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A quantum many-body system whose dynamics includes local measurements at a nonzero rate can be in
distinct dynamical phases, with differing entanglement properties. We introduce theoretical approaches to
measurement-induced phase transitions (MPTs) and also to entanglement transitions in random tensor net-
works. Many of our results are for “all-to-all” quantum circuits with unitaries and measurements, in which
any qubit can couple to any other, and related settings where some of the complications of low-dimensional
models are reduced. We also propose field-theory descriptions for spatially local systems of any finite
dimensionality. To build intuition, we first solve the simplest “minimal cut” toy model for entanglement
dynamics in all-to-all circuits, finding scaling forms and exponents within this approximation. We then
show that certain all-to-all measurement circuits allow exact results by exploiting local treelike structure
in the circuit geometry. For this reason, we make a detour to give general universal results for entanglement
phase transitions in a class of random tree tensor networks with bond dimension 2, making a connection
with the classical theory of directed polymers on a tree. We then compare these results with numerics in
all-to-all circuits, both for the MPT and for the simpler “forced-measurement phase transition” (FMPT).
We characterize the two different phases in all-to-all circuits using observables that are sensitive to the
amount of information that is propagated between the initial and final time. We demonstrate signatures of
the two phases that can be understood from simple models. Finally we propose Landau-Ginsburg-Wilson-
like field theories for the measurement phase transition, the forced-measurement phase transition, and for
entanglement transitions in random tensor networks. This analysis shows a surprising difference between
the measurement phase transition and the other cases. We discuss variants of the measurement problem
with additional structure (for example free-fermion structure), and questions for the future.

DOI: 10.1103/PRXQuantum.2.010352

I. INTRODUCTION

A quantum system whose unitary dynamics is inter-
spersed with repeated measurements follows a random
trajectory through Hilbert space [1–5], determined both
by the unitary part of the dynamics and by the sequence
of measurement outcomes. In the many-body case this
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random dynamics admits a “measurement phase transi-
tion” (MPT) between two qualitatively different, stable
dynamical phases, with distinct entanglement properties
[6–27]. For definiteness, consider a system of many spins
in a pure state, evolving under a quantum circuit that
includes both entangling two-spin unitary gates and mea-
surements, which are made at random times at a finite
rate per spin. Informally, sufficiently frequent measure-
ments yield a “disentangling” phase: in this phase, the
state at a given time is weakly entangled, and is fully
specified by the outcomes of a relatively recent set of
measurements. (The limiting case of this disentangling
dynamics is where all the spins are measured simultane-
ously, leaving the system in a product state that can be
read off from the measurement outcomes.) But when the
frequency of measurements falls below a critical threshold,
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the dynamics enters an entangling phase [6,7]. In this phase
the dynamics produces states with extensive entangle-
ment, which retain quantum information from much earlier
times. If the initial state is mixed, rather than pure, then
it will rapidly be purified [12] by the repeated measure-
ments in the disentangling phase, but not in the entangling
phase.

The simplest toy model for the MPT arises from think-
ing about the connectivity of the space-time diagram of
the quantum circuit, viewed as a tensor network [6]. In
this representation a measurement event is a break in the
worldline of a spin, across which quantum information
cannot be transmitted. When measurements become suf-
ficiently frequent, the circuit falls apart into disconnected
pieces, implying that entanglement in the final state is
short ranged and there is no transmission of quantum
information, from the initial to the final state, over long
timescales.

The existence of the MPT poses several types of ques-
tions. Viewing the circuit as a quantum information pro-
cessor, the MPT is a transition in the properties of a
randomly generated error-correcting code [11,24,28], the
structure of which can be optimal in a certain sense [12];
understanding the MPT may lead to useful insights into
fault-tolerant quantum computation [29].

The transition also has consequences for the computa-
tional difficulty, for a classical computer, of simulating
various types of open or monitored quantum systems
[6,30–33]. As a simplified thought experiment, we may
imagine that we are given the sequence of measurement
outcomes obtained in an experimental run (as well as
the information about the Hamiltonian, and the initial
state), and asked to calculate the quantum state of the
system following these measurements. If the dynamics is
in the disentangling phase, an efficient matrix-product or
tensor-network representation of the evolving state may
be possible, while if the dynamics is in the entangling
phase, the computation may be intractable. In this sense the
MPT can function as an “epistemological” phase transition
in which the quantum wave function becomes essentially
unknowable.

Philosophically, we may also wonder what the existence
of two phases implies about how to distinguish dynami-
cal processes that are intrinsically quantum from those that
are effectively classical. For example, in both of the phases
separated by the MPT, quantum correlations between local
observables are “weak,” but for different reasons. In the
disentangled phase, a local operator is correlated only with
a few others nearby. In the entangled phase, it may have
nontrivial correlations, but these are detectable only by
highly nonlocal “scrambled” operators, and hidden from
local ones. Only close to the transition point does the
system escape both mechanisms, allowing nontrivial corre-
lations for local operators [6,9,13–17,24]. Yet another key
question is how to probe the MPT experimentally [13,17].

This question is nontrivial: for example, a naive approach
leads to a severe sampling problem (due to the need to
compare measurements in distinct experimental runs that
have the same measurement outcomes).

Another way of looking at the MPT is as a problem in
statistical mechanics and critical phenomena [6,7,9,10,12–
16,22,24,25,27,34]. Open questions abound, both about the
nature of the phases and about the critical point separating
them. Many variants of the measurement transition can be
imagined; how do we sort them into universality classes?
Are there simplifying limits where exact results are possi-
ble? Are there useful continuum field theories for the MPT
and related problems, that allow us to apply the tools of the
renormalization group?

This statistical mechanics problem is closely connected
to an entanglement transition that takes place in random
tensor networks [14,35,36] (we explore the similarities and
differences further here) and the same questions apply in
that setting. These problems are challenging partly because
of the need to average over randomness: either intrinsic
randomness in the definition of the dynamics (for example,
if we consider dynamics using a random quantum circuit)
or simply the inevitable quantum-mechanical randomness
in measurement outcomes.

Our focus in this paper is on circuits built from generic
unitary gates (for example, Haar-random gates). An alter-
native profitable direction is to study circuits made from
Clifford unitaries [7,12,15,17,22,37–41]. Clifford circuits
are efficiently classically simulable, which has allowed
direct tests of conformal invariance at the MPT in 1+ 1D
[9,15] and simulations in 2+ 1D [22]. In general, the uni-
versality class of the MPT is expected to differ for Clifford
versus generic unitaries (see, e.g., Ref. [16]), though many
features of the stable phases are similar.

This paper is a journey through several approaches to
the MPT, and also to the closely related “forced” mea-
surement phase transition (FMPT, defined in Sec. II A
below), and to the entanglement transition in various types
of random tensor networks (RTNs). Our aim is to find
settings in which exact results can be obtained for the
transition, as well as to clarify the properties of the two
phases. We examine several different tools and settings,
but the unifying feature is that we consider measurement
and entanglement transitions in situations where the com-
plications arising from low-dimensional spatial structure
are reduced.

Much of this paper is concerned with circuits with all-
to-all couplings between qubits, i.e., with no fixed spatial
geometry, which we study using analytical arguments and
numeric simulations. (Various types of all-to-all circuit
have also been discussed recently in Refs. [12,26].) These
circuits are in turn closely related to tree tensor networks,
for which we give exact results, including the first exact
identification of an entanglement transition in a generic
system with finite bond dimension.
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Turning to models with a finite number of spatial dimen-
sions, we discuss and extend tools based on mappings to
effective “lattice magnets” [13,14,34–36,42–45], involving
a replica limit [13,14,34,36], which capture the properties
of the two phases, and in principle the critical point. We
suggest alternative ways of thinking about these effective
models, making connections with ideas from disordered
magnetism: in particular, we suggest a construction of
order parameters for the MPT and for entanglement tran-
sitions in random tensor networks, based on overlap of
Feynman trajectories. A key outstanding question is the
existence of effective field theories for the MPT. Here we
propose—speculatively—two Landau-Ginsburg theories,
one for the MPT and one for both the FMPT and the RTN.

The sketch in Fig. 1 contrasts an all-to-all measurement
circuit and a circuit with a fixed spatial geometry. In this
figure, time runs vertically, and each worldline represents a
spin or qubit. Unitary gates are applied between randomly
chosen spins at random times, and projective measure-
ments are applied to randomly chosen spins. All-to-all
coupling is perhaps the simplest setting for the MPT. Since
the distinction between area and volume law breaks down
in the all-to-all case (as also in the limit of infinite dimen-
sions), it is natural to focus instead on the transmission of
information between initial and final times. Here we char-
acterize this transmission via the operator entanglement
[46–51] of the nonunitary time-evolution operator, defined
below. This quantity has a simple interpretation in terms of
the surface tension of the “entanglement membrane” in the
effective replica description, which we discuss. An even
simpler heuristic picture for it comes from the classical toy
model, in terms of the minimal cut that separates the top of
the circuit from the bottom.

FIG. 1. Random circuits with measurements. Vertical lines are
world lines of individual spins, with time running vertically.
The blocks connecting different world lines are independently
random unitary gates. These are interspersed by projective mea-
surements, represented by the red blobs. The left panel shows
an all-to-all two-local circuit whereas the right panel shows a
regular 2+ 1D circuit.

V

S

t

Entanglement transitions
on quantum treesClassical min cut

Replicas and field theoriesSimulations 
of quantum circuits

All-to-all and finite-
dimensional circuits
with measurements

FIG. 2. Some of the approaches in this paper. To gain intuition,
we start by solving a classical toy model for the transition in the
all-to-all circuit, which gives scaling forms for the “minimal-
cut” cost that determines the zeroth Rényi entropy (Sec. III).
In Sec. IV we turn to the truly “quantum” problem, obtaining
exact results for random tree tensor networks. These can be
applied to the true quantum transition in all-to-all circuits with
“forced” measurements. Section V simulates all-to-all measure-
ment circuits, using operator entanglement of the time-evolution
operator, and the convergence with time of two initially orthog-
onal states, to diagnose the preservation of information over an
exponentially long timescale that is a hallmark of the entangling
phase. Section VI develops analytical approaches to the MPT and
to entanglement transitions based on the replica trick, clarifying
the properties of the two phases and suggesting candidate field
theories for the critical points in various settings.

We apply all the approaches mentioned above (tree
approximations, simulations, replica field theories) in the
setting of generic quantum circuits for spin 1/2, as well as
related random tensor networks, giving results for scaling
properties in the entangled phase and close to the critical
point. We also study a solvable “classical” limit of the
problem. Our main approaches are illustrated in Fig. 2,
and the ensuing section, Sec. II, gives an overview of
our results. In closing this Introduction, however, let us
briefly clarify the logic of our four-pronged approach to
understanding the MPT and its relatives.

Before tackling the “true” quantum circuit problem, we
find it instructive to first solve the classical toy model
mentioned above, in the particular setting of all-to-all cir-
cuits (Sec. III). In this model the entanglement is described
in terms of a “minimal cut” through a circuit in which
worldlines have been broken by measurement. The min-
imal cut becomes an exact description of the MPT in
certain limits, but in general it does not capture either
the location of the critical point or the true critical scal-
ing of the quantum problem. Nonetheless, the minimal
cut problem yields some useful lessons for the full quan-
tum problem. Most prominently, it captures key qualitative
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features of the two phases, including the appearance of
an exponentially long timescale for survival of quantum
information within the entangled phase. Solving the mini-
mal cut problem also makes clear certain crucial concepts
for understanding the MPT in all-to-all circuits, including
the local tree structure of the circuit and the relevance of
crossover scaling phenomena.

The fact that all-to-all circuits have a local tree struc-
ture then motivates us to study entanglement transitions
in quantum trees (Sec. IV). In this setting we are able to
obtain the exact location of the entanglement transition
(and exact critical properties) for a tree tensor network
that is relevant to dynamics with Haar-random gates. This
result may be useful for further investigations: studies of
the MPT in systems with generic unitaries are often ham-
pered by the restriction of numerics to small sizes, which
make it difficult to accurately pinpoint entanglement tran-
sitions. Moreover, we argue that the critical measurement
rate that we identify in the quantum tree is also the exact
result for the full all-to-all quantum circuit with forced
(postselected) measurements.

Armed with the understanding gained from the minimal-
cut and quantum tree problems, we turn our attention
to direct numerical simulations of the quantum circuit
(Sec. V). The results we obtain are consistent with
the critical scaling forms suggested by the previous
approaches, and highlight the emergence of an exponen-
tially long timescale associated with information transmis-
sion through the circuit in the entangling phase.

Finally, in Sec. VI we discuss mappings of the MPT
and of random tensor networks to effective lattice mod-
els for a “pairing field,” and we discuss how to coarse
grain such models. We construct the simplest candidate
Lagrangians that are consistent with the replica symmetry
and describe some of their features. We also touch on free
fermions subject to measurement [52], which do not show
the same kind of transition between weakly and strongly
entangled phases but do show transitions of a different type
[37,53,54]. We contrast these free systems (which have a
continuous, rather than discrete, replica symmetry) with
generic models, and we discuss some other variants of the
MPT.

II. OVERVIEW

A. Models

Our starting point is a dynamical process in which a
large number N of spin 1/2s undergoes unitary evolution
punctuated by projective single-spin measurements: Fig. 1,
left. (Circuits with both unitaries and measurements are
referred to as “monitored” or “hybrid” quantum circuits.)
The spins are “all-to-all” coupled, meaning that unitary
gates may be applied between any two spins in the sys-
tem. These gates are applied at a uniform rate between
randomly chosen pairs of spins, and are themselves drawn

independently from a random ensemble (e.g., the Haar
ensemble). Measurements, which are made in the Z basis,
are also applied at a uniform rate to randomly chosen
spins. The only parameter is r ∈ [0, 1], which determines
the relative rate of measurements and unitaries: in a unit
interval of time there are on average rN measurements and
(1− r)N unitary operations.

We distinguish between two possibilities for the projec-
tive measurements, which we refer to as “measurements”
and “forced measurements,” respectively. (Correspond-
ingly we refer to the “measurement phase transition,”
or MPT, and “forced-measurement phase transition,” or
FMPT.) The outcomes of “measurements” are determined
as usual by the Born rule, based on the state of the system
at the time of measurement. By contrast the probability of a
given outcome for a “forced measurement” is independent
of the state. We take it to be 1/2 for both of the two pos-
sible outcomes, ↑ and ↓—but in fact, for the ensembles of
random unitaries we consider, it is completely equivalent
to take all the measurement outcomes to be ↑. We can think
of the FMPT as pertaining to a protocol in which we run
(exponentially) many samples, discarding all those except
those that yield the desired (“postselected”) sequence of
outcomes.

To formalize the distinction between MPT and FMPT,
define Vm to be the nonunitary time evolution operator rep-
resented by a given realization of the circuit. This operator
is the product of unitaries and projection operators: we
label it by a given sequence m of outcomes for the mea-
surement events: for example m = (↑,↓, . . . ,↑). (Vm also
depends on the total time t, locations and times of the uni-
taries and measurements, and the specific random unitaries
in the circuit realization, but we leave these dependen-
cies implicit.) For the MPT, and for a given sequence of
unitaries and measurement locations, the probability of a
sequence of measurement outcomes m is

P(m) = 〈ψ(0)|V†
mVm|ψ(0)〉, (1)

where |ψ(0)〉 is the initial state. For the FMPT it is

P(m) = 2−|m|, (2)

where |m| is the number of measurements in a given real-
ization of the circuit. In both cases, the time evolution of a
pure state is

|ψ(t)〉= Vm|ψ(0)〉
|Vm|ψ(0)〉| . (3)

It is occasionally useful to generalize the circuit to a vari-
able number of spin states q for each site. In particular, the
limit of large q is one way to motivate the classical problem
we describe below.

Having started with the models above, we are led to
consider some other related problems. These models are
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FIG. 3. The entanglement entropy of states and operators can
be described in terms of the surface tension of an effective
membrane or domain wall. Left: interpretation of entanglement
entropy of a spatial subregion, in the entangling phase, as the free
energy of an anchored membrane. Right: operator entanglement
of the nonunitary circuit (in the entangling phase) in terms of a
“horizontal” membrane (see also Ref. [13]).

introduced as we need them. Section IV considers a class
of tree tensor networks, one example of which is closely
related to the FMPT case above. Section VI addresses both
circuits and tensor network models in a finite number of
dimensions, in which we do have a sense of spatial locality.

B. Detecting the entangling phase

Before turning to the critical properties, we discuss the
more basic issue of how to distinguish the two phases.

The entanglement transition can be identified with the
vanishing of an effective surface tension for a membrane-
like object in space time, as we discuss below. In the classi-
cal toy model, this membrane is a minimal cut through the
circuit [6]. In a more precise picture, it is a domain wall in
an effective statistical mechanics problem (see following
sections). The surface tension of this membrane or domain
wall is positive in the entangling phase [6].

In finite dimensions, the vanishing of this surface ten-
sion, which we denote sn(r) [55], implies a vanishing of
the entanglement entropy density of the states produced
by the dynamics at late time. This density is the coefficient
of the volume law for the entanglement entropy of a spatial
subregion, and is given by the surface tension sn(r). This
is because the subregion’s entropy maps to the free energy
of a membrane that is anchored on the boundary of region
A on the final time surface: see Fig. 3 for a schematic in
1+ 1D.

In the all-to-all circuit there is no distinction between
areas and volumes (as in the limit of high dimensions), so
the naive attempt to define an entropy density using the
entropy of a spatial subregion is contaminated by trivial
short-range entanglement (i.e. entanglement that could be
removed with a shallow-depth circuit). Instead it is simpler
to consider the entanglement properties of the operator
that implements the time evolution itself. The operator
entanglement [46–50], defined below, is a measure of the
amount of quantum information transmitted from the ini-
tial to the final time by the nonunitary evolution operator
Vm. In the membrane picture, this operator entanglement

is equal to the free energy of a “horizontal” membrane that
completely traverses the system [13], as shown in Fig. 3.
This observable also detects the vanishing surface tension
sn(r) for the domain wall, as detailed below, but it does not
require us to specify a spatial subregion.

Gullans and Huse proposed in Ref. [12] to think about
dynamics with measurements in terms of the entropy of a
state that starts out as maximally mixed, and is gradually
purified by the dynamics. (The entangling phase is then a
“mixed” phase, where the state remains mixed for a long
time, and the disentangling phase is a “pure” phase where
the state is rapidly purified.) This mixed state entropy is in
fact equal to the operator entanglement of the nonunitary
evolution operator. Reference [12] noted the exponentially
long timescale for the survival of quantum information
in the entangled phase (and plateaus in various observ-
ables), which will play an important role below. See also
the recent Refs. [27,56].

Formally, the nth operator entanglement entropy of the
circuit, denoted Sn throughout this paper, may be defined
via the singular value decomposition of the nonunitary
time-evolution operator Vm:

Vm ∝
2N∑

j=1

λj |j 〉t〈j |0, (4)

where {|j 〉0} and {|j 〉t} are bases corresponding to the
initial and final time. Normalizing the λj so

∑
λ2

j = 1,

Sn = 1
1− n

ln

⎛

⎝
∑

j

λ2n
j

⎞

⎠ . (5)

For the unitary case (r = 0), Sn = N ln 2 is maximal at all
times. For positive r, and for asymptotically late times, a
single term dominates Eq. (4), meaning essentially that all
initial states are projected onto the same final state—i.e.,
the final state can be read off from measurement outcomes
m (and the structure of the circuit) without knowledge of
which initial state was fed in.

We also discuss another observable for quantifying the
transmission of quantum information from initial to final
times, which is more numerically tractable: this is the
overlap between two initially orthogonal states, both sub-
jected to the same Vm. (In the entangling phase, initially
orthogonal states remain orthogonal for a long time.)

We characterize the operator entanglement in the classi-
cal toy model (Sec. III), in numerical simulations (Sec. V),
using the replica trick (Sec. I), and with a toy model
based on multiplying random matrices (Appendix E). The
following basic points hold in all of these approaches.
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First, in the entangling phase a nonzero density can be
associated with the operator entanglement:

sn(r) ≡ lim
t→∞ lim

N→∞
Sn(r, N , t)

N
. (6)

We think of this quantity as the information transmitted
per spin, or in the membrane picture as the surface tension
for a “horizontal” membrane. sn(r) is positive in the entan-
gling phase, and vanishes continuously, for all n ≥ 1, as
the critical measurement rate rc is approached from below.

As for almost any product of many random matrices, we
expect that if N and r are fixed, then at sufficiently late
times one of the singular values dominates the others and
Sn decays exponentially in time. But if sn(r) is positive,
this exponential decay does not set in until a time τ(r, N )
that is exponentially large in N . We may define

a(r) = lim
N→∞

ln τ(r, N )
N

. (7)

Close to the transition, at r � rc where sn(r) is small,

a(r) ∼ sn(r) (8)

(up to an order-1 constant of proportionality). On times t
satisfying ln t ln τ , the entanglement deviates logarith-
mically from the “plateau” value dictated by Eq. (6). For
example in one regime,

Sn(r, N , t) � sn(r)N − ln t. (9)

This formula has also been obtained in various limits in
Refs. [12,27]: in particular Li and Fisher in Ref. [27] give a
discussion very similar to that in Sec. I, in terms of domain
walls in an effective quasi-1D model. In this interpretation
ln t is the translational entropy of a domain wall. More gen-
erally, randomness and other effects can modify the nature
of the subleading term above slightly, depending on the
time regime.

In contrast to the above, the information transmitted per
spin, limN→∞ Sn(r, N , t)/N , decays exponentially with t in
the disentangled phase.

We now give an overview of our approaches to critical
properties of these circuits and related models, considering
each approach in turn (summarized in Fig. 2). The reader
may obtain the key points of each approach from the corre-
sponding Overview section. We also highlight some points
that are not yet resolved, and places where our arguments
rely on conjectures that could be tested further.

C. Min-cut toy model

Before attempting an exact treatment of the true quan-
tum transition in the spin-1/2 circuit, we consider a limit
(we sometimes refer to this as the “classical” limit) in

which the entanglement transition becomes a simple geo-
metric problem involving a random graph. This graph is
defined such that its edges represent the time evolution of
each spin, which can be severed by measurement, and its
nodes represent interactions (applied gates) between spins.
The analog of the operator entanglement entropy is the cost
of a “minimal cut” that disconnects the initial-time and
final-time nodes: see Sec. III for a detailed definition.

Determining the scaling of this min-cut cost is a toy
problem that provides intuition for the generic “quantum”
problem. The minimal cut becomes an exact description
of the operator entanglement only in special limits, as
described in Sec. III (specifically, for projective measure-
ments in the case where the local Hilbert space dimension
q goes to infinity, and for a generic local Hilbert space
dimension if we consider the somewhat unphysical zeroth
Rényi entropy, S0). The “classical” problem has its transi-
tion at a measurement rate rcl

c that is, for spin 1/2, strictly
larger than the critical measurement rate rc for the true
quantum transition, as diagnosed, for example, by all the
Sn with n ≥ 1.

We first identify the critical point rcl
c associated with per-

colation on the graph, which illustrates the importance of
local tree structure in all-to-all circuits. We then present
an effective continuum field theory for percolation on
this graph, which gives the relevant scaling forms near
rcl

c . We demonstrate this critical scaling using extensive
numerical simulations for percolation observables and cor-
relation functions. This demonstration is possible despite
significant finite-time corrections, which arise because the
critical timescale scales as N 1/5 and is modest even for
simulations with very large N .

We demonstrate the plateau in the cost of the mini-
mal cut that was described above, S0 ∼ s0(r)N over a
long timescale. Close to criticality at r � rcl

c we find the
entanglement density (min-cut tension)

s0(r) ∼
(
rcl

c − r
)5/2

, (10)

which is an appropriate limit of a general scaling
form S0 = H(t/N 1/5, δrN 2/5), and the corresponding long
timescale

τ ∼ exp[a(r)× N ], a(r) ∼ (rcl
c − r)5/2. (11)

The scaling we identify applies not only for the all-to-all
problem, but also for spatially local circuits with spatial
dimension d ≥ 5, as follows from a standard crossover
scaling argument.

The all-to-all percolation model has also been analyzed
independently in Ref. [57], using a different method in
which rate equations for the number of percolation clusters
of a given size are solved. This analysis also implies that
the scaling variables are t/N 1/5 and δrN 2/5, in agreement
with what we find.
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D. Tree tensor networks: exact results

When the system size N is large, the structure of the
quantum circuit in the vicinity of a given unitary is treelike
(the smallest loops involve a parametrically large number
of unitaries). This means that it is trivial to locate the clas-
sical critical point mentioned above. But in some cases
(forced measurements) it also allows exact results for the
quantum problem. This motivates us to study entanglement
transitions on “quantum trees,” i.e., tree tensor networks, in
Sec. IV.

While our approach could be generalized, we focus on
trees with bond dimension 2, where each node is a random
tensor whose probability distribution is invariant under
U(2) rotations on its legs. This includes trees that appear
spontaneously in the spin-1/2 FMPT circuit for unitaries
drawn from the Haar measure, for example.

Formally we can think of an (upside-down) tree like that
shown in Fig. 2 as a tensor-network wave function for a
single spin at the apex (root) and many spins (leaves) at the
base. Our starting point is to characterize the entanglement
between apex and base, which for a bond dimension 2 tree
is characterized by a single number, Z. For an asymptot-
ically large tree, Z has a critical vanishing at a particular
measurement rate rc. (In more general trees, r can be
thought of as a parameter in the node tensors’ distribution.)

We write a random recursion relation for Z as a function
of the generation number k of the tree. This recursion rela-
tion allows us to derive the location of the critical point rc
analytically for the case with Haar-random unitaries (we
also study a slightly broader class of distributions):

rc = 212+ 75π
362+ 75π

. (12)

This critical point rc is detected by any Rényi entropy Sn
with n > 0; S0 instead detects the classical transition, at the
strictly larger value rcl

c , discussed in the previous section.
This is the difference between the existence of a perco-
lating path connecting the root of the tree to infinity (for
r < rcl

c ) and the ability of the tree to broadcast a nonzero
amount of quantum information from the root of the tree
to infinity, rather than an amount that decays exponentially
with the distance from the root.

Assuming a plausible conjecture, Eq. (12) is also the
value of rc for the FMPT in the all-to-all Haar circuit,
and yields a bound on the critical scaling of the entan-
glement density s2(r) [Eq. (6)]. While the treatment of
the tree may hold lessons for the MPT in addition to the
FMPT, we do not discuss the MPT from this perspective:
the measurement correlations encoded in Eq. (1) hamper
our approach.

We also obtain the critical scaling of Z for r � rc. Since
the full nonlinear recursion relation for Z is complicated,
this requires us to make a conjecture, which is that the
universal features of the scaling are faithfully retained

in a simplified nonlinear recursion relation. We can then
write a continuum description that describes a Fisher-
Kolmogorov-Petrovsky-Piskunov- (FKPP) like traveling
wave [58]. This is a standard description for the partition
function of a directed polymer on a tree [58], with the
addition of a diffusion constant that varies with the (fic-
titious) spatial coordinate, reflecting the nonlinearity of the
recursion. For the parameters of the trees we treat, there
is a surprisingly rapid scaling close to the critical point:
the entanglement between apex and base of an infinite tree
scales as (Stree

2 � 2Z)

Stree
2 ∼ exp

(
− const√

rc − r

)
. (13)

We also address the scaling of Sn as a function of tree size
exactly at rc.

Using a nonrigorous argument, we extend these formu-
las to give the entanglement of a subset of the spins, in a
tree tensor-network wave function for a spin chain (whose
spins are the leaves of the tree). These results are not
relevant to the all-to-all circuit, but are interesting in the
context of tree tensor-network states, which are toy mod-
els for some features of scale invariance in 1+ 1D, and are
also useful numerical tools [59–68]. We obtain a “modi-
fied minimal cut” formula for the tree, in which the cost
of cutting a bond in the tree is loosely speaking weighted
by appropriate factors of the quantity Z, which is paramet-
rically small close to rc. This gives a quantitative picture
of how the entanglement of � consecutive spins in a tree
tensor-network state goes from the well-known logarith-
mic scaling, S� ∼ c(r) ln �, suggested by its hierarchical
structure [67–69], to an area law state, S� = O(�0). We
find that c(r) vanishes exponentially as r→ rc and that the
state is area law even at rc.

Recently, Ref. [68] studied the entanglement transition
in a quantum tree state, with bond dimension 3, using a
different approach. The authors conjectured that the scaling
was the same as in a statistical mechanics model that shares
some of the features of a replica formulation derived from
the tree (the exact replica formulation was not tractable).
Surprisingly, the findings in Ref. [68] are quite different
from those we obtain (assuming the conjecture mentioned
in the previous paragraph) in the trees studied here. For
example, Ref. [68] finds that the coefficient c in S ∼ c ln �
is a power law in the control variable close to the transition,
and that entanglement is super-area-law at rc. The reason
for the different results in these two models remains to be
understood.

Our conjectured continuum description for scaling in the
tree has a parameter � that describes the degree of disor-
der in the tensor network, and which determines the critical
exponents. For the trees we study, whose node tensors have
a distribution with a U(2) invariance property on the legs,
this parameter is fixed to � = 1/4 at rc. This corresponds
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to a “strong disorder” regime [58]. We raise the question of
whether general distributions of tensors allow us to explore
the phase transition at other values of �. If so, it is possi-
ble to obtain a range of universality classes for the tree
transition, analogous to a renormalization group fixed line.
However, we do not determine whether this is possible.

E. Direct simulations of quantum circuits

We perform direct simulations of the all-to-all measure-
ment circuit and forced-measurement circuit, and interpret
the results in the light of the tree calculation and the replica
approach described below. These simulations are computa-
tionally demanding: we are limited to system sizes N ≤ 20
for quantities involving states and to smaller sizes for
the operator entanglement. Determining rc accurately (the
value of which is expected to differ for measurements and
forced measurements) is not possible, but we are able to
confirm many of the key features of the entangled phase in
Sec. II B.

We give evidence for the plateau, Eq. (6), in the operator
entanglement, with a nonzero information transmission per
spin s(r) that is asymptotically time independent, and for
a positive exponential growth coefficient a(r) > 0 for the
characteristic timescale within the entangled phase.

It is convenient to define this timescale τ via the late-
time convergence of two distinct, initially orthogonal,
states |ψ1(t)〉 and |ψ2(t)〉 that are postselected to undergo
the same sequence of measurement outcomes, so that they
are evolved with the same Vm. These states remain approx-
imately orthogonal for a long time in the entangled phase:
a kind of effective unitarity of the nonlinear, nonunitary
time evolution Eq. (3) for a given m. (This orthogonality
is related to the error-correction property of the dynamics
[11,12].) The two states collapse at late times. We show
that a(r) is positive at small r and vanishes at large r.

For forced measurements our expectation is that rc is
given by the result of the tree calculation. Numerically, it in
fact becomes unmeasurably small at a significantly smaller
value of r. Our interpretation of this is that, because of
exponential scaling in Eq. (13), the quantities s(r) and a(r)
vanish extremely fast as r→ rc. A more stringent test of
the identity of the two transition points would be valuable.

We have also examined the observables discussed here
in 1+ 1D circuits, motivated by the fact that, since they do
not require us to introduce a spatial bipartition of the sys-
tem, they avoid introducing a length scale that is smaller
than the system size. We will report on these findings
elsewhere.

F. Replicas and field theories

A key question is whether useful continuum field theo-
ries can be written for the MPT and FMPT, and also for
entanglement transitions in (reasonably generic [70]) ran-
dom tensor networks. This question has not been resolved,

despite progress on mapping the quantum problems to
effective “classical” lattice models [13,14,34–36,42,43]. A
basic issue is the need to handle disorder. The most famil-
iar approach to this is to use the replica trick [13,14,34,36].
(In this section we use N to denote the number of replicas:
this should not be confused with the number of physical
spins in the previous sections.) However the complicated
N dependence of the interactions makes it unclear a priori
how to coarse grain these effective lattice models.

In Sec. VI we start by reviewing the approach of map-
ping circuits and tensor networks to effective lattice models
for permutations. We discuss coarse graining of such mod-
els in a heuristic way. We then suggest an alternative way
of thinking about effective statistical mechanics models
for circuits (motivated by a physical picture for the emer-
gence of permutations, in terms of phase cancellation in
sums over Feynman histories [34,43]). This picture con-
nects entanglement transitions to approaches familiar from
disordered magnetism, the random-field Ising model, spin
glasses, etc. [71].

With this motivation, we construct the simplest
Lagrangians that capture the global symmetry associated
with the replica formulation [34,36,43], which we denote

GN ≡ (SN × SN )� Z2, (14)

and which pass some basic consistency tests.
The limiting number of replicas N is distinct for the

case of (i) the MPT and (ii) both the FMPT and the
RTN [13,14,36]. For the FMPT and RTN we need to take
N → 0, as in standard quenched disorder problems. For
the MPT, realizations are weighted by the additional Born-
rule factor, which increases the number of replicas: we
need to take N → 1 [13,14]. Previously, properties in the
vicinity of a fine-tuned point have been used to motivate
the suggestion that all of these problems may have sim-
ilar universal properties, despite the differing numbers of
replicas [14]. However, we find that the simplest field the-
ory candidates (which may of course be too simple) are
strikingly different in the two different cases.

The Lagrangians we propose have the schematic forms

LX =
∑

ab

[
(∂Xab)

2 + μX 2
ab + X 3

ab

]
,

LY =
∑

ab

[
(∂Yab)

2 + νYab + Y3
ab

]+
∑

abcd

YabFab,cdYcd.

(15)

F is the tensor Fab,cd = δbd + δac. In these equations we
suppress all coupling constants except the crucial one that
drives the transition, denoted μ or ν. Both space and time
derivatives are grouped together in the derivative term: in
the case of the circuit there will in general be a nonuniver-
sal speed v appearing, so that the derivative terms have the
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form (∂tX )2 + v2(∇X )2. The plus sign means that there is
an emergent Euclidean, rather than Lorentzian, space-time
symmetry [6,9,15] (see endnote [72]).

In the Lagrangian LX , the field Xab is a real N × N
matrix satisfying

∑
a Xab = 0 and

∑
b Xab = 0. It may be

thought of (modulo a constant shift) as a coarse-grained
permutation matrix. This Lagrangian is appropriate for the
replica limit N → 1. It has upper critical dimension D = 6
(this is the space-time dimension in the case of the cir-
cuit). This is a candidate Lagrangian for describing the
MPT.

At first we might assume that the same Lagrangian LX
for the measurement transition could be continued to the
distinct limit N → 0 in order to describe the random tensor
network and the forced-measurement transition. We argue
in Sec. VI that this is not the case. Instead, the simplest
candidate for the FMPT and RTN is the Lagrangian LY.
Here, the field Y is a real N × N matrix, with N → 0, that
does not satisfy any constraints on its row and column
sums. The upper critical dimension for this theory is the
unexpectedly large value D = 10. See Sec. VI for further
discussion.

We caution that these theories are conjectures based on
symmetry considerations and certain limited consistency
checks. Further investigation is required to determine
whether they are in fact sufficient to describe the prob-
lems of interest. It is possible that more elaborate con-
tinuum descriptions are required, either for a particular
microscopic model or in general.

Indeed, the trees described in Sec. II D, which have
exponential order parameter scaling close to the critical
point, appear to be one case that is not captured by LY.
(Contrary to the naive guess that the high-dimensional
limit of the field theory and the tree would show similar
“mean-field” critical scaling.) We defer an examination of
the reason for this to a future work.

In Sec. VI we also present some results that are indepen-
dent of the speculative field theories above. In particular,
we use effective domain wall pictures to obtain the scaling
within the phases (mentioned above in Sec. II B).

We also briefly discuss the use of Ising toy models for
the properties of the second Rényi entropy in measurement
dynamics, pointing out that the formalisms of Ref. [34]
or Ref. [43] allow these to be justified in certain strongly
entangled regimes, rather than being regarded simply as
toy models as in previous work. However, quenched disor-
der must be taken into account in the resulting Ising model.
Additionally, the Ising picture breaks down close to the
critical point (or in the disentangling phase) and also at
long times.

Finally we discuss variants of the MPT, FMPT, and RTN
phase transitions. We point out that quite different scaling
obtains for models of free fermions subjected to measure-
ments, as a result of continuous rather than discrete replica
symmetry.

III. MINIMAL CUT PROBLEM

A natural starting point for understanding the MPT is to
map the quantum circuit to a classical graph on which one
can study a classical “minimal cut” optimization problem
[6]. In this mapping there is a phase transition at the point
where the graph percolates.

We think of this classical min-cut problem as a toy
model for the generic quantum transition. In the circuits
we study, the cost of the minimal cut gives the exact value
of the (somewhat unphysical) zeroth Rényi entropy [73],
S0. It also gives exact results for the other Rényi entropies
in the limit of large local Hilbert space dimension (e.g.,
a large value of each spin), with Haar-random gates. But
in general, the minimal cut is only an upper bound on
the entanglement entropies Sn with n ≥ 1. (There can be
no quantum information propagated from the initial to the
final time if the associated classical graph is disconnected;
in this regime, the “cost” of the minimal cut vanishes.) The
true “quantum” transition in general occurs at a smaller
value of r than the classical transition discussed in this
section (and in general has distinct universal properties).
Despite this, the classical problem conveys some useful
lessons.

Viewed as a graph, the circuit is a bond percolation con-
figuration, as described below. The frequency of projective
measurements determines the fraction of broken bonds in
this percolation configuration. The minimal cut is the min-
imal number of additional bonds that must be severed in
order that two parts of the boundary of the circuit, A and
Ā, no longer have any percolating path between them. This
minimal cut is a unifying heuristic [35,51,67,74–76] for
the entanglement of various objects, depending on how we
choose A and Ā. If these are taken to be two complemen-
tary subsets of the legs of the circuit at the final time, then
the minimal cut gives the entanglement S0 of a subset A
of the spins in the final state quantum state, assuming the
initial state is a product state. Here we are more interested
in a minimal cut separating the top boundary of the cir-
cuit from the bottom. That is, A contains all the circuits
“legs” at the final time, and Ā all those at the initial time.
This “horizontal” minimal cut is a measure of information
transmitted from the initial to the final time, equal to the
operator entanglement S0 for the nonunitary time evolution
operator V (Sec. II).

In the percolating regime, this horizontal minimal cut
must sever a number of bonds that is extensive in the
number of spins N , so that S0 � sN . The coefficient s is
a “surface tension” [51] for the minimal cut, which van-
ishes continuously at the percolation threshold. In 1+ 1D
this transition is conformally invariant. Many of the crit-
ical exponents, such as the correlation length exponent ν,
are standard percolation exponents, while others are less
familiar, since the minimal cut is an additional optimiza-
tion problem built on top of the percolation configuration
[6,77].
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(a) (b) (c)

FIG. 4. (a) Example of a small unitary circuit with N = 6
spins. Black worldlines represent the evolution of a particular
spin, with time proceeding vertically. Colored blocks indicate
two-spin unitaries, and broken lines (marked with red crosses)
indicate single-spin measurements. (b) The equivalent graph,
with nodes representing unitaries [node of a particular color
corresponds to the unitary of the same color in (a)] and edges
representing unbroken segments of worldline. Small red (gray)
circles denote the initial (final) time for a given spin. A possible
minimal cut for this graph is shown by the dashed line: removing
the two indicated edges disconnects the initial and final times. (c)
The classical graph arranged as a tree, with the purple node used
as a seed and generation number k proceeding downward. (This
illustrative circuit forms a tree; in general the structure of a large
circuit is only locally treelike.).

In the circuit without fixed spatial structure, where any
qubit can couple randomly to any other, the location of the
critical point, and the basic critical exponents, can be deter-
mined exactly, as we show in this section. These exponents
also apply to the finite-dimensional minimal cut problem
when the spatial dimensionality d is greater than or equal
to 5 (Sec. III E). Interestingly, there is also reason to spec-
ulate that the exponents apply for some versions of the
quantum measurement transition in high dimensions, even
without the minimal cut approximation (see Sec. VI, where
we discuss Landau theory for the measurement transition
and entanglement transitions).

For all-to-all circuits, the classical percolation problem
is defined as follows. The circuit defines a random graph, in
which the nodes (vertices) correspond to unitaries and the
edges are the sections of spin worldline that are not broken
by measurements. In other words, an edge connects two
nodes whenever (i) the two nodes correspond to successive
unitaries in the time evolution of a particular spin; and (ii)
that spin is not measured during the time in between the
two unitaries. Figure 4(a) shows an example circuit, and
Fig. 4(b) shows the corresponding graph. Each node has at
most four edges connected to it, corresponding to the four
legs of each unitary in Fig. 4(a). The minimal cut in the
figure indicates an operator entanglement S0 = 2 for this
small circuit.

We take the number of spins to be very large, N � 1,
while by definition the degree (connectivity) of each node

is only of order 1. In this situation, standard considerations
[78] imply that the local structure of the graph is treelike
on both sides of the percolation transition. Above the per-
colation transition closed loops do exist, but their length is
of order ln N .

A. Local tree structure and percolation

To relate the classical graph to a tree, imagine starting
at an arbitrarily chosen “seed” unitary in the bulk of the
circuit (far from the initial and final time boundaries) and
tracing out its cluster: finding the nodes connected to the
seed by an edge, then those connected to the seed by a path
of length 2 edges, etc. In this way the cluster containing
the seed may be arranged in a tree, with the seed at the
top and subsequent generations of connected nodes below:
see Fig. 4(c). We denote the generation number by k, with
k = 0 being the seed.

The probability p that a given one of a unitary’s four
possible edges is absent is equal to the probability that
(as we travel along that segment of worldline) the spin
undergoes a measurement before it is involved in another
unitary. This probability is given by

p = r
2− r

. (16)

The small circuit shown in Fig. 4 contains no loops. In gen-
eral the circuit can contain loops. However, a subcluster of
any finite size is guaranteed to be free of loops in the limit
N →∞ (since the probability that two unitaries in genera-
tion k both connect to the same unitary in generation k + 1
is of order 1/N ).

To understand the location of the critical point, note
that the average branching number of the tree (the aver-
age number of descendants of a given node with k > 0) is
3× (1− p). The percolation transition in the graph occurs
when the branching number is 1, i.e., at pc = 2/3 (as also
noted in Ref. [12]), or

rc = 4
5

. (17)

(In this section only, rc denotes the classical transition
point, rc = rcl

c .) When r is greater than rc, all trees are finite
even in the limit N , t→∞, where the graph itself is infi-
nite: starting at a seed node, the tree inevitably dies out
after a finite number of generations. Therefore, at r > rc
all unitaries are in finite clusters; this is the nonperco-
lating phase. When r < rc, however, there is a nonzero
probability f∞ that a tree continues forever, or rather until
it includes a number of nodes proportional to N . In the
percolation problem, f∞ is the order parameter—the prob-
ability that the unitary lies in the infinite cluster. The
critical exponent β for this order parameter is 1, which is
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the mean-field value for percolation. A simple recursive
treatment (Appendix A 1) shows that, close to rc,

f∞ � 50
3
(rc − r)β , β = 1. (18)

Note that the window of r in which we can hope to observe
critical scaling, corresponding to 0 < f∞  1, is rather
narrow as a result of the large (nonuniversal) prefactor in
Eq. (18).

B. Effective 1D continuum theory

We now show that near the critical point the basic scal-
ing variables for the percolation and minimal cut problems
are

t
N 1/5 , δrN 2/5, (19)

where δr = r− rc and t is, say, the temporal duration of
the evolution. For example, the characteristic timescale
for a large system at its critical point scales as N 1/5. In
Secs. III C, III D and Appendices A 2–A 4 we show how
these variables appear in scaling forms for the minimal cut
and other observables. The critical exponents in Eq. (19)
have also been obtained in independent work [57], by an
approach that is complementary to the one below (Sec. C).

This problem is similar to one of crossover scaling,
in which a system that is effectively very high dimen-
sional on short timescales crosses over to one that is
one-dimensional on long scales. This analogy can be used
to obtain the above exponents, as we discuss in Sec. III E.
This approach also sheds light on the quantum problem
(Sec. VI). Here, however, we solve the classical problem
directly.

To simplify the discussion, let us consider a percola-
tion problem with the same basic features as the circuit,
but with a simpler connectivity rule inspired by the Erdős-
Rényi random graph [78]. This simplification does not
change the universality class, as we show numerically in
Appendix 3. The random graph we consider has a layered
structure, with one layer for each timestep. This graph may
be contrasted with one studied in Ref. [26], which maps a
measurement transition in a class of “instantaneous quan-
tum polynomial time” circuits to the percolation transition
in an Erdős-Rényi graph without a time dimension.

We discretize the time t in integer steps. At each t we
have N nodes, labeled (i, t) with i = 1, . . . , N . We allow
edges only between sites in adjacent t layers, each edge
being present with probability b′/2N , independently of the
others. This scaling with N ensures that the average degree
of a site, b′, is O(1), as in the circuit. It is easy to see by
thinking about the local tree structure that the phase transi-
tion is at b′c = 1. As in the circuit, connectivity is local in
time, but there is no notion of spatial structure with a layer
at a fixed time.

Classical percolation can be mapped to the Q-state Potts
model in the limit Q→ 1 [79–82]. For our problem, the
fact that each site couples to all the sites on the adjacent
layers means that the Potts partition function simplifies
after a Hubbard-Stratonovich transformation with a field
�(t) that depends only on time. This transformation is
shown in detail in Appendix A 2. The field�may be taken
to be a Q× Q traceless diagonal matrix, on which Potts
symmetry acts by permuting the diagonal components.

It is possible to take the continuum limit in a controlled
way, to give an effective one-dimensional field theory.
Close to the critical point, such that b′ − 1 = δb′  1, the
partition function for this field theory is

Z =
∫

D� exp
(
−

∫
dtL

)
, (20)

with

L = 1
4

tr(∂t�)
2 − δb

′

2
tr�2 − 1

6
√

N
tr�3. (21)

Modulo the values of the order-1 constants, we expect the
same field theory to apply to the percolation model arising
from the circuit.

The factor of 1/
√

N in Eq. (21) allows a long timescale
and nontrivial scaling forms to emerge at the critical point
δb′ = 0, despite the fact that the effective field theory is
one-dimensional. One-dimensionality implies that for any
fixed N , correlations decay exponentially at sufficiently
large t, but the timescale diverges with N .

The critical exponents for the minimal cut problem in
the all-to-all circuit follow from the observation that the
change of variables

t̃ = t
N 1/5 , u = δrN 2/5, �̃ = �

N 1/10 , (22)

eliminates N from the action. Scaling forms for corre-
lation functions follow from this fact together with the
corresponding scailings for operators. We discuss some
examples in the following subsection and in Appendix A 4.

We may also obtain these exponents from a crossover
scaling argument if we assume that they are the same as
those in a system that does have spatial structure, but with
a very high spatial dimensionality d. This crossover is
described in Sec. III E.

In fact, the exponents in Eq. (19) apply for any d > 5
(in an appropriate regime of timescales) with logarith-
mic corrections in d = 5. This is because d = 5 gives a
total space-time dimension of 6, which is the upper crit-
ical dimension for percolation. This fact allows an even
simpler mnemonic for the above exponents. Suppose for
a moment that we are considering a graph with a regu-
lar lattice in spatial dimension d = 5, with N = Ld = L5,
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where L is the system size. d = 5 is the lowest dimension
in which mean-field exponents apply (up to logarithms).
In this picture, the first scaling variable above is simply
t/L, corresponding to the dynamical exponent z = 1 in
the five-dimensional theory, and the second scaling vari-
able is u = δrL1/ν , with the mean-field correlation length
exponent ν = 1/2. In d > 5 we must also consider the
dangerous irrelevance of the interaction term in the field
theory [83] (which means that the relevant timescale is no
longer t/L), but this term can be treated using a standard
coarse-graining argument (Sec. III E).

C. The percolation probability

Before describing the minimal cut itself (Sec. III D),
we first consider an observable that is simpler to study
both analytically and numerically—namely, the probabil-
ity Pperc of percolation between initial and final times in the
classical graph. The value of 1− Pperc is equivalent to the
probability that the operator entanglement is exactly zero,
since nonpercolation of the classical graph implies that the
initial and final times are causally disconnected.

Pperc has scaling dimension zero, i.e., it has no power-
law prefactor in N , so it is useful for numerical tests of the
scaling defined by Eq. (19). In Appendix A 4 we present
numerical results for two observables with nontrivial scal-
ing dimension: namely, the probability of two nodes on
either the same or opposite time boundaries being con-
nected to the same cluster. We show that these observables
are also described by the scaling variables in Eq. (19).

In the Potts language, Pperc is expressed in terms of the
free-energy cost of twisted boundary conditions [84]. (In
the 1D field theory this free energy involves boundary
magnetic fields that are parametrically large in N ; this is
discussed in Appendix A 2.) We obtain the scaling form:

Pperc = F
(

t
N 1/5 , N 2/5δr

)
. (23)

(Here t denotes the full temporal duration of the dynamics.)
First consider the critical point r = rc, for which

Pperc = Fcrit

(
t

N 1/5

)
. (24)

In principle we should obtain a scaling collapse simply
by plotting Pperc as a function of the scaling argument.
Practically speaking, however, the characteristic timescale
N 1/5 is modest for the values of N we can access numeri-
cally, and it appears to be necessary to include a subleading
correction. This correction is of a type that is generically
present for nonperiodic boundary conditions, and corre-
sponds to replacing the scaling variable with (t− c0)/N 1/5,
for a nonuniversal O(1) constant c0.

Figure 5 (inset) shows raw data for the percolation prob-
ability Pperc of the classical graph (for the all-to-all circuit)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
(t + c0)N−1/5

0.0

0.2

0.4

0.6

0.8

1.0

P
pe

rc N = 100
N = 200
N = 400
N = 800
N = 1600
N = 3200
N = 6400
N = 12 800

10 20
t

0.00

0.25

0.50

0.75

1.00

P
pe

rc

FIG. 5. The probability of percolation, Pperc, as a function of
time for the classical circuit with the critical measurement rate
r = rc = 4/5. Different curves correspond to different system
sizes N . The inset shows the raw data. In the main panel the time
is rescaled by N 1/5 and a shift c0 is introduced, with c0 ≈ 1.3. All
data is averaged over 40 000 realizations.

as a function of time and N . As can be seen in the main
panel, this data collapses onto a single curve when Pperc is
plotted against (t+ c0)/N 1/5, where c0 ≈ 1.3.

At any fixed values of r and N , the probability Pperc
decays exponentially with time t at large enough values
of t. One can extract the associated decay time τ(r, N ),
which according to Eq. (23) has the scaling form

τ(r, N ) = N 1/5W
(
N 2/5δr

)
. (25)

This scaling is confirmed in Fig. 6. Figure 6 comprises a
check of off-critical scaling close to rc as well as the scaling
at rc that is shown in Fig. 5.

The decay time τ(r, N ) of the percolation probability
constitutes one way of defining a characteristic timescale
over which information is able to propagate between the
initial and final times. A key feature of the classical
graph, which carries over to the quantum case, is that the
timescale τ grows very rapidly with N within the entan-
gling phase. At any fixed r < rc, we can argue that as
N →∞ the timescale τ grows as

τr<rc ∼ exp[a(r)× N ], (26)

neglecting power-law prefactors. In the present classical
problem, this exponential growth can be understood in
terms of rare events that disconnect the cluster. Close to
the transition we must have

a(r) ∼ (δr)5/2 (27)

in order to match the scaling form [85]. We expect that
Pperc is close to 1 for t τ . This exponentially long
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timescale can also be seen directly from the field theory
in Eq. (21), in terms of “instantons” in the field theory
(domain walls in time); see Appendix A 2.

As mentioned in the previous subsection, one can model
the minimal cut problem using the simpler setup of a
sequence of layered Erdős-Rényi random graphs. Within
this model one can calculate the percolation probability
Pperc and characteristic decay time τ . In Appendix 3 we
show that this layered Erdős-Rényi model gives the same
scaling behavior as in Figs. 5 and 6.

Percolation two-point functions give further information
on the connectivity of the circuit. These are analyzed in
Appendix A 4.

D. Scaling for the minimal cut

Because of the lack of spatial structure in the all-to-all
model, it is natural to focus on the transmission of informa-
tion between the initial and final times. One measure of this
transmission is the operator entanglement of the linear, but
nonunitary, operator V that defines the time evolution for a
particular sequence of measurement outcomes (Sec. II).

In the minimal cut picture, the operator entanglement
between initial and final times is the cost of the minimal
cut through the circuit that separates the initial and final
times [as illustrated in Fig. 4(b)]. We refer to this cost as
S0 (the Hartley entropy), although in some cases (including
the limit of infinite local Hilbert space dimension, men-
tioned above) it is equal to the other Rényi entropies as
well.

The behavior of S0 is most interesting within the entan-
gled phase, so let us consider some fixed r < rc. As illus-
trated in the previous subsection, in this phase there is an
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FIG. 6. The characteristic decay time τ for the percolation
probability. The inset shows τ as a function of the measurement
rate r for different values of the system size N . The main figure
shows this same data plotted as a function of the scaling variables
in Eq. (19).
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FIG. 7. The cost of the minimal cut, S0, divided by the sys-
tem size N , extrapolated to the limit of N →∞. The main figure
shows S0/N as a function of r, while the inset shows S0/N as a
function of rc − r in double-logarithmic scale. The dashed red
line shows the dependence S0/N ∝ (rc − r)5/2. Details of the
extrapolation procedure are discussed in the text. Error bars are
smaller than the symbol size.

exponentially large (in N ) timescale over which the per-
colation probability is close to 1. Correspondingly, there is
a parametrically large time range, corresponding to [86]
1 ln t N , over which S0/N is approximately con-
stant. The crudest picture for the subleading corrections
gives (see endnote [87])

S0/N = s−O
(√

N−1 ln t
)

. (28)

We refer to the range of times where subleading terms are
negligible as the “plateau” in the entanglement. Over this
large time window, the horizontal minimal cut has a well-
defined cost per spin, s. This cost per spin s is the infinite-
dimensional version of the line tension for the minimal cut
in the 1+ 1D case or the surface tension in the 2+ 1D case
[6]. These quantities all vanish at the critical point. In the
plateau regime, the information per spin transmitted by the
circuit is nonzero, up to an exponentially large time.

The inset of Fig. 7 shows this cost per spin in the
entangled phase, as measured by a numerical simulation
using the Ford-Fulkerson method [88]. The details of
the extrapolation to large N are described below and in
Appendix A 5.

Let us relate this minimal cut to the scaling theory close
to the critical point. We expect the scaling form

S0 = H
(

t
N 1/5 , N 2/5δr

)
. (29)

(see Sec. III B). If we assume that within the entangled
phase there is a time regime during which S0 is extensive
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in N and independent of time (i.e., independent of the first
scaling variable above), then we obtain in this regime

S0 = s(r)N , (30)

with the entropy per spin s(r) scaling as

s(r) ∼ (rc − r)5/2 (r � rc). (31)

The main panel of Fig. 7 shows s(r) close to the critical
point on a double logarithmic scale. Though we cannot
extract a clear power law from the data, it seems roughly
consistent with the prediction, Eq. (31).

In order to numerically obtain the value of s(r) for the
plots above, we measure S0 as a function of the time t
and the system size N from simulations. For a fixed t, we
find that S0(t, N )/N has a linear dependence on 1/

√
N at

large N [in line with the simple picture in Eq. (28)]. This
dependence allows us to estimate a value of S0(r)/N in the
limit of N →∞ by extrapolating the linear relationship to
1/
√

N = 0. Further details of this extrapolation procedure
are presented in Appendix A 5.

E. Finite dimensions with d ≥ 5

The scaling exponents identified in Secs. III B and III C
also apply to the classical problem in a system with a
regular spatial lattice (and unitaries applied only between
nearest neighbors) in a large enough number of spatial
dimensions d, as we now discuss. The total space-time
dimension, d + 1, should be greater than 6, which is the
upper critical dimension for percolation (in d = 5 we have
the same exponents with additional logarithms).

We start with the standard Potts representation of per-
colation [79–82] in d + 1 dimensions. Suppressing all
O(1) constants, as well as a nonuniversal velocity scale,
a continuum action is

S =
∫

dtddx tr[(∂tφ)
2 + (∇φ)2 + δrφ2 + φ3]. (32)

Here φ is a traceless diagonal Q× Q matrix, as in
Sec. III B. Our system is of extent L in each of the spatial
dimensions, with

N = Ld, (33)

and extent t� L in the time direction. We take the UV
cutoff (“lattice spacing”) to be 1.

We coarse grain the system by a factor of order L, so
that the spatial system size becomes comparable with the
UV cutoff, and we have an effective 1D theory as far as
correlations on scales� L are concerned. Since the cubic
coupling is irrelevant, with renormalization group (RG)

eigenvalue y3 = −(d − 5)/2, it decreases during the flow,
leading to (again we suppress order-1 constants):

Seff =
∫

ds tr
[
(∂sφ

′)2 + δrL2φ′2 + L−(d−5)/2φ′3
]

. (34)

Here s, the coarse-grained time coordinate, is equal to t/L,
and φ′ ∼ L(d−1)/2φ from the scaling dimension of the field
in d + 1 dimensions. If we now write the action in terms
of t and � ≡ L1/2φ′, we recover the form of the action in
Eq. (21) with N = Ld.

Because of the dangerous irrelevance of φ3 [83], a
finite-dimensional model with d > 5 has two distinct large
timescales,

L = N 1/d and Ld/5 = N 1/5. (35)

The shorter timescale (which is compressed to order 1 in
the all-to-all model) marks the crossover between (d + 1)-
dimensional and one-dimensional scaling for correlation
functions. The longer timescale is the one of more inter-
est to us, and indicates the time at which the percolation
probability starts to vary away from unity. This longer
time becomes the characteristic critical timescale in the
all-to-all model.

The scaling forms discussed above carry over to the
present case (5 < d <∞) with N → Ld.

F. Lessons for the full quantum problem

So far we have discussed the (classical) minimal cut
problem in all-to-all and high-dimensional circuits. A pri-
ori, one can expect the universal properties of the generic
measurement transition to be different from those for the
minimal cut transition: the minimal cut is only an exact
representation of the entanglement in certain special cases
(as described at the beginning of Sec. III). Nevertheless,
as in 1+ 1D, the solution of the minimal cut problem
provides more general lessons.

First, there are qualitative features that carry over to the
generic problem. The most basic feature is the existence of
a transition between a phase in which the operator entan-
glement S(t)—the information propagated from the initial
to the final time—decays quickly with time, and a phase
in which an extensive value of entanglement, S(t) ∼ sN ,
persists over a time that grows exponentially with the num-
ber N of spins. In Secs. V and I we demonstrate that
these features carry over to the operator entanglement (as
measured by the von Neumann or Rényi entropies Sn≥1),
and related observables, in spin-1/2 circuits with measure-
ments or forced measurements. Another generic feature is
that close to the critical point, the scaling of the exponen-
tial timescale is tied to that of the plateau entanglement:
ln τ(r) ∼ Ns(r) (Sec. I).

The minimal cut model also illustrates a possible rela-
tionship between the all-to-all case and the case of a
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high-dimensional regular lattice. In the classical problem,
the exponents of the all-to-all model are those of finite but
high dimensions, once we take account of the dangerous
irrelevance of interactions in high dimensions, which leads
to a critical timescale Lconst that is parametrically larger
than the linear system size L (a timescale τ ∼ L is what
one would naively expect from z = 1 scaling). In Sec. VI
we discuss similar crossovers in field theories for generic
quantum models. However, we caution that our results in
Sec. IV suggest more complex possibilities in the all-to-all
systems.

Finally, we saw that in the classical problem, the perco-
lation order parameter and the value of rc could be obtained
exactly by studying a simpler problem on a tree. In the next
section, we propose that exact results for the full quantum
version of the FMPT can also be obtained by studying
trees: not only their classical connectivity, as here, but
their “quantum” connectivity as defined by entanglement
measures for tree tensor networks.

IV. ENTANGLEMENT TRANSITIONS IN
QUANTUM TREES

A. Motivation for studying quantum trees

Locally, the all-to-all circuit has the structure of a tree
(Sec. A). Viewing the circuit as a graph whose nodes are
unitaries and whose edges are segments of spin worldline,
the size of the smallest loops diverges when N →∞. This
is true for all values of the measurement or projection rate,
including deep in the entangled phase. We propose that this
allows some exact results for the phase transition in the cir-
cuit, in certain cases (the FMPT), by studying the entangle-
ment transition in a tree tensor network. As a by-product,
we give exact results for general tree tensor networks.

Figure 8(left) is a schematic of the first k = 3 genera-
tions of the tree that is connected to one end of a link
somewhere in the bulk of the circuit. For later conve-
nience we use a slightly different convention for drawing
the tree to that in Sec. A. Previously we “pruned off” all the
branches below a projection operator, while in Fig. 8(left)
we leave them in place, so that the number of descen-
dants after k generations (the number of links at the base
of the tree) is always 3k. Each four-coordinated node in
this figure, such as the one denoted t, includes a unitary,
together possibly with projectors on its legs—we describe
this below.

This tree is a tensor network. It has one free tensor index
at the top and 3k free indices at the bottom, and tensors
t in the interior (built from a unitary and projectors). A
basic way to characterize such a tensor network is via the
amount of quantum information shared between apex and
base. We can quantify this by the entanglement entropy
between apex and base (Sec. C below). This language sug-
gests analogous, but distinct, criteria for the classical and
quantum transitions.

=
∑2

a=1 λa

a

a

t

FIG. 8. A tree tensor network with k = 3 generations of nodes,
and its singular value decomposition between apex and base.
The individual node tensors are denoted by t [see, for example,
Eq. (36)].

The classical percolation transition at rcl
c (Sec. III above)

has a simple interpretation in terms of the tree tensor net-
work. For an asymptotically large tree, rcl

c is the projection
rate beyond which the apex and the base are guaran-
teed to be strictly disconnected by projectors. That is,
once we go beyond the classical transition, the quantum
information shared between apex and base vanishes for
simple geometric reasons [89].

This suggests that we can also diagnose the quantum
transition in the circuit, occurring at a value rqm

c (we see
below that rqm

c < rcl
c ) using the properties of the tree. We

show that the tree has a transition at a critical value rc,
which we conjecture is also the location of the critical
point for the circuit (rc = rqm

c ). For r > rc the amount of
information shared between apex and base decreases expo-
nentially with the number of tree generations, even though
the apex and the base may not be disconnected in the
trivial geometrical sense. For r < rc, the von Neumann
entanglement entropy between apex and base instead
remains positive: limk→∞〈S1〉 > 0.

Motivated by this connection between the circuit and
trees, in this section we derive some universal results for
entanglement transitions of tree tensor networks. We argue
that the tree structure allows us to find the exact location
of the critical point for the simplest version of the all-to-all
circuit model exactly. In the language of Sec. II, this is the
FMPT rather than the MPT. We explain in Sec. B imme-
diately below why it is necessary for us to restrict to the
FMPT in this section.

Tree tensor networks are also interesting quite apart
from the connection to the all-to-all circuit [59–68]. They
are instructive toy models for 1D wave functions with a
scale-invariant entanglement structure [66,67], and they
also allow efficient numerical tensor contraction algo-
rithms [59]. Many of the results of the following subsec-
tions apply to more general disordered tree tensor networks
that are unrelated to the circuit (see the discussion in
Sec. I).

We obtain specific universal results for a broad class of
trees that includes those arising in the FMPT circuit. These
trees have bond dimension 2, and the probability distribu-
tion of the local tensors has a simple invariance property.
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We also discuss, speculatively, what happens for trees with
more general disorder distributions. Our conjectured con-
tinuum theory allows, a priori, for the the entanglement
transition to be in distinct universality classes—a phe-
nomenon analogous to a line of fixed points (there is an
overview in Sec. D). Strikingly, for the class of trees that
we study here, the transition is constrained to lie on a spe-
cific point on this line. It remains to be seen whether other
points on the line can be obtained by varying the model.

Heuristically, these different possibilities for the tree
transition can be related to different possibilities for the dis-
entangled phase close to the transition. In the disentangled
phase the entanglement between apex and base is expo-
nentially small in k. But we can distinguish, in princi-
ple, between a “strong disorder” regime where this small
amount of entanglement is (loosely speaking) dominated
by a single path from apex to base, and a “weak disorder
regime” where exponentially many paths through the tree
contribute. For the tree tensor networks we study here, we
show that the former (strong disorder) case applies. The
possibility of these two regimes is due to the existence
of a glass transition in the classical problem of a directed
polymer on a tree [58]. We rely heavily on the methods
developed in Ref. [58] for the directed polymer problem,
which relate a linear recursion relation for the polymer’s
partition function to a traveling wave equation.

B. Structure of tree tensor network

1. Generalities

The trees we consider have branching number three and
bond dimension 2 for each bond (these are not essential
restrictions). The four-index tensor tabcd at a given node has
bond index a = 1, 2 for the upper bond and b, c, d for the
lower bonds. Below we describe the structure of t for the
circuits we consider. We note that they fall within a special
class of tree tensor networks with a simplifying feature, for
which we be able to make strong statements.

Let us first consider trees such as Fig. 8(left) in gen-
eral terms, without assuming that they arise from a circuit
problem.

First, our analytical treatment will assume that the
individual random tensors tabcd for the nodes are statisti-
cally uncorrelated. This is important as it allows a simple
recursive equation for the entanglement between top and
bottom. We also take them to be identically distributed.

Second, for most of this section we assume that the prob-
ability distribution of the local tensors tabcd has a simple
invariance property. Namely, the distribution is invariant
under multiplying an arbitrary U(2)matrix u on any index:
for example under

tabcd → tabcd′ud′d. (36)

This feature simplifies the recursive equation: it means
we can write a recursion for singular values alone, with-
out having to keep track of singular vectors. In fact we
need only a weaker condition: below the invariance prop-
erty will hold for only the lower indices of tabcd, which is
sufficient.

The two assumptions above will be satisfied naturally
for the circuit ensembles we consider, for example those
built from Haar-random two-site gates. They turn out to
lead to surprisingly strong constraints on the structure of
the recursion.

Towards the end of our discussion of trees (Sec. I) we
speculate about what happens when we relax the second
condition.

2. Application to FMPT in circuit

In applying our results on trees to the transition in
a circuit, the first assumption above (on the statistical
independence of the node tensors) restricts us to the FMPT
rather than the MPT.

Recall that for the MPT the measurement outcomes in
the circuit are determined by Born’s rule. That means
they have nontrivial statistics that depend on the random
unitaries, violating the first assumption above. But in the
FMPT the local projection operators are fixed indepen-
dently of the choice of unitaries, not with Born’s rule. This
means all the nodes of the tree are statistically indepen-
dent, allowing a recursive statistical treatment. The nodes
are described explicitly below. For the ensembles of two-
site unitaries we study, it does not in fact matter how the
directions of the local projections are fixed, so long as this
is done independently of the realization of unitaries. For
definiteness, we take all the local projectors to be onto the
spin-up state.

To complete the specification of the circuit model, we
just need to fix the distribution from which each two-
site unitary U is drawn. (As in Sec. III, the rate at which
projection operators is applied is r.)

3. Choice of ensemble of unitaries

The simplest choice is to take each U independently
Haar-random in U(4), i.e., drawn from the circular unitary
ensemble.

Ensemble 1: U ∼ Haar . (37)

For this ensemble we find a “quantum” transition point
rc = 0.749 that is quite close to the classical one, rcl

c = 0.8.
In order to increase the separation between these tran-
sitions, we also consider a second ensemble with more
weakly entangling gates. Unitaries in this second ensem-
ble, referred to below as the “�t ensemble,” are of the
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form

Ensemble 2: U = (V1 ⊗ V2)Ufixed(W1 ⊗W2), (38)

where V1, V2, W1, and W2 are Haar-random one-site uni-
taries (ensuring the invariance property mentioned above),
and Ufixed is a nonrandom, fixed unitary:

Ufixed = exp (−i�tH) . (39)

The parameter �t controls the strength of the unitary, and
consequently the position of the quantum transition (see
Fig. 11). However, for concreteness we mostly refer to the
fixed value �t = 0.3. For H we use [6]

H = 0.3X1X2 + 0.2(X1 + X2)+ 0.4Z1Z2 + 0.5(Z1 + Z2),
(40)

where Xi, Yi, Zi are the Pauli matrices on site i. These
parameter values are not fine tuned, and we do not expect
results to depend qualitatively on the precise values.

The recursive treatment for Zk below applies to a more
general family of distributions for the two-site unitaries
for which the assumptions in Sec. 1 are obeyed. First,
the distribution of U should be invariant under left or
right multiplication by single-site unitaries [90]. Second,
it should have the property of being statistically invariant
under exchange of the two spins acted on by the unitary,
and under transposition of the unitary. (This is less crucial,
but simplifies the recursion [91]).

4. Node tensor in tree

Recall from Sec. III that we can “grow” the tree by start-
ing at some seed location in the circuit and following links
(segments of spin worldline) to form a cluster of unitaries
at greater and greater distance from the seed. In fact, if we
start on a link, we can think of it as a seed for two trees, one
attached to each end of the link. It suffices to consider the
properties of one of these trees separately. Truncating the
tree at k generations gives a tensor network with a single
bond at its apex and 3k bonds at the base (we follow the
convention in Sec. A where all branches are kept, even if
they contain projections).

First consider a tree with no projections, where each
node is a unitary. Now, when we include projections, each
link of the tree has a probability p to contain a projection
[92]. If a projection is present, we choose to incorporate it

into the node below the link. The node tensor is therefore

(41)

or in components (we write the row index of U as a
superscript, and the column index as a subscript; both are
multi-indices, since the unitary acts on two spins):

tabcd = Qa
a′U

a′d
bc . (42)

The matrix Q, shown as a circle in the picture, is either the
identity, or the projector onto up, with probabilities 1− p
and p for each of the options. Recall that, in terms of the
measurement rate [Eq. (16)],

p = r
2− r

. (43)

In the case where the projector is present, we could sim-
ply prune off all the branches below it, but it is simpler to
treat the geometry of the tree as fixed. Note that the distri-
bution of Eq. (42) is invariant under multiplication of U(2)
matrices on any of the lower indices, as required in Sec. 1.

C. Entanglement between apex and base

We characterize the phase that the tree is in by the
amount of quantum information shared between its apex
and its base. Depending on the phase, this can either be
exponentially small in the number k of generations of the
tree, or it can be order 1 even for asymptotically large trees.

We can always think of such a tree tensor network as
a wave function for a single spin at the apex and multi-
ple spins at the base. The information shared between apex
and base is then quantified by the entanglement entropy
between top and base, or more formally, by the singular
value decomposition when we partition the tensor network
between the top and the base: see Fig. 8(right) [93].

Since the bond at the apex has a bond dimension of 2,
there are only two singular values. After normalizing the
tree, their squares sum to one, so we are in fact character-
izing the tree by just a single number. We take this to be
the square of the smaller singular value, and will denote it
by Zk for a tree with k generations of nodes:

Zk = λ2
min. (44)
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The entanglement mentioned above is quantified by the
Rényi entropies,

Sn = 1
1− n

ln[Zn
k + (1− Zk)

n], (45)

which at small Zk are approximately

Sn>1 � n
n− 1

Zk, S1 � Zk

(
ln

1
Zk
+ 1

)
. (46)

In the random tensor network Zk is of course random. Its
distribution can be obtained recursively, using the fact that
a larger tree can be built up by combining subtrees.

D. Overview: classes of quantum tree

Let us summarize our basic conclusions for Zk before
getting into calculations. Depending on the location in the
phase diagram, the random variable Zk may have a broad
distribution, and it will be vital to define its typical value
using the average of ln Zk:

ln Ztyp
k = 〈ln Zk〉�= 0. (47)

We must condition on Zk not being strictly zero in order to
define the typical value [94].

For the quantum circuit with two-site unitaries and pro-
jections, the tree undergoes an entanglement transition at a
critical value rc. The value of rc depends on the ensemble
of unitaries, but a basic point is that it is strictly below the
classical transition point for any ensemble satisfying our
assumptions:

rc < rcl
c . (48)

We compute the value of rc analytically for the Haar
circuit:

rc = 212+ 75π
362+ 75π

. (49)

This critical point at rc � 0.749004 lies not that far from
the classical transition at rcl

c = 0.8. For the �t = 0.3
ensemble the spacing is increased,

rc = 0.621(3). (50)

In the disentangling phase the information shared between
apex and base tends to zero exponentially with the size of
the tree:

Ztyp
k ∼ exp(−|cr|k) for r > rc, (51)

with the “speed” |cr| vanishing linearly as r→ rc.
In the entangling phase Ztyp

k is instead nonzero as
k→∞, so that information is shared between apex and

base even in the limit of an infinitely large tree. This infor-
mation becomes small as we approach the transition from
the entangled side. The scaling is very rapid:

Ztyp
∞ ∼ exp

(
− C√

rc − r

)
for r � rc, (52)

with C a nonuniversal constant. The distribution of Z is
also very broad when rc − r is small. For example 〈Z∞〉 ∼√

Ztyp
∞ , so that the mean is parametrically larger than the

typical.
If we are right at the critical point, the value of Z decays

more slowly with k than in the disentangled phase. A
somewhat heuristic argument in Sec. 4 suggests

ln Ztyp
k ∼ −k1/3. (53)

The results above rely on an exact treatment of the lin-
earized form of the recursion relation for Zk, together with
the conjecture that the effect of nonlinearity is captured
by a simplified, analytically tractable model. Making this
assumption (for which we provide numerical evidence),
the results above hold for the trees derived from any
forced-measurement circuit ensemble with the structure
described in Sec. 3 (recall that we assumed invariance of
the distribution of U under rotations on each leg).

In fact, they apply for the entanglement transition in
any tree tensor network that obeys the two assumptions
described in Sec. 1, in particular the U(2) invariance prop-
erty of the node tensor. In this context r is no longer
interpreted as a measurement rate: instead it is any param-
eter characterizing tabcd that can be used to drive the
entanglement transition. However for the purposes of the
discussion we use the notation appropriate to the forced-
measurement circuit.

An analysis of random tree tensor networks outside the
above class is a task for the future (see also Ref. [68]).
However, our conjectured effective description suggests
the interesting possibility that there may be multiple uni-
versality classes for the tree entanglement transition. The
effective description includes a parameter � > 0, which
controls the scaling of Ztyp

∞ near r = rc. At first glance
� is a nonuniversal parameter that will depend on the
model. But, surprisingly, the U(2) invariance property
fixes � = 1/4 at the entanglement transition. Equation
(52) applies for � < 1 in the effective description, but for
� > 1 there is instead power-law scaling of the “order
parameter” Z close to the transition. For completeness, we
solve the effective model in this � > 1 regime also. We
find a regime with a variable exponent, and a regime where
this exponent is pinned to 1:

Ztyp
∞ ∼ (rc − r)

1
�−1 for 1 < � < 2. (54)

Ztyp
∞ ∼ (rc − r), for � > 2. (55)
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However, at present it is unclear whether these regimes of
the effective model can be accessed by any tensor network,
or whether they exist only in the effective model (Sec. I).

E. Recursion relation for singular values

Let us think of the tree as a quantum state for a spin at the
top and 3k spins at the base: this is just to fix notation for
bras and kets. We may write its Schmidt (singular value)
decomposition:

T =
∑

i=1,2

λi|i〉top|i〉bottom. (56)

The states are Schmidt states in the appropriate Hilbert
spaces (the second ket lives in the 2(3

k)-dimensional
Hilbert space associated with the base). In the problem we
are studying, the overall normalization of the tree is not
important, so we always take the Schmidt singular values
to be normalized: λ2

1 + λ2
2 = 1.

Given three trees Tk, T′k, and T′′k , each of k generations,
we may form a tree Tk+1 of k + 1 generations by attaching
Tk, T′k, and T′′k to the base of the t node shown in Eq. (41).
The statistical invariance of U under single-site rotations
means that we are free to take the Schmidt states |i〉top
[Eq. (56)] for Tk, T′k, and T′′k to be simply the two basis
states (up and down spin states), which we denote |1〉top
and |2〉top. Then

Tk+1 =
∑

a,b,c,d=1,2

tabcdλbλ
′
cλ
′′
d|a〉top|bcd〉bottom. (57)

Here λ, λ′, and λ′′ are singular values for Tk, T′k, and T′′k ,
{|a〉}top are computational basis states, and {|bcd〉bottom} is
a set of eight orthonormal states associated with the base
of the full tree, formed from the Schmidt states of the three
subtrees. Equivalently, in this basis,

(Tk+1)
a
bcd = tabcdλbλ

′
cλ
′′
d . (58)

It is straightforward to compute the normalized singular
values of Tk+1 [95]. Let us denote the smaller singular
value squared of Tk+1 by Zk+1. If t includes the projector,
then trivially

Zk+1 = 0. (59)

We write the other case explicitly for completeness, though
we need only a simple limit of it:

Z2
k+1 + (1− Zk+1)

2

=
∑

Uad
bc(U

a′d
bc )
∗Ua′g

ef (U
ag
ef )
∗λ2

bλ
2
eλ
′2
c λ
′2
f λ
′′2
d λ
′′2
g

(∑ |Uad
bc |2λ2

bλ
′2
c λ
′′2
d

)2 . (60)

We are interested in a transition between a phase where Zk
vanishes as k→∞, and a phase where the typical value

of Zk remains positive in this limit. Even in this phase, if
we are close to the phase transition, this typical value of
Zk is small. Therefore, to understand the critical properties
we can study the recursion relation in the regime where the
minimal singular values are close to 0 for all the trees. We
order the singular values of any tree such that λ2 ≤ λ1, and
define Z = λ2

min = λ2
2 for each tree.

The first step is to examine the linearized recursion
relation. Taking Eqs. (59) and (60) to order Z,

Zk+1 =
{

A1Zk + A2Z ′k + A3Z ′′k with probability 1− p
0 with probability p .

(61)

Here Ai are three positive constants that depend on the
random unitary:

A1 = |U
11
11U21

21 − U11
21U21

11|2(|U11
11|2 + |U21

11|2
)2 ,

A2 = |U
11
11U21

12 − U11
12U21

11|2(|U11
11|2 + |U21

11|2
)2 ,

A3 = |U
11
11U22

11 − U12
11U21

11|2(|U11
11|2 + |U21

11|2
)2 .

(62)

Analogous formulas hold for more general choices of the
node tensor t, see Sec. I.

Let us consider the meaning of this equation. Zk, Z ′k, and
Z ′′k refer to trees of the same size, so they are drawn from
the same probability distribution. The recursion relation
then defines the probability distribution for a variable Zk+1
at the next level in the hierarchy. This defines a sequence of
probability distributions Pk(Z) for increasing k. The initial
condition at the lowest level of the hierarchy is Z0 = 1/2
(for a single bond, the two singular values are equal), i.e.,
P0(Z) = δ(Z − 1/2). (This initial condition is far outside
the linear regime, but close to the transition, Zk becomes
small at large k. The specific choice of the initial condition
in the linear tree is unimportant as long as it is nonzero and
positive.)

The linearized recursion relation, Eq. (61), is crucial. It
is sufficient to obtain the exact location of the entanglement
transition, although we need to add nonlinearity to under-
stand what happens close to this transition in the entangled
phase.

Let us collect here some properties of Ai that will be
useful below. It turns out that the statistical invariance of
U under single-site rotations allows some exact statements,
regardless of the precise choice of distribution for U. We
demonstrate these in Appendix 2. In particular, we need
the following identities, which hold for all i = 1, 2, 3 (so
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TABLE I. Some averages of the Ai that are used in the text.

Quantity Haar �t = 0.3

〈Ai〉 1 1
〈√Ai log Ai〉 0 0
〈√A1〉 64/75 0.981
〈√A2〉 64/75 0.420
〈√A3〉 π/4 0.419

〈√A1(log A1)
2〉 17408

16875 0.227

〈√A2(log A2)
2〉 17408

16875 1.429

〈√A3(log A3)
2〉 π3/4− 2π 1.428

long as U is nontrivially entangling with probability 1):

〈Ai〉=1, 〈A1/2
i ln Ai〉=0. (63)

The first of these is at first sight surprising, since if the
unitary U is the identity [for example, if �t→ 0 for the
distribution in Eqs. (38) and (39)] then A2 and A3 are
exactly equal to zero [96]. However, this is a singular limit
for 〈Ai〉, see below.

In the case where U is a Haar-random U(4) matrix, we
can obtain more general analytic results (Appendix 2):

〈Aλ1〉=〈Aλ2〉 =
12

12+ 8λ− 7λ2 − 2λ3 + λ4 , (64)

〈Aλ3〉 =
πλ(1− λ)

sin(πλ)
. (65)

To determine the location of the phase transition we
need the special cases 〈A1/2

i 〉. These are given in Table I
(Appendix 2) for both Haar and �t = 0.3 ensembles.

The asymptotics of the probability distributions of Ai are
also obtained in Appendix 2. These three variables are cor-
related, but here we discuss only the marginal distribution
of a given one. Let us define

Vi ≡ ln Ai. (66)

For any generic distribution of U, the tails of the Vi
distribution are exponential:

P(Vi)dVi ∼
{

e−2VidVi Vi � 0,
e−|Vi|dVi Vi  0. (67)

If the distribution of unitaries is taken to be weakly
entangling, for example if �t 1 in Eq. (39), then the
right-hand tail of the distribution has an intermediate
part, extending over the range ln�t2  Vi  ln�t−2, that
decays with the smaller exponent−1/2 (Appendix 2). This
slowly decaying tail, cut off at a parametrically large Vi, is
responsible for the failure of the limit�t→ 0 to commute
with the average in Eq. (63) that was mentioned above.
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k
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Z
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p(

k
)

linear
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k

nonlinear

0.2 0.3 0.4 0.5 0.6
p

FIG. 9. Evolution of the typical value of Z with the depth k of
the tree, for the linear recursion (left) and the nonlinear recursion
(right), for various values of p . The evolution is similar in the
two cases for p > pc, but for p < pc, the nonlinearity causes Ztyp

to saturate. The initial value Z0 = 10−6 is used.

F. Linearized recursion relation

The most basic question about the linearized recursion,
Eq. (61), is whether the typical value of Z is exponentially
growing or exponentially shrinking at large k [58]. We may
define an exponential growth speed cp :

ln Ztyp
k ∼ cpk. (68)

In this section we usually use p as the parameter, rather
than the equivalent r, Eq. (43), since p has a more direct
interpretation in terms of the tree.

Define the point pc to separate a regime of exponential
growth, which we see occurs for p < pc, from a regime of
exponential decay at larger p:

cpc = 0 (definition of pc). (69)

We see that pc is precisely the location of the entanglement
phase transition for the tree. When the linear recursion pre-
dicts that Ztyp → 0 at large k, this remains true when higher
powers of Z are included in the recursion. On the other
hand, when the linear recursion predicts that Ztyp →∞ at
large k, then the nonlinear terms in the recursion replace
“∞” with a finite value, in a universal manner that we
discuss in Sec. H.

This is illustrated using simulations for the case of Haar-
random unitaries in Fig. 9. This compares Ztyp

k for the
linear and nonlinear recursion relations. In the linear case,
evolution follows ln Ztyp

k ∝ k at large k, for all p . In the
nonlinear case, this is only true for p > pc. Details of these
simulations are described in Appendix C 1.

The speed cp can be extracted using the method of Ref.
[58], which relates the linear recursion to a traveling wave
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problem. Define the generating function

Gk(x) = 〈exp
(−e−xZk

)〉, (70)

where the average is over Zk. The recursion relation,
Eq. (61), then becomes

Gk+1(x) = p + (1− p)〈Gk(x − V1)

Gk(x − V2)Gk(x − V3)〉, (71)

where the remaining average is only over the Vi = ln Ai
defined in Eq. (66). [The fact that the Vi appear additively
in the arguments of the generating functions here is the
reason why the generating function in Eq. (70) is usually
written with the double exponential.]

It may be helpful to think of Gk(x), defined in Eq. (70),
as a smeared version of the cumulative probability distri-
bution for ln Z. This definition shows that for x � ln Ztyp,
Gk plateaus at the value 1, while for x  ln Ztyp, Gk
plateaus at the probability of Zk being exactly zero [97].
Gk has a “front” at

xfront(k) = ln Ztyp
k + o(k) (72)

that interpolates between these two plateaus. It is useful
to think of x as a fictitious spatial coordinate, and of k as
fictitious time coordinate [58]. Then, at late time, this front
propagates as a traveling wave with speed cp , and obeys
the traveling-wave ansatz:

Gk(x) = G(λ)[x − vp(λ)k]. (73)

The wave speed vp(λ) depends on a parameter λ of the
solution G(λ). This parameter, which must be determined,
is the exponential decay constant of G(λ) at large argument
[58]:

G(λ)(u) ∼ 1− αe−λu. (74)

Substituting this form into Eq. (71) gives an explicit for-
mula for the speed v(λ) of the traveling-wave solution with
a given λ:

vp(λ) = 1
λ

ln
[
(1− p)

(〈Aλ1〉+〈Aλ2〉+〈Aλ3〉
)]

. (75)

We must then determine the correct value of λ, i.e., which
traveling-wave solution the initial condition converges
to. This is done by standard considerations of velocity
selection for traveling waves [58,98].

In outline, there is a privileged minimal speed traveling
wave defined by the parameter value λ = λ∗ where vp(λ)

is minimal:

vmin
p ≡ vp(λ∗), v′p(λ∗) = 0. (76)

Gk will converge to this minimal speed solution if λ∗ is
less than 1 [99], while it will converge to the solution

0.2 0.4 0.6 0.8 1.0 1.2
λ

−0.3
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v p
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p = 0.55
p = 0.599
p = 0.65

0.2 0.4 0.6 0.8
λ

Δt = 0.3

p = 0.4
p = 0.45
p = 0.5

FIG. 10. Velocity vp(λ) vs λ for three values of p (above, at
and below the critical point). Left panel is for Haar evolution and
right is for �t = 0.3.

with λ = 1 if λ∗ > 1. In the latter case the speed is vp(1),
which we refer to as the “annealed” value of the speed (for
reasons described in Sec. G):

vann
p ≡ vp(1). (77)

Therefore, the desired exponential growth rate is given for
any p by

cp =
{
vmin

p if λ∗ < 1,
vann

p if λ∗ > 1. (78)

Recall that λ∗ is determined using Eq. (75), via v′p(λ∗) = 0,
so it depends on p .

The above Eq. (78) can lead to a nonanalyticity in cp as
p is varied. This has a meaning in terms of the statistical
mechanics of the linearized recursion relation [58], which
we review in Sec. G. For now we simply note that, for the
present class of circuits [100] the first line in Eq. (78) is
always the one that applies for p close to pc. This is shown
in Sec. G. Given this, pc is determined by solving

vpc(λ∗) = 0, v′pc
(λ∗) = 0, (79)

for λ∗ and pc.
Figure 10 shows vp(λ), defined in Eq. (75), for the Haar

tree and the �t = 0.3 tree, in the vicinity of their respec-
tive pc values. [Numerically, these are obtained by simple
averages using a single tensor. In the Haar case, Eqs. (64)
and (65) also give the exact form.] cp is given by the mini-
mal value of the curve, cp = vp(λ∗), which passes through
zero at p = pc.

This can be used to determine pc numerically, but in fact
further analytical progress is possible. Using the definition
of vp(λ) in Eq. (75), Eqs. (79) reduce to

3∑

i=1

〈Aλ∗i 〉=
1

1− pc
,

3∑

i=1

〈Aλ∗i ln Ai〉=0. (80)

Remarkably, the second identity in Eq. (63) shows that
the solution is always at λ∗ = 1/2, for any ensemble of
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FIG. 11. Phase diagram of the quantum tree generated by the
unitary gate in Eq. (39), in the space of �t and r.

unitaries satisfying our assumptions. This fact gives an
explicit expression for pc as a simple average for the local
node tensor,

pc = 1− 1
∑3

i=1〈A1/2
i 〉

. (81)

This may be evaluated analytically for the Haar case [Eqs.
(64) and (65)], giving pc = (212+ 75π)/(512+ 75π)
(equivalent to the rc value quoted in Sec. D) and numeri-
cally for the�t ensemble. The location of the critical point
in the �t ensemble is shown for various values of �t in
Fig. 11.

G. Aside: glass transition in linear recursion

The canonical example of linear recursion relations like
Eq. (61) is the problem of the directed polymer on a tree
[58]: see Fig. 12. In the disentangled phase, where the
linear treatment is valid at large k, this gives another inter-
pretation of the singular-value-squared Zk as a sum over
paths through the tensor network. Here we briefly review
this mapping and use it to clarify which of the regimes in
Eq. (78) is relevant. This subsection is not essential to the
subsequent development.

Within the linear approximation Eq. (61), Zk is exactly
equal to the partition function of a polymer that lies along
a path from the top to the bottom of a tree of depth k, as
in Fig. 12. We view −V1, −V2, −V3 in Eq. (66) as ran-
dom potentials on the three bonds below a given node. The
energy of the polymer is the sum of the potentials for the
bonds it visits:

Zk =
∑

paths

e

∑
bonds

on path
Vbond

. (82)

This is easily seen to satisfy the recursive Eq. (61). There
are minor differences from the standard polymer model.

FIG. 12. Schematic of a directed polymer on a tree.

First, if p > 0, there are some bonds that the polymer can-
not visit, where A = 0 or V = −∞ (these bonds and the
subtrees below them can simply be removed). Second, the
Vs have a nontrivial distribution, with links that share the
same parent node having correlated potentials.

The polymer can be in either a glass phase or a paramag-
netic phase [58]. These are distinct thermodynamic phases
in the polymer problem, but to avoid confusion we refer
to them as “regimes,” because they do not correspond to
distinct phases of the entanglement problem. (The distinc-
tion between the glass and paramagnet is a feature of the
linearized problem only, and is unrelated to the distinction
between entangled and disentangled phases.)

The glass obtains when the pinning effect of disorder
on the polymer defeats the depinning effect of entropy.
Usually the glass would be entered by decreasing the tem-
perature (increasing the scale of V). Here we increase the
strength of disorder by increasing p . In the paramagnetic
regime the polymer has extensive entropy (propotional to
k) while in the glass the entropy per unit length vanishes.

The glass and paramagnet regimes have a simple trans-
lation to the language of the traveling wave (Sec. IV F),
which we state only [58]. The polymer is in the glass
regime if λ∗ < 1, and in the paramagnetic regime if λ∗ > 1
[58]. These correspond to the two lines in Eq. (78) for the
growth rate cp , which is simply (minus) the free energy per
unit length of the polymer.

In our problem, the entanglement transition necessar-
ily takes place in the glass regime of the linear recursion,
essentially because of the fact that 〈Ai〉 = 1. Let us give an
intuitive picture.

To begin with, imagine that the polymer is in the param-
agnetic regime. In this regime (but not in the glass [101])
the “annealed” expression for the free energy growth rate
cp applies [the second line of Eq. (78)]. This expression is
in fact just the annealed approximation to the free energy,
in which we average the partition function of the poly-
mer, 〈Zk〉, instead of averaging its logarithm. In the present
linearized problem this gives

vann
p = ln (3[1− p]) , (83)

using 〈Ai〉 = 1.
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Recall that the entanglement transition is at the value of
p where cp = 0. We see from Eq. (83) that if the polymer
is in the paramagnetic regime in the vicinity of pc, then the
entanglement transition would coincide with the classical
percolation transition at pclassical

c = 2/3!
We can see that this is inconsistent as follows. Consider

the structure of large trees when we approach the clas-
sical percolation transition at pclassical

c = 2/3 from below.
After deleting subtrees that terminate before reaching the
base [102], a large tree with Z �= 0 is made up of one-
dimensional chains connected by branching events. Close
to the classical transition, the typical length of one of these
1D chains grows like (2/3− p)−1 [103]. Treating them
as renormalized bonds in the polymer problem, one may
check that the effective disorder strength on these renor-
malized bonds grows without bound as they get longer.
This increasing disorder strength implies that we must
enter the glass regime before we get to the classical tran-
sition. That is, either the linear recursion relation is in the
glass regime for all p , or it is in the glass regime for all
p > pglass for some pglass < 2/3.

When the polymer is in the glass phase, cp is strictly
smaller than the annealed approximation above [Eq. (78)].
Therefore, cp in fact hits zero at a smaller value of p
than vann

p does. In other words, pc is strictly smaller than
pcl

c .
The value of pglass is determined by the equation v′p(1)
= 0. For the �t = 0.3 ensemble the value of pglass is eval-
uated numerically and found to be negative, indicating that
this ensemble is always in the glassy phase. For the Haar
ensemble, pglass = (3− e7/9)/3 ≈ 0.274 [from Eqs. (64),
(65), and (75)]. But since this value lies inside the entan-
gled phase, where the linearized recursion is not valid,
we do not expect that the glass transition is physically
significant for the tensor network.

The arguments here, showing that the entanglement
transition must take place within the glass regime of the
linear recursion, extend to the class of tree tensor networks
described in Sec. 1. The possibility of other universality
classes of entanglement phase transition for other kinds of
quantum trees is discussed in Sec. I.

H. Including the nonlinearity

Having understood the linear approximation to the
recursion relation for the singular value squared, Eq. (61),
we must now consider the effect of nonlinearity. The non-
linearity is necessary to make sense of the entangled phase,
where Zk is of order 1, rather than being exponentially
large in k as the linear equation would predict. Our aim
in this section is to determine the scaling of Z close to
the transition, on the entangled side. Our basic conclusions
have already been summarized in Sec. D.
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FIG. 13. Distribution of ln Z in a tree of k = 150 generations
(for the full nonlinear problem). Here we remove instances where
Z is exactly zero (which have a finite support due to the forced
measurements).

1. Numerical results

Let us show numerical results before turning to an
analytical treatment.

First, Fig. 13 shows the probability distribution of ln Zk
for the Haar ensemble (Sec. 3) in a tree of k = 150 gen-
erations, where we remove instances where Z is exactly
zero [104]. Various values of p less than or equal to pc are
shown. The maximal possible value of Zk is 1/2: deep in
the entangled phase the distribution is concentrated near
this upper limit, but as we approach the critical point
ln Ztyp moves to the left. The shape of the distribution also
stabilizes. (In fact it approaches the shape for the linear
problem, except on the right where Z is of order 1.)

Next, in Fig. 14 we show the scaling of Ztyp for both
choices of the ensemble of unitaries (Sec. 3), close to
the critical point. The analytic treatment below gives
ln Ztyp � −D/

√
rc − r, which corresponds to a straight

line with slope −1/2 in the plot. This slope is indicated
by the trend line. The data is consistent with this value of
the exponent.

However, the value of the nonuniversal constant D that
we extract from fitting this data is D = 2.01 for Haar and
D = 3.24 for �t = 0.3, which is far from that predicted
below, for both ensembles. Experimenting with simpler
toy models suggests that this may just be because of finite
rc − r effects, i.e., not being close enough to rc. The numer-
ical method we use is afflicted by severe finite size effects
(see Refs. [105–107] and Appendix C 1), associated with
correctly sampling the right-hand tail of the distribution
in Fig. 9, which mean we cannot approach too close to
the critical point. Details of the numerical method are in
Appendix C 1.

2. Nonlinear toy model

The nonlinear recursion relation in Eqs. (59) and (60) is
not very approachable, even if expanded only to quadratic
order. To make progress, we conjecture that the univer-
sal properties can be understood in a simpler model that
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FIG. 14. Critical behavior for the Haar and �t = 0.3 trees as
obtained from Ztyp

600 and Ztyp
700, for Haar and�t = 0.3, respectively,

for a pool size N = 3× 104. The data suggest Ztyp
k→∞ ∼ e−D(rc−r)b

with the best fits for b being −0.5 and −0.53 for the Haar and
�t = 0.3 trees, respectively; the corresponding values of D are
2.01 and 3.24, respectively.

retains a few basic features. We study a recursion rela-
tion satisfying two requirements. First, it contains both
linear terms and nonlinear terms of order Z2, which tend
to suppress Z (naively, the terms of higher order than Z2

should be negligible when we are parametrically close to
the transition and Z  1). Second, its linearized form is
in the glass regime, as for the circuit. (Though in fact
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FIG. 15. Critical behavior of the classical nonlinear tree and
the continuum equation in the glass phase. Similar to the quan-
tum trees, the data for the classical tree (blue dots) suggests
a scaling approximately e−c(ac−a)b for Ztyp

k→∞. The best fits are
b = −0.52 and c = 3.86. For the parameters for the tree used,
p0 = 0.2, p1 = p2 = 0.4, ε = 1.411, and γ = 0.5, the theoretical
result shown in gray corresponds to c = 3.247 · · · and b = 0.5.
Data obtained by numerically solving the continuum equation
(red dots) is in excellent agreement with the theoretical prediction
close to the critical point, although some deviations are observed
further away from the critical point. Inset: enlargement of the
data for the classical tree.

we study both this case and the paramagnetic case for
completeness.)

We first write down a toy model for a tree with a dis-
crete generation number k, but as in Ref. [58] it will be
convenient to take a continuum limit in k. We assume that
this continuum limit preserves the universal properties, as
is the case for the linear problem.

For the toy model, define the random variable Zk+1
at level k + 1 in terms of a sum of � random variables
Z(1)k , . . . , Z(�)k at level k. Here � is the branching number of
a node, and is taken to be random with a distribution p� for
� ≥ 0. The precise range allowed for � is not important, so
for simplicity we allow � = 0, 1, 2. We also include nonlin-
earity of strength γ , and a multiplicative random variable
written as eV, with Gaussian V:

Zk+1 =
[

eV
�∑

i=1

Z(i)k

]
exp

{
−γ

[
eV

�∑

i=1

Z(i)k

]}
. (84)

This can be viewed as the composition of a linear transfor-
mation analogous to Eq. (61),

Zk+1 = eV
�∑

i=1

Z(i)k (85)

(but slightly simpler because we avoid having correlated
random variables) and a nonlinear one,

Zk+1 −→ Zk+1e−γZk+1 . (86)

The exponential form is arbitrary: for the continuum limit
below it will anyway be sufficient to expand only to order
γ , giving a quadratic recursion relation for Z. However, the
above form guarantees that Zk+1 is positive for any input
values, which is important for our numerical explorations.

We conjecture that by solving this simple nonlinear sys-
tem we also capture universal scaling for the problem of
interest (Sec. E).

3. Continuum traveling wave equation

The equation for the generating function [cf. Eq. (70)]
that follows from expanding Eq. (84) to order γ is

Gk+1(x) = exp
(
γ ∂xex∂x

)∑

�

p� 〈Gk(x − V)�〉V, (87)

where p0 and p2 are the probabilities of a termination and a
branching, respectively. Now we take the continuum limit
in the “time” k. When γ = 0, this gives the Fisher-KPP
traveling wave equation [58]. We introduce a “time” step
δτ , which will be sent to zero and define τ = kδτ . The
probabilities p0 and p2 are taken to be of order δτ (i.e.,
p1 = 1− p0 − p2 is close to 1) so that in the limit the tree
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becomes a continuous time branching process. The param-
eter γ is taken of order δτ (note that the prefactor does not
matter: it can be absorbed into the normalization of Z) and
the strength of the random potential is also taken to van-
ish with δτ . It is convenient to parameterize its mean and
second moment as

〈V〉=a
2
〈V2〉 〈V2〉 = 2b× δτ . (88)

Finally we absorb some constants into the generating
function by defining [108]:

Gk(x) = 1− p2 − p0

p2
Hk(x). (89)

The asymptotics of H may be taken to be

H(−∞) = 1, H(∞) = 0. (90)

After absorbing a constant into the definition of τ , and
shifting x by a constant, H satisfies

∂τH = ∂x [D(x)∂x − a] H +�H (1− H) , (91)

where the growth rate is � = 2(p2 − p0)/〈V2〉 (which is
finite in the δτ → 0 limit), the drift coefficient is a in
Eq. (88), and there is a spatially varying diffusion coeffi-
cient

D(x) = 1+ ex. (92)

The exponential term in Eq. (92) is the effect of the
nonlinearity γ in the tree problem.

Note that nonlinearity in the tree is unrelated to non-
linearity in the Fisher-KPP field H(x, τ) (which instead
reflects branching of the tree).

H forms a traveling wave, whose speed c sets the expo-
nential growth rate of Z [cf. Eqs. (68) and (72)]. On their
own, the combination of ordinary diffusion and logistic
growth (the � term) in Eq. (91) would give a traveling
wave propagating to the right (c > 0), which corresponds
to exponential growth of Z. Here, in one phase, this wave
instead propagates backwards (c < 0): this is possible
because of the drift term in Eq. (91). In the other phase,
the wave attempts to propagate to the right but is stopped
by the exponential growth of the diffusion constant at pos-
itive x, which prevents the buildup of H at large x. This
results in c = 0.

There is therefore a transition between a phase where
Z is exponentially small at large generation number and
a phase where Z remains order 1. This is the toy model’s
version of the entanglement transition.

In the absence of the ex term in D(x), the velocity of a
traveling wave with tail H ∼ e−λx is [98]

v(λ) = λ+ a+�λ−1 (93)

[as we see by keeping only the order H terms in Eq. (91)],
with a minimum at λ∗ =

√
�. Therefore, the linearized

tree is in the glass regime [58] (Sec. G), where the travel-
ing wave travels at speed vmin = v(λ∗), so long as � < 1.
This is the case we are interested in for the current circuit
models, where λ∗ = 1/2 at the entanglement transition.

The wave speed is then c = 2
√
�+ a, so in this toy

model the analog of the entanglement transition is at
ac = −2

√
�. Let us therefore write

a = −2
√
�+ σ . (94)

We are interested in small positive σ , just inside the entan-
gled phase. In principle we would like to solve for the
stationary solution at late times,

∂x

[
D(x)∂x + 2

√
�− σ

]
H +�H (1− H) = 0, (95)

which we expect to exist when σ > 0. In the absence of a
full solution, we consider the equation piecewise [109].

Let the position of the front, whose scaling with σ

we wish to determine, be denoted xfront(σ ). We assume
(and confirm below) that xfront(σ ) is large and negative at
small σ .

First, at large positive x, the leading term in the equation
is simply ∂xex∂xH = 0, so the only solutions satisfying
H → 0 at large x have H ∼ e−x.

Second, consider −|xfront(σ )|  x  0. In this regime
we neglect both the variation of the diffusion coefficient
and the O(H 2) term. From Eq. (93), we can find a sta-
tionary solution for positive σ only by making λ complex
[109]. Keeping only the leading σ dependence,

H ∼ e−
√
�(x−x0) sin

(
φ +�1/4√σx

)
. (96)

We would like to use the as-yet-undetermined constants x0
and φ in order to allow this solution to match onto the solu-
tions at large positive and negative x. Note that the slope
of this solution on a logarithmic plot is

∂x ln H = −
√
�+

√
σ�1/4

tan
(
φ +�1/4

√
σx

) . (97)

For generic x, this slope is close to
√
�, because of the

small factor
√
σ in the second term. However, close to

the zeroes of the tangent this is not true. This allows us
to match on the right-hand side of the range [110], where
the slope is steeper, so long as we take φ = π to leading
order in σ .
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Similar considerations on the left show the argument of
the tangent must approach 0 as the vicinity of the front is
approached. Therefore, to leading order in σ , the position
of the front is

xfront(σ ) = − π

�1/4
√
σ

. (98)

The constant x0 in Eq. (96) then has the same leading term,
to ensure that H is of order 1 in the front region.

Since xfront(σ ) also sets the average value of ln Z,

Ztyp ∼ exp
(
− π

�1/4
√
σ

)
. (99)

By considering the tail of the distribution, we see that in the
regime we are discussing, where� < 1, the mean scales as

〈Z〉∼(Ztyp)
√
� ∼ exp

(
−π�

1/4

√
σ

)
. (100)

Notice that Eq. (99) is

Ztyp ∼ exp
(
− π

| Im λσ |
)

(101)

[also 〈Z〉 ∼ (Ztyp)λ0 ], where λσ solves vσ (λ) = 0. That is,
it depends only on the function v(λ) for the linear prob-
lem! Indeed the strength of the nonlinearity γ in Eq. (84)
cannot appear, since it can be absorbed into a rescaling of
Z (which does not affect ln Z at leading order).

This suggests that we can apply the result to the quantum
tree of Sec. E, using Eq. (75) for v. This gives

Ztyp � exp
(
− C√

pc − p

)
, (102)

with

C = π(1− pc)√
2

√
〈
∑

i

A1/2
i (ln Ai)

2〉. (103)

For the Haar-random case C is given exactly by Eqs. (64)
and (65). In terms of r [Eq. (43)],

Ztyp � exp
(
−1.482 · · ·√

rc − r

)
. (104)

Numerical results obtained by simulating the recursion
relation in Eq. (84), and by solving the continuum traveling
wave equation are shown in Fig. 15. These results indeed
confirm the scaling of Ztyp close to the critical point.

100 101 102

k

100

101

−
ln

Z
ty

p
k

Z0 = 6.25 × 10−6, N = 105

Z0 = 6.25 × 10−6, N = 104

Z0 = 1/2, N = 105

Z0 = 1/2, N = 104

∼ k1/3

FIG. 16. The behavior of Ztyp
k with k at the critical point for

two initial conditions, Z0, and two pool sizes, N . The data is con-
sistent with a k1/3 scaling of ln Ztyp

k . Results are shown for the
Haar ensemble and errorbars are smaller than the data points.

4. Tree entanglement at critical point

So far we discuss scaling in the two phases. Exactly at
the transition, we might expect that Zk tends to zero with
k, but more slowly than in the distentangled phase.

Figure 16 shows data for this for the Haar ensemble. The
data is compatible with, though it does not clearly estab-
lish, the scaling ln Ztyp

k ∼ k1/3, which is suggested by the
following argument for the continuum model.

We expect that for the time-dependent equation xfront
drifts sub-ballistically to the left. Let us conjecture that at a
given time t, and in the range xfront  x  0, the instanta-
neous solution of the nonlinear equation approximates suf-
ficiently closely the traveling-wave solution G(λ) of the lin-
ear equation with the same instantaneous speed, v = ẋfront.
At the critical point (σ = 0), v(λ) has a double zero at
λ = √�, so this means that λ(t) � √�± i�1/4√|ẋfront|.
This gives a solution like Eq. (96), but with

√|ẋfront| in
place of

√
σ . Equation (98) then becomes

xfront ∼ − π

�1/4|ẋfront|1/2 , (105)

which gives xfront ∼ (3π2t/
√
�)1/3. These values for the

exponent and the prefactor are in good agreement with a
numerical solution of Eq. (91) at a = −2

√
� (we check

the case � = 1/4).
If σ is small but positive there must be a crossover at

a large time tsat from xfront ∼ −t1/3 to xfront ∼ −1/
√
σ .

This suggests tsat ∼ σ−3/2, which also agrees well with
numerical solutions.

I. Quantum trees: other universality classes?

Above we noted that a priori there are two possi-
bilities according to whether the entanglement transition
takes place within the glass or the paramagnetic regime
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of the linearized recursion relation: λ∗ < 1 and λ∗ > 1,
respectively.

However, our approach required the statistical invari-
ance of the node tensor tab1,b2,b3,...,b�

under U(2) rotations
on a leg. (We are free to allow for an arbitrary branch-
ing number �.) This invariance is necessary so that we can
write a recursion relation for singular values only: other-
wise we need a combined recursion relation for singular
values and singular vectors. For any such tree, the argu-
ment of Sec. IV F and Appendix 2 shows that λ∗ = 1/2 at
the transition. That is, the recursion relation is of the form
[111]

Zk+1 =
�∑

i=1

AiZ
(i)
k +O(Z2), (106)

with 〈Ai〉 = 1 and 〈A1/2
i ln Ai〉 = 0, which is sufficient to

ensure λ∗ = 1/2 at the critical point (Sec. IV F).
In this class of trees the weak correlations between the

top and base in the disentangled phase are dominated by
only a subgraph of the tensor network that contains a few
paths from top to bottom. For this broad class of trees we
expect the universal scaling described above. Therefore,
within the class of trees that our formalism applies to there
is no freedom to vary λ∗.

However, it is interesting to ask what happens in trees
where the unitary invariance property is broken. Breaking
this invariance introduces correlations between singular
values and singular vectors. A plausible guess, at least if
these correlations are not too strong, is that in this set-
ting the same toy model nevertheless captures the universal
scaling. If this is the case (which we do not determine here)
then the next question is whether in these more general
models it is possible to vary the critical value of λ∗ away
from 1/2.

With this somewhat speculative motivation (and for
completeness), below we extend the analysis of critical
scaling in the toy model to the regime λ∗ > 1.

Our analysis is also restricted to trees with bond dimen-
sion 2. A recursion relation (for the subleading squared
singular values squared) may be formulated for trees with
larger bond dimension, but has a more complicated struc-
ture, even at lowest order. It would be interesting to study
this further.

1. Scaling of nonlinear recursion: � > 1

We return to the toy model of Sec. 2 in the continuum
limit, now with � > 1. The near-critical regime inside the
entangled phase is now

a = −(�+ 1)+ σ , (107)

with 0 < σ  1 representing the control parameter that
drives the entanglement transition.
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FIG. 17. Main panel: the exponent κ that defines the critical
divergence of Ztyp [see Eq. (108)] as a function of the parameter
� in the power-law regime � > 1. Black points show results
from a numeric solution of Eq. (91) whereas the gray dashed line
shows κ = max{1/(�− 1), 1}. Details of the numeric solution
and definition of error bars are given in Appendix 3. Inset: the
critical divergence of Ztyp from the discrete toy tree for two sets
of parameters in the paramagnetic phase, PM− 1 and PM− 2,
see text for details. For PM− 1, the expected exponent is−1 and
the best fit exponent is −0.96 whereas for PM− 2, the expected
and the fitted exponents are −1.97 and −1.53, respectively.

The difference from the case studied above [cf. Eq. (96)]
is that the solutions λ of vσ (λ) = 0 are no longer com-
plex: instead there is a real solution at λ = 1+O(σ ), and
a larger real solution at λ+ = �+O(σ ). That is, if we
neglect both the nonlinearity in H and the x dependence
of the diffusion constant, the stationary solution is a sum of
two exponentials, in contrast to Eq. (96).

In Appendix 3 we study this regime via the equation for
R = ∂x ln H , which interpolates between 0 for x  xfront
and −1 for x � 0. We conclude that

Ztyp ∼ σκ , κ ≡ max
{

1
λ+−1

, 1
}

, (108)

where the denominator appearing in κ is the difference of
the two solutions to v(λ) = 0 at the critical point σ = 0.
In the present model, κ = max{1/(�− 1), 1}, but we con-
jecture that the form in Eq. (108), which requires only
knowledge of the speed function v(λ) of the linearized
problem, applies to a wider set of models.

Our argument in Appendix 3 is not rigorous, so we com-
pare the formula κ = max{1/(�− 1), 1} with a numerical
solution of the continuum equation. Results are shown
in Fig. 17 and are in fairly good agreement with the
prediction.

Numerical solution of the continuum equation suggests
that the above exponent κ also determines the decay of Z
right at rc,

Z ∼ t−κ . (109)
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A

FIG. 18. Schematic: tree tensor-network wave function for a
chain of spins, with a subset A of spins and the correspond-
ing minimal cut indicated. We propose a modified minimal cut
formula for the entanglement.

We also study the discrete toy tree model in Eq. (84)
numerically in the regime with λ∗ > 1. We find polyno-
mial scaling of Ztyp near the critical point as expected.
The numerical estimates of the exponents differ somewhat
from the predicted ones, which we attribute to finite size
limitations. See Fig. 17 (inset) for examples. The param-
eters corresponding to PM− 1 are p1 = 0.15, p2 = 0.85,
ε = 0.95, and γ = 0.5, as such � = 3.973 91 and we
expect Ztyp

k→∞ ∼ σ−1. Indeed the best-fit exponent from our
simulation is κ = −0.96. On the other hand, the param-
eters corresponding to PM− 2 are p2 = 1, ε = 1.5, and
γ = 0.5 such that � = 1.5066 as such the expected expo-
nent is κ = −1.97. We however find a best-fit exponent of
κ = −1.53 and attribute the discrepancy to finite size of
the pool and distance from the critical point.

J. Trees, entanglement, and min cut

So far we characterize the entanglement between the top
of the tree and the base. We now apply this to more general
entanglement quantities in the tree.

Figure 18 is a schematic of a wave function for a chain of
spins that is given by a tree tensor network (note that there
is no longer a free bond at the top). Here we consider the
entanglement S(R) of a set A of R� 1 contiguous spins
in a much larger chain. This problem has also been tackled
recently in Ref. [68] using a different method: see Sec. II D.

As is well known, in such a geometry the minimal cut
sketch suggests the scaling S ∼ ln R [67–69], which is the
number of bonds cut for “typical” choices of the place-
ment of the region A (the tree strongly breaks translational
invariance). Figure 18 shows an example of a minimal cut
in a small tree. The logarithmic scaling is presumably cor-
rect in the entangled phase, but what happens close to the
transition? For simplicity we consider the second Rényi
entropy.

Note that the minimal cut in Fig. 18 lops off a dis-
joint set of smaller subtrees, marked in red and thick. We
assume that the region is placed so that this is the case.
In this setting, a natural conjecture for the tree is that the

universal scaling forms for the entanglement close to the
transition and in the disentangled phase are given by a
“modified minimal cut” formula: we first find the geomet-
rical minimal cut, but then weight the contribution to the
entanglement of a bond at height k (k generations above
the base) by an amount that depends on Zk. Since we are
interested in the region close to the critical point and large
k, we assume Zk  1.

What should this weight be? The simplest case is where
the minimal cut breaks only one bond, i.e., where region
A corresponds to a single connected subtree. In such cases
the minimal cut breaks the full tree into two subtrees, and
each one is characterized by a Z value. (In general one of
them has an irregular structure, with different numbers of
generations for different branches, but we can still use the
recursion relation to compute its Z value.) A 2× 2 matrix
calculation shows that the second Rényi entropy S2 is pro-
portional to the product of these Z values, S2 ∝ ZZ ′, to
leading order [112]. Using the fact that Ztyp

k is asymptot-
ically nonincreasing in k, the Z values of the subtrees are
both of typical size Ztyp

k for k equal to the height of the cut
bond.

This suggests the conjecture

S2(R) ∼
c ln R∑

k=1

ZkZ ′k. (110)

In this schematic formula, c ln R is the maximum height
reached by the minimal cut, and Zk, Z ′k are random vari-
ables. All order-1 constants have been neglected, since we
aim only to capture the asymptotic scaling with R and
with the distance from the critical point. We can confirm
Eq. (110) explicitly in an artificial limit in which the scale
of the Zs tends to zero, with R arbitrary but fixed: this is
described in Appendix 4. However, in the physical prob-
lem we wish to take R to infinity, so this does not prove the
conjecture.

Consider the first class of trees (including those with
the statistical invariance property of the node tensors,
for example those appearing in the Haar circuit). Let r
be an arbitrary parameter that drives the tree’s entangle-
ment transition. The results in the previous sections and
Eq. (110) yield

S2(R) ∼ exp
(
− const√

rc − r

)
ln R (r � rc), (111)

S2(R) ∼ O(1) (r = rc). (112)

Surprisingly, the entanglement is order 1 at large R at
the critical point, because of the rapid decay of Z with k
(Sec. 4). This is also true in the disentangled phase.

In the previous section we speculate about the exis-
tence of trees with an effective value of � > 1. If such
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trees exist, then the same reasoning as above gives
S2(R) ∼ (rc − r)2κ for r � rc, with a variable exponent
κ = max{[�− 1]−1, 1}. The entanglement right at rc is
again O(1).

K. Connecting back to the quantum circuit

Our original motivation for studying the tree is the con-
jecture that, for the forced-measurement circuit models
described in detail in Sec. 3, the critical point rc of the
appropriate tree ensemble is also the critical point for the
circuit.

Here we give an argument that bounds the operator
entanglement in the circuit in terms of the entanglement
in the tree. This argument is very heuristic: a task for the
future is to make the connection between the circuit and
the tree more precise.

The basic idea is to imagine breaking a bond in the inte-
rior of the FMPT circuit, and to ask how much effect this
can have on properties of the nonunitary time-evolution
operator V. Let b be a bond inside the circuit at time coor-
dinate approximately t/2. Then Vb is a modification of V
in which bond b is broken.

Starting from b we imagine marking the two trees T
and T′ attached to either end of it, using the convention in
Sec. 4, where bonds with projectors on them are removed.
We stop after k generations, choosing the largest possible
k such that these are indeed two disjoint trees (no loops).
Therefore, k should be of order ln N . We assume that the
number of spins N is very large, so that the typical size of Z
and Z′ for these trees (the minimal singular value squared)
is given by the asymptotic large k result. Close to rc, this
typical value is small.

Together T and T′, connected by b, form a tensor net-
work T̃. This can be seen as a state in a tensor product
Hilbert space H⊗H′ associated with the bonds on the
boundary of T and T′, respectively. We may form the cor-
responding singular value decomposition of T̃: the smaller
of its two singular values is of order

√
ZZ ′, in terms of the

Z values or T and T′ (assumed small, since we are in the
critical regime).

Breaking the bond is defined to mean dropping this min-
imal singular value. Formally, this induces an error that
is of order

√
ZZ ′ in Z and Z ′. After averaging over the

local unitaries, the error in any physical quantity is—again,
formally—of order ZZ′ [113]. This suggests that the aver-
age change in S2 when we break a single bond is at most
of order 〈Z∞〉2. This is of course far from being a proof,
because in principle the small term ZZ ′ in the formal
expansion could be systematically compensated by a large
prefactor.

Assuming this bound, we may straightforwardly bound
the plateau value s(r)N of the operator entanglement close
to rc (Sec. II, Sec. I). Since breaking all the N bonds in a
timeslice reduces the entanglement to zero, we must have

(c1 and c2 are constants):

s(r) ≤ c1 exp
(
− c2√

rc − r

)
(113)

for small rc − r. Assuming also our conjecture that rc is the
same for the tree and the circuit, this indicates that s(r) van-
ishes extremely rapidly as the critical point is approached.
In turn, s(r) is related to the scaling of the exponential
timescale in the entangled phase (Sec. I), just as it is in
the classical problem (Sec. III).

We note that the bound Eq. (113) on the scaling need
not be tight. This can be understood by considering the
analogous argument for the classical minimal cut problem.

Above, our bound used 〈Z〉. The analogous quantity in
the classical problem is the probability that a given tree is
infinite. This is essentially the order parameter in the clas-
sical problem, scaling like f∞ ∼ (rcl

c − r). We can bound
the cost of the classical minimal cut S0 as follows. Consider
all the bonds of the percolation configuration that traverse
some timeslice, say at time t/2. Each bond has a probabil-
ity approximately f 2

∞ that the two trees attached to either
end of it are both infinite. These are the only bonds we
need to cut (the others lie in disconnected clusters or dan-
gling ends). This shows that scl(r) goes to zero at least as
fast as (rcl

c − r)2 close to the transition.
This bound is consistent with, but weaker than, what

we argue is the true scaling in the classical problem,
scl(r) ∼ (rcl

c − r)5/2 (Sec. III D).

V. SIMULATIONS OF QUANTUM CIRCUITS

Having made a connection between trees and all-to-
all circuits, we now turn to the numerical simulation
of the latter. Exponentially large in system size Hilbert-
space dimensions restrict us to systems with N ≤ 20 spin
1/2. We simulate both measurement circuits and forced-
measurement circuits, keeping in mind that the results
obtained from the tree apply only to the latter. Unless
specified, the results shown here are for the Haar ensem-
ble Eq. (37) [we also comment briefly on the �t = 0.3
ensemble, Eq. (38)].

All-to-all circuits have no spatial structure. Conse-
quently, the entanglement transition does not entail a
volume-to-area law transition in the entanglement asso-
ciated with a spatial bipartition of a state. Instead, we
consider two observables, which quantify the amount of
quantum information transmitted from the initial to the
final time: (i) the time evolution of the operator entangle-
ment entropies (opEE) of the nonunitary evolution opera-
tor V, and (ii) the overlap of two initially orthogonal states
that are both evolved using V.

We show that the entanglement transition separates an
entangled phase at r < rc, wherein an extensive amount of
quantum information is retained for an exponentially long
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time, from a disentangled phase at r > rc wherein memory
of the initial state is rapidly lost. This is in agreement with
analytical results for the quantum problem in Sec. I, and
is qualitatively similar to what we find in the classical toy
model in Sec. III.

First, we give evidence for a plateau in the operator
entanglement for r below a critical value. We then turn
to observable (ii) above: since this does not require exact
diagonalization of V, it allows larger N to be accessed.
We use this observable to define a timescale τ(r, N ), and
show that this timescale scales exponentially with N inside
the entangled phase. Details of numerical calculations are
relegated to Appendix D.

A. Operator entanglement

The amount of information carried from the bottom of
the circuit to the top can be quantified via the OEE of V. In
the case of measurements, where we must choose an initial
state in order to define the Born-rule probabilities, we take
this state to be a product state (with spins aligned in the
positive x direction, |→→ · · · →〉).

The OEE is obtained from the singular value decompo-
sition

V =
DH∑

j=1

μj |j 〉t〈j |0, (114)

where DH = 2N is the Hilbert-space dimension, and {|j 〉0}
and {|j 〉t} are bases corresponding to the initial and final
time. (We leave the t dependence of V implicit.) The OEE
is

Sn = 1
1− n

ln
DH∑

j=1

λ2n
j , (115)

where λj ≡ μj /
√∑

j μ
2
j . For a unitary V, Sn takes on

its maximal value of N ln 2. Any reduction compared to
this value reflects loss of information between initial and
final time due to worldlines of the spins broken by mea-
surements. Sn is bounded from above by the minimal cut
separating the initial and final times. Close to the FMPT
transition, we also have the conjectural bound Eq. (113)
on the scaling form for s2(r) = S2/N in the plateau region.

Results for S1 for the Haar ensemble with forced mea-
surements are shown in Fig. 19. In the top panel, we plot
the entanglement density S1/N vs t for r = 0.1 and various
systems sizes. After an initial linear decrease with t asso-
ciated with the first measurements, there is a time regime
where S1/N increases with N . This suggests the emergence
of a plateau in S1/N at large N (Sec. II).
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FIG. 19. The OEE, S1, of the nonunitary time-evolution oper-
ator [see Eq. (115)] for the Haar ensemble with forced mea-
surements. The top panel is for r = 0.1, deep in the entangled
phase where there is a plateau in S1/N in the N →∞ limit. The
extrapolated N →∞ value is shown as the black dashed line; the
extrapolation in N is shown for a few exemplary time points in
the inset. The bottom panels correspond to r = 0.3 and r = 0.75,
the latter being the putative rc obtained from the Haar tree. Note
that the value of S1/N is already quite small in the entangled
phase at r = 0.3. All data is averaged over 5000 realizations.

Recall that in the entangled phase we expect a nonzero
value for

sn(r) ≡ lim
t→∞ lim

N→∞
Sn(N , t, r)

N
, (116)

and that when N is finite but large, S1/N remains close
to s1(r) over a range of times that grows exponentially
with N .

To give evidence for the nonzero value of s1(r) at
r = 0.1, we extrapolate the data to N = ∞ for each value
of the time [114]. This N →∞ extrapolation is shown as
a dashed line in the figure. It is consistent with a plateau,
extending to t = ∞, with s1(0.1) > 0. (We defer an anal-
ysis of timescales to the following subsection.) A similar
plateau was observed in Ref. [12] in Clifford circuits.

It is clear that the plateau value s(r) decreases very
rapidly with increasing r. In the lower left panel we plot
S1/N for the same set of N and r = 0.3. This r value is
still far from the conjectured location of the critical point
obtained from the tree (rc � 0.749). An increase of S1/N
with N is still observed, but it is clear that s1 (assuming it
is nonzero) is small. It is tempting to associate this with the
exponential scaling in Eq. (113), which suggests that s(r)
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FIG. 20. As in Fig. 19(top), the OEE density, S1/N , of the
nonunitary time-evolution operator for the Haar ensemble but
with measurements for r = 0.1. The data is consistent with there
being a plateau in S1/N in the N →∞ and t→∞ limit. All
data is averaged over 5000 realizations.

goes to zero very fast as the critical point is approached, so
that a plot of s(r) against r would be very flat for r � rc.

On the other hand, at r = 0.75 (lower right panel), S1/N
decays exponentially to zero, with a very weak N depen-
dence and no indication of saturation at large t. In fact, the
trend with increasing N is in the opposite direction to the
cases r = 0.1 or 0.3.

Thus, the OEE for these system sizes is consistent with
an entanglement transition, occurring below the classical
critical point, and with the expected plateau for S/N in the
entangled phase. However, the rapid decay of the plateau
value s(r), and the weak N dependence, make it hard to
pin down the position of the transition. We check (but do
not show) that the data for S2 is qualitatively similar to that
for S1.

We find the same qualitative features for the Haar cir-
cuit with true measurements. Figure 20 shows the case
r = 0.1. In fact at this relatively small value of r, the
data for forced measurements and measurements is almost
indistinguishable.

B. State overlap and timescales

We now turn to the overlap of two initially orthogo-
nal states undergoing time evolution with the nonunitary
operator V:

O(t) ≡ |〈ψ(2)(t)|ψ(1)(t)〉|2. (117)

We also define the “distance” D(t) as

D(t) = 1− O(t). (118)

The states are initiated as product states in the σ x basis,
|ψ(1)(0)〉 = |→→ · · · →〉 and |ψ(2)(0)〉 = |←← · · · ←〉
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FIG. 21. Heatmap: the squared overlap O(t) between the states
|ψ(1)(t)〉 and |ψ(2)(t)〉 [see Eq. (117)], as a function of time t
and measurement rate r for N = 20. The different lines show the
contours for O(t) = 1/2 for different N . The data corresponds
to the Haar circuit with forced measurements. The red mark at
r = 0.75 denotes the critical point from the Haar tree.

and are evolved using the nonunitary operator

|ψ(j )(t)〉 = V|ψ(j )(0)〉√
〈ψ(j )(0)|V†V|ψ(j )(0)〉

. (119)

In the case of forced measurements the spins are always
projected along the positive σ z direction, and there is a
symmetry between |ψ(1)(t)〉 and |ψ(2)(t)〉. In the case of
measurements we use |ψ(1)(t)〉 to determine the Born-rule
probabilities, so this symmetry is absent.

O(t) is another way to quantify the amount of informa-
tion retained from the initial state. In the limit r = 0, where
V is unitary, the two states remain orthogonal for all time,
O(t) = 0. In the opposite limit r = 1, where no unitaries
are applied, O(t)will be exactly one as soon as all spins are
measured. For any fixed r > 0, and for a fixed value of N ,
the states will inevitably converge to 1 as t→∞, because
they are being subjected to the same projections. However,
we expect the timescale for this to grow exponentially with
N in the entangled phase.

For a broadbrush view, we first show O(t) as a heatmap
in the space of r and t for the Haar forced-measurement
circuit with N = 20 spins: Fig. 21. O(t) grows towards
unity with an r-dependent timescale. One way to define
a timescale is using the contour O(t) = 1/2. This is shown
not only for N = 20, but also for smaller values of N , in
the figure. The conjectured r value of the phase transition is
marked by the red dot. The timescale grows rapidly as r is
decreased. It also shows a clear N dependence in the entan-
gling phase, which becomes much weaker on approaching
the transition point.

Figure 22 shows the time dependence of the overlap in
more detail for r = 0.5 and r = 0.75 [115]. In both cases
the time required to achieve a given value of O increases
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with N , but in the latter case this is mostly a shift of the
curve, whereas in the former case there is the clear sign of
an increasing time constant for the exponential approach
of O to 1.

We use the exponential approach of the overlap to
unity to define a timescale τ(r, N ). Since at late times
D = 1− O is exponentially small, and may have a broad
distribution, we choose to look at its typical value. We
define this by lnDtyp(t) ≡ lnD(t), where instances in
which D(t) is exactly zero are excluded from the average
(similar to the treatment of the singular value Z in the quan-
tum tree, Sec. D). At late times this shows an exponential
decay,

lnDtyp ∼ − t
τ(r, N )

. (120)

Data for lnDtyp(t) vs t are shown in Fig. 23, for the same
values of N and r as in Fig. 22. We see clear exponential
decay. In fact, Fig. 23 vividly shows the qualitative differ-
ence between the cases of r = 0.5 and 0.75: while τ grows
with N for r = 0.5, it appears essentially N independent
for r = 0.75. Data for the circuit with measurements (not
shown) is qualitatively similar.

We now analyze τ(r, N ) in the entangled phase. This
is the asymptotic slope of plots like Fig. 23. We extract
this from a plot of τeff(t) = −

(
d lnDtyp/dt

)−1, the time-
dependent slope: at late times, τeff(t) should stabilize at
the value τ . Representative data for τeff(t) and the plateaux
therein are shown in Appendix D, see Figs. 39 and 40.

It turns out that finite-time effects become significant at
larger values of r, but for r not too large we are able to
obtain an estimate of τ . The data (shown in Appendix D)
is consistent at small r with exponential-in-N growth of the
timescale:

ln τ(r, N ) ∼ a(r)N . (121)
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FIG. 22. The squared overlap between the states O(t) as a
function of time t for two exemplary values of r for different N .
The data corresponds to the Haar circuit with forced measure-
ments. Note the difference in the range of times shown in the two
panels. It is also possible to see the emergence of a plateau at
O(t) = 0 at early times.
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FIG. 23. The typical distance D(t) = 1− O(t) between the
states |ψ(1)(t)〉 and |ψ(2)(t)〉 as a function of time t for the same
parameters as in Fig. 22, showing exponential convergence of the
two states at late time. Note the difference in the scales shown in
the two panels.

The coefficient a(r) is plotted against r in Fig. 24. This
figure also shows data for the case of true measurements.

We expect a(r) to vanish at the critical point with
a(r) ∼ s(r) (see Sec. I). Unfortunately, hamstrung by
severe finite-size effects, we are not able to estimate the
critical point accurately [116]. The data is certainly con-
sistent with a critical point for the FMPT, which is below
the conjectured value� 0.749. However, we speculate that
this is instead a symptom of a(r) vanishing very rapidly as
rc is approached, as is suggested by the essential singular-
ity in Eq. (113). The dashed line in the figure shows this
exponential form with c1 = 39.4 and c2 = 3.8. These val-
ues have no theoretical significance: this line is simply to
indicate the possibility of a(r) remaining very small even
for r considerably below rc.

The data for S1 at small values of r is very close for
measurements and forced measurements, as noted above.
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FIG. 24. The coefficient a(r) in the exponential dependence of
the timescale τ ∼ ea(r)N on N , as a function of r for the Haar
circuit with measurements and that with forced measurements.
The dashed line is a guide to eye for a function c1e−c2/

√
rc−r with

rc = 0.75, c1 = 39.4 and c2 = 3.8. See Fig. 41 for the fits used
to extract a(r).
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FIG. 25. Evidence that the forced-measurement (FM) protocol
leads to higher entanglement than the measurement (M) protocol
at the same value of r. The data is for r = 0.3. The left panel
shows S1/N whereas the right panel shows the average overlap
O(t).

We do see differences between the two cases at intermedi-
ate r, with the forced-measurement circuit having slightly
larger entanglement at a given r. This is shown for S1/N
in Fig. 25(left). The comparison between the overlap data
for the two cases at the same value of r [Fig. 25(right)],
is also consistent with the above, with O(t) growing more
slowly in the forced-measurement case. This hints that rc
for the measurement case may be lower than that for the
forced-measurement case, but our data does not allow us
to determine this.

While the data above is shown for the Haar circuit, we
perform the same set of numerical calculations for the
�t = 0.3 circuit as well. The results are qualitatively sim-
ilar. Consistent with the results from the quantum tree, rc
appears to be smaller for the �t = 0.3 circuit compared to
the Haar.

VI. FIELD THEORIES FOR MEASUREMENT AND
ENTANGLEMENT TRANSITIONS

A key question about the MPT, not previously resolved,
is whether there is a simple Landau-Ginsburg-Wilson-like
field theory that captures its universal properties. This
question is also unresolved for entanglement transitions
in random tensor networks (RTNs), and for the closely
related FMPT. In this section we propose candidates for
these field theories. (In this section the space-time dimen-
sionality D = d + 1 is allowed to be arbitrary.) We obtain
two Lagrangians, one for the MPT, and one for both FMPT
and RTN. Surprisingly, these two Lagrangians are quite
different in their structure, having for example different
values for the upper critical dimension.

Microscopically, random circuits and random tensor
networks can be mapped to lattice statistical mechanics
models [13,14,34–36,42,44,45]. These are effective spin
models where the “spin” is a group element in the per-
mutation group SN for N objects (we review this below;
here N is a replica number and not the number of qubits as

in previous sections). However, using these lattice models
to guess appropriate continuum field theories is nontrivial
for various reasons, one of them being a replica limit that
is necessary to handle randomness. “Replica” lattice mod-
els were described for a random tensor network in Ref.
[36], for Haar circuits in Ref. [34], and for circuits with
measurement in Refs. [13,14].

Previous work pointed out that in certain limits (either
by artificially deforming the weights in the effective spin
model [36], or by taking a q→∞ limit in the measure-
ment problem [13,14]) one could access a fine-tuned point
where the effective spin model had a simple continuum
theory, namely that of percolation. While this was a use-
ful step, this fine-tuned point has an infinite number of
relevant perturbations [36] so unfortunately this does not
provide a definite Lagrangian for the physical phase transi-
tions of interest. Another approach is to study Ising models
that are obtained by simply omitting the replica limit,
roughly in the spirit of an annealed average in conventional
disordered systems [24,27,35]. These are useful toy mod-
els for various phenomena in the entangled phase [24,27]
(we give an explanation for why this is, building on Ref.
[43]) but they cannot capture the correct critical properties.
Therefore, we attempt here to formulate explicit continuum
replica field theories.

We emphasize that these theories are speculative con-
jectures, based on writing down the simplest Lagrangians
compatible with the basic symmetries of the problem. It is
certainly possible that in fact something more complicated
happens in the continuum. Indeed, the exponential scaling
we find in the tree seems to mean that it is not described
by the high-dimensional limit of the field theory for RTNs
proposed below (see Sec. H). How to resolve this tension
is a question for the future.

We first review the replica approach, the inevitable
global symmetry of the field theories we are looking for,
and the emergence of permutations in the simplest Haar-
random models (Secs. IV A and IV B are largely review).
We then discuss the coarse graining of these degrees of
freedom (Sec. C). Next we note that these degrees of free-
dom have a more general meaning in terms of Feynman
trajectories in the circuit [43,117]. This picture motivates
an alternative derivation of a lattice field theory, which in
turn suggests a simpler continuum formulation (Sec. VI D).
Our discussion also suggests an alternative way of thinking
about the effective statistical mechanics of random ten-
sor networks, in a way that is closer to traditional replica
formulations of random magnets.

Then we discuss the issue of “replica group theory” for
the MPT on one hand, and the RTN and FMPT on the
other: that is, constraints on the field theories associated
with the replica symmetry [118]. We propose the simplest
candidate Lagrangians in each case (Secs. E–G). We dis-
cuss some of the basic consequences of the simpler of these
Lagrangians, that for the MPT (Sec. H). Our discussion of
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these field theories is relatively schematic: further details
will be given in Ref. [119].

Section I, which is independent of the field theories
proposed here, addresses scaling within the two phases,
not necessarily near the critical point. Finally Sec. J
describes variations of the measurement problem that are
in distinct universality classes, for example, models with
free-fermion structure or with additional symmetries.

A. Multilayer circuits and replica symmetry

The crucial symmetries of the problem arise when
dynamical quantities are written in terms of a multilayer
circuit, illustrated schematically in Fig. 26. (We use the
language of a circuit, with d spatial dimensions and one
time dimension, but analogous considerations apply to a
D = d + 1 dimensional RTN.) This multilayer circuit is a
discrete analog of a path integral with multiple forward and
backward paths, and it arises when we write powers of the
reduced density matrix, say for the final state, in terms of
the circuit. Let us briefly review this.

The layers are N identical copies of the original cir-
cuit V(t) and N copies of its complex conjugate V(t)∗. We
call these “forward” and “backward” layers, respectively.
Formally, the multilayer circuit with a given N may be
written

V(N ) ≡ V⊗ . . .⊗ V︸ ︷︷ ︸
N

⊗V∗ ⊗ . . .⊗ V∗︸ ︷︷ ︸
N

. (122)

The physical quantity of interest will dictate the boundary
conditions at the top and bottom: for example, contrac-
tions of indices between layers, or contraction of the bond
indices at the bottom of a layer with an initial wave func-
tion. We review this in a simple setting in Sec. IV A. An
important feature is the replica trick: N must be left free
at intermediate stages of any calculation and then sent to

FIG. 26. Schematic: multilayer circuit (or tensor network)
with N copies of the circuit V and N copies of its complex
conjugate V∗. Each layer of the circuit has free bond indices
at the bottom and top (initial and final time), which are not
shown. The actions of the left and right permutation symmetries
and the Z2 exchange that make up the internal symmetry group
GN = (SN × SN )� Z2 of the replica field theories are illustrated.

a limiting value at the end [13,14,34,36]. (A special case
where replicas can be omitted is mentioned in Sec. IV B
below.) Replicas allow us to handle denominators that arise
because of the normalization of states [36] [nonunitar-
ity means these normalization factors are nontrivial, see
Eq. (3)] and/or to deal with logarithms in the definition
of the entanglement entropies. See Refs. [13,14,36] for
detailed discussions of this for the RTN and MPT.

The global symmetry of the effective models arises ulti-
mately from a simple invariance of V(N ) under various
operations. V(N ) is clearly invariant under (i) permutations
of the forward layers among themselves; (ii) permuta-
tions of the backward layers among themselves; and (iii)
complex conjugation accompanied by exchange of all the
forward layers with all the backward layers [43]. Together
these make up the symmetry group:

GN ≡ (SN × SN )� Z2. (123)

Here the Z2 is generated by (iii) above. GN is a symmetry
of the bulk structure of the tensor network; it will in gen-
eral be broken by boundary conditions, e.g., by a choice of
index contractions at the boundary of V(N ).

A formal way to see the importance of this symmetry is
via explicit mappings of random circuits or random tensor
networks onto effective lattice spin models. We review this
next. We give an alternative picture below in Sec. VI D,
by introducing an Edwards-Anderson-like field in a multi-
layer tensor network (this alternative picture may be more
intuitive for those familiar with random magnets).

In simple models, averaging over the random tensors
or unitaries leads to effective lattice magnets in which the
“spins” σ (not to be confused with the physical spins that
the circuit acts on) are valued in the permutation group
[13,14,34–36,42,44,45]:

σ ∈ SN . (124)

FIG. 27. Schematic: mapping a circuit with unitaries and pos-
sibly measurements to an effective spin model. Each physical
unitary gives rise to a separate spin degree of freedom σ ∈ SN
(yellow circles). These spins have interactions on downward
pointing triangles (shaded). We refer to σ and its continuum
versions as the “pairing field.”
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[ ]

FIG. 28. Schematic: boundary conditions in the model for
effective spins σ obtained for a 1D unitary circuit with or without
measurements. Lines and triangles indicate interactions. The val-
ues of the boundary spins are fixed, and determined by the choice
of contractions at the initial and final time in the multilayer
circuit.

We do not need details of the lattice construction, but
Fig. 27 shows an example for a 1+ 1D circuit geometry.
For each unitary in the original circuit, we obtain a spin
degree of freedom σ in the effective statistical mechanical
model. We may write the partition function for these spins
schematically as

ZN =
∑

{σ }
W({σ }). (125)

The boundary conditions on the σ depend on the observ-
able (Sec. IV B). The Boltzmann weight W({σ }) is a
product of local weights on each of the shaded triangles
in Fig. 27: the form of the weight J (σa, σb, σc) for the
three spins σa, σb, σc on a given triangle, specifying how
they interact, may be found in Refs. [13,14] for a circuit
with measurements and in Refs. [34,42] for the purely uni-
tary case. Constructions for the random tensor network
with random Gaussian tensors were discussed earlier in
Ref. [35] and extended to take into account the replica
trick in Ref. [36]. In all these cases the interaction terms
are, loosely speaking, ferromagnetic, in that the Boltzmann
weight is maximized when the σ configuration is uniform.

Physically, the spin σ should be thought of as a way
to label a choice of pairing of the forward layers with
the backward layers. Let the permutation σ ∈ SN map a
given element i ∈ {1, . . . , N } to σ(i). Then σ stands for the
pairing in which forward layer i is paired with backward
layer σ(i) and so on. For example the identity permuta-
tion, σ = I, denotes the pairing of 1 with 1̄, of 2 with 2̄,
and so on, i.e., in the pattern:

(126)

We take N = 3 for this example, and we reorder the layers
in comparison with Fig. 24 so the pairing can be drawn

without crossings. For the transposition, σ = (12), layer 1
is paired with 2̄ and layer 2 with 1̄:

(127)

Since σ specifies a pairing of layers, we sometimes refer
to it (and the continuum versions in the subsequent sec-
tions) as the “pairing field.” The physical interpretation of
these pairings of layers is discussed in Sec. VI D below.
Heuristically, pairing Feynman histories in the discrete
time evolution allows phase cancellation to be avoided
[34,43], in the spirit of the diagonal approximation in
periodic orbit theory [117].

That is, we may think of the multilayer circuit as a dis-
crete path integral for N forward and N backward copies
of the system. A Feynman trajectory is specified by a
sequence of spin states in each of the copies. In a given
layer, the corresponding product of matrix elements of
local gates is the discrete analog of the exponentiated
action for a continuum Feynman trajectory: eiS or e−iS

depending on whether it is a forward or a backward layer.
After averaging (or, in some cases, even without averag-
ing [43]) this multilayer path integral may be dominated
by configurations in which forward and backward layers
form “pairs” with similar spin configurations, contributing
opposite phases to the total weight. Such a pairing allows
the effect of phase cancellation to be reduced. (See also
Sec. VI D.) The pattern of pairing will in general differ at
different locations in space time, corresponding to space-
time dependence of the pairing field σ . If the boundary
conditions—say at the final time—involve pairwise index
contractions of layers, as arise in the expressions for Rényi
entropies (Sec. IV B), this will act as a boundary “magnetic
field,” which selects out a particular value for the pairing
field σ at the boundary (see for example Fig. 28).

GN acts on σ via both left and right multiplications, for
the two SN factors, respectively, and via inversion for the

FIG. 29. Left: the simple random tensor network described
around Eq. (147), with bond dimension 2, which reduces to a
square-lattice Ising model with complex interaction constants
(right). The Ising spin values on the right represent values of
bond indices on the left.
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Z2 generator, so that we have the symmetry transforma-
tions:

σ → gLσg−1
R , σ → σ−1, (128)

for permutations gL and gR, together with combinations of
the above.

The effective spin interactions in Eq. (125) are local
for simple choices of the random tensors or gates, but in
general depend nontrivially on N , and may even be nega-
tive [120]. However, there is a relatively simple picture of
the entangling phase as a phase where σ is ferromagneti-
cally ordered, so that GN is spontaneously broken, and of
the disentangling phase as a disordered phase. Entangle-
ment entropies may be expressed as free-energy costs for
nonuniform boundary conditions [34–36] (see Sec. IV B).
We appeal only to these facts and the symmetry structure
above. Note that the simplest nontrivial case is N = 2: then
there are only two possible pairings, I and (12). Denoting
these + and − leads to an effective Ising model [35,42]. In
this case GN reduces to a simple Z2 symmetry relating the
two states.

Finally, we must specify the replica limits of interest.
Loosely speaking, the required value of N [14,36] can be
seen by counting powers of V. It is

N → 1 for the MPT, (129)

N → 0 for the RTN and FMPT. (130)

N → 0 is what we typically have for systems with
quenched randomness (Sec. VI D). The additional power
of V and V∗ for the MPT comes from Born’s rule factor
(recall that we label V = Vm by the sequence m of mea-
surement outcomes obtained in a given realization of the
dynamics):

P(m) = 〈ψ |V†
mV �m|ψ〉, (131)

which must be included in every average for the MPT. We
review this more carefully in Sec. IV B.

B. Boundary conditions in replica formalism

In order to review the replica formalism [13,14,36], let
us express the operator entanglement S2 of the nonunitary
time-evolution operator V in a measurement or forced-
measurement circuit. The latter case is precisely analogous
to a random tensor network, except that for the case of time
evolution there is a natural division of the external legs
of the tensor network into those associated with the initial
time and those associated with the final time. We focus in
this subsection only on reviewing how the boundary condi-
tions in the effective partition function arise formally (see

Sec. VI D for more on how the “pairing field” arises in the
bulk).

We define the operator entanglement in Sec. II. Recall
that, if we view V formally as a tensor network wave func-
tion for 2N spins, then ρt is the unnormalized reduced
density matrix associated with the final-time legs. Let us
start with the case of the FMPT, where expectation values
(denoted by E[. . .] or [. . .]), are simple averages over the
unitaries and projections in V. The expectation value of the
second Rényi entropy is

(132)

On the right we indicate the pattern of index contraction
graphically. The vertical lines represent a stack of copies
of V and V∗, like that in Fig. 24, but viewed from the side.
For convenience, we order the four layers in the stack as
follows: V∗, V, V∗, V (instead of grouping all of the V∗s
together as we do in Fig. 24). The arcs at the top and
bottom indicate the pattern of index contractions between
layers. Index contractions are done separately for each of
the physical sites.

Next let us define “partition functions” that are aver-
ages of the multilayer circuit with particular choices of
boundary conditions. We use the notation ZN (σ |τ) for the
average of the circuit with N layers of V and N layers of
V∗, and with index contractions in the pairing pattern σ at
the top and τ at the bottom. For example,

(133)

ZN (σ |τ) maps to a partition function for the pairing field
with an effective “magnetic field” favoring pairing state σ
at the final time (top) and τ at the initial time (bottom).

Equation (132) is not immediately written in terms of
such partition functions, because of the logarithm and the
fraction, but this can be dealt with using the replica trick
[36]. Equation (132) is trivially equivalent to

(134)

for any m > 0, since the factors of m cancel. But one may
check (by expanding in m in the numerator and denom-
inator below) that in the limit m→ 0 the expectation
value may be taken for the numerator and denominator
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separately:

(135)

As usual, we treat m as a positive integer at intermediate
stages of the calculation. The above then becomes

S2 = − lim
m→0

1
m

ln
Z2m(I| τ2,m)

Z2m(I|I) . (136)

Here τ2,m denotes a permutation in S2m that is a product of
m commuting two cycles [34]

τ2,m = (12)(34) . . . (2m− 1, 2m). (137)

Equation (136) may now be interpreted as the free-energy
cost of imposing distinct boundary conditions for the pair-
ing field σ (represented by the continuum field X in the
sections below) at the initial and final times. If the free-
energy cost for given boundary conditions σ and τ is [121]
FN (σ

−1τ) then

S2 = lim
m→0

1
m
F2m(τ2,m). (138)

This generalizes directly to higher Rényi entropies. (The
von Neumann entropy can either be obtained using an
additional limit n→ 1, or by a slightly different construc-
tion with a single replica limit [36].) Note that the total
number N of replicas (denoted 2m above) tends to zero as
stated above for the FMPT and the RTN.

The simplest situation, discussed in the next subsection,
is where the pairing field is well ordered across the entire
sample. Then the free-energy cost F is essentially the free-
energy cost of inserting a single domain wall in this order
[34–36]. See for example Fig. 30 in Sec. I.

In fact, in this situation (the strongly ordered regime)
results from the unitary case suggest that in the replica limit
can be dispensed with: we can map the entanglement to
the free-energy cost of a single domain wall in an effective
classical disordered system [34]. The most direct way to
understand this is to avoid the replica trick entirely [43]. It
is possible to make a formal mapping of the multilayer cir-
cuit in Eq. (132) (with N = 2) to an “Ising model” without
any averaging. In general this model has complicated long-
range interactions, so that it is is not useful for discussing
the critical point. But in the strongly ordered regime we
expect (assuming the considerations for the unitary case in
Ref. [43] carry over) that the interactions are effectively
local after sufficient coarse graining. S2 in a given real-
ization can then be understood as a domain wall cost in a

x1 x2

x3

xd

σ = (1,2) σ =

t

1

FIG. 30. At large times, a system in d + 1 space-time dimen-
sions is quasi-one-dimensional. The long timescale τ in the
entangled phase, with ln τ ∼ sN , is due to the free-energy cost,
which is approximately sN of a domain wall in the effective spin
model (Sec. I). At early times, the replica trick can be avoided,
giving a domain wall in a disordered Ising model. More generally
we must use the replica spin model.

disordered Ising model. This is a route for justifying the
use of an Ising model to discuss, for example, sublead-
ing corrections to the volume law in the entangled phase
[24,27]. When the critical point is approached we must
however return to the replica description above.

The application to the MPT is similar to the
case of the FMPT. Graphically, the Born probability
P(m) = 〈ψ |V†

mVm|ψ〉 for a sequence of measurement out-
comes may be denoted by

(139)

where the dots represent contraction with ψ or ψ∗ as
appropriate. Let us absorb a trivial constant into “E” so
that it denotes the average over the structure of the circuit
together with the unweighted sum over m:

(140)

We may simplify the formulas slightly by averaging over
the initial state, which yields

(141)

The replica trick then allows us to write

S2 = − lim
m→0

1
m

ln
Z2m+1(I|τ2,m)

Z2m+1(I|I) . (142)

Formally this is similar to Eq. (136), but the total number
of replicas N = 2m+ 1 is taken to 1 rather than 0 [13,14].
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C. Permutations and coarse graining

We now focus on the critical properties. Let us first
make a brief detour to consider coarse graining a lattice
model of permutations, such as that shown schematically
in Eq. (125), in an abstract sense, in order to understand
one of the basic challenges. (This section is not an essential
prerequisite for the following developments—the reader
who wants to get to the concrete results may wish to
skip it.)

We work throughout with a system in some finite num-
ber of dimensions D = d + 1 (the space-time dimension in
the case of a circuit). Naively we might expect the limit of
large d to match the all-to-all circuit (as in Sec. III E) but
this is unclear (Sec. H).

Let us first imagine attempting a block-spin RG pro-
cedure in a naive way, by simply “averaging” the spins i
within each D-dimensional local block:

μblock ∝
∑

i∈block

σi. (143)

What does this expression mean? At this point, each σi on
the rhs is a formal group element in SN . Their linear com-
bination, μblock, is no longer in SN , since addition is not a
group operation (only multiplication). Instead it is an ele-
ment of the group algebra of SN [122]. A general element
of the group algebra is a linear combination of the elements
g of the group with numerical coefficients Mg ,

μblock =
∑

g∈SN

Mgg, (144)

where in the present case Mg ∈ R. In other words, we
can think of the coefficients Mg as forming a vector M of
length N !, which is the order of SN . The coarse-grained
spin above is equivalent to this vector.

However, μblock, or equivalently the vector M, is not
a natural coarse-grained field in general. The reason for
this is that M does not form a single representation of the
global symmetry GN . Instead, the N !-dimensional vector
space splits into many distinct representations, in fact a
number of representations that grows exponentially as N
grows. Standard results for the group algebra imply that
the representations of GN that appear when we decompose
μblock are in one-to-one correspondence with the irre-
ducible representations of SN [122]. To extract a particular
representation of GN , we simply replace the formal group
elements in Eq. (143) with their matrix representatives in
the corresponding representation of SN .

This means that our initial attempt to form a block spin
has led us not to a single coarse-grained field, but to an
indeterminate number (because N must be left free) of
different coarse-grained fields, each in a different represen-
tation of the global symmetry group GN .

In principle, we could try to write down a Lagrangian
including all of these fields. However, since the number
of these fields, and therefore the number of couplings,
depends on N , this does not seem promising. Instead, it is
natural to hope that only one or a small number of the fields
become massless at the critical point, and the other fields
do not need to be included in a continuum Lagrangian. This
is the assumption we make, motivated by the more explicit
picture in the following section.

This picture of splitting μblock into separate fields gives
an alternative view on the discussion of the percolation
fixed point in Ref. [36]. The authors imagined starting with
a lattice model with a much enlarged symmetry, SN ! (not
SN or SN × SN or GN ). This much larger symmetry group
is allowed to arbitrarily permute all the N ! values σ ∈ SN
that the spin can take. Such a lattice model is simply a Potts
model with Q = N ! states, for which the continuum the-
ory is well known (becoming percolation when Q→ 1).
The authors then considered deforming model in the direc-
tion of the physical model of interest [cf. Eq. (125)], which
does not have SN ! symmetry. They found that the lowest-
order perturbation that could be added was quadratic in the
Potts field, and so relevant. However, there was consid-
erable freedom in the index structure of this perturbation,
which could be formed from any class function of SN .

From the present point of view, this perturbation is a sum
of mass terms, with one independent mass for each of the
infinite number of fields that appear when we decompose
μblock above into representations of SN for arbitrary N .

D. Motivating a simple Landau theory

A familiar way to represent a permutation in SN is as an
N × N matrix Xa,b of ones and zeros, with a single 1 in
each row and in each column,

∑

a

Xab = 1,
∑

b

Xab = 1. (145)

Under the global symmetries in Eq. (128), this matrix
transforms as

X → LXR−1, X → X T, (146)

where L and R are permutation matrices representing gL
and gR.

We might hope that we can build a Landau theory from
such a matrix. In terms of the discussion in the previ-
ous section, this will correspond to the simplest choice of
representations of GN to include in the continuum theory
(discussed below). In fact we can motivate such a Landau
theory in a more direct way, without the need to go through
the mappings discussed above involving permutations.

For this we appeal to the basic physical picture for why
the pairings of layers arise in the multilayer circuit, which
is to avoid phase cancellation. To make this explicit, let us
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consider a particularly simple example of a tensor network
V (which we can interpret formally as a nonunitary time
evolution for qubits) with the geometry in Fig. 29(left).
Label the bond index values by S = ±1 (these are the
spins’ σz values if V is interpreted as a time evolution).
Take the local gates w, with bond indices S1, S2, S3, S4, to
have the simple form

wS1,S2,S3,S4 = exp

⎛

⎝
∑

1≤i≤ 4

hiSi +
∑

1≤i<j≤ 4

Jij SiSj

⎞

⎠ , (147)

where each h is an independent, identically distributed
complex Gaussian variable with mean zero, and equal vari-
ance �2

h/4 for its real and imaginary parts, and similarly
for the J s, with variance�2

J /2. (These couplings are taken
complex since tensors in a generic tensor network are
complex.)

The tensor contraction defining V involves a sum over
all the indices carried by the internal bonds in Fig. 29, i.e.,
over all Feynman trajectories, if we think of the vertical
direction as time. This tensor contraction is an Ising par-
tition function for the indices Si on the bonds i. With the
choices above, this Ising model lives on a rotated square
lattice. We may write its partition function as

Z ≡
∑

{Si}
exp (iS[{S}]) , (148)

where the exponentiated lattice “action” eiS is just a prod-
uct of terms of the form Eq. (147), so that iS[{S}] is an
Ising Hamiltonian with random complex magnetic fields
and random complex nearest-neighbor couplings. This is
schematic as we have left the boundary conditions unspeci-
fied. (Fixed boundary conditions on the spins give a matrix
element of V, for example; in practise we are interested
in taking several layers of Z, which are coupled at their
boundaries.)

Quantities of interest involve the replicated partition
function (cf. Fig. 24). Up to boundary conditions, this is
given by averaging ZN × Z∗N over all of the random h
and J parameters, as in the standard application of the
replica trick to the Ising model with random bonds or ran-
dom fields [82]. Introducing N replicas of the Ising spin
for the forward layers, denoted Sa for a = 1, . . . , N , and N
replicas for the backward layers denoted S

b
, the replicated

partition function ZN has the form

ZN =
∑

{Sa
i },{S

b
i }

exp (−Seff) (149)

(we do not include an i in the definition) with

Seff = −�2
J

∑

〈ij 〉

∑

ab

Xab(i)Xab(j )−�2
h

∑

i

∑

ab

Xab(i),

(150)

where we define the “pairing field”

Xab(i) = Sa
i S

b
i . (151)

This is similar to an Edwards-Anderson order parameter in
an Ising spin glass. However, the usual Edwards-Anderson
order parameter would be of the form SaSb (as there
would be no distinction between forward and backward
layers) and the replica permutation symmetry would act
on both a and b together. In the present case we have
separate permutation symmetries for the row and column
indices of X .

We defer an explicit discussion of coarse graining for
this and other microscopic models to a separate publication
[119]. Here we note only that the form of Eq. (150), with
ferromagnetic interactions between the pairing field X for
different sites, motivates writing a continuum Lagrangian
for an N × N matrix, as discussed above.

In the present microscopic formulation, X is not a per-
mutation matrix, but the action of symmetry is the same
[Eq. (146)]. This is what we use, together with the assump-
tion that the pattern of symmetry breaking in the entangled
phase is the simplest one corresponding to pairing, i.e., to
a choice of permutation.

Without loss of generality, let this permutation be the
identity permutation (other cases are related by symmetry).
Then the pattern of symmetry breaking is captured by an
expectation value of the form

Xab = f δab + c, (152)

where f is the order parameter. Here c is a constant,
which is generically nonzero even in the disordered phase,
since (unlike f ) it does not break any symmetry. This
order breaks GN down to SN × Z2, where the remaining
permutation group is the subgroup of diagonal SN × SN
transformations with gL = gR. (We briefly discuss more
complex possibilities for symmetry breaking in Sec. J.)

The physical interpretation of X is simple: if in some
region the spin configuration in the forward layer a is close
to that in backward layer b, then the coarse-grained Xab in
this region will be large. Heuristically, we expect repulsive
interactions between Xab and Xac for b �= c: if the configu-
ration in a is close to that in b, the phases from the a layer
are already (partially) cancelled, so there is less gained by
also pairing with c.

Let us briefly mention a caveat to the above discussion.
A “random tensor network” is by definition a statistical
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mechanics problem with very little required structure. Sim-
ilarly the complex Ising model discussed above (which is
an example of a random tensor network) is close to being
the most general Ising model that one could write down
for this lattice geometry [123]. On the other hand, the
true measurement dynamics in the MPT does have some
structure (for example, structure associated with causality),
which is not present in a generic tensor network. In writing
down the field theory in the next section we are assum-
ing that the only aspect of the structure of the MPT that is
important for the critical theory is the shift in the number of
replicas from N = 0 to N = 1 that is induced by the Born
probability. This assumption should certainly be examined
further.

We note that the unitary limit, r = 0, is a case where
additional structure due to unitarity certainly is impor-
tant. There the appropriate effective “spin model” has hard
constraints on the allowed spin configurations, which, for
example, enforce causality [34,42,44] (these are relaxed
when projection operators are included [13,14]). As a
result, the unitary models do not possess invariance under
O(d + 1) rotations in space time, even in the scaling limit,
and are not described by the field theories below, which
do possess this symmetry. However, the unitary models
do share some features with the ordered phases of these
theories, such as a positive domain wall tension.

E. A field theory for the measurement transition

With this motivation, let us write the simplest
Lagrangian for Xab, which can represent a coarse grain-
ing either of a permutation matrix or of the composite field
above. We see that this simplest Lagrangian passes a basic
consistency check for the MPT. (In the next section we see
that we need to extend it for the RTN and the FMPT.)

Let us make subtractions so that the row and column
sums of the matrix give zero:

∑

a

X̂ab = 0,
∑

b

X̂ab = 0. (153)

In the case where X is microscopically a permutation, this
simply requires us to subtract a constant:

X̂ab = Xab − 1
N

. (154)

As a result of these linear constraints, which are preserved
under coarse graining, X̂ has (N − 1)2 independent com-
ponents, and forms an irreducible representation of GN .
Below we omit the caret on X̂ .

Including terms in the potential only up to cubic order
in X , and imposing GN symmetry gives a relatively simple

Lagrangian. The theory we propose for the MPT is

L =
∑

ab

[
1
2
(∂Xab)

2 + μ
2

X 2
ab + gX 3

ab

]
. (155)

We include both time and space derivatives in the first term
with the same coefficient, i.e., we set a nonuniversal speed
to 1. This field theory has emergent Euclidean rotational
invariance (not Lorentz invariance) in space time if this is
not broken by boundary conditions. The components of the
matrix X are not independent, because of the constraints in
Eq. (153). Note that as a result, in contrast to the theory dis-
cussed in the next section, the only linear term

∑
ab Xab that

would be allowed by symmetry is in fact zero. The replica
limit N → 1 is also implied. The renormalized squared
mass vanishes at the critical point, μ2 ∝ (r− rc).

Alternatively, we may write X in terms of an uncon-
strained (N − 1)× (N − 1) matrix field φαβ [124],

L = 1
2

∑

αβ

[(∂φαβ)2 + μφ2
αβ]+ g

∑
Dμνλ
αβγ φαμφβνφγλ.

(156)

The tensor D is a tensor product of that appearing in the
cubic term of the Potts model [80,81]:

Dμνλ
αβγ = dαβγ dμνλ, dαβγ =

N∑

a=1

ea
αea
βea
γ . (157)

The theory with the cubic term can only make sense for the
replica limit—for N > 2 we have an unstable potential and
for N = 2 the cubic term vanishes. This is also the case for
the Landau-Ginsburg-Wilson-like theory for percolation,
which we already discuss in Sec. III B. Like that theory, the
upper critical space-time dimension of Eq. (155) is D = 6.

A basic consistency check on our picture is that this
theory indeed sustains a stable ordered phase, with the sim-
ple pattern of symmetry breaking described in previous
sections, when μ2 < 0. That is, the masses of fluctua-
tions about the ordered state should remain positive in
the replica limit N → 1: otherwise some more complex
pattern of symmetry breaking might be required [125–
127]. To check this we put Xab = f (δab − 1/N )+Wab,
where f is the magnitude of the order parame-
ter, and W represents fluctuations (with

∑
a Wab = 0,

etc.). The saddle-point equation requires f = −μ2

3g
N

N−2 .
The mass terms in the Lagrangian for W are then
L = −μ2N

2(2−N )

(∑
ab W2

ab − 2
∑

a W2
aa

)
. We may check that

the eigenvalues of the mass matrix appearing here are
indeed positive when μ2 < 0 and N → 1 (Appendix 1),
so this consistency check is satisfied.

Now we consider another important consistency check.
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F. Counting fields

Above we start with an N × N matrix Xab transform-
ing under GN symmetry. For integer N > 1 we may split a
general such matrix into four distinct fields, transforming
under distinct representations of SN × SN :

S ≡
∑

ab

Xab,

Ra ≡
∑

b

Xab − S
N

,

Cb ≡
∑

a

Xab − S
N

,

X̂ab ≡ Xab − Ca + Rb

N
− S

N 2 .

(158)

The last of these, X̂ , is in the fundamental (standard) rep-
resentation for both SN factors. It lives in an irreducible
representation of GN of dimension (N − 1)2. R and C each
transform under only one of the SN factors. Since they are
exchanged by the Z2 generator, together they form a single
representation of GN of dimension 2(N − 1). S is a singlet.

For the MPT we construct a Landau theory that con-
tained only the field X̂ . This is the obvious thing to do for
various reasons (for example, if we think of X̂ microscop-
ically as a permutation matrix, then R, C, and S are trivial
constants). We conjecture that for the MPT X̂ is the only
field that becomes massless at the critical point.

However, the group theory at N → 0 [128] gives addi-
tional constraints, which strongly suggest that all of the
representations in Eq. (158) become simultaneously mass-
less at the critical point, so that we cannot throw away the
representations R, C, and S. Therefore, we have to work
with a general matrix X in which the row and column sums
are not fixed to zero. The first indication of this is that the
subtractions in Eqs. (154) and (158) diverge when N → 0.

As with many other replica field theories, the partition
functions that we are interested in become trivial—exactly
equal to 1—in the replica limit, for certain choices of
boundary conditions. An unusual feature of the circuit
models with measurements or forced measurements is that
this occurs at two values of N . When N → 0 (FMPT) it
occurs for the usual reason—because the partition func-
tion is the average of something raised to the power zero.
When N → 1 (MPT) the partition function is the sum of
the probabilities of all the measurement outcomes—again
giving 1 but for a different reason.

The fact that the microscopic partition function is equal
to 1 implies constraints on the spectrum of operators in the
continuum theory [118,128–130]. Here a minimal heuristic
point will be sufficient: there should not be any massless
fields left when N is set equal to N∗, the desired num-
ber of replicas, otherwise we have a nontrivial free energy,
contradicting Z = 1.

The Lagrangian, Eq. (155), for the MPT satisfies this
condition, since the field is in a representation of dimension
(N − 1)2, which tends to zero when N → 1. Therefore, it
passes this basic consistency check.

At first we might assume that the same field theory can
also be continued to N = 0 in order to describe the RTN
and FMPT. However, this is not the case. Since (N − 1)2

is equal to one in this limit, rather than zero, this is not
consistent.

However, the total multiplicity of all the representations
in Eq. (158) is just N 2 (the number of components of the
matrix), which does tend to zero in the replica limit N →
0. This suggests that we should write a Lagrangian for a
matrix X without imposing any condition on its row or
column sums [131]. This is what we do next.

G. Field theory for random tensor network and FMPT

Let us denote the unconstrained real N × N matrix by
Y, to distinguish it from the matrix X above, which obeyed
linear constraints. Assuming only GN symmetry and no
constraints on Y, we argue below that the most relevant
terms as N → 0 are contained in

L=
∑

ab

[
1
2
(∂Yab)

2+ rYab+ gY3
ab

]
+ m2

F

2

∑

abcd

YabFab,cdYcd,

(159)

where F is the tensor

Fab,cd = δbd + δac. (160)

The parameter that drives this theory off criticality is r,
the coefficient of the linear term (not to be confused with
the measurement rate in previous sections, also denoted
r). Since no constraint is imposed on Y, this linear term
does not vanish (contrast Sec. E). The term

∑
ab Y2

ab is
absent because its coupling can be set to zero by a shift
Yab → Yab + C with a constant C, i.e., it is redundant
[132]. Surprisingly, we find below that for this theory the
upper critical dimensionality of space time is D = 10.

A peculiar feature of the N → 0 limit of Eq. (159),
which is shared with some other replica field theories such
as the Landau-Ginsburg formulation of the random-field
Ising model [82], is the presence of a quadratic coupling,
which is not zero at the critical point and which cannot be
removed. This is the term m2

FY.F .Y.
If we instead study the above theory for a larger value of

N , for example in the N → 1 limit, then the effect of m2
F

is simply to give a mass to certain representations in the
decomposition of Y. The corresponding fields can there-
fore be eliminated at large scales and low momenta. Doing
so returns us to the critical theory proposed in Sec. E for the
MPT, with μ2 ∼ −r. This is shown explicitly in Appendix
2. However, writing the propagator explicitly shows that
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the limit N → 0 that is of interest to us in this section
does not commute with the limit of small momentum [82].
Therefore, we have to retain the YFY term explicitly.

Note that this term, which can be written

∑

abcd

YabFab,cdYcd =
∑

a

(
∑

b

Yab)
2 +

∑

b

(
∑

a

Yab)
2,

includes contributions such as Y12Y13: this is consistent
with the “repulsion” that is discussed heuristically towards
the end of Sec. VI D, between pairing patterns involving a
given layer.

GN symmetry allows many other terms at order Y3 but
we argue that in the N → 0 limit they contribute only
less relevant couplings. The dimensional analysis may
be simplified using an approach [133–136] introduced
by Cardy for the field theories of the random-field Ising
model [137,138] and the branched polymer [139–141].
Since decomposition into representations of SN fails in the
N → 0 limit, the next best thing is to exploit a decompo-
sition into representations of an SN−1 subgroup acting on
indices 2, . . . , N . Here we must do this for both the row
and column indices of Y.

We make a linear transformation to rewrite the field Yab
as a field yαβ whose indices α and β take values in the set
{+,−, 2, . . . , N }:

yαβ = 1
2

vα .Y.vβ . (161)

The index values + and − denote two distinct linear com-
binations that are invariant under SN−1, while the values
2, . . . , N are permuted by SN−1. The vectors vα are

v+ = 1
2

(
1,

1
N − 1

, . . . ,
1

N − 1

)
,

v− = 1
2

(
1,
−1

N − 1
, . . . ,

−1
N − 1

)
,

vi = (0, . . . , 0, 1, 0, . . . , 0)− 1
N − 1

(0, 1, . . . , 1) ,

(162)

where in the last line the extra “1” is in the ith place. The
N − 1 vectors v2, . . . vN add up to zero, so span only an
N − 2 dimensional space. Below, indices i, j , k always run
over 2, . . . , N . Technical details are in Appendix 3.

After this rewriting, the terms in Eq. (159) up to
quadratic order in Y become

Lquadratic = L(1) +
∑

j

L(2)j +
∑

k

L(3)k +
∑

jk

L(4)jk , (163)

with

L(1) = (∂y++) (∂y−−)+ (∂y+−) (∂y−+)

+ 2ry−− + 2m2
Fy−− (y+− + y−+) , (164)

L(2)j =
1
2
(
∂yj+

) (
∂yj−

)+ m2
F

2
y2

j−, (165)

L(3)k =
1
2
(∂y+k) (∂y−k)+ m2

F

2
y2
−k, (166)

L(3) = 1
4
(
∂yjk

)2 . (167)

Because of the linear constraints
∑

j yj+ = 0 etc., sectors
(2) and (3) each contain N − 2 copies of the same theory,
and sector (4) contains (N − 2)2 copies of the same theory
[142]. In the above rewriting, terms with couplings that
vanish as N → 0 are dropped [133].

Before writing the interaction terms, we use the
quadratic terms to assign engineering dimensions to the
various fields (see Appendix 3 for details). We assign
dimensions xαβ such that all the quadratic terms in the
Lagrangian Eq. (163) are marginal at the critical point
r = 0. This gives

xαβ = wα + wβ , (168)

with (recall that in the case of a circuit D = d + 1 is the
space-time dimension)

w+=D− 6
4

, wi = D− 2
4

, w−=D+ 2
4

. (169)

The RG eigenvalue of a cubic interaction term yαβyα′β ′yα′′β ′′
is then determined by the difference in the number of +
indices it contains and the number of − indices it contains
among α, . . . ,β ′′ (Appendix 3).

However, the terms that can appear are constrained by
the GN symmetry (whose effects are less obvious in the
new representation). We confirm in Appendix 3 that the
cubic term g

∑
ab Y3

ab shown in Eq. (159) is strictly more
relevant than the other symmetry-allowed cubic terms (at
least for large enough D) and is of the form

g
∑

Y3
ab =

g
2

[6y++ (y++y−− + 2y+−y−+)+ 6y++

× (
y−ky+k + yj−yj+ + yjkyjk/4

)

+3
(
y+−yj+yj+ + y−+y+ky+k

)+ 3yj+y+kyjk
]

+ less relevant terms. (170)

The RG eigenvalue of g is (10− D)/2, so the upper critical
dimension for this theory is D = 10.
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H. Consequences of the MPT field theory

We discuss some simple consequences of the putative
field theory for the MPT, deferring a detailed analysis, and
a discussion of the more complicated theory in the pre-
vious section, to another time. However, first we note an
important caveat to the discussion.

Our initial hope is that the large-D limits of these field
theories would give exact results both for the all-to-all cir-
cuits and for tree tensor networks. For example, this is what
we find for the classical minimal cut toy model (because
all-to-all percolation could be understood using the field
theory for percolation in high dimensions, Sec. III E). But
the class of tree tensor networks that we understand best,
including those derived from the all-to-all FMPT circuit
with Haar-random gates, seems not to be described by the
field theory of Sec. G, simply because it is hard to imagine
the exponential scaling of the order parameter in Eq. (52)
being reproduced by a mean-field treatment of Eq. (159).
Therefore, it seems unlikely that the all-to-all circuits stud-
ied in this paper are described by the d→∞ limit of the
above field theories. We do not yet understand the reason
for this difference.

It is not ruled out that our Lagrangians overlook some
crucial structure, and that as a result they do not capture
any models of measurement circuits or random tensor net-
works, even in finite dimensions. For present purposes we
assume this pessimistic scenario does not hold, and that the
two field theories in Secs. E and G do capture at least some
class of models for the MPT and for the FMPT and RTN.
We explore these issues further elsewhere.

The simpler of the two field theories is that in Sec. E
for the MPT, involving a field Xab with vanishing row and
column sums. As a result of the cubic term, this theory
has upper critical space-time dimension d + 1 = 6. Inter-
estingly, the logic of Sec. III E for the percolation problem
above five spatial dimensions applies in this case too,
since it relies only on the engineering dimensions of the
fields. We can therefore carry over the exact exponent val-
ues so that (neglecting physics on timescales shorter than
L = N 1/d, see Sec. III E) the natural scaling variables in
high dimensions are again

t/N 1/5, N 2/5δr, (171)

where δr = r− rc is the parameter driving the transition
(and the number N of spins should not be confused with
the replica number in the preceding sections).

Let us consider the operator entanglement in the ordered
phase, still above the upper critical dimension. The plateau
value of the operator entanglement, S2 ∼ sN , is propor-
tional to the energy cost of a domain wall in X that spans
the system in the spatial directions, as discussed in the fol-
lowing section. In high dimensions the scaling of s follows
from dimensional analysis, giving s ∝ μ5g−2, Eq. (155),

or in terms of the deviation δr from criticality,

s ∼ |δr|5/2, (172)

which is the same exponent as for the classical problem in
high dimensions. A similar scaling form will again apply,
S2 = H [t/N 1/5, N 2/5δr], but with a different scaling func-
tion H . The size of the order parameter X itself, which
may be measured using appropriate correlation functions,
grows linearly with the distance from the critical point,
X ∼ |δr|.

Again we have a characteristic timescale τ = N 1/5W
(N 2/5δr), for an appropriate scaling function W. In the
entangled phase this timescale grows exponentially in N
(Sec. I), with

ln τ ∼ sN ∼ |δr|5/2N (173)

close to the transition.
Below 5+ 1 dimensions the scaling is different, because

the cubic term is no longer dangerously irrelevant. The
appropriate scaling variables are as usual

t/L, L1/νδr, (174)

where ν is the correlation length exponent for the field
theory, Eq. (155). Exponents could be computed in a
6− ε expansion and will differ from percolation exponents
(since the structure of the field theory is different, despite
sharing the same upper critical dimension). In the ordered
phase there is still an exponentially long timescale, with

ln τ ∼ sN ∼ |δr|νdN (175)

close to the transition (Sec. I).

I. Long timescale in the entangled phase

So far in this section we focus on the continuum descrip-
tion close to the transition. Here we discuss something
simpler, namely the emergence of a timescale that (in the
entangled phase) is exponentially large in the number of
spins, and the contrasting short timescale in the disentan-
gled phase. We may consider either a model in d spatial
dimensions with N = Ld spins, or the all-to-all model.
The results in this section are independent of the con-
jectural field theories above, as they rely only on more
basic features of the effective spin model (pairing field)
descriptions.

The appearance of a long timescale may be understood
in analogy to standard 1D or quasi-1D classical models.
Here the 1D coordinate is time: see Fig. 30.

In the ordered phase the pairing field (either σ on the
lattice or X in the field theory) has long-range order across
a temporal slice and, after coarse graining sufficiently, we
may think of it as a function only of time. There is then

010352-43



NAHUM, ROY, SKINNER, and RUHMAN PRX QUANTUM 2, 010352 (2021)

a competition between the free-energy cost of imposing a
domain wall at a particular time, which scales as sN with
s > 0, and the entropy ln t associated with translating the
domain wall in the time direction. At a timescale τ with

ln τ ∝ sN (176)

the translational entropy wins, and domain walls pro-
liferate. Long-range order then no longer extends from
the initial to the final time. By the identification of the
entanglement with a free energy, this also means that the
entanglement begins to decay exponentially with time.

Recently the exponentially long timescale in the entan-
gled phase has been discussed from several points of view.
References [12] and [56] consider a limit where the unitary
evolution during a unit time can be treated as a 2N × 2N

Haar random unitary (see also Appendix E here for related
considerations). Reference [27] has also given an analy-
sis in terms of Ising domain walls that is similar to our
considerations below.

The proportionality in Eq. (176) allows for an order-1
constant: however we expect that N−1 ln τ vanishes in the
same manner as s when the critical point is approached
from the entangled side (for example, with the same power
of the tuning parameter when this dependence is a power
law).

At times sufficiently shorter than τ the operator entan-
glement entropy has a plateau at an extensive value.
The plateau value is corrected by a negative subleading
term whose magnitude grows logarithmically with time.
In terms of the pairing field, the plateau regime is that
where the number of domain walls is the minimal number
allowed by the boundary conditions.

For S2, in the plateau regime, it is in fact sufficient to
think about an Ising domain wall in a system with (Ising
symmetric) disorder, for reason discussed towards the end
of Sec. IV B. That is, we expect that the replica trick can be
avoided in the strongly entangled regime. It is also possible
to argue for the Ising picture using the replica treatment, by
arguing that in this regime the replica theory is equivalent
to the replica representation of a disordered Ising model
[34]. In the replica treatment we have m→ 0 “elementary”
domain walls, each associated with one of the transposi-
tions in τ2,m [Eq. (137)]. These may either bind together,
forming a composite domain wall, or may separate for
entropic reasons. See Ref. [34] for a discussion in the uni-
tary case. However, this system of m→ 0 domain walls
can really just be thought of as the replica description of a
single Ising-like domain wall in a disordered environment.
See Refs. [34,43] for details in the unitary case.

If we neglect quenched disorder, then we obtain

S2 ∼ sN − ln t, (177)

in the plateau region. The second term is the contribu-
tion from translational entropy, arising because the centre

of mass temporal coordinate tDW of the domain wall can
be located anywhere in (0, t). The form in Eq. (177) was
obtained in Ref. [12] in a limit of very dilute measure-
ments, where the system can be viewed as completely
scrambled by a random unitary between each measure-
ment. Reference [27] gave a picture in terms of Ising
domain walls equivalent to the one presented above. Here
we also suggest how the effective Ising model can be justi-
fied (in an appropriate regime and at the level of universal
properties) rather than being only a heuristic model. Our
consideration also implies that we should take into account
quenched disorder, as discussed below. (For another appli-
cation of domain wall entropy in an effective 1D model to
quantum chaos, see Refs. [117,143].)

As a check on the replica picture, we also consider
a toy model for the entangled phase that involves mul-
tiplying large random matrices. A crude treatment in
Appendix E (which neglects spatial structure, random fluc-
tuations, and also the n dependence of the Rényi entropies)
reduces to computing the singular values of a sub-block
of a large Haar-random unitary. This treatment also yields
Eq. (177), and shows that the plateau value sN determines
the timescale for exponential decay of Sn in the regime of
much later times, as expected from the above. An anal-
ysis of related random matrix models has recently been
presented in Ref. [56].

Equation (177) is the simplest picture, neglecting
quenched disorder. In reality there will be more complex
crossovers. For example, in the all-to-all model there may
be a regime of timescales where the subleading correc-
tion is not ln t but instead proportional to

√
N ln t as in the

classical minimal cut problem (Sec. III D).
This is because the conditional free energy F(tDW),

given by fixing tDW, will vary with tDW due to random-
ness: F(tDW) = sN + η(tDW). In high enough dimensions,
and therefore presumably also in the all-to-all model, the
typical fluctuations η(tDW) will be Gaussian with a scale√

N . Although these fluctuations are much smaller than
N , they are in principle much larger than 1. Therefore, at
early enough times the free energy will be dominated by
the optimal (most negative) value of η(tDW), rather than
by translational entropy (see endnote [144]). But at larger
times, there may be a regime where ln t entropy again dom-
inates, giving the functional form in Eq. (177). At still
larger times multiple domain walls will proliferate (and the
full replica treatment is required) and eventually S2 decays
exponentially in time.

The fact that only a single domain wall plays a role
in the plateau regime means that there is an approximate
factorization property for S2 in a given realization of the
circuit. If we divide V into two parts, V(1) correspond-
ing to evolution from 0 to t′ and V(2) from t′ to t, then
e−S2 � e−S(1)2 + e−S(2)2 . The first term includes configura-
tions with tDW ∈ (0, t′) and the second those with tDW ∈
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(t′, t). (This is approximate not only because it neglects
configurations with multiple domain walls but also because
it does not correctly treat domain walls with tDW close
to t′.)

We now contrast the properties of the disentangled phase
with those of the entangled phase. Let us take the limit
N →∞ first, so that as usual we can define the operator
entanglement per spin at a given time:

s2(r, t) = lim
N→∞

S2(r, t, N )
N

(178)

(we write this equation for S2, but the choice of Rényi
index n ≥ 1 should not be crucial). In contrast to the quasi-
1D limit discussed above, this is the free-energy cost, in an
infinite slab of finite thickness, of imposing the domain-
wall boundary conditions described in Sec. IV B. In the
disentangled phase the free-energy cost per unit transverse
area decays exponentially with the thickness of the slab, so
that s2(r, t) decays exponentially to zero with time.

J. Variants and comments

In this subsection we discuss a few extensions of the
field-theory approach we present, as well as some open
questions.

The measurement problems and random tensor net-
works that we discuss so far have no internal global
symmetries. One could also consider, say, measurement
dynamics with an Ising symmetry [38,41]. The definition
of the pairing field in Sec. VI D allows such symme-
tries to be incorporated, and suggests that in many cases
they will change the universality class of the entanglement
transition.

For example, if the tensor network in Sec. VI D has a
Z2 Ising symmetry that changes the sign of Sa (and if we
assume that the field whose mass vanishes at the transition
is still Xab ∼ SaS

b
) then odd powers of X are forbidden

by symmetry in the continuum Lagrangian, which com-
pletely changes its structure in the limits of both N → 0
and N → 1.

This symmetry consideration highlights a feature of the
discussion in Sec. VI D, which is that the definition of
Xab involves choosing a local basis. In many cases this
choice may not seem natural: for example, in many ran-
dom models, the statistical invariance property emphasized
in Sec. 1 ensures that any choice of local basis is equivalent
to any other. (The exact mappings to models of permuta-
tions avoid having to choose a basis, but on the other hand
it is less obvious how to coarse grain them.) An open ques-
tion is whether this necessity of choosing a basis is just
an aesthetic issue, or a fundamental one. Is it possible, for
example, that the statistical invariance property imposes
constraints on the continuum theory that we neglect to take
into account?

Other restrictions on the unitaries, not related to conven-
tional symmetries, can also change the symmetries of the
replica theory. For example, if all the unitaries are real val-
ued [145] then there is no distinction in the bulk between
forward and backward layers. The symmetry group GN
is then enlarged to S2N . In this case we can introduce a
pairing field in a similar manner to Sec. VI D, now with
a replica symmetry action like that in standard disordered
magnets and spin glasses. (The restriction to Clifford uni-
taries [7,12,15,17,22] is a more drastic change, which may
require a different theoretical approach.)

The picture in Sec. VI D relates random tensor networks
(for which the limit N → 0 is the appropriate one) to the
language typically used to discuss spin glasses. This rela-
tion raises the question of whether other types of replica
symmetry breaking, or other types of glass transition [127],
are relevant to natural choices of circuit or tensor network.
(Of course we could always engineer, say, a glassy phase if
we specifically design a tensor network with this in mind.)
For example, one could imagine a second transition tak-
ing place inside the entangled phase for some choices of
tensor network. At the entanglement transition, the 2N lay-
ers form a collection of N pairs, breaking GN symmetry
down to SN × Z2. Can the residual SN symmetry be bro-
ken in a subsequent transition? What are the entanglement
properties of the resulting (presumably glassy) phase?

A statistical mechanics problem that provides a possible
analogy for some of these phenomena is the directed poly-
mer with random complex (or random sign) weights [146–
151]. The replica formulation of this problem involves N
copies of the polymer’s partition function and N copies
of its complex conjugate. Averaging over random phases
forces the copies to form pairs in order to avoid phase can-
cellation [148], in analogy to the pairing phenomenon in
the circuits. Further, the paired object—a bound state of
polymers from different copies—may itself undergo phase
transitions due to disorder. Perhaps this simpler problem
can provide lessons for the circuit.

K. Free-fermion measurement dynamics

Models of free fermions subjected to stochastic dynam-
ics [37,38,52–54,152–156] can also show a transition in
d > 1 between two phases with differing amounts of entan-
glement [37]. However, instead of an area law and a vol-
ume law phase (for states in finite dimensions), we instead
have an area law phase and a phase with a logarithmic
violation of the area law [37,53,54].

We may also characterize the two phases by transmis-
sion of information between initial and final time, which
gives a distinction that makes sense in any dimension
or for the all-to-all setup. For concreteness we may con-
sider the latter case. The model of Ref. [37], which used
the language of Majorana fermions, has a simple field-
theory description that is related to a model of classical
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FIG. 31. The field-theory description of the Majorana mea-
surement model of Ref. [37] has a continuous replicalike sym-
metry, allowing smooth domain walls that give a more rapid
decay of Sn than in the interacting case where replica symmetry
is discrete (Appendix B2). This exhibits a more general feature
of free-fermion models.

loops (random walks) representing Majorana worldlines.
The quasi-one-dimensional regime, which is relevant here
has been studied in depth in Ref. [157], which also char-
acterizes the statistical properties of random samples. Here
we consider only some more basic average quantities.

The characteristic timescale for the operator entangle-
ment to decay is of order N , where N is the number of
lattice sites, rather than being exponentially large in N as
we find in the interacting case. This is a generic feature of
free-fermion models, as discussed below. Within the “more
entangled” of the two phases, the scaling of the operator
entanglement is

Sn ∝
{

K(r)N/t t K(r)N
exp{−ct/[K(r)N ]} t� K(r)N . (179)

Here K (the σ model stiffness) is an order-1 constant
deep in the phase, and vanishes as K(r) ∼ (δr)2 upon
approaching the transition at r = rc to the disentangled
phase (c is a fixed order-1 constant). Note that the scaling
in Eq. (179) is identical to the conductivity of a disordered
N -channel wire, showing the crossover from Ohm’s law to
localization on a timesale of order K(r)N [157,158].

The reason for the reduced timescale in the entangled
phase (of order N compared to the exponential timescale
in interacting models) is that the appropriate replica field
theory has continuous, rather than discrete, replica symme-
try. In the ordered regime, a nonlinear σ model description
may be used. Domain walls are smooth objects whose free-
energy cost decreases with their thickness, which in the
case of interest is the temporal duration t of the evolution:
see Fig. 31.

For this reason, we anticipate that the scaling in
Eq. (179) applies to more general free-fermion models
with measurement. [The scaling of K(r) close to rc will
depend on symmetries and dimensionality. The constant c
may also depend on n in general.] General free-fermion
models can be formulated using the replica trick, in close
analogy to replica σ models for Anderson localization
[159], leading to continuous replica symmetries. However,

in addition to the N → 0 limit familiar from localization,
the N → 1 limit is now also of interest. We discuss this
elsewhere [119].

The timescale of order N for free fermions agrees with
the recent results of Ref. [56], which studied a model
in which measurements of a single fermionic mode were
alternated with Gaussian unitaries acting on the entire sys-
tem. This model has even less locality structure than the
all-to-all circuit. In this limit also, the authors found that
O(N 2) measurements were required to forget the initial
state: this corresponds to t = O(N ) in our conventions.

VII. OUTLOOK

It remains an open question to what extent the properties
of the MPT, in various settings, will turn out to be tractable
(either analytically or numerically). In this paper, however,
we show that exact results are possible in certain regimes.
We close by summarizing the regimes we study, and some
of the outstanding questions.

We begin our analysis by considering the “classical
limit” of the MPT in the all-to-all setting. We show that
a fairly complete picture is possible, including an analyti-
cal derivation of the critical point, critical exponents, and
scaling forms for the entanglement.

Our results for quantum trees, including those obtained
from a spin-1/2 all-to-all circuit, show that exact results
are also possible even far from this classical limit. In this
setting it is possible to demonstrate that an entanglement
transition occurs at a definite nonzero measurement rate
that is distinct from the classical value. (It may even be
possible to obtain rigorous results on the phase diagram
using the recursion relation approach.) The critical scal-
ing on the tree is qualitatively different from a simple
percolation picture.

We argue that the critical point on the tree is the same
as the critical point of the FMPT in the all-to-all circuit
(which is locally treelike). Since the location of the criti-
cal point in the circuit is difficult to check numerically, this
equivalence has not yet been demonstrated clearly by our
numerics. In the future we would like to have a clearer
demonstration (or disproof) of this relationship between
the tree and the all-to-all circuit. Our results based on the
tree are also restricted to the FMPT; it would be interesting
to understand to what extent they are relevant to the MPT.

The scaling on the tree raises several questions that we
hope to return to elsewhere. First, it will be worthwhile
to examine the relationship between the random recursion
relation studied here and approaches to tree tensor net-
works based on replicas [68]. Second, we raise the question
of whether there are multiple universality classes on the
tree. This question remains to be settled, and could perhaps
be addressed by generalizing our approach to a broader
class of trees (with more general distributions of tensors
or with larger bond dimension). Finally, it remains to be
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understood how to reconcile the scaling that we find on the
tree with field theory.

In our numerical study of the MPT we propose observ-
ables that have benefits over the state entanglement, in
that they do not require one to specify a spatial sub-
region. (Constructing such observables is crucial in the
all-to-all setting, for which there is no meaningful dis-
tinction between area-law and volume-law scaling, but
they are also useful in 1+ 1D, where significant finite-
size effects make it important to avoid introducing length
scales that are smaller than the system size.) We demon-
strate numerically that there is a long timescale in the
entangling phase over which some aspects of unitarity
are retained; for example, two initially orthogonal states
remain approximately orthogonal.

The optimal numerical protocol for studying critical
properties in the all-to-all circuit remains to be settled. One
complication is the lack of a priori knowledge of how the
characteristic timescale scales with N when r = rc. In the
1+ 1D problem, establishing that the dynamical exponent
is equal to unity [6,15] allows one to reduce the number of
independent variables in scaling collapses by fixing t/L to
a constant. Our candidate field theory for the MPT suggests
that in high dimensions the appropriate scaling variable is
t/N 1/5, but it is unclear whether this theory applies to the
all-to-all circuit.

The proximity of the classical critical point (rcl
c = 0.8)

to the quantum one (e.g., rc = 0.749 for the FMPT with
Haar-random gates) in the ensembles we study may also
complicate the numerical analysis. For this reason it might
be useful to study an all-to-all model (for example, involv-
ing weak measurements) in which the classical transi-
tion is eliminated entirely. It will also be interesting to
relax the unitary invariance property of the gate distri-
bution: the strong constraints imposed by this invariance
are a surprising feature of our analysis of the quantum
tree.

Finally, we address the replica approach to the MPT and
to random tensor networks, both in the two phases and near
the critical point, and we make concrete proposals for field
theories for these problems. Determining the domain of
applicability of these theories will be the subject of fur-
ther work. A basic ingredient in Sec. VI is the construction
of an “overlap” order parameter for the MPT and random
tensor networks that brings these problems closer to the
language we use for disordered magnets and spin glasses
(in comparison with the more abstract language of permu-
tation group elements used so far): this point of view may
shed light on new possibilities for ordering.
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APPENDIX A: MORE ON CLASSICAL PROBLEM

1. Density of infinite cluster

Here we briefly derive Eq. (18), which describes the
probability f∞ that a given node in the interior of the classi-
cal graph is connected to an infinite number of other nodes
in the limit of infinite N and T. In other words, f∞ describes
the density of the infinite cluster.

Consider the process of building a tree starting with an
arbitrarily chosen node, as depicted in Fig. 4(c). The start-
ing node has four possible edges, each of which may be
severed by a measurement. If we denote by e∞ the prob-
ability that following a given edge will lead to a subtree
with an infinite number of nodes, then

f∞ = 1− (1− e∞)4. (A1)

The quantity (1− e∞)4 denotes the probability that none
of the four edges connected to the starting node leads to an
infinite number of other nodes.

Following a particular edge, one may next encounter
either a measurement [with probability p = r/(2− r)] or
a node (with probability 1− p). The probability that this
node is connected to an infinite number of other nodes at
later generations is given by 1− (1− e∞)3. Thus we can
write a self-consistency relation for e∞, given by

e∞ = (1− p)[1− (1− e∞)3]. (A2)

Near the critical point, p = 2/3+ δp , where δp =
(25/18)δr and δr = r− rc  1. On the disconnected side
of the transition, e∞ = 0, while just on the connected side
(small negative δr) 0 < e∞  1. Expanding Eq. (A2) for
small δr gives e∞ � −(25/6)δr. A similar expansion of
Eq. (A1) gives Eq. (18) of the main text.

2. Effective 1D field theory

Here we derive the mapping between the “layered
Erdős-Rényi” percolation model and the one-dimensional
field theory that is described in Sec. III B.

This is a bond percolation model with sites labeled (i, t)
with i = 1, . . . , N and t = 1, . . . T. Generalizing slightly
from the case in the text let a bond between sites (i, t)
and (j , t) on the same timeslice be present with proba-
bility b/N , and a bond between sites (i, t) and (j , t+ 1)
on the next slice be present with probability b′/2N . The
average degree of a bulk node is z = b+ b′, and from
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considerations like those in Sec. A the critical case is
z = 1.

Bond percolation can be simply mapped to the Potts
model with Q→ 1 states (see Ref. [82] for a review). We
introduce a Potts spin σ(i, t) = 1, . . . , Q on each site (i, t),
and couplings for pairs of sites that are allowed to be con-
nected by a bond. For each pair of spins that is allowed to
be connected there is a term

[(1− p)+ pδσ(i,t),σ(j ,t)] (A3)

in the Boltzmann weight, where p is the bond probability.
The two terms correspond, in a diagrammatic expansion, to
the presence and absence of the bond, respectively. Sites in
the same percolation cluster have the same Potts spin state
because of the Kronecker δs on the bonds. Summing over
spin states gives a factor of Q#clusters, which becomes 1 in
the replica limit. Spin correlation functions can be used to
diagnose connectivity. The probability that two sites (i, t)
and (j , t′) are in the same cluster is [82]

pconn(i, t; j , t′) = lim
Q→1

〈δσ(i,t),σ(j ,t′) − 1/Q〉
1− 1/Q

. (A4)

Below, the limit Q→ 1 will be left implicit.
Using the fact that the bond probabilities are of order

1/N  1, the partition function may be written

Z =
∑

{σ }
exp

⎡

⎣ b
2N

T∑

t=1

∑

i,j

δσ(i,t),σ(j ,t)

+ b′

2N

T−1∑

t=1

∑

i,j

δσ(i,t),σ(j ,t+1)

⎤

⎦ . (A5)

As is standard in the field-theory formulation of the Potts
model [80,81], it is convenient to use a set of (Q− 1)-
component vectors eσ , for σ = 1, . . . , Q to represent the
spin states, with the vectors satisfying

eσ .eσ
′ = δσ ,σ ′ − Q−1. (A6)

For Q = 2 we can take e1,2 = ±1/
√

2. For Q = 3 the three
vectors point to the three corners of an equilateral tri-
angle. For Q = 4 they point to the vertices of a regular
tetrahedron, etc. Note that

∑

σ

eσ = 0,
∑

σ

eσμeσν = δμ,ν , (A7)

as we see by considering (
∑

σ eσμeσν )e
τ
ν and applying

Eq. (A6). Writing e(i, t) = eσ(i,t), and denoting the sum of

the spins in a layer by

Et =
∑

i

e(i, t), (A8)

the partition function is (we drop an unimportant multi-
plicative constant)

Z =
∑

{σ }
exp

(
b

2N

T∑

t=1

E2
t +

b′

2N

T−1∑

t=1

Et.Et+1

)

=
∑

{σ }
exp

[
b− b′

2N

T∑

t=1

E2
t +

b′

4N

T−1∑

t=1

(Et + Et+1)
2

+ b′

4N
(
E2

1 + E2
T

)]
. (A9)

We can use two sets of Hubbard-Stratonovich fields, one
set located at half-integer times, denoted ft+1/2, to decouple
the b′ term, and one set located at integer times, denoted gt,
to decouple the b− b′ term. Each has Q− 1 components.
Once the E appear linearly in the exponent we can sum
over the spins in a given timeslice t (the prime indicates
that the sum is only over these spins) via

∑

{σ }

′
exp [Et.y] =

( Q∑

σ=1

eeσ .y

)N

= QN exp[NV(y)],

(A10)

which defines V(y). Expanding in y for small y and using
the identities mentioned above for the set of vectors {eσ },

V(y) = y2

2Q
+ dμνλyμyνyλ

6Q
+O(y4). (A11)

The tensor d is [80,81]

dμνλ =
Q∑

σ=1

eσμeσν eσλ . (A12)

After integrating out the spins,

Z =
∫

D(f , g)e−
1
2

(∑
f 2+∑ g2

)
+∑T

t=1 NV(yt), (A13)

where the final sum is over integer t. For 2 ≤ t ≤ T − 1,

yt =
√

b′

2N
(ft−1/2 + ft+1/2)+

√
b− b′

N
gt. (A14)

At the boundaries we have, e.g.,

y1 =
√

b′

2N
f1+1/2 +

√
b− b′/2

N
g1. (A15)
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For the present we neglect the boundary terms. The bound-
ary condition on the field theory is important but below we
fix it on physical grounds.

The negative power of N in y will allow us
to truncate the action at cubic order. Let us com-
bine f and g into a field h labeled by both inte-
ger and half-integer values, ht = gt, ht+1/2 = ft+1/2.
The lattice field theory is then (with τ , τ ′ ∈ Z/2)

Z =
∫

Dh exp

⎡

⎣−1
2

∑

τ ,τ ′
hτTτ ,τ ′hτ ′ − 1√

N
A3(h)

⎤

⎦ ,

(A16)

where A3 contains the cubic terms. To avoid clutter, let
us immediately set Q = 1 in the dispersion relation. The
matrix T is then (the first row and column shown corre-
spond to a half-odd-integer index value):

T =

⎛

⎜⎜⎜⎜⎜⎝

· · ·
1− b′ −α/2 −b′/2
−α/2 1− b+ b′ −α/2 0
−b′/2 −α/2 1− b′ −α/2 −b′/2

0 −α/2 1− b+ b′ −α/2
· · ·

⎞

⎟⎟⎟⎟⎟⎠
(A17)

Here we define

α =
√

2b′(b− b′). (A18)

This becomes imaginary when b′ > b—which includes the
line b = 0 on which we do simulations of this model—but
this does not present a problem in the formal derivation
below [160]. Let us write

b = z +�
2

, b′ = z −�
2

, (A19)

where z is the mean degree of a site, and the loca-
tion of the critical point is z = 1 for any value of �.
The dispersion relation has one “massive” mode, and one
mode that becomes massless at the critical point z =
1, at frequency ω = 0, with the eigenvalue of T being
(1− z)+ [(z −�)/4]ω2 +O(ω4). At z = 1 and ω = 0
the eigenvector of this mode is (g, f ) ∝ (√�,

√
1−�).

For the low-frequency theory we make the coefficient of
this mode a slowly varying field, φ(t). Let us write

δz = z − 1 (A20)

for the parameter that vanishes at the phase transition. Let
us drop the small parameter δz except in the mass term,
where it is the leading factor:

Z =
∫

Dφ exp
{
−

∫
dt

[
1−�

8
(∂tφ)

2 − δz
2

φ2
]
− A3√

N

}
.

(A21)

Thanks to the small prefactor 1/
√

N of the cubic term, we
may take the continuum limit in a controlled manner. The
cubic term is negligible for frequencies ω of order 1 due to

the small prefactor, but important at parametrically small
frequencies (since it is RG relevant). Since only small fre-
quencies are important we can simply insert the form of
the low-lying mode at k = 0 into the cubic term without
any need to explicitly integrate out high-frequency modes.
The final result is

Z =
∫

Dh exp
(
−

∫
dtL

)
, (A22)

with the “Lagrangian” (again a factor of Q has been set to
1 in the denominator of the final term)

L = 1−�
8

(∂tφ)
2 − δz

2
φ2 − dμνλ

6
√

N
φμφνφλ. (A23)

Above, all the (Q− 1) components of the field φ are inde-
pendent. We can write a more explicit form at the cost
of using Q fields that obey a linear constraint (summing
to zero). For notational convenience we write them as the
components of a Q× Q diagonal matrix with components

�σ ,σ = φ.eσ . (A24)

The constraint is tracelessness

tr� = 0. (A25)

Equation (A23) becomes

L = 1−�
8

tr(∂t�)
2 − δz

2
tr�2 − 1

6
√

N
tr�3. (A26)

This is the result given in the main text for the special case
b = 0 (i.e., � = −z � −1 close to the critical point).
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Close to the critical point, the connectedness correlation
function for sites at distinct times is

pconn(i, t; j , t′) = 〈
�φ(t). �φ(t′)〉

N (1− 1/Q)
→ 〈φ1(t)φ1(t′)〉

N
, (A27)

where φ1 is an arbitrarily chosen component. We can also
write this as

pconn(i, t; j , t′) = 〈tr�(t)�(t
′)〉

N (Q− 1)
. (A28)

In Appendix A 4 we present results for the connectedness
correlation functions of boundary points. Since the bound-
ary conditions on the Potts spins are free, this corresponds
to the “ordinary” surface transition (discussed for percola-
tion in Refs. [161–163]) where the boundary spin operator
is ∝ ∂t� in the continuum theory rather than � as in the
previous equation [82]. This gives the scaling forms in
Appendix A 4.

Finally let us consider the percolation probability Pperc.
This can be used to define a characteristic timescale
t∗(r, N ) for the classical problem, and it is much simpler
to formulate in field theory than the minimal cut cost. As
discussed in Sec. III E, all this carries over to finite spa-
tial dimensions d > 5 by setting N = Ld. Pperc is equal to
1− e−�F , where �F is the free-energy cost of imposing
twisted boundary conditions [164] on the Potts spins [84].

The scaling form is

Pperc = F
(
t/N 1/5, δrt2

)
, (A29)

where t is now the total time, and we use the notation r for
the parameter driving the transition to match the circuit.
Let us consider a few different regimes.

By a rescaling of the field and the time coordinate we
can choose to write the action in the form (suppressing
order-1 constants)

Seff = N
t5

tr
∫ 1

0
du[(∂u�̃)

2 + (δr t2)�̃2 + �̃3]. (A30)

This rewriting suggests that if we take the limit of large N
and t (and small δr) in such a way that the scaling variable
δr t2 is fixed while N/t5 becomes large, �F is given by a
saddle-point action (we do not try to make this precise in
this replica theory),

ln
(
1− Pperc

) ∼ −N
t5

A
(
δrt2

)
, (A31)

In particular, at the critical point

ln
(
1− Pperc

) ∝ −N
t5

for r = rc and t N 1/5. (A32)

Note that for a system with finite d > 5, unlike the case
d < 5, Pperc is parametrically close to 1 at the critical point

of a system with t ∼ L, i.e., with t ∼ N 1/d. This is because,
for percolation above the upper critical dimension, there
are many percolating clusters in a large hypercubic sample
at pc [165–170].

Next, let us take N large with δr < 0 small but fixed, in
order to examine the exponential growth of the timescale
with N inside the percolating phase. By an alternative
rescaling of the field,

Seff = N tr
∫ t

0
dt′[(∂t′�̂)

2 + (δr t2)�̂2 + �̂3]. (A33)

Assuming again that we can make an analogy with saddle-
point solutions in more conventional theories with dis-
crete symmetry, we anticipate a localized domain wall or
“instanton” solution interpolating between the two bound-
ary condition values of the spin, with a classical action
N × c(r). The scaling form will require c(r) ∼ (δr)5/2
close to the critical point. At sufficiently early times there
is at most one such instanton, which can be placed at any
time in between 0 and t:

1− Pperc ∼ t|δr|1/2 exp[−const(δr)5/2N ]. (A34)

The δr dependence of the prefactor has been fixed by
requiring consistency with the scaling form [171]. There-
fore, the plateau at Pperc � 1 lasts for an exponentially long
time

t∗ ∼ 1√|δr| exp[const(δr)5/2N ]. (A35)

The interpretation is just that the probability of having
a disconnection event at a given time is pbreak ∼ |δr|1/2
e−const(δr)5/2 . Since the probabilities of such events are inde-
pendent, at long times we have exponential decay of Pperc,
with a timescale also given by Eq. (A35).

3. Criticality in layered Erdős-Rényi graphs

As introduced in Sec. III B, the layered Erdős-Rényi
model is a simplification of the classical random graph
depicted in Fig. 4(b), in which a large number N of nodes
are arranged in discrete layers with time index t. Each node
may be connected only to nodes in adjacent time layers;
there are no connections between nodes within the same
time layer. Edges between time layers t and t+ 1 are ran-
domly chosen, such that a total number of edges cN are
created between adjacent layers. The connectivity c is the
major parameter of the model (c is equal to b′/2, in the
notation of Sec. III B), and plays a similar role as the com-
plement of the measurement rate, 1− r. The critical value
of c is ccrit = 1/2, since a given node at time t has connec-
tions to both t− 1 and t+ 1 and its expected number of
total connections is 2c.
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FIG. 32. The percolation probability Pperc for the layered
Erdős-Rényi graph at the critical connectivity b′crit = 1 is plotted
as a function of time. The inset shows the raw data for different
system sizes N , and the main figure shows the same data plot-
ted as a function of (t+ c0)/N 1/5, where c0 = 6 is a constant.
Compare Fig. 5 of the main text.

Since the layered Erdős-Rényi description is the basis
for the theoretical derivation of the scaling forms in in
Sec. III B, we numerically simulate the layered Erdős-
Rényi graph to verify these scaling forms and ensure that
they yield the same behavior as the data presented in
Figs. 5 and 6 for the full classical graph.

Figure 32 shows the percolation probability at the crit-
ical point, plotted as a function of time for different sys-
tem sizes N . A good scaling is observed as a function
of the variable t/N 1/5, as suggested by Eq. (19). At a
fixed value of c and N , the percolation probability Pperc
is observed to decay exponentially with time. As shown
in Fig. 33, near the critical point the scaled exponential
decay time τ(c, N )/N 1/5 is a function only of the variable
(c− ccrit)N 2/5. This is consistent with the scaling forms in
Eq. (19).

4. Two-point correlation functions

In Sec. III C we show that the probability of percola-
tion in the classical graph can be described in terms of the
scaling variables t/N 1/5 and (r− rc)N 2/5 [Eq. (19)]. Var-
ious correlation functions can also be understood in terms
of these same scaling variables. The simplest correlation
function, which we denote by C, is the probability that
two distinct nodes in the graph belong to the same cluster.
The nodes may be on a temporal boundary (either the same
boundary or different ones) or in the bulk of the graph.

In the Potts language, the correlator is the spin two-point
function. The bulk and boundary operators have different
scaling dimensions, with the former scaling like N−2/5 (or
equivalently like t−2) and the latter like N−3/5 (or t−3); see
Sec. III E and Appendix A 2.

As a result of this scaling, the probability Coppo that two
nodes on opposite temporal boundaries are connected by a
cluster has the form

Coppo(T, N ) = 1
N 6/5 Foppo

(
T/N 1/5, δrN 2/5) . (A36)

In Fig. 34 we test this scaling for case r = rc, in order
to confirm the theoretical value for the operator’s scal-
ing dimension. This data is for the simplified multilayer
Erdős-Rényi model described in Sec. III B.

The probability Csame for two sites on the same tempo-
ral boundary to be connected has, in addition to the scaling
term, a noncritical contribution of order 1/N , which is
in fact dominant at rc. This 1/N factor is on the order
of the probability for the two sites to be connected by a
“microscopic” path (for example, by a single bond). For
simplicity, consider the limit T→∞, when only one of
the arguments of the scaling function remains:

Csame(N ) = 1
N 6/5 Fsame

(
δrN 2/5)+ A(r)

N
. (A37)

The noncritical term may be eliminated by a subtrac-
tion: C̃same(N ) = Csame(N )− 2−1Csame(N/2). Figure 35
demonstrates a reasonable scaling collapse for this quan-
tity. This plot constitutes a second check that δrN 2/5 is the
appropriate off-critical scaling variable.

If r � rc is fixed and N →∞, Eq. (A37) shows that
Csame(N ) scales like (rc − r)3; this is the square of the
surface order parameter (the probability that a boundary
site lies in the infinite cluster), which is parametrically
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101
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−1
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N = 16 384
N = 32 768
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0.8 0.9 1.0 1.1
b

101τ

FIG. 33. The timescale τ for exponential decay of the percola-
tion probability is plotted as a function of the connectivity b′ and
system size N for the layered Erdős-Rényi graph (inset). This
timescale exhibits critical scaling when plotted as a function of
the scaled variables τ/N 1/5 and (b′ − b′crit)N

2/5, as suggested by
Eq. (19) with critical connectivity b′crit = 1. Compare Fig. 6 of
the main text.
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smaller than the bulk order parameter [which scales as
in Eq. (18)] when rc is small. In the language of sur-
face critical phenomena, this is the “ordinary” transition
[82,161–163].

As an aside, let us make a distinction between the cor-
relation function Csame above and the mutual information
between spins in the final state. Csame indicates whether in
the final state two spins lie in the same connected tensor
network. However, being in the same connected compo-
nent does not imply that spins’ mutual information, which
can be detected with appropriate physical two-point func-
tions, is large [6]. The zeroth Rényi mutual information
I0 is given by a different classical correlation function to
the one above, which in the finite-dimensional problem
behaves as a power law at rc [6]. A related observable is
the distribution of entanglement entropy S0 for a single
spin [17]. These observables again map to boundary cor-
relation functions of the Potts spins [172], but in a Potts
system with a magnetized boundary condition, rather than
with the free boundary conditions used above for Csame. (In
the classification of surface criticality this is the “extraor-
dinary” transition [173,174].) The critical contribution to
these quantities at rc is smaller than a trivial analytic con-
tribution similar to that mentioned above, we have not been
able to see it numerically.

5. Extrapolating min-cut tension to N → ∞
As mentioned in Sec. III D, the behavior of the classical

minimum cut value S0(t, N ) within the percolating phase,
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FIG. 34. The correlation function Coppo(t), which denotes the
probability of two randomly chosen nodes on opposite tempo-
ral boundaries being connected to the same cluster after a total
time evolution t. Data here corresponds to the layered Erdős-
Rényi model at the critical point, c = 1/2. The inset shows
Coppo(t)N 6/5 as a function of t for different system sizes N , while
the main figure shows that this same data scales onto a single
curve when plotted as a function of (t+ c0)N−1/5. Here c0 ≈ 3.1
is a constant.
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FIG. 35. The critical contribution C̃same to the probability for
two sites on the same temporal boundary to be connected, in the
limit of long simulation time T. Data corresponds to the layered
Erdős-Rényi model, and is plotted against b′, twice the expected
number of connections between a node at time t and all other
nodes at time t+ 1. The inset shows the raw data for different
system size N , while the main figure shows the data plotted in
terms of scaled variables.

r < rc, has the functional form

S0(t, N , r)
N

� s(r)− d(t, r)√
N

, (A38)

at large N , and for all times t that are larger than an ini-
tial transient but short enough to satisfy ln t ln τ . Here,
d(t, r) is a constant for fixed t and r and τ denotes the decay
time of the percolation probability; τ grows exponentially
with N (see Fig. 6). An example of this scaling is shown in
Fig. 36. One can estimate the value of the minimum cut per
spin, s(r), by extrapolating this relation to 1/

√
N = 0. As

illustrated in Fig. 36, this extrapolated value is relatively
insensitive to the time t, so long as t is larger than a short-
time transient (t � 5 is sufficient for the r values plotted
here and in Fig. 7) and shorter than τ .

The data in Fig. 7 corresponds to t = 10, and
comes from an extrapolation using system sizes N =
100, 200, 400, 600, and 800. As shown in Fig. 36, perform-
ing an extrapolation at t = 20 yields essentially identical
results. The extrapolation procedure becomes numerically
difficult at very small rc − r, since the decay time τ

becomes short for all but very large system sizes. The
extrapolated data in Fig. 7 is therefore limited to rc − r ≥
0.02.
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FIG. 36. An example of the extrapolation of S(t, N )/N to the
limit of N →∞ in order to estimate the classical minimal cut
per spin, s(r). Points correspond to S0/N for different simulated
system sizes at two different times t, and the dashed lines are
linear best fit lines to S0/N as a function of 1/

√
N . The y inter-

cept of these lines gives the estimated value of s(r), plotted in
Fig. 7. The extrapolated values of s(r) for two values of t agree
to within 3%. The top plot corresponds to r = 0.4, and the bottom
plot corresponds to r = 0.7.

APPENDIX B: MAJORANAS WITH PAIRWISE
MEASUREMENT

Reference [37] describes measurement-only dynam-
ics for an even number of Majorana modes γi for
i = 1, . . . , N � 1. Each measurement is of a fermion par-
ity iγiγj for some i and some j . (If desired we can impose a
bipartite structure, so that measurements are allowed only
for i ∈ A and j ∈ B, where A and B are say two sublat-
tices of a bipartite lattice.) In finite dimensions, such a
model allows a phase transition between an area-law phase
and a phase with a logarithmic violation of the area law.
We briefly note the fate of this transition in the all-to-all
setting.

We first select a single preferred grouping of the Majo-
ranas: for i odd, i is grouped with i+ 1. We can think of
the two Majoranas within a group as forming a single com-
plex fermion operator. With probability r, a measurement
is an intragroup measurement, and with probability 1− r
it involves two Majoranas chosen uniformly at random, so
that it is an intergroup measurement with probability 1 in
the limit N →∞.

The trivial phase arises at large r, when intragroup mea-
surements predominate, and the nontrivial phase at small r
when intergroup measurements predominate. The dynam-
ics can be thought of as the dynamics of an evolving pair-
ing between Majorana modes [37]. In space time it maps
to a loop model [175,176]. The loops represent Majorana
worldlines, and the operator entanglement is proportional

to the number of worldlines connecting the initial to the
final time. The relevant case for the all-to-all model is a
quasi-1D version of such a loop model [157].

The phase transition is described by the RPn−1 σ model
in the limit n→ 1 (or CPn−1 if we impose a bipartite
structure). The relation between the all-to-all case and the
finite-dimensional case is similar to that in Sec. III E. For
the critical point it is natural to use a soft-spin formula-
tion of the RPn−1 or CPn−1 model, with a cubic term and
upper critical dimension 6 [176,177], so that by the logic
of Sec. III E we expect the scaling variables in Eq. (19) to
apply. However, the associated scaling functions, and some
of the other exponents, will be very different. The basic
difference from the field theory discussed in Sec. III E is
that the RPn−1 and CPn−1 models have continuous repli-
calike symmetries [respectively, SU(n) and SO(n)], unlike
the discrete symmetries in both the field theory for percola-
tion (Sec. III E) and the replica descriptions of the generic
quantum problem (Sec. VI). This difference leads to much
smaller entanglement in the nontrivial phase.

The entanglement in the present model is related to the
free-energy cost of twisted boundary conditions in the σ
model. The possibility of continuous twisting of the order
parameter makes this smaller than in a system with discrete
symmetry. In finite dimensions, the nontrivial phase has
only a logarithmic violation of the area law, rather than
volume-law entanglement [37].

In the all-to-all setting we again characterize the phases
by the operator entanglement between initial and final
times. In the nontrivial phase the RPn−1 field is “ordered”
(on timescales much shorter than τ below) and so
we use a nonlinear σ model formulation for an n× n
matrix Qab that parameterizes RPn−1. This has the form
S = K

∫
dt tr(∂tQ)2, with a stiffness that scales as

K ∝ (δr)2N (B1)

close to the transition on the nontrivial side. A rescaling of
t shows that this leads to a characteristic timescale of order

τ ∼ (δr)2N . (B2)

For t� τ , the simple one-dimensional field theory has
exponentially decaying correlations, and the operator
entanglement (computed from the cost of imposing twisted
boundary conditions between the initial and final time
[178]) decays exponentially. For t τ , the operator entan-
glement is extensive in N and scales as S ∼ δr2N/t.

Note the large difference between the timescale in
Eq. (B2), which is linear in N , and the timescale in
the entangled phase (which is accessed in more generic
dynamics) that is exponentially large in N . The model
outlined in this appendix has only pairwise Majorana cor-
relations, and a very restricted entanglement structure.
However, this particular feature of the present problem is
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likely to carry over to a larger set of models involving uni-
taries and measurements or projections for free fermions
[53,156], since the key feature is having continuous, rather
than discrete, replica symmetry [156,159].

APPENDIX C: CALCULATIONS FOR QUANTUM
TREE

1. Numerical recursion for quantum tree

In this section we briefly describe the numerical pro-
cedure used to simulate the quantum tree. Due to the
single-site Haar rotations the Schmidt basis of the tree
Eq. (56) becomes uniformly distributed and we can thus
characterize the wave function using only the two Schmidt
values (that is, using a single real positive number between
0 and 1/2, which is the minimal Schmidt value squared
Z = λ2

min).
The recursive procedure to generate the tree at gen-

eration k + 1 consists of using three singular values at
generation k, Zk, Zk

′, and Zk
′′ and connecting them to a

node using Eq. (57). Thus, the number of eigenvalues
required to describe a certain instance of the tree exactly
grows exponentially as 3k, which is clearly not simulable at
large k. Here we take advantage of the fact that in the case
of the FMPT the nodes of the tree are statistically inde-
pendent. Thus, at a certain level k we can generate a large
constant pool of N singular values, where 1 N  3k.
Assuming the pool spans the distribution function of Zk
faithfully we can then draw randomly three singular val-
ues from this pool to generate a member in the pool of
the next generation. This is known as the “pool method”
[105–107].

To verify that the pool spans the distribution of Zk faith-
fully we test the convergence of the evolution of Zk with
the generation number k as a function of N . It is known that
convergence in N can be very slow for the pool method
[105,106]. For example, in Fig. 37 we present Ztyp

k at
ln(rc − r) = −5.3 as a function of k for different values of
N , which is the point closest to the critical point in Fig. 14.
The origin of the strong N dependence lies in the exponent
λ, which approaches 1/2 at the transition causing the dis-
tribution of Z to become broad. Upon tuning farther away
from the critical point the minimal k and N required for
convergence is found to decay rapidly (not shown in the
figure).

Finally we also note that due to the forced measure-
ments the distribution function of the singular values has
a δ function at Z = 0 with a known prefactor. Namely, the
probability of a singular value at generation k to be exactly
zero is given by the recursive relation

fk(p) = p + (1− p)[fk−1(p)]3. (C1)

In principle we can keep these zeros in our pool. How-
ever, this is highly inefficient, especially when p starts

FIG. 37. Ztyp
k vs k at ln(rc − r) = −5.3 for Haar ensemble and

for various pool sizes N . This plot demonstrates the convergence
with pool size N and k for the point closest to the phase transition
in Fig. 14. The minimal N and k required for convergence dimin-
ish for points farther away from the critical point. In the case of
half-integer powers we round N to the closest integer.

to get close to the classical transition, where f∞(p) =[√
1+ (2− 3p)p/(1− p)− 1

]
/2 becomes unity. Thus,

in our simulations we keep only nonzero eigenvalues and,
if needed, account for the zeros using Eq. (C1).

2. Averages of tree recursion constants

In Sec. E we describe the recursion relation for the sin-
gular values of the tree. The linearized recursion relation
involves the random multiplicative constants in Eq. (E),

−10 0 10
ln Ai

10−5

10−3

10−1

P
(ln

A
i)

Haar
A1

A2

A3

∼ A−2

−20 −10 0 10
ln Ai

Δt = 0.3∼ A−2

∼ A−1/2

FIG. 38. The distribution function of the parameters Vj ≡
ln Aj for a Haar-random two-site unitary (left) and the ensemble
in Eqs. (39) and (38) with �t = 0.3. The data here is collected
from N = 107 random unitaries.
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which we repeat for convenience:

A1 = |U
11
11U21

21 − U11
21U21

11|2(|U11
11|2 + |U21

11|2
)2 ,

A2 = |U
11
11U21

12 − U11
12U21

11|2(|U11
11|2 + |U21

11|2
)2 ,

A3 = |U
11
11U22

11 − U12
11U21

11|2(|U11
11|2 + |U21

11|2
)2 .

(C2)

In this appendix we derive the facts about the distribution
of these quantities that are given in Sec. E. Some of these
facts also hold for general node tensors, not necessarily
expressed in terms of unitaries.

As in the text, we assume that the distribution of U is
invariant under multiplication by single-site U(2) matrices
on any of its four legs. Initially however we do not assume
that it is invariant under 2-site unitaries, i.e., we do not
assume that U is Haar-distributed in U(4).

First we show that, so long as the unitary U is non-
trivially entangling (defined below) with probability 1, the
average of any of the above quantities is exactly equal
to 1,

〈Ai〉=1, (C3)

and also

〈A1/2
i ln Ai〉=0. (C4)

The argument is the same for any of the three Ai, so con-
sider A3 for definiteness. The argument only relies on the
property of U(2) invariance on a leg mentioned in Sec. B
(together with the assumption that certain singular values
are not fine tuned to zero), so they hold for more general
choices of t satisfying this requirement. (We could also
consider unitaries acting on more sites and trees with a
larger branching number.)

The expression for A3 involves only the matrix elements
Uad

11 for a, d = 1, 2. Regarding this as a 2× 2 matrix with
row index a and column index d, we make a singular value
decomposition, with positive singular values η1 and η2:

Uad
11 =

∑

μ=1,2

waμημvμd. (C5)

Here, w and v are U(2) matrices. Now we note that, for
any given U, the singular values of the tree we are consid-
ering are invariant under unitary basis transformations for
the bond at the top of the tree. This implies that A3 must
be invariant if Uad

11 is multiplied by an arbitrary single-site
unitary acting on the a index [see Eq. (41)]. We choose

this unitary to be the inverse of w, so that Uad
11 is replaced

in Eq. (C2) by

Uad
11 −→ ηavad. (C6)

Together with | det v|2 = 1, this gives the expression

A3 = η2
1η

2
2(

η2
1|v11|2 + η2

2|v21|2
)2 . (C7)

For some trivial, nonentangling two-site unitaries, such as
the identity or swap, one of the singular values η is exactly
zero, and A3 vanishes. We assume that the distribution of U
is such that, with probability 1, both singular values η are
nonzero. This is our definition of “nontrivially entangling”
above.

The above expression involves a single column, va1, of
the U(2) matrix vad. Since we assume that the distribution
of U is invariant under single-site rotations, vad is Haar
distributed, and va1 is just a unit vector (with two complex
or four real components) that must be averaged uniformly
over the sphere S3.

This can be done in a standard way by relating the aver-
age over the sphere to a Gaussian average. Let us write
the four real components of the unit vector (v11, v21) as
V = (w, x, y, z). If 〈· · · 〉μ is the Gaussian average with
weight proportional to e−μV2

, then

〈· · · 〉μ = 2μ2
∫

dRR3 e−μR2〈· · · 〉|V|=R, (C8)

as we see by splitting the Gaussian integral on the lhs into
radial and angular parts. The latter gives the integral over
a sphere of fixed radius, which is the last expression on the
rhs. We are interested in 〈· · · 〉|V|=1, the average over the
unit sphere.

The Gaussian average of A3, which is of order |V|−4,
diverges at small R, so we instead first consider

f (μ) ≡
〈
e−(η

2
1(w

2+x2)+η2
2(y

2+z2))
〉

μ
= μ2

(μ+ η2
1)(μ+ η2

2)
.

Using Eq. (C8) we may alternately write f (μ) as an aver-
age over the sphere. By scaling out a factor of R from the
components of V we obtain an average over the unit sphere,
and performing the R integral gives

f (μ) =
〈

μ2

{μ+ [
η2

1(w2 + x2)+ η2
2(y2 + z2)

]}2
〉

|V|=1

.

Equating the expressions for f (μ), and taking the limit
μ→ 0, the U(2) Haar average is

〈
1

(
η2

1|v11|2 + η2
2|v21|2

)2

〉

v

= 1
η2

1η
2
2

, (C9)

010352-55



NAHUM, ROY, SKINNER, and RUHMAN PRX QUANTUM 2, 010352 (2021)

where we restore the previous notation for the vector. Plug-
ging this into Eq. (C7) gives 〈A3〉 = 1, as stated above,
regardless of the precise distribution of η.

The same argument applies for A1 and A2, using the
appropriate singular value decomposition. Note that each
of the Ai involves only a subset of the components of U,
so that it effectively reduces to a 2× 2 matrix, as above for
the matrix Uad

11. That is, in each case two of the four legs of
U are set to index value “1.”

By multiplying f (μ) with μa and integrating over μ, we
find

〈Aλi 〉=
1

2λ− 1

〈
1/Hλ−1 − Hλ

1− H

〉
, (C10)

with H = η2
1/η

2
2. The remaining average on the rhs is over

these singular values, again for the appropriate singular
value decomposition of U.

Differentiating with respect to λ at λ = 1/2 gives
Eq. (C4), irrespective of the distribution of H .

While Eqs. (C3) and (C4) simplified, more general
moments depend on the detailed distribution of U. For the
two-site Haar case we may write analytical formulas for
〈Aλi 〉 [given in Eqs. (64) and (65) of the main text].

First consider A3, as above. This simplifies because, for
a Haar-distributed unitary, Uad

11 can be viewed as a normal-
ized and uniformly random vector in a Hilbert space of
dimension 2× 2 (a Page-random state). We are interested
in the singular values when this state is split into two equal
subsystems. Writing si = η2

i , this distribution is [179],

P(s1, s2) = 3δ(s1 + s2 − 1)(s1 − s2)
2

→ P(H) = 3(1− H)2

(1+ H)4
,

for 0 < H <∞. Applying this to Eq. (C10) gives

〈Aλ3〉=
πλ(1− λ)

sin(πλ)
. (C11)

This is finite for λ ∈ (−1, 2).
By the right-invariance of the Haar measure, the distri-

bution of A1 is the same as that of A2. We must consider
the singular values for a decomposition of the matrix Ua1

b1,
which is the upper left 2× 2 block of a 4× 4 Haar matrix.
The distribution of singular values for such a sub-block of
a Haar unitary may be found in Ref. [180]. Writing again
si = η2

i ,

P(s1, s2) = 6(s1 − s2)
2, (C12)

with the constraint 0 < si < 1 but, unlike in the previous
case, no constraint on s1 + s2. Since there is a relabel-
ing symmetry under s1 ↔ s2, or equivalently under H ↔

1/H , we may insist 0 < H < 1. Then

P(H) = 3(1− H)2. (C13)

Applying this to Eq. (C10) gives

〈Aλ1〉=〈Aλ2〉=
12

12+ 8λ− 7λ2 − 2λ3 + λ4 , (C14)

as stated in the text. Again this is finite for −1 < λ < 2.
Finally, let us discuss the asymptotics of the distribu-

tions of the Ai. This will clarify the following point. In the
main text we describe an ensemble of two-site unitaries
with an entangling strength parameterized by �t. In the
limit of small �t, these unitaries become closer and closer
to the identity. For the identity, A2 = A3 = 0 exactly. But
we show above that, for any nonzero value of�t, no matter
how small, 〈A2〉 = 〈A3〉 = 1. Therefore, the limit �t→ 0
does not commute with the average over unitaries. This is
because the distribution of Ai develops a long tail when
�t becomes small (see for example the intermediate tail in
Fig. 38 for �t = 0.3).

Define the two-component vectors

φa = Ua1
11 ψa = Ua1

21, χ ′a = Ua2
11 ψ ′a = Ua1

12. (C15)

Then we may write Eqs. (C2) as

A1 = |ψ |
2|φ|2 − |ψ†φ|2
|φ|4 ,

A2 = |ψ
′|2|φ|2 − |ψ ′†φ|2
|φ|4 ,

A3 = |χ |
2|φ|2 − |χ†φ|2
|φ|4 .

(C16)

We see that Ai can become arbitrarily large if |φ| becomes
small, with Ai scaling like |φ|−2 in this limit. Since φ has
two complex (or four real) components, we expect that for
a generic distribution of unitaries, the cumulative proba-
bility distribution of |φ| scales like |φ|4 at small |φ|. This
gives

Pln(ln Ai)d ln Ai ∼ d ln Ai

A2
i

, Ai � 1 (C17)

at large Ai, as stated in the text. At small A, similar
considerations for the numerators in Eq. (C2) show that
generically

P(ln Ai)d ln Ai ∼ Aid ln Ai, Ai  1. (C18)

These power laws are consistent with numerics and also
with the fact that the moments 〈Aλi 〉 for the Haar case
diverge at λ = 2 and at λ = −1. The Ai are of course
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correlated, but we do not consider their joint distribution
here.

Now consider the case of a weakly entangling unitary
with random single-site scramblers,

U = (u1 ⊗ u2)e−i�tH (u3 ⊗ u4), (C19)

with �t small but fixed. (H may either be fixed, as in an
ensemble discussed in the main text, or random.) We focus
on A2 and A3, whose distributions become broad at small
�t (that of A1 does not). The two cases are similar, so con-
sider A3, which is given by Eq. (C7). We expect that for
small �t we typically have η2

1 ∼ �t2 (here we keep only
the scaling with �t). Therefore, so long as |v22|2 � �t2,
i.e., in the regime A3  �t−2, we have

A3 = η2
1η

2
2

(η2
1|v12|2 + η2

2|v22|2)2
∼ �t2

|v22|4 . (C20)

For small |v22|, the cumulative distribution of |v22| scales
like |v22|2, which gives

P(ln A3)d ln A3 ∼ �t√
A3

d ln A3, �t2  A3  �t−2.

(C21)

On the other hand, for A3 � �t−2, we expect to recover
the generic exponent −2 [Eq. (C17)] for the distribution,
suggesting

P(ln A3)d ln A3 ∼ (�t)−2

A2
3

d ln A3, A3 � �t−2. (C22)

Similarly for A3  �t2 we expect to recover the exponent
1 for the generic case [Eq. (C18)]. The existence of three
regimes with different power law exponents, 1, −1/2, and
–2, when �t is relatively small, is in good agreement with
the numerical data as shown in Fig. 38. Note that the scal-
ing above, with the −1/2 tail being cut off at A3 ∼ �t−2,
is also consistent with 〈A3〉 being of order 1 at small �t.

3. Continuum recursion relation at � > 1

We start with the FKPP equation with the spatially
varying diffusion constant D(x) = 1+ ex,

∂τH = ∂x [D(x)∂x − a] H +�H (1− H) , (C23)

in the regime � > 1, such that the linearized problem is in
the paramagnetic phase. The entanglement transition is at
a = −(�+ 1) so we write

a = −(�+ 1)+ σ , (C24)

with 0 < σ  1. When σ > 0, we converge at late times
to a stationary solution satisfying ∂τH = 0. We would like

to determine the position xf of the front in this solution, or
equivalently the value of Ztyp (recall that xf ∼ ln Ztyp).

Since H varies by an exponentially large factor over the
relevant range of x, it is useful to look instead at the local
exponential decay rate, which is order 1:

R(x) ≡ ∂x ln H(x). (C25)

From the stationary version of Eq. (C23), this satisfies

∂xR = −�f (x)− [1− (�− σ)f (x)] R− R2

+�f (x)H(x), (C26)

where

f (x) = 1
ex + 1

. (C27)

R tends to 1 in the limit x→∞. [To see this note that in
this limit Eq. (C23) becomes ∂xex∂xH = 0. Together with
limx→∞H = 0 this gives H ∝ e−x.] Let us define

R(x) = −1+ σS(x). (C28)

Then

∂xS = −f (x)+ [1− (�− σ)f (x)] S − σS2

+ �
σ

f (x)H(x). (C29)

We will see in a moment that we must treat the cases
1 < � < 2 and � > 2 separately. For now let us just note
that if x is sufficiently large, the final term above will be
subleading since both H and f tend to zero at large x.
Assuming we are in the range of x where this term is
negligible, and dropping terms that are subleading in σ ,

∂xS � −f (x)+ [1−�f (x)] S. (C30)

Solving this equation, and fixing the integration constant
by demanding that S does not blow up as x→∞,

S = 1
�(�− 1)

[
e−(�−1)x (ex + 1

)� − (
ex +�)]

.

(C31)

Now consider this solution for large negative x

S = 1
�(�− 1)

[
e(�−1)|x| + · · · ] . (C32)

We check below that for 1 < � < 2, there is a range of x
where this expansion is valid, i.e., where the final term in
Eq. (C29) can indeed be neglected.

010352-57



NAHUM, ROY, SKINNER, and RUHMAN PRX QUANTUM 2, 010352 (2021)

According to this expansion, as we increase −x, the
value of R begins to increase significantly from −1 once

x ∼ − 1
�− 1

ln
1
σ

. (C33)

This suggests that the front is at xf ∼ − 1
�−1 ln 1

σ
, and

that here we can match onto the stationary solution of the
traveling-wave equation, Eq. (C23), with σ = 0 and with
a spatially constant diffusion coefficient. (This matching
makes sense since the forward part of this solution has
R = −1 when σ = 0.)

However, we must check the self-consistency of our
neglect of the final term in Eq. (C29). Assuming the above
scaling for xf , we have

1
σ

f (x)H(x) ∼ σ (2−�)/(�−1) e−2x

1+ e−x (C34)

for x � xf . If 1 < � < 2, this term is indeed much smaller
than the rhs of Eq. (C30) for x � xf . Therefore, for this
range of � the above analysis, giving

xf ∼ − 1
�− 1

ln
1
σ

(1 < � < 2), (C35)

is self-consistent, though not rigorous.
On the other hand, for � > 2, when the power of σ in

Eq. (C34) is negative, this term cannot be dropped from
Eq. (C29) for x � xf . Numerically solving Eq. (C29) sug-
gests that instead the final term in Eq. (C29) contributes
at leading order if we fix x and take σ → 0. Indeed, the
alternative would be to have some xc, with xf  xc  0,
such that the term is negligible for x � xc but not for
xf < x < xc, and this may be seen to be inconsistent by
examining the ratio of this term to the right-hand side of
Eq. (C30). Using this fact, that H/σ should be of order 1
when x ∼ 0, and assuming that H ∼ e−(x−xf ) for x � xf ,
we find that

xf ∼ − ln
1
σ

(� > 2). (C36)

Equations (C35) and (C36) give the power laws Ztyp ∼
σ 1/(�−1) and Ztyp ∼ σ stated in Sec. I.

These power laws can be checked directly by making
a numerical solution of Eq. (C23) for H(x, τ) at differ-
ent values of � and a. We use a numeric differential
equation solver, solved over a wide domain of discrete
values x ∈ (xL, xR), with boundary conditions such that
H(xL) = 1 and H(xR) = 0. These are exponentially close
in xL, xR, respectively, to the true values for the solution
on the infinite domain. An initial guess is used for H(x, 0)
and then evolved until a very long time τ = τf in order to
arrive at the steady-state solution, from which we can read
off the position of the front. We define this as the value of

x = xfront such that H(xfront, τf ) = 1/2. For the data pre-
sented in Fig. 17, xL = −70, xR = 40, τf = 108, and the
domain of x is discretized into 8001 points.

Making a linear fit of xfront against ln σ for a given value
of �, and recalling xfront ∼ ln Ztyp, allows one to deter-
mine the value of the exponent γ , defined by Zyp ∝ σγ .
We make this linear fit over the range of σ such that
−10 < ln σ < −6. Smaller σ requires very high numeri-
cal accuracy (a dense discretization of the domain of x),
while at larger σ the critical behavior may not be apparent.
The results are shown in the main text in Fig. 17. The error
bars in this figure are defined by the difference in slope
obtained from fits using only the left half of this range,
−10 < ln σ < −8, as compared to only the right half of
the range, −8 < ln σ < −6.

4. Minimal cut formula on tree

Assume that the minimal cut chops out m subtrees from
the full tree, with each subtree being cut only once, at its
apex. The singular values of a given subtree a ∈ {1, . . . , m}
are {λ(a)1 , λ(a)2 }, with [λ(a)1 ]2 + [λ(a)2 ]2 = 1 and [λ(a)2 ]2 =
Z(a). The full state may be written

|ψ〉=
∑

i1,...,im

λ
(1)
i1 · · · λ

(m)
im |i1, . . . , im〉subtrees|i1, . . . , im〉rest.

(C37)

The states |i1, . . . , im〉subtrees are products of the Schmidt
states at the base of the subtrees, as in Sec. E, and are
orthonormal. The states |i1, . . . , im〉rest, for the remaining
spins, are neither normalized nor orthogonal. They are
obtained by contracting the tensor network on the other
side of the min cut with Schmidt states at the tops of
the subtrees. The Rényi entropies are determined by the
singular values of the (unnormalized) density matrix

ρ =
∑

i1,...,im

[λ(1)i1 ]2 · · · [λ(m)im ]2|i1, . . . , im〉rest〈i1, . . . , im|rest.

(C38)

In the limit of small Z(a), with everything else fixed,

ρ � |e0〉〈e0| +
m∑

a=1

Z(a) (|ea〉〈ea| − |e0〉〈e0|) , (C39)

with e0 = |1, . . . , 1〉rest and ea = |1, . . . , 2, . . . , 1〉rest, with
the “2” in slot a. For n > 1 this gives

Sn � n
n− 1

m∑

a=1

(
|ea|2|e0|2 − |e†

0ea|2
|e0|4

)
Z(a) +O(Z2).

(C40)

Each term is associated with a bond lying on the minimal
cut. Let the height of this bond above the base be k(a).
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For a given term, the coefficient in brackets will vanish
if the states ea and e0 become parallel. Each of these is a
state in the “rest” Hilbert space, given by the tensor net-
work made up of the tensors on one side of the minimal
cut. The bonds lying on the minimal cut have fixed states
attached to them: one of these is changed in going from e0
to e1. Exploiting the fact that these truncated tensor net-
works are still trees, we can write e0 and e1 in terms of
the singular value decompositions of two subtrees. We see
that the term in brackets is of the same order as the singular
value for a tree of depth k(a). (This assumes that the singu-
lar values are not growing with k: this can occur if we fine
tune the boundary conditions, but is not relevant to the case
we are discussing.) Therefore, in the present limit of small
Z we confirm the minimal cut conjecture in the main text,
according to which each bond a on the minimal cut con-
tributes an entanglement of order Z(a)Z ′(a), where Z(a) and
Z ′(a) are two random variables each distributed like Zk for
k = k(a). (The Z(a) values are independent of each other
and of the Z ′(a) values, but the Z ′(a) are correlated among
themselves.)

APPENDIX D: MORE ON CIRCUIT
SIMULATIONS

We present some additional details regarding the sim-
ulations of quantum circuits in Sec. V. The nonunitary
time-evolution operator, V, for a given realization of the
circuit is built by choosing at every step a measurement
with probability r on a randomly chosen site or entangling
two randomly chosen sites with the unitary with proba-
bility 1− r. For a system of size N , time progresses by
one unit for every N unitaries applied. The Haar-random
unitaries are generated using Mezzadri’s algorithm [181].

Note that the τeff described in the main text is obtained
by taking a log derivative of D(t). Since, numerical
deriatives are notoriously noisy, we smooth the data for
D(t) using a Savitzky-Golay filter [182] and then take
the derivative. Representative examples of τeff and the
plateaux therein are shown in Figs. 39 and 40.

From the τ so obtained, we extract a(r) by fitting the
data to a form a(r)N + b(r)+ c(r)/N . The fits are shown
in Fig. 41.

APPENDIX E: TOY MODEL FOR THE SLOW
DECAY OF S

In the entangled phase the operator entanglement has a
plateau at an extensive value Sn/N � sn > 0, which per-
sists for a time that scales exponentially in the number
of spins, N . In this appendix we describe the crudest
toy model for this plateau, which neglects both local-
ity of the interactions and, for the most part, distinc-
tions between different Rényi entropies. We consider the
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FIG. 39. τeff from time derivatives of lnDtyp. The plateaux
denoted by the dashed lines show the τ(r, N ) values, which
are used to extract a(r) (see Fig. 41). Different colors corre-
spond to the different N following the same convention as in
Fig. 22. Results are for the Haar circuit, with the top and bot-
tom panels corresponding to the forced-measurement protocol
and measurement protocol respectively.

forced-measurement case, where the circuit is made up of
uncorrelated random pieces.

Imagine dividing up the circuit up into blocks of tem-
poral duration �t, which corresponds to writing the time-
evolution operator V(t) as a product of random matrices
Wi, with each matrix of size 2N × 2N and i = 1, . . . , t/�t.
�t is chosen to be much larger than 1 but much smaller
than the timescale τ that will emerge below. Each block
has a singular value decomposition Wi = U(1)

i DU(2)
i

†
. As a

toy model, we treat the unitaries U(1) and U(2) as Haar ran-
dom (neglecting locality) and we make the simplest choice
of D that yields a given value of S1 = sN , which is a flat
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FIG. 40. Same as in Fig. 39 but for the Haar circuit with
measurements.
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FIG. 41. Fits of ln τ to a function of the form a(r)N + b(r)+
c(r)/N for different values of r for the Haar circuit with forced
measurements (top) and measurements (bottom). We use N ≥ 14
for the fits shown, which are used to extract a(r) shown in Fig. 24.
Fits including smaller N (not shown) are used to estimate the
errorbars on a(r).

entanglement spectrum:

D = 1√
B

(
IB×B 0

0 0

)
, B = esN , 0 < s < ln 2.

Note that the nonzero block is a small fraction of the size
of the matrix for large N . Finally, we make an uncontrolled
simplification by also treating the entanglement spectrum
of V(t) as flat:

V(t) = UL(t)D(t)UR(t)†,

D(t) = 1√
B(t)

(
IB(t)×B(t) 0

0 0

)
,

with B(t) = eS(t). Note that B and D refer to quantities for
a single slice of width �t, while B(t) and D(t) refer to the
complete evolution operator up to time t.

We are interested in the singular values of the new
evolution matrix V(t+�t), which may be written

V(t+�t) = U′D(t)UDU′′† (E1)

for Haar unitaries U′, U, U′′. These values are also the
singular values of

Ṽ = D(t)UD. (E2)

Up to a normalization factor, Ṽ is just a rectangular block,
of size B(t)× B, taken from a Haar unitary of exponen-
tially larger size (2N × 2N ). Correlations between unitary
matrix elements become weaker as the size of the matrix
increases, so we expect that we can treat them as Gaus-
sian, with E Uab = 0 and E Uab(Ua′b′)∗ = (1/2N )δaa′δbb′ .
(Higher cumulants are suppressed by powers of 2N .) The
singular values squared of Ṽ, denoted vi = η2

i , are eigen-
values of the B(t)× B(t) matrix

M = ṼṼ†. (E3)

When the matrix elements are of Ṽ are complex Gaussian
random numbers, this is as a Wishart random matrix (see,
e.g., Ref. [179] for an application in a related context).
The distribution of its eigenvalues depends on B as well
as on B(t). We assume that 1 B(t) B. Normalizing
the matrix so the si sum to one, the eigenvalue density for
ṼṼ† is the Marcenko-Pastur distribution,

ρ(v) = 8
√
v − v−√v+ − v
π(v+ − v−)2v , v± =

[√
B±√B(t)

]2

BB(t)
.

From this distribution the operator Rényi entropies can be
calculated as

e−(n−1)Sn(t+�t) =
∫ v+

v−
dvvnρ(v)

� B(t)−(n−1)
[
1+ n(n− 1)

2
B(t)

B
+ · · ·

]

Sn(t+�t)− S(t) � − exp
{
−

[
sN − S(t)− ln

n
2

]}
.

As expected, the entanglement spectrum does not remain
flat. In our crude approximation, however, we neglect this,
and apply the above transformation iteratively, so that in
the continuum limit for times� �t:

∂tS(t) ∼ −C exp{−[sN − S(t)]}. (E4)

Here C is an order-1 constant. At times larger than �t, but
short enough such that S(t)� 1 (which we assume above),
this equation gives a solution:

S(t) = sN − ln t+ · · · (E5)

independently of the value of C. Note that we neglect
random fluctuations (see Sec. I).

010352-60



MEASUREMENT AND ENTANGLEMENT PHASE TRANSITIONS... PRX QUANTUM 2, 010352 (2021)

This analysis suggests a characteristic timescale τ with
ln τ � sN . We may verify this dependence directly in the
opposite limit of asymptotically late times, where (as usual
for a product of random matrices) there is a separation of
scale between the largest singular value, the second largest,
and so on. This separation allows us to consider only the
two largest singular values. At a given time t, let them be
normalized as

{η1, η2} = {1, ε(t)}. (E6)

Then in place of M in Eq. (E3) we have a 2× 2 matrix

Mik = εi+k−2
B∑

j=1

Uij U∗kj . (E7)

Each of the elements of Mik is a different sum of many ran-
dom variables, so we assume that M can be approximated
as Gaussian:

〈Mik〉 � Bε2(i−1)δik

2N , 〈〈MikMi′k′ 〉〉 � Bε2(i+i′−2)δik′δi′k
22N .

After absorbing a normalization constant into M ,

M =
(

1 0
0 ε2

)
+ 1√

B

(
a εβ

εβ∗ ε2b

)
, (E8)

where a, b,β have mean zero and 〈a2〉 = 〈b2〉 = 〈|β|2〉 = 1.
The new (small) singular value squared is

ε2
new = ε2

(
1− a− b√

B
+ a2 − ab− |β|2

B
+ · · ·

)
. (E9)

Let us study the typical value of this exponentially small
quantity, defined by (ε2

new)typ = exp〈ln ε2
new〉. We have

ln ε2
new = ln ε2 + b− a√

B
+ a2 − b2 − 2|β|2

2B
+ · · · (E10)

Here the average is taken over a, b,β. Note that the leading
fluctuation term, of order 1/

√
B, averages to zero. The next

term, however, gives a negative drift under the recursion.
Recalling that B = esN , and applying this map iteratively
with each added block,

ε2
typ(t) ∼ exp

(
− t
τ

)
, τ = �t× exp(sN ). (E11)

Therefore, at the latest times,

Sn(t) ∼ exp
(
− t
τ

)
×

{
[n/(n− 1)] n > 1
(2t/τ) n = 1 . (E12)

Thus, the main conclusion is that in this toy model sN
sets both the value of the early time plateau and also the
timescale for the late-time exponential decay, in agreement
with the picture from the replica treatment.

APPENDIX F: FIELD THEORY: FURTHER
DETAILS

1. N → 1 ordered phase

In Sec. H we state that for μ2 < 0 the field theory of
Sec. E has an ordered phase with Xab = f (δab − 1/N )+
Wab, where f = (−μ2/3g)[N/(N − 2)] is the order
parameter, and Wab represents fluctuations around the
saddle-point value whose quadratic Lagrangian is

L = 1
2

∑

ab

(∂Wab)
2 + −μ2N

2(2− N )

(
∑

ab

W2
ab − 2

∑

a

W2
aa

)
.

(F1)

We want to check that if we compute the masses of the
fluctuation modes using this expression, and then take
N → 1, these masses remain positive. Viewing Wab as
a vector, the term

∑
a W2

aa is W.M .W where the matrix
Mab,cd (with row index a, b and column index c, d) is 1 if
a = b = c = d and zero otherwise. We want the eigenval-
ues of M when projected onto the subspace of W satis-
fying

∑
a Wab = 0 and

∑
b Wab = 0, i.e., the eigenvalues

of M̃ab,cd = Paa′Pbb′Ma′b′,c′d′Pc′cPd′d where P is the pro-
jector Paa′ = δaa′ − 1/N . Since M is nonzero only when
its four indices are equal, drawing a diagram shows that
tr M̃ k = tr Sk, where Sa,b = (1− 2/N )δab + 1/N 2. This
gives the nonzero eigenvalues of M̃ as (N − 1)/N → 0
with multiplicity 1 and (N − 2)/N →−1 with multiplic-
ity N − 1. Altogether, the eigenvalues of the matrix (I−
2M̃ ), which appears in Eq. (F1) are either 1 or 3 in the
limit and are positive.

2. Effect of YFY coupling when N > 0

Here we show that for N > 0 (for example, in the replica
limit N → 1, but not in the limit N → 0), and in the
vicinity of the critical point r = 0, the theory

L =
∑

ab

[
1
2
(∂Yab)

2 + rYab + gY3
ab

]

+ m2
F

2

∑

abcd

YabFab,cdYcd (F2)

can be reduced to the theory

L =
∑

ab

[
1
2
(∂Xab)

2 + μ
2

2
X 2

ab + gX 3
ab

]
, (F3)

for a matrix X with vanishing row and column sums, by
discarding massive modes.

First, shifting the field by Yab → Yab + c with c = −r/
(2Nm2

F)+O(r2) removes the linear term and generates a
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mass term. The quadratic part of the Lagrangian is then

L2 = 1
2

∑

ab,cd

Yab
[
(k2 + μ2)δacδbd + m2

FFab,cd
]

Ycd, (F4)

with μ2 = −3gr/(Nm2
F)+O(r2). As a matrix, F = I⊗ E

+ E ⊗ I, where E is the N × N matrix with unit elements:
Eab = 1, so the matrix appearing in the brackets in Eq. (F4)
is

(k2 + μ2)I⊗ I+ m2
F (I⊗ E + E ⊗ I) . (F5)

This can be decomposed in terms of the projection matrices
P1 ≡ N−1E and PN−1 ≡ I− P1 as

(k2 + μ2) (PN−1 ⊗ PN−1) (F6)

+ (k2 + μ2 + m2
FN ) (P1 ⊗ PN−1 + PN−1 ⊗ P1) (F7)

+ (k2 + μ2 + 2m2
FN ) (P1 ⊗ P1) . (F8)

This is a decomposition into three representations of GN of
dimensions (N − 1)2, 2(N − 1), and 1. We see that, at the
critical point (where r and therefore μ2 vanish) the second
and the third representations remain massive and only the
first becomes massless. Retaining only this representation
is equivalent to fixing the row and column sums of Y to
zero. Doing so and renaming the resulting field X yields
precisely Eq. (F3). More precisely the two massive rep-
resentations ought to be integrated out, renormalizing the
values of the couplings in Eq. (F3).

These manipulations manifestly require N > 0: for
example, they are appropriate for the replica limit N → 1
relevant to the MPT. The replica limit N → 0 must be
handled separately.

3. Rewriting Lagrangian in N → 0 limit

We give details of field redefinitions in Sec. G. First
define the N -component vectors v+, v−, and vi for
i = 2, . . . , N [133–136]:

v+ = 1
2
(1, 0, . . . , 0)+ 1

2
(0, 1, . . . , 1)

N − 1
, (F9)

v− = 1
2
(1, 0, . . . , 0)− 1

2
(0, 1, . . . , 1)

N − 1
, (F10)

vi = (0, . . . , 0, 1, 0, . . . , 0)− (0, 1, . . . , 1)
N − 1

, (F11)

where the extra “1” in the third line is in the ith place.
There are N + 1 of these vectors but the vi are not linearly
independent:

∑
i>1 vi = 0.

We use these vectors to rewrite Yab in terms of yαβ :

yαβ = vα .Y.vβ =
∑

ab

vαa Yabv
β

b . (F12)

In this appendix we use a, b, a′, b′, . . . to denote indices that
run from 1 to N , and α,β, . . . to denote indices that take
the N + 1 values {+,−, 2, . . . , N }. We use i, j , k to denote
indices that run only over 2 to N . Note that

N∑

j=2

yj ,β = 0,
N∑

k=2

yα,k = 0. (F13)

(Alternately we could define an N × N matrix without this
redundancy.)

To invert the transformation defining y, define N + 1-
component vectors

x1 = (1, 1, 0, . . . , 0), (F14)

xi>1 = (1,−1, 0, . . . , 1, . . . , 0). (F15)

The final 1 in the second line is in (i+ 1)st place, which in
our labeling convention corresponds to the component xi

β

with β = i. We have
∑

α xa
αv

α
a′ = δa

a′ , so that

Yab = xa.y.xb =
∑

αβ

xa
αyαβxb

β . (F16)

Explicitly (for j , k > 1):

Y11 = (y++ + y+− + y−+ + y−−) , (F17)

Y1k = (y++ − y+− + y−+ − y−−)+ (y+k + y−k), (F18)

Yj 1 = (y++ + y+− − y−+ − y−−)+ (yj+ + yj−), (F19)

Yjk = (y++ − y+− − y−+ + y−−) (F20)

+ (yj+ − yj−)+ (y+k − y−k)+ yjk. (F21)

Inserting these relations into the derivative term,
∑

ab

(∂Yab)
2 = 8 (∂y+−∂y−+ + ∂y++∂y−−)

+ 4
∑

j

∂yj+∂yj−

+ 4
∑

k

∂y+k∂y−k

+
∑

jk

(∂yjk)
2

+O(N ), (F22)
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where the final line contains terms whose coefficients con-
tain an explicit factor of N , which we assume can be
neglected in the limit N → 0.

Next consider the F term in the Lagrangian, which has
the form

∑

abcd

YabFab,cdYcd =
∑

a

(
∑

b

Yab

)2

+
∑

b

(
∑

a

Yab

)2

.

(F23)

This simplifies to
∑

abcd

YabFab,cdYcd = 16y−− (y+− + y−+)

+ 4
∑

j

y2
j−

+ 4
∑

k

y2
−k

+O(N ). (F24)

The linear term in the Lagrangian is simply
∑

ab

Yab = 4y−− +O(n). (F25)

Since the coefficient of the linear term is zero at the criti-
cal point, we assign “engineering” dimensions to the fields
such that the quadratic terms in Eqs. (F22) and (F24) are
marginal. Denoting the space-time dimension by D, the
inverse length dimensions of the fields are, in order of
increasing scaling dimension,

[y++] = (D− 6)/2, (F26)

[yj+] = [y+k] = (D− 4)/2, (F27)

[y+−] = [y−+] = [yjk] = (D− 2)/2, (F28)

[yj−] = [y−k] = (D+ 0)/2, (F29)

[y−−] = (D+ 2)/2, (F30)

so that if the number of “+” indices for a component of y
is n+, and the number of − indices is n−, the engineering
dimension is

x(n+, n−) = (D− 2)− 2(n+−n−)
2

. (F31)

This formula implies that, at a given order in y, terms with
the largest number of + indices and the smallest number
of − indices are most relevant.

Now consider the additional terms in the Lagrangian
beyond those in Eqs. (F22), (F25), (F24), order by order
in Y.

GN symmetry does not allow any linear terms other than
Eq. (F25). At quadratic order the remaining possibilities
are

∑
ab Y2

ab and (
∑

ab Yab)
2. The former is redundant—it

can be cancelled by a shift in Y because of the presence of∑
ab Y3

ab. We also check this below in the new parameter-
ization. The latter, (

∑
ab Yab)

2, is prortional to (y−−)2 by
Eq. (F25), so is less relevant than the terms on the rhs of
Eq. (F24) and can be neglected.

Cubic terms are obtained by contracting indices in

YabYa′b′Ya′′b′′ , (F32)

i.e., by setting some indices equal to others and sum-
ming. Left indices may only be set equal to other left
indices, and similarly for right indices. This allows three
different types of index contraction: an index (e.g., a) can
be summed without being set equal to any other index;
two indices can be set equal and then summed (e.g.,
a = a′); or three indices can be set equal and summed
(a = a′ = a′′). When we rewrite the contracted expression
in terms of yαβyα′β ′yα′′β ′′ , the single, double, and triple
index contractions lead to contractions with the tensors

d(1)α =
∑

a

xa
α , d(2)

αα′ =
∑

a

xa
αxa
α′ , d(3)

αα′α′′ =
∑

a

xa
αxa
α′x

a
α′′ ,

(F33)

respectively, for the indices α,α′,α′′′ ∈ {+,−, 2, . . . , N }.
For each of these, we may check the maximal value of

� ≡ n+−n−, (F34)

the difference in the number of + and − indices, that
may appear on the right-hand side. (� should not be con-
fused with a scaling dimension.) Since the difference in
the total number of + and − indices is what determines
the engineering dimension of a field or a product of fields
[Eq. (F31)], identifying �max for each type of index con-
traction allows us to say which types of contraction will
give the most relevant cubic terms: they are those for which
the sum of �max, over all contractions, is largest.

Explicitly,

d(1)α = (N , 2− N , 1, . . . , 1)α . (F35)

However, y vanishes when contracted with (0, 1, . . . , 1)
[Eq. (F13)]. After dropping this part, and taking the limit
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N → 0 directly in the coefficients,

d(1)α → 2δα,−. (F36)

Therefore, this pattern of index contraction contributes
� = −1. Using similar simplifications,

d(2)
α,α′ → 2 (δ+αδ−α′ + δ−αδ+α′)+

N∑

j=2

δj αδj α′ . (F37)

This pattern of index contraction contributes � = 0.
Finally, d(3) contains various patterns of index contraction
with different values for �:

d(3)
α,α′,α′′ → 2 (δ−αδ+α′δ+α′′ + . . .) (F38)

+
N∑

i=2

(δ+αδiα′δiα′′ + . . .) (F39)

+
∑

i

δiαδiα′δiα′′ (F40)

−
∑

i

(δ−αδiα′δiα′′ + . . .) (F41)

+ 2δ−αδ−α′δ−α′′ . (F42)

(Ellipses indicate terms related to those shown by cyclic
permutations of α, α′, α′′.) The first two lines on the rhs
have � = 1; all the others have smaller values of �. If we
are interested only in keeping the most relevant terms in
a given expression, we can truncate to only the first two
lines:

d̃(3)
α,α′,α′′ ≡ 2 (δ−αδ+α′δ+α′′ + . . .) (F43)

+
N∑

i=2

(δ+αδiα′δiα′′ + · · · ) . (F44)

Therefore, the most relevant cubic terms allowed by GN
symmetry are those with� = 2 (in total, i.e., counting both
row and column indices) that arise by discarding the less-
relevant parts of

∑
ab Y3

ab:
∑

ab

Y3
ab →

∑
d̃(3)
α,α′,α′′ d̃

(3)
β,β ′,β ′′yαβyα′β ′yα′′β ′′ , (F45)

which is equal to
(
∑

ab

Y3
ab

)

�=2

= 12y++ (y++y−− + 2y+−y−+)

+ 12y++
(

y−ky+k + yj−yj+ + yjkyjk

4

)

+ 6
(
y+−yj+yj+ + y−+y+ky+k

)

+ 6yj+y+kyjk. (F46)

(Repeated j or k indices are summed from 2 to N .) All
other contractions of YYY, such as

∑
aa′bb′ YabYab′Ya′b′ ,

give terms that are strictly less relevant according to the
engineering dimensions.

Let us check that, having dropped less relevant terms
from the Langrangian in the process of rewriting it in terms
of y, the coupling of the quadratic term

1
4

∑

ab

Y2
ab = 2(y+−y−+ + y++y−−)+ yj+yj− + y+ky−k

+ yjkyjk

4
, (F47)

is still redundant. The shift Yab → Yab + c for each ele-
ment corresponds to shifting y++ → y++ + c and leaving
other elements of y unchanged [by Eq. (F12)]. Under
this shift, the cubic term, Eq. (F46), generates precisely
Eq. (F47), with a coefficient of order c [and the linear term
in Eq. (F25) with a coefficient of order c2]. Therefore, by
an appropriate shift of y++ we may eliminate the quadratic
term, Eq. (F47).
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