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Abstract

In this paper, we present barrier function-based adaptive controllers for fast stabilization of a perturbed chain of integrators
with bounded uncertainties. We refer to such controllers as adaptive higher order sliding mode controllers since they are
designed for a perturbed chain of integrators of length r with bounded uncertainties such that the uncertainty bounds are
unknown. We propose an adaptive control feedback law insuring the following: We provide a barrier function based adaptive
controller ensuring the finite-time convergence of solutions to a desired vicinity of origin. Moreover, the homogeneity norm of
solutions asymptotically tends to zero. The effectiveness of these controllers is illustrated through simulations.

Key words: Adaptive sliding modes ; Barrier function ; Higher order sliding modes.

1 Introduction

Sliding Mode Control is an efficient tool for matched
uncertainties compensation. Higher Order Sliding Mode
Controllers (HOSMCs) Levant (2001, 2003, 2005); Ding
et al. (2016); Cruz-Zavala & Moreno (2017); Basin et al.
(2016); Levant & Fridman (2010) allow to collapse in
finite time the dynamics of the flat single input single
output of order r. The homogeneity properties of discon-
tinuous HOSMCs ensure the r -th order of asymptotic
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precision of the output with respect to the sampling
step and parasitic dynamics Levant (2001, 2003, 2005);
Ding et al. (2016); Cruz-Zavala & Moreno (2017); Lev-
ant & Fridman (2010).

To implement discontinuous HOSMCs, the knowledge
of upper bounds for r -th derivatives is needed and
usually such bounds are unknown. Moreover, the over-
estimation of HOSMCs leads to big chattering and
energy losses Peérez-Ventura & Fridman (2019). That
is why the authors of the works devoted to HOSMCs
adaptation Plestan et al. (2010); Bartolini et al. (2013);
Moreno et al. (2016); Edwards & Shtessel (2016a,b);
Oliveira et al. (2018); Hsu et al. (2018); Negrete-Chévez
& Moreno (2016); Shtessel et al. (2012, 2017); Obeid
et al. (2018); Hsu et al. (2019); Ferrara et al. (2019);
Basin et al. (2016) should satisfy two contradictory
requirements:

e cnsure a finite-time exact convergence to the origin;
e avoid overestimation of the control gain.

Recently, adaptive sliding mode controllers have at-
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tracted the interest of many researchers dealing with
adaptation of HOSMCs. The general goal of these
techniques is to ensure a dynamical adaptation of the
control gains in order to be as small as possible while
still sufficient to counteract the disturbances and en-
sure a sliding mode. The adaptive sliding mode control
approaches which exist in the literature can be broadly
split into the following three classes:

a) approaches based on the usage of equivalent control
value Edwards & Shtessel (2016a,b); Oliveira et al.
(2018); Utkin & Poznyak (2013);

b) approaches based on monotonically increasing
the gains (see, for example, Moreno et al. (2016);
Negrete-Chévez & Moreno (2016));

c¢) approaches based on increasing and decreasing the
gains Plestan et al. (2010); Bartolini et al. (2013);
Shtessel et al. (2017); Plestan et al. (2013).

The approaches a) propose to use the filtered value of the
equivalent control as an estimation of the disturbance.
The latter consist in increasing the gain to enforce the
sliding mode to be reached. Once the sliding mode is
achieved, the high frequency control signal is low-pass
filtered and used as an information about disturbance
in controller gain. The sliding mode controller gain con-
sists of the sum of filtered signal and some constant to
compensate possible error between real disturbance and
its value estimated by filter. However, the algorithm in
Utkin & Poznyak (2013) requires the knowledge of the
minimum and maximum allowed values of the adaptive
gain, hence, it requires the information of the upper
bound of disturbances derivatives. On the other hand,
even the other algorithms Edwards & Shtessel (2016a,b);
Oliveira et al. (2018) do not require theoretically the in-
formation of the disturbances derivatives, however, in
practice, the usage of low-pass filter requires implicitly
the information about this upper bound in order to ad-
equately choose the filter time constant. With this in-
formation continuous HOSMCs Cruz-Zavala & Moreno
(2017); Basin et al. (2016) can be applied successfully
and no any adaptation will be needed. Strategies b)
consist of increasing the gain until the sliding mode is
reached, then the gain is fixed at this value, ensuring an
ideal sliding mode for some interval. When the distur-
bance grows, the sliding mode can be lost, so the gain
increases and reach it again. This second strategy has
two main disadvantages: 1) the gain does not decrease,
i.e., it will not follow disturbance when it is decreasing;
2) one cannot be sure that the sliding mode will never be
lost because it is not ensured that the disturbance will
not grow anymore.

To overcome the first of these disadvantages, approaches
in ¢) have been developed. According to these ap-
proaches, the gain increases until the sliding mode is
achieved and then decreases until the moment it is lost,
i.e., the sliding mode is not reached any more. These
approaches ensure the finite-time convergence of the

sliding variable to some neighborhood of zero without
big overestimation of the gain. The main drawback of
these approaches is that the size of the above mentioned
neighborhood and the time of convergence depend on
the unknown upper bound of disturbance which are un-
known a priori. Recently, novel approaches based on the
usage of a monitoring function Hsu et al. (2018) have
been proposed to adapt the control gains. However,
this approach has been only applied for the first-order
sliding mode controller.

To reach the finite-time convergence to a prescribed
vicinity of the sliding set a barrier functions adaptive
strategy is proposed in Obeid et al. (2018). Indeed, this
strategy has been applied to adapt a first order sliding
mode and super-twisting algorithm for a class of first
order disturbed systems Obeid et al. (2018); Obeid et al.
(2020).

In this paper, we present barrier function-based adap-
tive controllers ensuring the finite-time convergence of
solutions to desired vicinity of origin for a perturbed
chain of integrators of length r with bounded uncertain-
ties whose bounds are unknown. By a minor extension of
the definition (as explained in the next section), we refer
to such controllers as adaptive HOSMCs. The proposed
adaptive controller guarantees the asymptotic conver-
gence to the origin i.e., it establishes real HOSM. Indeed,
it ensures the convergence of the states and their main-
tenance in a decreasing domain which tends to zero. The
main features of such adaptive controller can be sum-
marized as follows:

e This controller can be extended to arbitrary order.

e The sliding variable and its (r — 1) first derivatives
converge in finite time to a family of adaptive open
sets (D(t))i>0 decreasing together with homogene-
ity norm of solutions to zero as t tends to infinity.

e Velocity of decreasing for the homogeneity norm
could be chosen arbitrarily.

e We provide an explicit bound on the control which
is best possible, i.e., (essentially) linear with respect
to the uncertainty.

The paper is organized as follows: problem formulation
and adaptive controllers are presented in Section 2, sim-
ulation results which show the effectiveness of the pro-
posed controllers are presented and discussed in Section
3. Some concluding remarks are given in Section 4.

2 Higher Order Sliding Mode Controllers

If r is a positive integer, the perturbed chain of integra-
tors of length r corresponds to the (uncertain) control
system given by

2i = Zi+1; 1= 17 TN A 15 27" = <P(t) +V(t)ua (1)



where z = [21 22 ...2,]T € R", u € R and the functions ¢
and v are any measurable functions defined almost ev-
erywhere (a.e. for short) on R} and bounded by positive
constants @, v, and 7y, such that, for a.e. t > 0,

eI <@, 0<ym <A(t) <. (2)

One can equivalently define a perturbed chain of integra-
tors of length r as the differential inclusion 2, € I+ ul,
where I = [—¢, @] and I, = [ym, YMm].

The usual objective regarding System (1) consists of sta-
bilizing it with respect to the origin in finite time, i.e.,
determining feedback laws u = U(z) so that the trajec-
tories of the corresponding closed-loop system converge
to the origin in finite time. Note that, in general, the
controllers U(+) are discontinuous and then, solutions of
(1) need to be understood here in Filippov’s sense Filip-
pov (1988), i.e., the right-hand vector set is enlarged at
the discontinuity points of the differential inclusion to
the convex hull of the set of velocity vectors obtained by
approaching z from all directions in R”, while avoiding
zero-measure sets. Several solutions for this problem ex-
ist Levant (2001, 2003, 2005); Ding et al. (2016); Cruz-
Zavala & Moreno (2017). under the hypothesis that the
bounds ¥, vy and @ are known.

In case the bounds 7,,, yar and @ are unknown (one only
assumes their existence) then it is obvious to see that
finite time stabilization is not possible by a mere state
feedback and therefore, one possible alternate objective
consists in achieving asymptotic stabilization. This is the
goal of this paper to establish such a result for System (1)
and we provide next a precise definition of asymptotic
stabilization.

Definition 1 If r,p are positive integers and f

R" x RP = R" is a continuous differential equation, we
say that the system z = f(z,u) is asymptotic stabiliz-
able if, there exists a continuous controller u = U(-,t)
such that every trajectory of the closed-loop system
2= f(z,U(-,t)) tends to the origin ast tends to infinity.

The main result of that paper consists of designing con-
trollers which asymptotically stabilize System (1) inde-
pendently of the positive bounds @, v, and vy, i.e.,
the controllers u = U(+,t) which asymptotically stabi-
lize System (1) does not depend on the bounds @, v,
and ys.

We next recall the following definition needed in the
sequel.

Definition 2 (Homogeneity. cf. Levant (2011).) If
r,m are positive integers, a function f : R” — R™ (or a
differential inclusion F : R" = R™ respectively) is said
to be homogeneous of degree q € R with respect to the

family of dilations 6.(z), € > 0, defined by
0:(2) = (21, y2r) = (ePr 2y, -+ P 2,),

where p1,- -, pr are positive real numbers (the weights),
if for every positive € and z € R", one has f(d:(z)) =
elf(z) (F(0.(2)) = €96.(F(z)) respectively).

The following notations will be used throughout the
paper. We define the function sgn as the multivalued
function defined on R by sgn(z) = ray for  # 0 and
sgn(0) = [—1, 1]. Similarly, for every a > O and = € R, we
use |z]“ to denote |z|* sgn(z). Note that |-]* is a contin-
uous function for a > 0 and of class C' with derivative
equal to a |-|a*1 for a > 1. Moreover, for every positive
integer r, we use J,. to denote the r-th Jordan block, i.e.,
the r x r matrix whose (i, j)-coefficient is equal to 1 if
1 = j—1 and zero otherwise. Finally, for j = 1,--- ,r, we
use e; to denote the vector of R” with zero coordinates

except the j-th which is equal to one.
2.1 Adaptive Higher Order Sliding Mode Controller

We first define the system under study and provide pa-
rameters used later on.

Definition 3 Let r be a positive integer. The r-th order
chain of integrator (CI), is the single-input control sys-
tem given by

cn, z=J.z+ue,, (3)

with z = (21, ,2.)T € R" andu € R. For k < 0 and
p > 0withp+ (r+1)k € [0,1), setp; :=p+(i—1)k, 1 <
1 <r+4+2. Fore >0,letd. : R" — R" be the family of
dilations associated with (p1,- -+ ,pr).

In the spirit of Harmouche. et al. (2012), we put for-
wards geometric conditions on certain stabilizing feed-
backs ug(-) for (CT), and corresponding Lyapunov func-
tions V. These conditions will be instrumental for the
latter developments.

Our construction of the feedback for practical stabiliza-
tion relies on the following result.

Assumption 4 Let r be a positive integer. There exists
a feedback law ug : R™ — R homogeneous with respect to
(0c)e>0 such that the closed-loop system z = J.z+up(2)e,
1s finite time globally asymptotically stable with respect
to the origin and the following conditions hold true:

(1) the function z — J.z + ug(z)e, is homogeneous of
degree k with respect to (0c)e>o and there exists a
continuous positive definite function V(z) : R" —
R, , C* except at the origin, homogeneous of positive
degree with respect to (0¢)eso such that there exists



¢ >0 and o € (0,1) for which the time derivative
of V(z) along non trivial trajectories of 2 = J.z +
uo(z)e, verifies

V(z) < —cVa(z); (4)

(i1) the function z — uo(z)agiz(f)
and, for every non zero z € R” verifying ug(z) = 0,

one has 2 oz W) — 0. As a consequence function z —

sgn(uo(z))agz(f) is well-defined over R" \ {0} and

non positive.

is non positive over R”

Remark 5 Item (i) of the above proposition is classi-
cal, see for instance Hong (2002); Huang et al. (2005);
Cruz-Zavala € Moreno (2014). Item (ii) considers a geo-
metric condition on controllers verifying Item (i), which
was introduced in Harmouche. et al. (2012) and used
in Laghrouche et al. (2017). This geometric condition
is indeed satisfied, for instance by Hong’s controller, see
Laghrouche et al. (2017) for other examples.

Regarding our problem, we consider, for every € > 0 the
following controller:

u(z, z0,t) = g(|uo(2))uo(2) + ksgn(uo(2))$(t V(20)),

(5)
where zp = 2(0), up and V' (2) are provided by Assump-
tion 4, g : Ry — R is an arbitrary increasing C' ! func-
tion tending to infinity and the adaptive function ¢ is
defined later. To proceed, let us first introduce, for ev-
ery positive real &, the function F¢ defined on [0,&) by
Fe(x) =
parameter Moreover consider  : Ry — R, a non in-
creasing C'! function so that 7(0) = ¢ > 0 and —1) < M0,
where € > 0 and M > 0 are chosen so that Me'~% < c.
Moreover, we define the following family of adaptive do-
mains, for ¢t > 0,

5 for 0 < x < £ where k is a positive tuning

D) ={zeR" | V(z) <n(t)}. (6)

Assume first that V(z9) < £/2. Then ¢(t, V(z20)) is de-
fined as Fy+)(V(2(t))) for any trajectory z(-) of Sys-
tem (1) closed-looped by the feedback control law (5)
and starting at zp, and so, as long as z(-) is defined.
(Note that in this case there exists a non trivial inter-
val of existence of such solutions since F}, is continu-
ous.) In case V(z9) > /2, then ¢(t,V (20)) = t as long
as any trajectory z(-) of System (1) closed-looped by
the feedback control law (5) and starting at z is de-
fined and verifies V' (z(t)) > n(t)/2. If there exists a first
time #(V(z9)) > 0 such that V(z(¢)) = n(t)/2, then
2(EV (20)) = Py (V((0)) for ¢ > £(V (30)), and so, as
long as z(-) is defined. Note that t(V (z0)) actually also
depends on the trajectory z(+) since the latter may not be

unique. Hence, as long as a trajectory z(-) of the closed-
loop system and starting at zg is defined, the adaptive
function ¢ (¢, V (z0)) is given by

ta
o(t,x) =
%0( ) { Fn(t)(x)a

with the convention that £(V(z9)) = 0 if V(29) < €/2
and t(V (zg)) = ooif z(+) is defined and verifies V' (z(t)) >
7(t) for all non negative times ¢.

Here the positive function g and the positive constant k
are gain parameter.

if0<t<#(V(z)),

ift > (V(z0)), "

The following theorem provides the main result for the
adaptive controller u.

Theorem 6 Letr be a positive integer and System (1) be
the perturbed r-chain of integrators with unknown bounds
Ym, YM and @. Let ug, V : R" — R, be the feedback law
and the continuous positive definite function defined re-
spectively in Assumption 4. For every zg € R", consider
any trajectory z(-) of System (1) closed by the feedback
control law (5) verifying z(0) = zo. Then, z(-) is de-
fined for all non negative times, there exists a first time
t(V(z0)) for which V (z(t)) < ( )/2 att =1V (2)) and
z(t) € D(t) for allt > t(V (z0)).

Moreover, if | > 0 is the homogeneity degree of V', then
there exist positive constants C;, 1 < i < r (i.e., inde-
pendent of z(+)) such that

(O] < Coplie), 1<i<r, t>T(V(z)). ()

PROOF. [Proofof Theorem 6] We refer to (S) as the
closed-loop system defined by (1) and (5). The first issue
we address is the existence of trajectories of (S) starting
at any initial condition zy € R". Such an existence fol-
lows from the fact that the application Ry x R” — R,
(t,z) — ¢(t,V(z)) is continuous.

We next show that every trajectory of (S) is defined for
all non negative times. For that purpose, consider a non
trivial trajectory z(-) and let Iy be its (non trivial)
domain of definition. We obtain the following inequality
for the time derivative of V'(2(-)) on I .y by using Items
() and (i7) of Assumption 4. For a.e. t € I(.), one gets

V=32 + o+ 8% (3 [g(fuoluo + k sgn(uo)¢] + ).
< —eve-|gL (wmg(\uo\) ~ Dltto| +hym @),
< =V — kv, ‘ (cp <I>)

Z




with @ := lw% (@ — hum), where

hu = min (0, min z(yng() - 1).
We thus have the differential inequality a.e. for ¢t € I,
V § 7CVDL + 01¢Vpr+2’ (10)

where C is a positive constant independent of the tra-
jectory z(). Since py42 € [0,1), it is therefore immedi-
ate to deduce that there is no blow-up in finite time and
thus Iz() = R+.

The next step consists in showing the existence of a finite
time ¢(V (z0)) and, for that purpose, we can assume with
no loss of generality that V(z9) > /2. The correspond-
ing trajectory is defined as long as V(z(t)) > n(t)/2,
since in that case, the growth of the right-hand side of
(1) is sublinear with respect to the state variable z. Ar-
guing by contradiction, one gets that V(z(¢)) > n(t)/2
for all non negative times, and hence V < —cVe for
t > ®. The latter inequality yields convergence to the
origin in finite time, which is a contradiction. Then, the
existence of a finite time £(V(29)) is established.

One is left to prove that z(t) € D(t) for t > t(V(20)).
Since ¢ = F, > 1 on that time interval, one gets fi-
nite time convergence if ® < 1, whatever the choice of
7n is. Assume that ® > 1. For every ¢t > #(V(2)), let
V. (t) be the unique solution in (0,7n(t) of the equation
Fy(Vi(t)) = @, ie., V*(t_) = (1 —1/®)n(t). Note that
if V(2(t)) > Vi(t), then V < —cV*. We will actually
prove that

V(2(t)) < max(3, (1 — 1/®))n(t), for t > £(V(2)).

(11)
and, if ® > 2, then there exists t' > #(V(20)) such that
V(z(t) < (1 —1/®)n(t) for t > t'. Assume first that
V(z(t)) > (1 —1/®)n(t) at t = t(V(20)). Then, V <
—cV* in a right neighborhood of #(V(zg)) and, by the
previous argument by contradiction, there must exists a
first time ¢’ > ¢(V'(29)) so that V' (z(t)) = (1-1/®)n(t) at
t = t'. The time derivative of t = V(2(¢))— (1—1/®)n(¢)
at t = t’ is less than or equal to

—cVo () + MV, (t') < =V (t)(c — MV, (t')} ™)

which is negative since Vi(t') < n(0) = e. Note also
that the previous inequality holds true at every time s
so that V(z(s)) = (1 —1/®)n(s). Then, the zeros of
V —(1-1/®)n on [T,,,00) are isolated and V — (1 —
1/®)n >0 (V- (1—-1/®)n < 0 resp.) in a left (right
resp.) neighborhood of s. Hence ¢’ is the unique zero of
V—(1-1/®)non [t(V(20)),00) on [®)n(t),c0) and the
claim is proved. ~

Finally assume that V(z(t)) < (1 — 1/®)n(t) at ¢t =
t(V(20)). By the previous computations, one gets that
V(z(t)) < (1 —1/®)n(¢) for all ¢ > £(V (20)).

It remains to prove (8). It follows at once from the
following set of equations: there exists constants Cj,
1 < i < r, such that, for every z = (21, -+ ,2,) € R",
|zi] < C;V(2)Pi/t. To see that, recall that V' is homo-
geneous of degree [ with respect to (d¢)e>0 and assume
that z; # 0. Take € so that eP|z;| = 1, one has V(z) =
V(-,#1,-)|2|"Pi. Finally note that there exists C; > 0
such that V(-,£1,-) > 1/C;, whatever - is. This con-
cludes the proof of Theorem 6.

Remark 7 At the light of the above argument, one can
see that, if the bounds of the incertainties are known, then
one can choose the gain parameter k in such a way that
® < 1 and hence get finite time convergence to zero. In
that way, our controller provides yet another finite time
stabilizer of the perturbed integrator with known bounds
on the perturbations.

Remark 8 From (11) and the choice n(t) = ee~ Mt
one deduces that V(2(t)) < ee ™Mt fort > t(V(2)). In
particular, the trajectory converges to the origin with the
exponential rate M > 0 which can be chosen at will.
Moreover, it is easy to provide with the help of (9) upper
bounds on t(V (z0)) in terms of ® and V(z).

To be complete, one should emphasize that the result in
Theorem 6 does guarantee that a trajectory entering in the
neighborhood {z, V(z) < n(t)/2} for the first time att =
t(V(20)) will always remain in the larger neighborhood
{2, V(z) < n(t)}.

Remark 9 One other way to diminish the delay
time t(V(29)) needed to enter into the neighborhoods
{z, V(2) < n(t)} consists in replacing the time t in the
definition of  given in (7) by an increasing function l(t)
tending to infinity faster than a linear one. In that man-
ner, inequalities such ast > ® is replaced by I(t) > .
The price to pay will be an larger upper bound for the
gains.

Remark 10 Among different controllers that can ful-
fill Assumption 4, Hong’s controller Hong (2002) can be
used. This controller is defined as follows:

Let k < 0 and ly,--- 1. positive real numbers. For z =
(21, ,2r), we define ug = v, fori=0,...,r—1:

vo =0, Vi1 = —lig1[[2041]% = [0]F] (/50
(12)
wherep; = 1+ (i—1)K, Bo =p2, (Bi+1)piy1 =Bo+1 >
0 and o; = p;%.
Now, let (21, ,2.) = |2-]% — |v,_1]%1. Then
according to Harmouche et al. (2017), if k = —1/r,

ug = —l, sgn(z/JT(zl7 i ,zr)) is bounded and the adap-



tive controller u can be written as

u(z,t) = g(luo(2)|)uo(2) + k sgn(uo(2)) (¢, V(2))

=~ (g(luo(Dl + kp(t, V(=) )sgn(vr (a1, . 2)

(13)
Here the assumption thatlim,_, 4 » g(z) = 400 can be re-
moved. Indeed, in view of (9) and taking into account that
|ug| = L., one can remove this assumption and the result
remains valid. Moreover, in the case when the bounds of
the uncertainties are known, the functions g and ¢ can be
chosen constants, which leads to homogeneous controller
u.

2.2 Asymptotic bounds for the controller u

One deduces from Theorem 6 the following result which
provides an asymptotic upper bound for the controller
u that does not exhibit any overestimation.

Lemma 11 The controller u defined in (5) verifies the
following asymptotic upper bound, which is uniform with
respect to trajectories of the closed-loop system (S):

lim sup,_, . |u| < M(ug) + kmax(1,®), (14)

where M (ug) = g(I,-)l, if ug is homogeneous of degree
zero, where I, is the supremum of |ug| over R", and
M (up) = 0 if ug is homogeneous of positive degree.

PROOF. It is enough to prove that ¢(t,V(z(t))) <
max(1, ®) for ¢ large enough. Indeed, a careful exami-
nation of the argument of Theorem 6 shows that either
® < 1, in which case one has convergence to zero in finite
time and ¢ = 1 for ¢ large enough, or ® > 1, in which
case (11) holds true and then ¢ < ® for ¢ large enough.

3 Simulation Results

Consider the following third order system

21 = 29,
2':2 = Z3, (15)
Z3 = ¢+ U,

where v and ¢ are discontinuous bounded uncertainties
defined as

© = 5sgn(cos(t)) — 20sin(2t), |¢| < 25,

(16)
v =3—2sgn(sin(3t)), 0<1<~y<5,

and zo = [4,4, —4].

In the following subsections, two cases will be consid-

ered: first the case when the bounds of the uncertainties

are known, and second when they are unknown.

The first case is provided to show that the controller (13)
can be considered as HOSMC due to the reason that it
provides r-th order of asymptotic precision with respect
to the sampling step. While in the second case, the ef-
fectiveness of the proposed approach to force the sliding
variable and its r — 1 first derivatives to the following
family of adaptive domains

D(t) ={zeR" | V(2) <n(t)}, (17)
is studied using the controller (13).
3.1 Case when the bounds of uncertainties are known

In this subsection, the control parameters of ug in (13)
are tuned to the following values

l1:17 l2:27 l3:57 :‘{:—1/3, (18)
the constant &k and the function g, ¢ in (13) are selected
ask=-2, g= -1 =1 Hence,

TYm Ym
u= —% sgn(wg(zl, za, 23)>, (19)

with ¥3(z1, 22, 23) is given explicitly in appendix A.
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Fig. 1. System (15) in close loop with (19).
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Fig. 2. Accuracy of System (15) in close loop with (19) for
7=10""sand 7 =107° s.



Fig 1 shows the simulation results of system (15) with
controller (19). We can see that the states z1, za, 23
converge in a finite time to the origin, and the control
input u is discontinuous.

The system homogeneity degree is k = —1/3 and the
homogeneity weights of z1, zq, 23 are 1, 2/3, 1/3 respec-
tively. These weights can be multiplied by 3 in order
to achieve homogeneity weights 3, 2, 1 with the closed
loop system homogeneity degree x = —1. This homo-
geneity is called 3-sliding homogeneity Levant (2005).
According to these homogeneity weights, the controller
(19) provides the following accuracy for the states w.r.t
sampling step 7
2] S MT?, 2o < XoT?, zs| < AsT, (20)
where \; are constants. By simulations shown in
Fig 2 with 7 = 10~%s, constants )\; are determined as
A1 = 20000, Ay = 500, and A3 = 200. These constants

have been confirmed by simulations with 7 = 107%s
also shown in Fig 2.
20 —
10 —
—2
N ok
-10 i
0 5 10 15 20 25 30
50 tlm?(s)
- o -\ A\
-50 £ ‘ ‘ ‘ ‘ ‘ ]
0 5 10 15 20 25 30
time(s)

Fig. 3. System (15) in close loop with (21).

3.2  Case when the bounds of uncertainties are unknown

In this case, the control parameters of ug are the same as
in subsection 3.1, while the constant k£ and the functions
g and ¢ in (13) are selected as k = 1, g = 1 and ¢ follows
(7) where n(t) = e~92!. Hence, u can be written as

w=—(Is+¢(t, V() ) sen(s(1,22,2)), (21)

with the Lyapunov Function candidate V' (z) is given by
(see appendix A)

3 5 2 5 3.5 5 3 1
V(z) = 5|21|3 + 3|ZQ|2 + glf|z1|3 +1f 22|21 ] + 5|23|5+

S|l i a] ot |l 4 i L21)

Figs 3-4-5 illustrate the simulation results of system (15)
with the adaptive controller (21). It can be noticed in

40

w—p(®)1(0)

|
0 5 10 15 20 25
time(s)

Fig. 4. Evolution of the control signal and the uncertainties
for System (15) with (21)
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Fig. 5. Evolution of the Lyapunov function V(z) and the
adaptive function ¢(t,V(z)) for System (15) with (21).

Fig 3 that the proposed controller provides the practi-
cal stabilization for system (15), and the control input
is not continuous in general. Moreover, it is confirmed
in Fig 4 that the control signal is not overestimated. In-
deed, after the time instant £(V'(z9)) the control signal
closely follows the uncertainties. On the other hand, the
fulfillment of the control objective can be shown in Fig 5,
where the sliding variable and its r — 1 first derivatives
enter in a finite time in the family of adaptive domains
D(t); i.e. V(2) < n(t) and cannot exceed it. It can be
seen also that the adaptive function (¢, V(2)) increases
linearly until the time instant £(V (z0)) and then starts
to follow the function F) ().

In this section, it is supposed that the sliding variable
and its r — 1 derivatives are measurable. However, it
should be mentioned that in the case where the sliding
variable is only the measurable state, the proposed con-
troller can be combined with the differentiator proposed
in Oliveira et al. (2017) yielding output-feedback con-
trol.

4 Conclusions

This paper has proposed a new Lyapunov-based adap-
tive scheme for higher-order sliding mode controller ap-



plied for a class of perturbed chain of integrators with
unknown bounded uncertainties. The proposed adaptive
controller guarantees (a) the finite time convergence to a
family of adaptive open sets (D(t));>o decreasing to the
origin as ¢ tends to infinity; (b) once a trajectory enters
some D(t,) at time t,, it remains trapped in the D(t)’s,
ie., z(t) € D(¢t) for t > t.. Another advantage of this
adaptive controller consists in the fact that the homo-
geneity norm of solutions asymptotically tends to zero.
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A  ug and the Lyapunov function V design Hong
(2002)

Firstly, the controller ug is determined explicitly.
Let the system homogeneity degree k = f%. Then the

homogeneity weights for the states z1, 23, z3 are 1, %, %

respectively and the constants 3; are 8y = %, B =3,
B2 = 4. According to Hong (2002), uy = vs with

Vo = O,
PasntE 1

Vip1 = —lip1 Mzwﬂﬁi — w1 @ "L i=0,1,2.
(A1)
From (A.1)
v = —l1 I_Z{If = —l1 I_Zl‘lg. (AQ)

Then
vy = —12“_22—‘61 _ \_’Ul-lﬁl—‘ %Xﬁ (A.3)
=l Uzﬂ% + 11% LZJ—‘ %~ (A4)
Finally
vg = —ls UZ3'|52 _ I_v2—‘62—‘ p:;:n X 55 (A.5)
— {w N IEIREaHE] } (A.6)
= —lI3sign (1/13(,21, 29, 23)) (A7)

4, 54 3.3 g
where 13(21,22,23) = |23]" +12 U_zg] 2 4] Lzl]—‘ .
Therefore, the controller uy can be expressed as

= Ug = —l3$i9ﬂ(¢3(zl7 22, Z3)>

Now, the Lyapunov function V is given. From Hong
(2002), the Lyapunov function is defined in the following
form

Vvi:’u)i‘f"/i—l, 7,:1)273
' ' A8
wi= f 177 = o] M (A8)
Vi—1
In view of (A.8)
_ 1 1+r2 1 1+%
w1_1+p2|2| —1+%|zl| 7
which leads
Vi=wr = slal? (A.9)
Then
22
Wy = / L81B1 o Lvl—lﬁlds
U1
1
= gl Bl ) = s 1Y)
1 341, 3 341 )
- 3+ 1(|22|2 i 5[1;1]2 ) — z2lv1]?,

with v = = Lzﬂ% it implies that

2 5 35 5 3
wa = plzal? + 2t a4 2|z (A.11)



Therefore,

Vo =Vi+wy
3, 5 2 5 33 5 (A.12)
= 3|Zl|3 + 5\22|2 + glf\zl|3 +1{ 22| 21].
Finally,
z3
w3 = / Ls]ﬁg — Lvﬂ&ds
va
1
= ol ol = 2],

(A.13)

ER 3
+ 25l | 22]% + 17 |21

Thus, the Lyapunov function V' is given by

3, 8 2, s 35 5 3 1
V= Vg = g|21|§ + g|22|g + glf|21|§ +leQL21—| + g|Z3|5+

%lé’“zﬂ% +1 Lzlﬂg + 23l Uzﬂ% +1 Lzlﬂ ’
(A.15)
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