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THE EXT-ALGEBRA OF THE BRAUER TREE ALGEBRA

ASSOCIATED TO A LINE

OLIVIER DUDAS

Abstract. We compute the Ext-algebra of the Brauer tree algebra associated

to a line with no exceptional vertex.

Introduction

This note provides a detailed computation of the Ext-algebra for a very specific
finite dimensional algebra, namely a Brauer tree algebra associated to a line, with
no exceptional vertex. Such algebras appear for example as the principal p-block
of the symmetric group Sp, and in a different context, as blocks of the Verlinde
categories Verp2 studied by Benson–Etingof in [2] (our computation is actually
motivated by [2, Conj. 1.3]).

Let us emphasise that Ext-algebras for more general biserial algebras were explic-
itly computed by Green–Schroll–Snashall–Taillefer in [4], but under some assump-
tion on the multiplicity of the vertices, assumption which is not satisfied for the sim-
ple example treated in this note. Other general results relying on Auslander–Reiten
theory were obtained by Antipov–Generalov [1] and Brown [3]. However we did not
manage to use their work to get an explicit description in our case. Nevertheless,
the simple structure of the projective indecomposable modules for the line allows
a straightforward approach using explicit projective resolutions of simple modules.
The Poincaré series for the Ext-algebra is given in Proposition 2.2theorem.2.2 and
its structure as a path algebra with relations is given in Proposition 3.2theorem.3.2.
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1. Notation

Let F be a field, and A be a self-injective finite dimensional F-algebra. All
A-modules will be assumed to be finitely generated. Given an A-module M , we
denote by Ω(M) the kernel of a projective cover P � M . Up to isomorphism it
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2 OLIVIER DUDAS

does not depend on the cover. We then define inductively Ωn(M) = Ω(Ωn−1(M))
for n ≥ 2.

To compute the extension groups between simple modules we will use the prop-
erty that

ExtnA(M,S) ' HomA(Ωn(M), S)

for any simple A-module S and any n ≥ 1.

For computing the algebra structure on the various Ext-groups it will be conve-
nient to work in the homotopy category Ho(A) of the complexes of finitely generated
A-modules. If S (resp. S′) is a simple A-module, and P• → S (resp. P ′• → S′) is
a projective resolution then

ExtnA(S, S′) ' HomHo(A)(P•, P
′
•[n])

with the Yoneda product being given by the composition of maps in Ho(A).

Assume now that A is an F-algebra associated to the following Brauer tree with
N + 1 vertices:

S1 S2 SN

Here, unlike in [4] we assume that there is no exceptional vertex. The edges are
labelled by the simple A-modules S1, . . . , SN . We will denote by P1, . . . , PN the
corresponding indecomposable projective A-modules. The head and socle of Pi are
isomorphic to Si and rad(Pi)/Si ' Si−1 ⊕ Si+1 with the convention that S0 =
SN+1 = 0.

Given 1 ≤ i ≤ N − 1 we fix non-zero maps fi : Pi −→ Pi+1 and f∗i : Pi+1 −→ Pi

such that f∗i ◦ fi + fi−1 ◦ f∗i−1 = 0 for all 2 ≤ i ≤ N − 1. This is possible since
f∗i ◦fi and fi−1◦f∗i−1 are two non-zero elements of the Jacobson radical of End(Pi),
which is isomorphic to F. It follows that the algebra A is Morita equivalent to the
path algebra of the quiver

P1 P2 P3 · · · PN−2 PN−1 PN
f1
f∗
1

f2
f∗
2

fN−2

f∗
N−2

fN−1

f∗
N−1

subject to the relations f∗i ◦ fi + fi−1 ◦ f∗i−1 = 0 for all 2 ≤ i ≤ N − 1.

2. Ext-groups

Given 1 ≤ i ≤ j ≤ N with i − j even, there is, up to isomorphism, a unique
non-projective indecomposable module iXj such that

• rad(iXj) = Si+1 ⊕ Si+3 ⊕ · · · ⊕ Sj−1
• hd(iXj) = Si ⊕ Si+2 ⊕ · · · ⊕ Sj .
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In particular we have iXi = Si. The structure of iXj can be represented by the
following diagram:

Si Si+2 Si+4 · · · Sj−2 Sj

iXj = · · ·

Si+1 Si+3 · · · Sj−1

Similarly we denote by iXj the unique indecomposable module with the following
structure:

Si+1 Si+3 · · · Sj−1

iXj = · · ·

Si Si+2 Si+4 · · · Sj−2 Sj

Note that iXi = Si = iXi. Finally, in the case where i − j is odd we define the
modules iX

j and iXj as the indecomposable modules with the following respective
structure:

Si+1 Si+3 · · · Sj

iX
j = · · ·

Si Si+2 Si+4 · · · Sj−1

Si Si+2 Si+4 · · · Sj−1

iXj = · · ·

Si+1 Si+3 · · · Sj

For convenience we will extend the notation iXj , iXj , iX
j and iXj to any integers

i, j ∈ Z (with the suitable parity condition on i− j) so that the following relations
hold:

iX = 1−iX,
iXj = jXi,

i±2NX = iX. (1)

Note that this also implies Xj = X1−j , X
j±2N = Xj and iXj = jX

i.

Lemma 2.1. Let i, j ∈ Z with i− j even. Then

Ω(iXj) ' i−1Xj+1.

Proof. Since iXj ' i±2NXj±2N we can assume that both i and j are in {−N +
1, . . . , N}. If i ≤ 0 then 1− i ∈ {1, . . . , N}, but 1− (i− 1) = (1− i) + 1. Similarly
if j ≤ 0 then 1− j ∈ {1, . . . , N}, but 1− (j + 1) = (1− j)− 1. Therefore using the
relations (1Ext-groupsequation.2.1) it is enough to prove that for 1 ≤ k ≤ l ≤ N
we have the following isomorphisms

Ω(kXl) ' k−1Xl+1, Ω(kX
l) ' k+1X

l+1, Ω(kXl) ' k−1Xl−1, Ω(kXl) ' k+1Xl−1.

We only consider the first one, the others are similar. If 1 ≤ k ≤ l ≤ N a projective
cover of kXl is given by Pk ⊕ Pk+2 ⊕ · · · ⊕ Pl � kXl, whose kernel equals k−1Xl+1.
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Note that this holds even when k = 1 since 0Xl+1 = 1X
l+1 or when l = N since

k−1XN+1 = k−1X−N+1 = k−1XN . �

We deduce from Lemma 2.1theorem.2.1 that for any simple module Si and for
all k ≥ 0 we have

Ωk(Si) = Ωk(iXi) ' i−kXi+k

as A-modules. Consequently we have

ExtkA(Si, Sj) =

{
F if Sj appears in the head of i−kXi+k,
0 otherwise.

(2)

From this description one can compute explicitly the Poincaré series of the Ext-
groups.

Proposition 2.2. Given 1 ≤ i, j ≤ N , the Poincaré series of Ext•A(Si, Sj) is given
by ∑

k≥0

dimF Ext
k
A(Si, Sj)t

k =
Qi,j(t) + t2N−1Qi,j(t

−1)

1− t2N

where Qi,j(t) = t|j−i| + t|j−i|+2 + · · ·+ tN−1−|N+1−j−i|.

Proof. First observe that

ΩN (Si) = i−NXi+N = 1+N−iX1−N−i = 1+N−iX1+N−i = SN+1−i.

Then for all k ≥ 0 we have ExtkA(Si, Sj) = ExtkA(SN+1−i, SN+1−j). Moreover,
QN+1−i,N+1−j = Qi,j = Qj,i so that it is enough to prove the lemma under the
assumption that i ≤ j.

Now, assume that i ≤ j and let k ∈ {0, . . . , N − 1}. If i+ j ≤ N + 1, the simple
module Sj appears in the head of i−kXi+k if and only if k = j−i, j−i+2, . . . , j+i−2.
The limit cases are indeed 2i−jXj for k = j − i and 2−jX2i+j−2 = j−1X

2i+j−2 for
k = j+i−2. Note that if j−i ≤ k ≤ i+j−2 then j ≤ i+k and j ≤ 2N−i−k so that
Sj appears in the head of i−kXi+k = i−kX2N−i−k+1 whenever k has the suitable
parity. If i+j > N+1 one must ensure that j ≤ 2N−i−k and therefore Sj appears
in the head of i−kXi+k if and only if k = j−i, j−i+2, . . . , 2N−i−j. Consequently,
using the description of the Ext-groups given in (2Ext-groupsequation.2.2) we have

N−1∑
k=0

dimF Ext
k
A(Si, Sj)t

k = tj−i + tj−i+2 + · · ·+ tN−1−|N+1−j−i|

= t|j−i| + t|j−i|+2 + · · ·+ tN−1−|N+1−j−i|

= Qi,j(t).

(3)

Using the relation ΩN (Si) = SN+1−i we obtain

2N−1∑
k=0

dimF Ext
k
A(Si, Sj)t

k =

N−1∑
k=0

dimF Ext
k
A(Si, Sj)t

k+tN
N−1∑
k=0

dimF Ext
k
A(SN+1−i, Sj)t

k
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which by (3Ext-groupsequation.2.3) equalsQi,j(t)+QN+1−i,j(t). SinceQN+1−i,j(t) =
tN−1Qi,j(t

−1) we finally get

2N−1∑
k=0

dimF Ext
k
A(Si, Sj)t

k = Qi,j(t) + tN−1Qi,j(t
−1)

and we conclude using the fact that Extk+2N
A (Si, Sj) = ExtkA(Si, Sj). �

3. Algebra structure

We denote by E(A) the Ext-algebra of A, that is the graded algebra

E(A) :=
⊕

1≤i,j≤N

Ext•A(Si, Sj)

endowed with the Yoneda product. We will give in Proposition 3.2theorem.3.2 a
description of E(A) as the path algebra of a quiver with relations.

3.1. Generation. Let 1 ≤ i, j ≤ N and let k ≥ 1. Assume that there is a
non-zero map between ΩkSi and Sj , so that Sj appears in the head of ΩkSi '
i−kXi+k. If k ≥ N , any map between ΩkSi and Sj factors through the (unique

up to a scalar) isomorphism ΩNSN+1−j
∼−→Sj . If 0 < k < N , one can use the

relations (1Ext-groupsequation.2.1) to see that the module i−kXi+k is not simple.
It follows from its structure that at least one of Sj−1 or Sj+1 appears in the
socle. Consequently, any map between ΩkSi and Sj will factor through a map
ΩSj−1 −→ Sj (if Sj−1 appears in the socle of i−kXi+k) or ΩSj+1 −→ Sj (if Sj+1

appears in the socle of i−kXi+k). This shows that E(A) is generated in degree 1
and N as a left module over itself, hence as an algebra.

3.2. Minimal resolution. Recall from §1Notationsection.1 that we have chosen
non-zero maps fi : Pi −→ Pi+1 and f∗i : Pi+1 −→ Pi such that f∗i ◦fi+fi−1◦f∗i−1 =
0 for all 2 ≤ i ≤ N − 1. Given 1 ≤ i ≤ j ≤ N with j − i even we denote by iPj the
following projective A-module

iPj := Pi ⊕ Pi+2 ⊕ · · · ⊕ Pj−2 ⊕ Pj .

For 1 ≤ i < j ≤ N with j − i even we let di,j : iPj −→ i+1Pj−1 be the morphism
of A-modules corresponding to the following matrix:

di,j =



fi f
∗
i+1 0 · · · · · · 0

0 fi+2 f
∗
i+3 0

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 fj−2 f

∗
j−1


The definition of iPj extends to any integers i, j ∈ Z with the convention that

iPj = j+1Pi−1, iP−j = iPj , iPj±2N = iPj . (4)
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Note that these relations imply 1−iPj = 1+iPj and i±2NPj = iPj . Furthermore,
the definition of di,j extends naturally to any pair i, j if we set in addition

di,i = (−1)if∗i ◦ fi = (−1)i−1fi−1 ◦ f∗i−1,
a map from iPi = Pi to i+1Pi−1 = Pi. With this notation one checks that for all
k > 0 the image of the map di−k,i+k : i−kPi+k −→ i−k+1Pi+k−1 is isomorphic to
i−kXi+k ' Ωk(Si) and its kernel to i−k−1Xi+k+1 ' Ωk+1(Si) so that the bounded
above complex

Ri := · · · di−k−1,i+k+1−−−−−−−→ i−kPi+k
di−k,i+k−−−−→ · · · di−2,i+2−−−−→ i−1Pi+1

di−1,i+1−−−−→ Pi −→ 0

forms a minimal projective resolution of Si.

3.3. Generators and relations. We have seen in Section 3.1Generationsubsection.3.1
that the Ext-algebra is generated in degrees 1 and N . Here we will construct explicit
generators using the minimal resolutions defined above.

We start by defining a map zi ∈ HomHo(A)(Ri, Ri+1[1]) for any 1 ≤ i ≤ N − 1.
Let k be a positive integer. If k /∈ NZ, the projective modules i−kPi+k and

i+1−(k−1)Pi+1+(k−1) = i−k+2Pi+k have at least one indecomposable summand in com-
mon and we can consider the map Zi,k : i−kPi+k −→ i−k+2Pi+k given by the identity
map on the common factors, followed by multiplication by (−1)k. If k ∈ N + 2NZ
then from the relations (4Minimal resolutionequation.3.4) we have

i−kPi+k = i−NPi+N = i+N+1Pi−N−1 =−i−N+1P−i+N+1 = PN+1−i

and

i−k+2Pi+k = i−N+2Pi+N = N−iP−N−i = PN−i.

In that case we set Zi,k := (−1)if∗N−i. If k ∈ 2NZ then i−kPi+k = Pi, i−k+2Pi+k =

i+2Pi = Pi+1 and we set Zi,k := (−1)ifi. If k ≥ 0 we set Zi,k := 0. Then
the family of morphisms of A-modules Zi := (Zi,k)k∈Z defines a morphism of
complexes of A-modules from Ri to Ri+1[1] and we denote by zi its image in Ho(A).
Note that zi is non-zero; indeed, the composition of Zi with the the natural map
Ri+1[1] −→ Si+1[1] is already not null-homotopic since Ext1A(Si, Si+1) 6= 0.

Similarly we define a map Z∗i : Ri+1 −→ Ri[1] by exchanging the role of f and f∗.
More precisely we consider in that case Z∗i,−N := (−1)ifN−i and Z∗i,−2N := (−1)if∗i .

We denote by z∗i the image of Z∗i in Ho(A).

Assume now that 1 ≤ i ≤ N . The modules i−kPi+k and (N+1−i)−(k−N)P(N+1−i)+(k−N)

are equal, which means that starting from the degree −N , the terms of the com-
plexes Ri and RN+1−i[N ] coincide. In addition, the differentials only differ by
(−1)N . We denote by Yi : Ri −→ RN+1−i[N ] the natural projection between Ri

and its obvious truncation at degrees ≤ −N , followed by the multiplication by
(−1)Nk in each degree k. We will write yi for its image in Ho(A). Again, yi is

non-zero since ExtNA (Si, SN+1−i) 6= 0.

Lemma 3.1. The following relations hold in End•Ho(A)(
⊕
Ri):

(a) z∗1 [1] ◦ z1 = 0, zN−1[1] ◦ z∗N−1 = 0;
(b) zi[1] ◦ z∗i = z∗i+1[1] ◦ zi+1 for all i = 1, . . . , N − 2;
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(c) yi+1[1] ◦ zi = z∗N−i[N ] ◦ yi for all i = 1, . . . , N − 1;
(d) yi[1] ◦ z∗i = zN−i[N ] ◦ yi+1 for all i = 1, . . . , N − 1.

Proof. If N = 1 there are no relation to check. Note that in that case the algebra
A is isomorphic to F[t]/(t2). It is a Koszul algebra whose dual is isomorphic to
F[t]. Therefore we assume N ≥ 2. The relations in (a) follow from the fact
that Ext2A(S1, S1) = Ext2A(SN , SN ) = 0, which is for example a consequence of
Proposition 2.2theorem.2.2.

To show (c), we observe that the morphism of complexes Zi : Ri −→ Ri+1[1]
defined above coincide with Z∗N−i[N ] : RN+1−i[N ] −→ RN−i[N + 1] in degrees less
than −N . Since Yi and Yi+1 are just obvious truncations with suitable signs we
actually have Yi+1[1] ◦Zi = Z∗N−i[N ] ◦Yi. The relation (d) is obtained by a similar
argument.

We now consider (b). The morphism of complexes Zi[1] ◦Z∗i and Z∗i+1[1] ◦Zi+1

coincide at every degree k except when k is congruent to 0 or −1 modulo N . Let
us first look in details at the degrees −N and −N − 1. The map Zi[1] ◦ Z∗i is as
follows:

· · · PN−1−i ⊕ PN+1−i PN−i PN−i

PN−i ⊕ PN+2−i PN+1−i PN+1−i PN−i ⊕ PN+2−i

PN−i PN−i PN−1−i ⊕ PN+1−i · · ·

[
fN−1−i f∗

N−i

]

[
0 (−1)N+1

]

(−1)N−if∗
N−i◦fN−i

(−1)ifN−i

(−1)N−1

0


−
[
fN−i f∗

N+1−i

]

[
(−1)N+1 0

]

(−1)N−i+1fN−i◦f∗
N−i

(−1)if∗
N−i

−

 f∗
N−i

fN+1−i



 0

(−1)N−1


(−1)N−if∗

N−i◦fN−i

f∗
N−1−i

fN−i


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whereas the map Z∗i+1[1] ◦ Zi+1 corresponds to the following composition:

· · · PN−1−i ⊕ PN+1−i PN−i PN−i

PN−2−i ⊕ PN−i PN−1−i PN−1−i PN−2−i ⊕ PN−i

PN−i PN−i PN−1−i ⊕ PN+1−i · · ·

[
fN−1−i f∗

N−i

]

[
(−1)N+1 0

]

(−1)N−if∗
N−i◦fN−i

(−1)i+1f∗
N−1−i

 0

(−1)N−1


−
[
fN−2−i f∗

N−1−i

]

[
0 (−1)N+1

]

(−1)N−if∗
N−1−i◦fN−1−i

(−1)i+1fN−1−i

−

f∗
N−2−i

fN−1−i



(−1)N−1

0


(−1)N−if∗

N−i◦fN−i

f∗
N−1−i

fN−i



We deduce that at the degrees −N and −N −1 the map Zi[1]◦Z∗i −Z∗i+1[1]◦Zi+1

is given by

PN−1−i ⊕ PN+1−i PN−i

PN−i PN−1−i ⊕ PN+1−i

[
fN−1−i f∗

N−i

]

(−1)N+1−i
[
fN−1−i f∗

N−i

]
(−1)N+1−i

f∗
N−1−i

fN−i


f∗

N−1−i

fN−i



A similar picture holds at the degrees −2N and −2N − 1:

Pi ⊕ Pi+2 Pi+1

Pi+1 Pi ⊕ Pi+2

[
fi f∗

i+1

]

(−1)i+1
[
fi f∗

i+1

]
(−1)i+1

 f∗
i

fi+1


 f∗

i

fi+1



Using the map s : Ri+1 → Ri+1[1] defined by

sk :=

 (−1)N+1−iIdPN−i
if −k ∈ N + 2NN,

(−1)i+1IdPi+1
if −k ∈ 2N + 2NN,

0 otherwise,
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we see that Zi[1] ◦ Z∗i − Z∗i+1[1] ◦ Zi+1 is null-homotopic, which proves that zi[1] ◦
z∗i − z∗i+1[1] ◦ zi+1 is zero in HomHo(A)(Ri+1, Ri+1[2]). �

The next proposition shows that the relations given in Lemma 3.1theorem.3.1
are actually enough to describe the Ext-algebra. We use here the concatenation of
paths as opposed to the composition of arrows, which explains the discrepancy in
the relations.

Proposition 3.2. The Ext-algebra of A is isomorphic to the path algebra associated
with the following quiver

S1 S2 S3 · · · SN−2 SN−1 SN
z1

y1

z∗
1

z2

y2

z∗
2

y3

yN−2

zN−2

z∗
N−2

yN−1

zN−1

z∗
N−1

yN

with zi’s of degree 1 and yi’s of degree N , subject to the relations

(a) z1z
∗
1 = z∗N−1zN−1 = 0;

(b) z∗i zi = zi+1z
∗
i+1 for all i = 1, . . . , N − 2;

(c) ziyi+1 = yiz
∗
N−i for all i = 1, . . . , N − 1;

(d) z∗i yi = yi+1zN−i for all i = 1, . . . , N − 1.

Proof. Let Q (resp. I) be the quiver (resp. the ideal generated by the set of
relations) given in the proposition. Let Γ = FQ/I be the corresponding path
algebra. By Section 3.1Generationsubsection.3.1 and Lemma 3.1theorem.3.1, the
Ext-algebra E(A) of A is a quotient of Γ. To show that E(A) ' Γ it is enough to
show that the graded dimension of Γ is smaller than that of E(A).

Let 1 ≤ i, j ≤ N and γ be a path between Si and Sj in Q containing only zl’s
and z∗l ’s. Let k be the length of γ. We have k ≥ |i − j|, which is the length of
the minimal path from Si to Sj . Using the relations, there exist cycles γ1 and γ2
around Si and Sj respectively such that

γ =

{
γ1zizi+1 · · · zj−1 = zizi+1 · · · zj−1γ2 if i ≤ j;
γ1z
∗
i−1z

∗
i−2 · · · z∗j = z∗i−1z

∗
i−2 · · · z∗j γ2 otherwise.

Maximal non-zero cycles starting and ending at Si are either z∗i−1z
∗
i−2 · · · z∗1z1z2 · · · zi−1

or zizi+1 · · · zN−1z∗N−1 · · · z∗i+1 · · · z∗i depending on whether Si is closer to S1 or SN .
Indeed, any longer cycle will involve z1z

∗
1 or z∗N−1zN−1, which are zero by (a).

Therefore if deg(γ1) > 2(i− 1) or deg(γ1) > 2(N − i) then γ1 = 0. Using a similar



10 OLIVIER DUDAS

argument for cycles around Sj we deduce that γ is zero whenever

k = deg(γ) > |i− j|+ 2min(i− 1, j − 1, N − i,N − j)
which is equivalent to k = deg(γ) > N − 1− |N + 1− j − i|. This proves that γ is
zero unless |i− j| ≤ k ≤ N − 1− |N + 1− j − i| in which case it equals

γ = zizi+1 · · · zr−1z∗r−1z∗r−2 · · · z∗j
where k = 2r − i − j. In particular, k − |i − j| must be even. Consequently,
the subspace of Γ spanned by such paths has graded dimension at most equal to
t|i−j| + t|i−j|+2 + · · ·+ tN−1−|N+1−j−i| = Qi,j(t).

Assume now that γ is any path of length k between Si and Sj in Q. Using the
relations one can write γ as γ = yai γ1γ2 where γ2 is a cycle around Sj containing
only yl’s (therefore a power of yjyN−j), γ1 is a product of zl’s and a ∈ {0, 1}. Note
that deg(γ2) is a multiple of 2N and γ1 is either a path from Si to Sj if a = 0 or
a path from SN+1−i to Sj if a = 1. From the previous discussion and Proposition

2.2theorem.2.2 we conclude that γ is zero if dimF Ext
k
A(Si, Sj) = 0 or unique modulo

I otherwise. By (2Ext-groupsequation.2.2) and §3.1Generationsubsection.3.1 this
shows that the projection of Γ to the Ext-algebra of A must be an isomorphism. �
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