGTAG Staple 0217; 5':h25:nt54>3':h9:nt54 TTTGGATCGG TCCGAA CTCCACGCTGG TGGT CAAAAT GTT TAGCATT CAGGAGGTT Staple 0233; 5':h26:nt23>3':h30:nt23 AAATCCTGTTTGATGG TTTGC AGAGTT CCAGGG ACATTAAT Staple 0086; 5':h28:nt2>3':h13:nt2 AGCTGATT ATCACCGGAACCA GCCACCCT Staple 0378; 5':h28:nt53>3':h8:nt53 GTCAAAGGGCGA AAAGAACGTGGACTC AAC CAGAACCG CACCAGTA Staple 0208; 5':h28:nt65>3':h9:nt65 AAAACCG GACTCCTCAAGAG CTCAGAACCGCCACCCTC Staple 0388; 5':h28:nt98>3':h10:nt98 GAACCATCACCCAA CCGATTAAAGGG AGGATTAAGCAAT CTGATAAATTATCTGAAACA Staple 0397; 5':h28:nt143>3':h5:nt143 GCACTAAATC GTGCTTTCCTCG AGAGCTTAATTGCT CTATTATAGTCAGAAGCA Staple 0210; 5':h29:nt32>3':h27:nt32 TGGTTTTTCTTTTCA CCGCCTGGCCCTGAG CCCAGCAGGCGA Staple 0387; 5':h29:nt72>3':h31:nt72 AACGCGCG CCAGTCGGGAAACCT TCTGTCC Staple 0377; 5':h30:nt41>3':h14:nt41 TGCGTTGC AATGAGTGAGCT CTTATTA N. Levy and N. Schabanel 12:31 Staple 0379; 5':h30:nt57>3':h12:nt57 CCCGCTTT GGGAGAGGCGGTTTGCG TTAAAGC Staple 0230; 5':h30:nt106>3':h33:nt106 GAATCC TTATA GTAATA TGAGTAGA Staple 0393; 5':h30:nt112>3':h8:nt112 TGAGAA AGGAGG ATCAAGTTTTTT ACTAAAGTACGGTG AAATCATA Staple 0083; 5':h30:nt148>3':h35:nt148 ATAAC GCACGT GGCGC CTACAG AATGT GAACAAACGG Staple 0396; 5':h30:nt162>3':h28:nt162 AGCCGGCG CCCCGATTTAGAGCTT GGAACCCTAAAGGGAGC Staple 0214; 5':h30:nt170>3':h9:nt170 AACG CGGGC GGCAAGTGTAGCGGTC AAC CGAGCTG AGAAGCCT Staple 0386; 5':h31:nt73>3':h33:nt73 ATCAGTGT CATAAACGCAAATTAA ATTCGTA Staple 0389; 5':h31:nt88>3':h28:nt88 TAAAAGAG GTCGTGCCAGCAGGAA TTAGACTGCATTAATG GGCGATGGCCCACTACGT Staple 0395; 5':h32:nt161>3':h8:nt161 GTTGCGCT GCTAGGGC GATTCCCAATTCTG TGGCATCAAT Staple 0380; 5':h33:nt41>3':h18:nt41 GTTATCCGC GCATGCC ATAGAAAATTCAT GAAACCGA Staple 0384; 5':h33:nt57>3':h16:nt57 TTTCCTGT CATACGAGCCGGAAG AAAGCCTGG CATTTTC CACCG GGAAGGTA Staple 0385; 5':h33:nt73>3':h35:nt73 ATCATGGT CGGGTACCGAGCTCGA CCAGTTTGAGGGGAC Staple 0390; 5':h33:nt103>3':h35:nt103 TTTGTTA ATCAAAAATAATTCGC TGTAGATGGGC Staple 0079; 5':h33:nt189>3':h6:nt189 CGCGT ACGCTG AAGAAAGCG AATTGCT Staple 0067; 5':h34:nt2>3':h19:nt2 ACGTTGTAAAACGACG GGGTTTTCCCAG AGAATTAACTGAAC TAATAAGAG Staple 0391; 5':h34:nt88>3':h11:nt88 GGAACGCC AATCAGCTCATTTTTT CCGTTGTAGCAAT CGGC ATGCCGGA Staple 0064; 5':h34:nt117>3':h11:nt117 GCCTTCCTGTAGCCAG TAATGGGATAGGT TGCAACAG TAATATTTTGTTAAA CTACAAAG Staple 0381; 5':h35:nt42>3':h37:nt42 GATCCGATT GCAAGGGCACTCCAGC CTCGCTATTACGC Staple 0383; 5':h35:nt57>3':h33:nt57 TATCGGCC ACTCTAGAGGATCCC CATAGCTG Staple 0394; 5':h35:nt143>3':h12:nt143 CGGATTGACCG CTTTCATCAAC AGAG TTTAAATT Staple 0215; 5':h35:nt168>3':h32:nt168 TCGGATTCTCCGTGG GAGCGAGTAACAACCCG CGCGCTTAATGCGCCG GTACTATG Staple 0071; 5':h36:nt23>3':h34:nt23 GGGATGTGCT AAGTTGGGTAACGCCA GCCAGTGCCAAGCTT Staple 0382; 5':h37:nt36>3':h19:nt36 CAGCTGGCGAAAGG TGGGAAGG CGATTTTT TTACAGAGAGAATAAC CCGAAGCC Staple 0072; 5':h37:nt64>3':h35:nt64 TTCTGGTGCCGGAAA CAGCTTTCCGGCACCGC GACGACAG Staple 0219; 5':h39:nt23>3':h25:nt23 AATAGCCCGAGATAGG CCCTTATAAATCAAAAG Staple 0090; 5':h40:nt54>3':h23:nt54 AAGCGCC AAAAA TAAGAACGCGAGGCG GGCTTAT D N A 2 7
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  be downloaded directly from ENSnano website[START_REF] Levy | Ensnano: A software for designing 3d DNA/rna nanostructures[END_REF].

	2	ENSnano concepts
	2D and 3D editable views. ENSnano combines two graphical interfaces to visualize and
	edit DNA nanostructures, each of them serving different purposes:
		the 3D view helps to visualize and arrange precisely the different elements composing the
		design in space. It enables to navigate inside the nanostructure, to ensure, for instance,
		that the crossovers that bind it together, are not too short nor too long. It also allows
		to arrange complex structures where helices are not parallel. It also provides new 3D
		tools that helps, for instance, to find suitable positions for crossovers between any kind of
		helices.
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https://docs.rs/ultraviolet/0.8.0/ultraviolet/rotor/index.html

https://docs.rs/ultraviolet/0.8.0/ultraviolet/transform/struct.Isometry2.html
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