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We study modulational instability (MI) in optical fibers with random group-velocity dispersion
(GVD). We consider Gaussian and dichotomous colored stochastic processes. We resort to different
analytical methods (namely, the cumulant expansion and the functional approach) and assess their
reliability in estimating the MI gain of stochastic origin. If the power spectral density (PSD) of
the GVD fluctuations is centered at null wavenumber, we obtain low-frequency MI sidelobes which
converge to those given by a white noise perturbation when the correlation length tends to 0. If
instead the stochastic processes are modulated in space, one or more MI sidelobe pairs corresponding
to the well-known parametric resonance (PR) condition can be found. A transition from small and
broad sidelobes to peaks nearly indistinguishable from PR-MI is predicted, in the limit of large
perturbation amplitudes and correlation lengths of the random process. We find that the cumulant
expansion provides good analytical estimates for small PSD values and small correlation lengths,
when the MI gain is very small. The functional approach is rigorous only for the dichotomous
processes, but allows us to model a wider range of parameters and to predict the existence of MI
sidelobes comparable to those observed in homogeneous fibers of anomalous GVD.

I. INTRODUCTION

A physical system exhibiting an interplay of weak non-
linearity and group velocity dispersion (GVD) is subject
to modulational instability (MI), i.e., the destabilization
of a homogeneous state (plane or continuous waves), via
the exponential growth of small harmonic perturbations
on a uniform background [1]. After pioneering works
in fluid mechanics [2, 3], MI was discovered in electro-
magnetic waves [4] as well as in plasmas [5]; in the 80s
the phenomenon was observed in nonlinear fiber optics
[6]. In uniform fibers, MI arises for anomalous (nega-
tive) GVD, but it may also appear for normal GVD if
polarization [7], higher-order modes [8] or higher-order
dispersion are considered [9]. A different kind of MI re-
lated to a parametric resonance (PR) mechanism emerges
when the dispersion or the nonlinearity of the fiber are
periodically modulated [10–13].
The impact of a random variation of GVD on MI was

also the subject of a considerable research effort. The
particular case in which the GVD is perturbed by a Gaus-
sian white noise, i.e., a process exhibiting a vanishing
correlation length or equivalently a flat power spectral
density (PSD), is exactly solvable[14–18]. When the un-
perturbed fiber has an anomalous GVD, the conventional
MI gain profile is deformed due to the random perturba-
tion. In addition, MI sidebands of stochastic origin ap-
pear in the case of normal GVD. A white noise, however,
implies arbitrarily large variations of GVD on arbitrarily
small scales: an idealization that does not always provide
a relevant modeling of the randomness that may occur
in physical fibers. A non-conclusive theoretical study of
parametric amplification in the case of a GVD perturbed
by a Gaussian process with a finite correlation length was

proposed in [19], and a numerical study can be found in
[20].

We aim at studying the MI problem in a class of
random-GVD fibers that is both experimentally acces-
sible and theoretically tractable. In [21], we studied the
case of a GVD perturbed by randomly located sharp and
large kicks. Two different families of random processes
were chosen to generate their mutual spacing and ampli-
tude. Different MI sidebands were predicted, including
multibump ones around zero detuning and others local-
ized around PR frequencies.

Here, we consider random fluctuations extended in
space as in Ref. [14], but focus on colored processes ex-
hibiting an exponentially decaying autocorrelation func-
tion. A lowpass (LP) and a bandpass (BP, modulated)
case are considered. We resort to cumulant expansion
[22–28], functional methods [29–31], and numerical sim-
ulations. The LP processes converge to the white noise
results for vanishing correlation lengths. The MI side-
lobes are located in the same detuning range and have
amplitudes of the same order of magnitude of those cal-
culated from white noise. The BP processes yield PR-like
MI sidebands that are also comparable (in their maximal
values) to the white noise MI gain. For this reason, the
white noise turns out to be a reference for many crucial
properties of the MI gain in a more generic setting, even-
though there is little hope of an experimental realization
of it.

Since the values of frequency detuning span a large
range, the validity of the different analytical methods
has to be questioned, like in other physical settings and
systems [32, 33]. We thus have to rely on different ap-
proaches and comparatively assess their soundness in de-
scribing the different features of the MI sidelobes (posi-
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tion, height, width).

The rest of the paper is organized as follows. After
presenting the model equations (Sec. II), we study in
Sec. III the lowpass random fluctuation by means of the
two different approaches mentioned above. We then an-
alyze in Sec. IV bandpass random fluctuations, for which
we find convenient to introduce an averaging approach
to the stochastic equations. In each case we present a
thorough comparison of analytical approaches to numer-
ical results. To close the paper we report our conclusions
and perspectives.

II. MODEL DESCRIPTION

The propagation of optical pulses in a nonlinear op-
tical fiber can be modeled by the universal nonlinear
Schrödinger equation (NLSE),

i∂zU − 1

2
β2(z)∂ttU + γ|U |2U = 0. (1)

Here U(z, t) is the envelope of the optical pulse field in

units of
√
W , function of the propagation distance z and

time t in the frame of reference propagating at the group
velocity of the mode propagating in the fiber, β2 is the
GVD and γ is the nonlinear coefficient [34]. We suppose
that β2 fluctuates randomly in z, while γ stays constant.

Let β2(z) = β0
2 + δβ(z), where β0

2 > 0 (normal average
GVD) and δβ(z) is a stochastic process of zero mean, that
we specify below.

We observe that, for δβ = 0, Eq. (1) has a continuous

wave (t-independent) solution U0(z) =
√
P exp (iγPz).

In order to study the stability of this continuous
wave solution, we insert in Eq. (1) the perturbed solu-

tion U(z, t) =
[√
P + x̌1(z, t) + ix̌2(z, t)

]

exp(iγPz), lin-

earize and Fourier-transform the resulting equation with
respect to t (ω is used as the associated angular frequency
detuning from the carrier U0), to obtain

dx

dz
=

[

0 −g(z)
h(z) 0

]

x, (2)

with x ≡ (x1, x2)
T (functions of ω and z), g(z) =

g0 + δg(z) and h(z) = h0 + δg(z), with g0 ≡ β0
2
ω2

2 ,

h0 ≡ g0 + 2γP , and δg(z) ≡ δβ(z)ω
2

2 . Eq. (2) is a sys-
tem of stochastic differential equations (SDEs) for each
value ω. In the following sections we will discuss how to
reduce it to a system of ordinary differential equations
(ODEs) for the first and second moments of the proba-
bility density function of x in order to estimate the MI
gain.

We recall that we consider only normal average GVD,
thus

k2 ≡ g0h0 > 0 (3)

and no conventional MI appears for δβ(z) = 0. The MI
sidebands we predict below are therefore completely as-
cribed to random fluctuations. The case of anomalous
average GVD will be the subject of future work.
We focus here on two families of random processes,

where the stochastic process δβ is characterized by two
parametersN0 > 0 and B > 0. The first family, for which
we denote δβ ≡ χ, is characterized by an autocorrelation
function of the form

Rχ(ζ ≡ z − z′) ≡ 〈χ(z)χ(z′)〉 = N0B

4
exp(−B|ζ|). (4)

We recall that the variance of the process is σ2
χ =

Rχ(0) = N0B
4 . For B → ∞, Rχ → N0

2 δ(ζ), i.e., the
white noise autocorrelation function. Different stochas-
tic processes exhibit this same autocorrelation function.
Here, we consider the Gaussian (often denoted in the
physics literature as Ornstein-Uhlenbeck [28]) and the di-
chotomous processes, which find important applications
in physics and allow us to obtain workable approxima-
tions [33].
Both are stationary in z. By virtue of the Wiener-

Khinchin theorem, the PSD of χ coincides with the
Fourier transform of Rχ

Sχ(κ) =

∞
∫

−∞

d ζRχ(ζ) exp(iκζ) =
N0

2

B2

B2 + κ2
. (5)

The Gaussian process is numerically generated in the
κ-domain by filtering an approximated white noise of
PSD N0/2 by means of a lowpass filter of transfer func-
tion

HLP(κ) =
B

B + iκ
. (6)

The dichotomous process is more conveniently obtained
directly in the z domain by switching the amplitude of
the fluctuation between ±σχ with an exponentially dis-
tributed waiting (i.e., between switching points) length
with mean 2/B. Both are pertinent to fiber optics. In-
deed, the Gaussian process corresponds to a continuous
variation of dispersion as can be obtained by varying the
fiber radius during the drawing process. The dichoto-
mous process corresponds to splicing together fibers with
different GVD β2 = β0

2(1± σχ) and random lengths. We
refer to the processes belonging to this class, with auto-
correlation function as in Eq. (4) and PSD as in Eq. (6)
as LP processes.
The second family of stochastic processes, for which we

denote δβ ≡ ξ, is obtained as the modulated version of χ
with central wavenumber κ0 = 2π

Λ0
> 0 (Λ0 is the associ-

ated spatial period), that is written in phase-quadrature
representation

ξ(z) = ψ1(z) cosκ0z + ψ2(z) sinκ0z. (7)

Here ψ1,2 two stationary (in z) and independent random
processes with zero mean and autocorrelation functions

Rψi
(ζ) =

N0B

2
exp(−B|ζ|), (8)
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for i = 1, 2; moreover, 〈ψiψj〉 = N0B
2 δij . In analogy to

χ, we consider either two Gaussian or two dichotomous
processes for ψ1,2. They are generated according to their
distribution as is done for χ. The process ξ thus exhibits
an autocorrelation function of the form

Rξ(ζ) =
N0B

2
cosκ0ζ exp(−B|ζ|). (9)

The variance of the process is σ2
ξ = N0B

2 , like for ψ1,2.

The PSD of ξ reads

Sξ(κ) =
N0

2

[

B2

B2 + (κ− κ0)2
+

B2

B2 + (κ+ κ0)2

]

. (10)

We note that, for B ≪ κ0, Sξ is centered approximately

around the wavenumber ±κ0, with Sξ(±κ0) ≈ N0

2 =
Sχ(0) and bandwidth B (in wavenumber units). We refer
to this family with autocorrelation function as in Eq. (9)
and PSD as in Eq. (10) as BP processes.

For both LP and BP families, we employ the defini-

tion of correlation length [35] ζc ≡ 1
R(0)

∞
∫

0

dζ|R(ζ)|, which

gives ζcχ = 1/B for χ and ζcξ ≈ 2/(πB) for ξ, if B ≪ κ0.

In the next two sections we will study the effect χ and
ξ, respectively, on the MI predicted by Eq. (2).

III. LOWPASS RANDOM DISPERSION

First we consider processes with the autocorrelation
function given in Eq. (4). We will discuss both the first
and the second moment equations associated to Eq. (2).

A. Cumulant expansion (first moments)

The cumulant expansion yields a series development
for the ODEs associated to a SDE [28]. It is similar to
the Dyson series of scattering theory [36] and provides a
solid base for more ad-hoc schemes [22]. See [26] for a
systematic derivation of terms to arbitrary order.
Let us rewrite Eq. (2) in the standard form ẋ =

[A1 + αη(z)C1]x with

A1 =

[

0 −g0
h0 0

]

, C1 =

[

0 −1
1 0

]

,

α = ω2

4

√
N0B and η = 2χ/

√
N0B a random process with

unit variance and zero mean. The expansion is performed
in the formal parameter α. To second order (the first-
order term is obviously 0), we write the ODE for the
first moment 〈x〉 = (〈x1〉, 〈x2〉)T as

d

dz
〈x〉 =

[

A1 + α2K1
2

]

〈x〉, (11)

with

K1
2 =

∞
∫

0

dζ C1e
A1ζC1e

−A1ζRη(ζ). (12)

Other terms can be added in the expansion of Eq. (11):
their contribution to the solution rapidly decreases if

ε ≡ αζc, (13)

is small, i.e. ω2

4

√

N0

B
≪ 1. For large detuning or small

filter bandwidth B, the approximation may be invalid.
A fixed initial condition x(0) can be considered and the
solutions of Eq. (11) do not keep memory of it for z ≫ ζc.
The long term dynamics being our main focus, we set the
limit of integration to infinity in Eq. (12), see [25].
By tedious but straightforward algebra, we obtain

d

dz
〈x〉 =

[

−ω4

4
g0
2k2 [(g0 + h0)c1 − (h0 − g0)c2] −g0 + ω4

8k (h0 − g0)c3
h0 +

ω4

8k (h0 − g0)c3 −ω4

4
h0

2k2 [(g0 + h0)c1 + (h0 − g0)c2]

]

〈x〉, (14)

with

c1 ≡
∞
∫

0

dζRχ(ζ) =
1

2
Sχ(0) =

N0

4
,

c2 ≡
∞
∫

0

dζRχ(ζ) cos 2kζ =
1

2
Sχ(2k) =

N0B
2

4

1

B2 + 4k2

c3 ≡
∞
∫

0

dζRχ(ζ) sin(2kζ) =
N0Bk

2

1

B2 + 4k2
.

(15)

Since ci > 0, i = 1, 2, 3, for all ω, and c1 > c2, it is easy to
verify that the eigenvalues of the matrix in Eq. (14) have
both a negative real part, so that the system Eq. (14)
does not predict any MI gain. This finding is analogous
to the conventional harmonic oscillator with random fre-
quency [28, 33], for which the first moment undergoes
only damping. For this reason it is necessary to resort to
the equations for the second moments.

We recall that, for white noise, the cumulant expansion
at second order is exact and in that limit, B → ∞, c1 =
c2 and c3 = 0, so the eigenvalues of Eq. (14) reduce to
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Eq. (23) of Ref. [14].

B. Cumulant expansion (second moments)

We now consider second moments. First we let X1 =
x21, X2 = x22, and X3 = x1x2 and derive from Eq. (2) a
system for their evolution, which reads

d

dz
X =





0 0 −2g(z)
0 0 2h(z)

h(z) −g(z) 0



X. (16)

In order to perform the cumulant expansion, we write
Eq. (16) in standard form by letting

A2 =





0 0 −2g0
0 0 2h0
h0 −g0 0



 , C2 =





0 0 −2
0 0 2
1 −1 0



 ,

the other quantities α and η being the same as in the
previous subsection.

Up to second order, the cumulant expansion reads

d

dz
〈X〉 =

[

A2 + α2K2
2

]

〈X〉,

with K2
2 =

∞
∫

0

dζ C2e
A2ζC2e

−A2ζRη(ζ),
(17)

which gives

d

dz
〈X〉 =







− ω4

4g0
[(g0 + h0)c1 + (g0 − h0)c2]

ω4

4h0
[(g0 + h0)c1 − (g0 − h0)c2] −2g0

ω4

4g0
[(g0 + h0)c1 + (g0 − h0)c2] − ω4

4h0

[(g0 + h0)c1 − (g0 − h0)c2] 2h0

h0 +
ω4

4k (h0 − g0)c3 −g0 + ω4

4k (h0 − g0)c3 − ω4

4k2

[

(g0 + h0)
2c1 − (g0 − h0)

2c2
]






〈X〉,

(18)

with the cis defined as above. The validity condition of
the expansion is the same as in the previous sub-section.
As in Ref. [21], the MI of stochastic origin is related to

the growth rate of the second moment. The eigenvalues
of the matrix in Eq. (18) can be written analytically.
Their form is rather complicated: in general we have two
complex conjugate eigenvalues (λ±) with negative real
part and one positive real eigenvalue, λ0. The MI gain
is thus defined as G2(ω) ≡ λ0

2 . Since G2(ω) is small
for small N0, we proceed like in Ref. [14] to derive the
following approximation

G2(ω) ≈
4(γP )2kω4

[

8c2k
3 + c3ω

4
(

c1j
2
0 − 4c2(γP )

2
)]

64k6 − 32c3(γP )2k3ω4 − ω8 (c1j20 − 4c2(γP )2)
,

(19)
with j0 ≡ g0 + h0. Nevertheless, this expression is still
very cumbersome and, below, we rely only on the numer-
ically computed eigenvalue λ0.
We note that the cumulant expansion could be ex-

tended to fourth order (the process being Gaussian, the
third-order terms vanish), but the resulting terms are
very involved and do not clarify the behavior of gain at
large ω, where the method breaks down (see below).

C. Functional approach

An alternative approach follows [33, 37] and generalizes
the use of Furustu-Novikov-Shapiro-Loginov formulas, on
which the treatment of white noise in Ref. [14] is based.
Let us consider one of the second moments Xi, i =

1, 2, 3. They are functionals of δg. Since δg ∝ χ, its auto-
correlation function has the form of Eq. (4). According
to Ref. [31], we have

〈δgdXi

dz
〉 =

(

d

dz
+B

)

〈δgXi〉. (20)

Two steps are needed to write an averaged system: (i)
average directly Eq. (16); (ii) multiply each row by δg
and average. We introduce three new variables, X3+i ≡
δgXi and, in order to truncate the system, we assume

〈δg2Xi〉 = σ2
δg〈Xi〉, where σ2

δg ≡ N0B
ω4

16 is the variance of
the process. This last assumption is rigorously valid only
for a dichotomous process [33] and in general an infinite
hierarchy of equations is obtained for a Gaussian one, see
[31].
We obtain a 6th-order system of ODEs

d

dz
〈X〉 =

















0 0 −2g0 0 0 −2
0 0 2h0 0 0 2
h0 −g0 0 1 −1 0
0 0 −2σ2

δg −B 0 −2g0
0 0 2σ2

δg 0 −B 2h0
σ2
δg −σ2

δg 0 h0 −g0 −B

















〈X〉.

(21)
The matrix in Eq. (21) has six eigenvalues. We observse
numerically that one is real and negative, one (λ0) is real
and positive, the last four are two pairs of complex con-
jugate values with negative real part. The MI gain is de-
fined as above, G2(ω) ≡ λ0

2 . By numerical inspection, we
notice that the system in Eq. (21) generally gives differ-
ent eigenvalues with respect to Eq. (18). We stress that,
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in contrast to Sec. III B, the accuracy of the functional
approach does not require any condition on ε. However,
in the white noise limit of B → ∞, the system reduces
to three independent variables [33] and we obtain the
Eqs. (26-30) of [14], which as expected coincide with the
cumulant expansion results.
In the next subsection, we will show what are the lim-

its of validity of the two approximations and which fits
better to numerical results.

D. Results
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FIG. 1. MI gain as a function of detuning ω for a LP random
dispersion. Comparison of numerical values for a Gaussian
(blue solid lines) and dichotomous process (green dotted lines)
obtained from Eq. (2) with the estimates provided by Eq. (18)
(red dashed lines), by Eq. (21) (dash-dotted purple lines).
We include also the gain corresponding to the white process
(yellow dotted line with pluses). In panel (a) N0 = 0.005 and
B = 4π, so that ε < 0.5 over the considered ω range, (b)
N0 = 0.4 and B = 4π, so that ε ≈ 1 around the maximum
gain. The inset in panel (a) shows a single realization of the
two processes.

In order to validate our theoretical analysis, we re-
sort to solving Eq. (2) by generating a large number,
N , of realizations of χ and studying the moments of the
resulting sample of solutions. The solution of Eq. (2)
is known exactly for piecewise constant β2(z) in terms

of transfer matrices [34]. For the Gaussian process, we
choose the length L of the domain sufficiently large to
ensure that the sampling rate in the spatial frequency,
i.e., ∆κ = 2π

L
, fairly represents the PSD of the process,

namely B/∆κ ≪ 1. An array of identically distributed
Gaussian random variables of zero mean and variance
σ2 = N0

2∆z , with ∆z the sampling distance in z (over which
the dispersion is assumed constant), is generated numer-
ically. This array is transformed to the κ domain by
means of FFT, then multiplied by the Lorentzian filter
of Eq. (6) and transformed back to space domain. A re-
alization of the dichotomous process is instead obtained
in the z domain, by randomly generating the switching
distances (where χ changes sign) from a randomly gener-
ated exponential distribution of mean 2/B. Between two
switching points the GVD is assumed constant.
We solve Eq. (2) for a given initial condition

(x1(0), x2(0))
T = (1, 0), corresponding to balanced side-

bands, over each random sequence of constant dis-
persion segments, to obtain a set of output vectors
(x1(L), x2(L))

T from which we estimate the MI gain. Let
Pout ≡ x21(L) + x22(L). We then compute the mean gain,
defined as [20, 21]

G ≡ 1

2L
log〈Pout

Pin
〉. (22)

In all our results we take γP = β0
2 = 1. This is equiv-

alent to putting Eq. (1) in the standard adimensional
form.
In Fig. 1 we consider two examples of MI gain curves.

We notice that the sidelobes exhibit a single maximum
Gmax at detuning ωmax.
We consider two different values of N0. For small

values, the gain is generally small, see Fig. 1(a), where
N0 = 0.005. We choose a long domain L = 5000 to pre-
vent finite-size effects that may appear at small ω, and
∆z = 0.01 for the Gaussian case. Satisfactory statistics
are obtained for N = 2000.
In this case ε ≈ 0.5 at ω = 10 (see the definition of

ε in (13)), the cumulant expansion is thus expected to
be valid. The functional approach gives very similar re-
sults, apart from some deviations in the large ω tails.
The numerical data show that the two processes pro-
vide the same trend, that matches almost perfectly with
the analytical estimates (the functional approach proves
more accurate in the tails, as expected). The behavior
near ω = 0 is due to the above-mentioned finite-size ef-
fects. We notice that the LP process provide a much
narrower and smaller gain than the white noise (dotted
yellow line with pluses). In this regime, the correlations
of the stochastic process suppress the MI gain.
Then we study the case of an intermediate value N0 =

0.4, where ε > 1. We choose L = 50, ∆z = 0.01, and
N = 1000. We show in Fig. 1(b) how the numerical re-
sults compare to the analytical estimates. The functional
approach proves very accurate for the dichotomous pro-
cess over the full range of ω. The cumulant expansion
models the numerical data quite well, except in the large
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ω tails. We notice that the white noise gain is smaller
than the LP gain lobes, particularly for the dichotomous
case. Thus, for large N0, correlations can improve the
MI gain.
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FIG. 2. Detuning at the gain maximum as a function of B.
Numerical results of Gaussian (blue crosses) and dichotomous
(green pluses) process are compared to Eq. (18) (red dashed
line), Eq. (21) (purple dash-dotted line). We include ωmax for
the white noise, too, as reference (yellow dotted line). The
dashed vertical lines highlight the value of B used in Fig. 1.
(a) N0 = 0.005, (b) N0 = 0.4.

In Figs. 2-3 we show the effect of variations of B on
ωmax and Gmax, respectively; L, ∆z, and N are chosen to
guarantee a satisfactory statistical sample for each point.
For N0 = 0.005 [Figs. 2(a) and 3(a)] the position as

well as the value of the maximum gain are, for both
stochastic processes, in the same range of values and
are, within the residual oscillation margins, well approxi-
mated by both methods. Both ωmax and Gmax are mono-
tone increasing functions of B. As B → +∞, they con-
verge from below to the corresponding values for a white
noise process. The limiting values are not shown, because
they are well beyond the axis scales.
The behavior for N0 = 0.4 is very different [Figs. 2(b)

and 3(b)]. First, for the dichotomous case, the numer-
ical points are well approximated by the eigenvalues of
Eq. (21). The maximum MI gain exhibits a sharp peak,
see Fig. 3(b). We notice in Fig. 2(b) that ωmax diverges
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FIG. 3. Maximum gain as a function of B. Same convention
as in Fig. 2.

for this value of B: this means that the gain lobe never
decays.

To understand this phenomenon, we study the eigen-
values of Eq. (21) at ω → ∞ and we notice that, for

σδg = g0, i.e., B = 4
(

β0
2

)2
/N0, G2(ω) converges, for

small N0, to Gmax ≈ 1
4

[

−B +

√

B2+B
√
B2+64(γP )2

2

]

.

Notice also that for this value σ2
χ = 1, i.e., in dimen-

sional units the GVD switches from 0 to 2β0
2 . In the

present case, B = 10 and Gmax ≈ 0.17, as observed in
Fig. 3(b). For N0 > 1, the reasoning is still valid: the
value of B for which G2(ω) does not decay at ω → ∞
is well predicted, while its value is generally larger than
the approximated Gmax above. From a physical point of
view, this case is very pathological because higher-order
dispersion effects should be included in Eq. (1).

For the Gaussian process, ωmax and Gmax stay close to
the white noise limit (yellow dotted line) even for small B
and are satisfactorily described by the cumulant expan-
sion for large B. As expected, the cumulant expansion
is not accurate for small B and is very different from the
estimate of the functional approach.

We conclude that the cumulant expansion provides an
accurate approximation for Gmax and ωmax for the Gaus-
sian process. We recall that, on the contrary, this is not
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the case for the behavior of the MI gain at large ω, see
Fig. 1(b).
In conclusion, the LP processes yield a very small gain

for ε ≪ 1, always less than white noise limit. For ε ∼ 1,
Gmax can yield an MI gain larger than the white noise
gain, but is about one order of magnitude smaller than
the conventional MI gain in homogeneous fibers with
anomalous GVD.

IV. NARROWBAND RANDOM DISPERSION

Here we consider the modulated process ξ with the
autocorrelation function in Eq. (9), for which a new de-
gree of freedom, κ0, is included. We start directly from
Eq. (16).

A. Direct cumulant expansion

The cumulant expansion gives the same result as
Eq. (18) with

c1 =
N0

2

B2

B2 + κ20
,

c2 =
N0B

2

4

[

1

B2 + (2k − κ0)2
+

1

B2 + (2k + κ0)2

]

,

c3 = N0Bκ
B2 − κ20 + 4k2

[B2 + (2k − κ0)2] [B2 + (2k + κ0)2]
.

(23)
We observe that, while c1 is constant, c2 and c3 exhibit a
resonant lineshape behavior close to 2k = κ0, i.e., the 1

st

PR condition: the former exhibits a maximum at 4k2 ≈
κ20 − B4

4κ2

0

, while the latter crosses zero at 4k2 = κ20 −B2.

We recall that the m-th order PR condition is in general
2k = mκ0, which gives

ω2
PR,m =

√

4

(

γP

β0
2

)2

+

(

mκ0
β0
2

)2

− 2γP

β0
2

. (24)

For B ≪ κ0, we can set c1 ≈ 0. Then around the first
parametric resonance detuning, tedious but straightfor-
ward calculations show that the instability gain is ap-
proximated by

G2(ω) ≈
1

2

(2γP )2ω4

κ20
c2, (25)

that attains its maximum approximately at ωPR,1,

Gmax
2 ≈ G2(ωPR,1) ≈

N0(γP )
2

2

ω4
PR,1

κ20

=
N0(γP )

2

(2β0
2)

2

ω2
PR,1

ω2
PR,1 +

4γP
β0

2

.

(26)

We remark also that Eq. (25) is composed of a
Lorentzian factor depending on the process PSD (c2) and

a factor independent of the process. Moreover, it turns
out that the maximum MI gain, Eq. (26), coincides, for
small ω and a given N0 with the white noise MI gain
evaluated at ω = ωPR,1, as hinted at in Ref. [32].
Notice that in Eq. (26), the MI gain is proportional to

N0ω
4

PR,1

κ2

0

, while the PR-MI scales like θ
ω2

PR,1

κ0

[12], with θ

the (constant) amplitude of the periodic variation. As
in the low-pass case, according to Eq. (26) the maximal
MI gain depends mainly on N0. For B → 0, the anal-
ogy to PR would suggest, instead, a dependence on the
amplitude of the fluctuations in real space, i.e., N0B, as
discussed also in Ref. [32]. Below, we clarify this osten-
sible inconsistency.

B. Near-resonance reduction

In analogy to Ref. [32], a significant simplification of
Eq. (2) can be obtained by the conventional averaging
method used for PR [38].
In order to average Eq. (2), we let

x1(z) = y1(z) cos
(κ0
2
z
)

+ y2(z) sin
(κ0
2
z
)

x2(z) =
κ0
2g0

[

y1(z) sin
(κ0
2
z
)

− y2(z) cos
(κ0
2
z
)]

,
(27)

where x2 is written assuming g = g0 constant, in the
spirit of the variation of constants.
By averaging out oscillating terms, noticing that δg

g0
=

ξ, and employing the phase-quadrature representation of
ξ, see Eq. (7), we obtain

κ0ẏ1 = ∆2y2 + Γψ1y2 − Γψ2y1

κ0ẏ2 = −∆2y1 + Γψ1y1 + Γψ2y2,
(28)

with Γ ≡ 1
2

(

κ2

0

4 − g20

)

and ∆2 ≡ k2 − κ2

0

4 quantifies

the detuning from the PR condition; close to resonance,
∆2 = (k + κ0/2)(k − κ0/2) ≈ κ0(k − κ0/2).
Notice that the PR-MI gain of the first PR tongue is

obtained from Eq. (28) by putting ψ1 = ψ2 = θ. It reads

GPR,1 =

√

2(Γθ)2 −∆2

κ0
. (29)

Starting from Eq. (28), in this section we only study
the evolution of second moments. We introduce Y1 ≡ y21 ,
Y2 ≡ y22 , and Y3 ≡ y1y2. It is easy to verify that Y ≡
(Y1, Y2, Y3)

T obeys

κ0
d

dz
Y =





−2Γψ2 0 2∆2 + 2Γψ1

0 2Γψ2 −2∆2 + 2Γψ1

−∆2 + Γψ1 ∆2 + Γψ1 0



Y,

(30)
where the parameters are the same as those used through-
out this section.
Two random processes appear in Eq. (30) and both

the cumulant expansion and functional approach need
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generalizing accordingly. While we present the former
in App. A, because it provides very similar results to the
direct cumulant expansion of the previous subsection, the
latter is reported below.

C. Functional approach near resonance

Following [39], we generalize the functional approach.
We define Y3+i ≡ ψ1Yi, Y6+i ≡ ψ2Yi, and Y9+i ≡ ψ1ψ2Yi,
i = 1, 2, 3. We perform four different averaging steps:
(i) average directly Eq. (30), (ii) multiply each row of
Eq. (30) by ψ1 and average, (iii) multiply by ψ2 and av-
erage; (iv) multiply by ψ1ψ2 and average. We employ
the formula of differentiation in Eq. (20) and its general-
ization

〈ψ1ψ2
dYi
dt

〉 =
(

d

dt
+ 2B

)

〈ψ1ψ2Yi〉. (31)

If we assume as above that we can factor the variance
out if the same process occurs twice in an average, we
obtain

κ0
d〈Y 〉
dz

=











A2 ΓC′
2 ΓC′′

2 0

σ2
ξΓC

′
2 A2 −BI 0 ΓC′′

2

σ2
ξΓC

′′
2 0 A2 −BI ΓC′

2

0 σ2
ξΓC

′′
2 σ2

ξΓC
′
2 A2 − 2BI











〈Y 〉,

(32)
with

A2 =







0 0 2∆2

0 0 −2∆2

−∆2 ∆2 0






,

C′
2 =







0 0 2

0 0 2

1 1 0






, C′′

2 =







−2 0 0

0 2 0

0 0 0






,

(33)

and denoting 0 and I the null and identiy matrix, respec-
tively.
We compute numerically the eigenvalues of the matrix

in Eq. (32) and look for the dominant one, λ∗. The max-
imum MI gain, for ∆2 = 0, is found analytically as

(GPR
2 )max =

1

4κ0

[√

B2 + 4N0Bω4
PR,1 −B

]

. (34)

We remark that the dependence on σξ is different from
Eq. (26). For small B, the gain is no longer proportional

to
ω4

PR,1N0

κ2

0

, but to
ω2

PR,1

√
N0B

κ0

, as we would formally ob-

tain in the conventional periodic dispersion case, once
we replace the amplitude of parametric oscillation θ with√
2σξ.
Thus a very different result is found when compared

to the cumulant expansions above. We now assess which
approximation works better by comparing them to nu-
merical solutions of Eq. (2).

D. Results
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FIG. 4. MI gain as a function of detuning ω for a BP ran-
dom dispersion, κ0 = 2π. Comparison of numerical values
for a Gaussian (blue solid lines) and dichotomous process
(green dotted lines) obtained from Eq. (2) with the estimates
provided by Eqs. (18) and (23) (red dashed lines), and by
Eq. (32) (dash-dotted purple lines). In panel (a) N0 = 0.005
and B = π/4, so that ε < 0.1 around the PR resonance, (b)
N0 = 3.2 and B = π/32, so that ε ≫ 1 around the ωmax.
In panel (b), we include the PR-MI gain of Eq. (29) with

θ =
√
2σξ =

√

π/5 (yellow dotted line with circles). The in-
sets show the numerical results for a Gaussian process on a
larger ω range.

In order to generate a realization of the process ξ with
Gaussian distribution (resp. dichotomous), we employ
the same approach in the spectral (resp. spatial) domain
as above, generate two independent LP processes and
modulate them according to Eq. (7). The numerical do-
main is obviously discretized in both cases: for the Gaus-
sian process a lower limit on L is required as in Sec. III D,
the dichotomous process requires a short ∆z to avoid spu-
rious correlations. We do not forget to correctly sample
the period Λ0 of the process spatial oscillations.
While in the previous section we were interested in

the limit B → ∞ to contrast the LP processes to white
noise, here we aim at understanding the opposite limit,
B → 0, with fixed and finite N0B. We expect that the
gain associated to the stochastic fluctuations converges to
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the one of the periodically modulated fiber in this limit.

First, we consider a small perturbation, N0 = 0.005,
with a intermediate bandwidth B = π/4 around κ0 = 2π.
We take L = 500, ∆z = 0.01; a consistent statistical sam-
ple is collected forN = 2000. In Fig. 4(a) we compare the
numerical mean gain G(ω) with the analytical estimates
obtained above. For such a small perturbation only a
single MI peak can be observed (see the inset for a larger
detuning range). We notice that the MI gain is centered
about ωPR,1 with gain Gmax and width ∆ω. The Gauss-
sian and dichotomous processes give two almost identical
results. The cumulant expansion provides a very good
approximation, because ε ≈ 0.1. The near-resonance
functional approach proves instead very imprecise, as far
as both Gmax and ∆ω are concerned. We explain this as
follows: it is easy to verify that the period of the modula-
tion is comparable to correlation length, Λ0 ≈ ζc. Thus,
we apply successively two distinct averaging procedures
(near-resonant expansion and functional approach) upon
two perturbations occurring at the same scale as if they
were independent. This is a sure recipe for failure.

Moreover, we are not showing here the result of
Eq. (A3) that coincide with the direct cumulant expan-
sion around ωPR,1, but is skewed towards ω → 0, contrary
to the numerical results.

As a second case, we consider a large N0 = 3.2 and
a small bandwidth B = π/32. All the other parameters
are the same as the previous. In Fig. 4(b) we observe,
as above, that the MI lobe occurs around ωPR,1 and the
Gaussian and dichotomous processes provide two very
close results. For such a large perturbation, several MI
sidelobes can be observed, in analogy to PR-MI, see the
inset of Fig. 4(b). Now ε ≈ 6.3 ≫ 1; we thus expect
that the cumulant expansion fails to correctly describe
the numerical results: indeed it overestimates the peak
MI while it underestimates its width (red dashed line).
It captures approximately the behavior of the MI gain
in the tails (both left-hand and right-hand sides). The
functional method provides instead a good approxima-
tion (purple dash-dotted line). For these parameters,
Eq. (32) provides a result very close to the conventional
PR gain (yellow dotted line with circles) apart from the
tails. We can thus state that for ζc ≫ Λ0, the proposed
functional approach gives a good estimate of the numeri-
cally estimated mean gain, because the two independent
approximations are performed in the correct order on the
two different scales, i.e., for B ≪ κ0, the BP process can
be considered a small perturbation to the PR-MI effect.

We show in Fig. 5 the effect of variations of B on Gmax.
We keep κ0 and N0B constant; L, ∆z, and N are cho-
sen to guarantee a significant statistical sample for each
value. Only the Gaussian process is considered.

For small N0B = 0.0039 the MI gain follows very well
the cumulant expansion: Gmax grows for B → 0 (notice
the logarithmic scale). The functional approach always
overestimate it. For larger N0B = π/10 we still observe a
decreasing trend of Gmax. It is apparent that the cumu-
lant expansion is valid only for large B > π/2 and com-
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FIG. 5. Maximum gain Gmax as a function of B at constant
N0B. Same convention as in Fig. 2, dichotomous process ex-
cluded. We take a constant κ0 = 2π and (a) N0B = 0.0039,
(b) N0B = π/10 = 0.314. Notice the ordinate axis is in loga-
rithmic scale in panel (a). The dashed vertical lines highlight
the values of B used in Fig. 4(a)[(b)], respectively.

pletely loses its validity below B = π/4. The functional
approach works well in the PR limit, i.e., for B < π/16.
Indeed, ζc depends inversely on B and the approxima-
tion is expected to become more faithful. The residual
discrepancies may depend on a systematic error of the av-
eraging procedure or on numerical inaccuracies. In brief,
we show the transition from the stochastic regime, where
the MI gain scales with N0, to the parametric regime
where it depends on σξ, i.e. the fluctuation amplitude.

Finally, we report in Fig. 6 different MI gain curves ob-
tained from numerical simultations of the Gaussian pro-
cess by varying κ0 ∈ {π, 2π, 4π, 8π, 16π, 32π, 64π}. The
simulation parameters are chosen for each value to ensure
that the sample is statically significant.

In Fig. 6(a), we choose N0 = 0.005 and B = π/4 and
show that the MI lobes have a Lorentzian shape dom-
inated by a simple envelope, as predicted by Eq. (25).
We explicitly show Gmax

2 obtained from Eq. (26) for the
values of ωPR,1 corresponding to a continuous set of κ0
(red dashed line) and compare it to the values of Gmax

(blue crosses). They match very well over the full range
of ω. The result of the functional approach, Eq. (34), is
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FIG. 6. MI gain curvesG(ω) and their maximaGmax obtained
for different values of κ0 ∈ {π, 2π, 4π, 8π, 16π, 32π, 64π}.
Comparisons of numerical results [blue crosses and blue solid
lines] with the peak of Eq. (26) (red dashed line), of Eq. (34)
[purple dash-dotted line, not shown in panel (a), out of scale].
We include also G2(ω) for the white noise limit at the corre-
sponding (yellow dotted line). The dashed vertical lines high-
light the value of κ0 used in Figs. 4 and 5. (a) N0 = 0.005,
B = π/4; (b) N0 = 3.2, B = π/32.

not shown here, because it always overestimates the MI
gain. We also include the white noise gain for the given
N0 (yellow dotted line). For such a small PSD value, it
exhibits a monotone growth up to ω ≈ 9, compare to
Fig. 1(a). The expression in Eq. (26) coincides with it
up to this point and tends to N0/2 for κ0, ωPR,1 → ∞.
This strengthens the idea that the MI gain of stochastic
origin is ruled predominantly by N0, at least for small
values.

If, instead, we choose N0 = 3.2 and B = π/32, we ob-
serve, see Fig. 6(b), that the MI lobes are sharper than a
Lorentzian. Their maxima (blue crosses) are well approx-
imated by the functional approximation (purple dash-
dotted line), while the cumulant expansion (red dashed
line) always overestimates the MI gain by more than 3
times. For such a small B, Eq. (34) effectively coin-
cides with Eq. (29) (not shown) as expected. As in the
previous case, the gain monotonously increases with κ0,
consistently with the PR nature of the phenomenon, see

Eq. (29). If we consider the white noise, we see that the
MI gain exhibits a narrow lobe, that attains a maximum
for ω ≈ 1.25 and coincides with (26) only for small de-
tuning, as expected.
As κ0 is increased, the modulation period of the pro-

cess becomes smaller, while ζc is kept constant; thus, the
near-resonant approximation performs better for large κ0
and the discrepancies observed 6(b) are probably due to
a systematic error or residual numerical inaccuracies.

V. CONCLUSIONS

We discuss the modulational instability in nonlinear
optical fibers in which the group-velocity dispersion is
randomly modulated. In contrast to the exactly solv-
able case of white noise or of random kicks, we consider
the case of stochastic processes with exponentially de-
caying autocorrelation function. This is equivalent to a
Lorentzian-shaped power spectral-density, i.e., the pro-
cess is colored. Two families of colored processes are
studied: low-pass and band-pass. For each family, we
consider Gaussian and dichotomous processes.
The distinction between the two stochastic processes

turns out to be important in the LP and marginal in the
BP case.
While for very small perturbation the LP yields very

small MI gain, for larger power spectral densities it can
yield MI sidelobes larger than the white noise, sitting in
the same range of detuning and exhibiting larger gain in
the tails. For small bandwidth, the gain disappears, while
in the opposite limit it converges to the white noise limit.
The variance demanded for obtaining a measurable MI
gain is large, though, and the dichotomous process looks
more promising in view on an experimental characteri-
zation of the phenomenon, because values of bandwidth
(correlation length) exist where the gain is quite larger
than the white noise limit.
As far as a BP process is concerned, if the perturba-

tion is large enough, we may observe several MI sidelobes
sitting around PR detunings. We focus on the domi-
nant first peak: it converges to the PR sidelobe for small
bandwidth and is generally broader and smaller for small
correlation lengths.
We compare our numerical results to different analyti-

cal approximations, based on the cumulant expansion (as
formalized by van Kampen) or the functional (Furutsu-
Novikov-Loginov-Shapiro) formulas.
While the former is reliable only for small perturba-

tions and small detuning and provides some qualitative
estimates elsewhere, the latter provides good results for
the dichotomous processes, for which the closure of the
system is rigorously obtained.
For both families of correlation functions, the func-

tional method emerges as more reliable and allows us to
describe the transition from parametric to stochastic res-
onances in the BP case. Notwithstanding, the cumulant
expansion provides good estimates of the tails of resonant
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peaks even for relatively small bandwidth values (large
correlation length), beyond the expected validity range
of the approximation.
Our results pave the way for tailoring MI gain side-

bands in optical fibers by means of stochastic GVD fluc-
tuations and suggest the regimes to achieve that. Such
fluctuations can be implemented by continuous or dis-
crete variations of fiber specifications.
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the Contrat de Projets État-Région (CPER) and IR-
CICA.

Appendix A: Cumulant expansion near resonance

In this section we will apply the cumulant expansion
to Eq. (30).
The cumulant expansion to second order is built by de-

composing Eq. (30) as κ0Ẏ = [A2 + Γψ1C
′
2 + Γψ2C

′′
2 ]Y ,

with A2, C2, and C
′
2 as in Eq. (33).

As ψ1,2 are mutually independent, the expansion is
obtained by computing K2 separately for C′

2 and C′′
2 ,

according to Eq. (17), and adding them up.

We obtain

κ0
d〈Y 〉
dz

=







6d2Γ
2 2d2β

2 2∆2 − 4Γ2d3
2d2β

2 6d2β
2 −2∆2 + 4Γ2d3

2Γ2d3 −∆2 −2Γ2d3 +∆2 4Γ2d2






〈Y 〉,

(A1)
with

d2 ≡ 1

κ0

∞
∫

0

dζRψ1
(ζ) cos

2∆2

κ0
ζ =

N0B
2

2κ0

1

B2 + 4∆4

κ2

0

d3 ≡ 1

κ0

∞
∫

0

dζRψ1
(ζ) sin

2∆2

κ0
ζ =

N0B

2κ0

2∆2

κ0

B2 + 4∆4

κ2

0

.

(A2)
We note that there is here no counterpart to c1 and near
PR κ0d2 ≈ 2c2.

The dominant eigenvalue of the matrix in Eq. (A1) is
exactly λ∗ = 8d2Γ

2, so the instability gain is

GPR
2 =

8d2Γ
2

κ0
, (A3)

which attains a maximum (GPR
2 )max ≈ N0ω

4

PR,1

2κ2

0

, identical

to what found above in Eq. (26).
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