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ABSTRACT

Context. The formation of rocky planetesimals is a long-standing problem in planet formation theory. One of the possibilities is that
it results from gravitational instability as a result of the pile-up of small silicate dust particles released from sublimating icy pebbles
that pass the snow line.
Aims. We want to understand and quantify the role of the water snow line for the formation of rock-rich and ice-rich planetesimals.
In this paper, we focus on the formation of rock-rich planetesimals. A companion paper examines the combined formation of both
rock-rich and ice-rich planetesimals.
Methods. We developed a new Monte Carlo code to calculate the radial evolution of silicate particles in a turbulent accretion disk,
accounting for the back reaction (i.e., inertia) of the particles on their radial drift velocity and diffusion. Results depend in particular on
the particle injection width (determined from the radial sublimation width of icy pebbles), the pebble scale height, and the pebble mass
flux through the disk. The scale height evolution of the silicate particles, which is the most important factor for the runaway pile-up, is
calculated automatically in this Lagrange method.
Results. From the numerical results, we derive semi-analytical relations for the scale height of the silicate dust particles and the
particle-to-gas density ratio at the midplane, as functions of a pebble-to-gas mass flux ratio and the α parameters for disk gas accretion
and vertical/radial diffusion We find that the runaway pile-up of the silicate particles (formation of rocky planetesimals) occurs if the
pebble-to-gas mass flux ratio is >∼ [(αDz/αacc)/3 × 10−2]1/2, where αDz and αacc are the α parameters for vertical turbulent diffusion and
disk gas accretion.

Key words. planets and satellites: formation – protoplanetary disks

1. Introduction

In order for planets to form, micron-sized grains must grow
to planetesimal size (i.e., kilometers or more) before they are
lost into the central star by gas drag. One possibility is through
streaming instabilities (SI), a mechanism to concentrate small
solid particles at high enough densities to trigger gravitational
collapse (e.g., Youdin & Goodman 2005). A midplane particle-
to-gas ratio of order unity is required to trigger strong clumping,
but this condition is not easy to achieve, even when considering
the most favorable particles, icy pebbles (e.g., Krijt et al. 2016).
It is even more difficult to achieve for smaller silicate dust par-
ticles, especially when other sources of turbulence are present
(Carrera et al. 2015; Yang et al. 2017; Gole et al. 2020).

The role of ice lines, and particularly of the water snow line,
has long been recognized as potentially important: the sublima-
tion of pebbles across the snow line leads to an outward diffusion
of vapor and recondensation, thus increasing the pebble surface
density (e.g., Stevenson & Lunine 1988; Ciesla & Cuzzi 2006;
Schoonenberg & Ormel 2017; Drążkowska & Alibert 2017).
Recondensation of outwardly diffused water vapor onto peb-
bles also induces local pebble growth (Ros & Johansen 2013;
Schoonenberg & Ormel 2017; Drążkowska & Alibert 2017). The

sublimation of icy pebbles changes the ionization rate across the
snow line to form a local pressure bump, and the bump could stop
the pebble drift there, resulting in their pile-up under favorable
disk conditions (Kretke & Lin 2007; Brauer et al. 2008; Ida &
Lin 2008). These mechanisms potentially lead to the formation
of ice-rich planetesimals1. However, in the present work, our aim
is to show that the sublimation of icy pebbles can also result
in the formation of silicate-rich (rocky) planetesimals inside the
snow line.

Many small silicate dust particles that are released by the
sublimation of individual icy pebbles are coupled with disk gas
(Sect. 2.4). Because incoming icy pebbles drift by gas drag
quickly, and pebbles are supplied with a relatively high flux, the
silicate dust particles can also pile up inside the snow line, poten-
tially leading to the conditions for a formation of silicate-rich
planetesimals by direct gravitational instability (Saito & Sirono
2011; Ida & Guillot 2016). Determining the reality of the pro-
cesses and their relative contributions is of course crucial to
understanding the formation of planetesimals, the composition

1 Our subsequent papers, Hyodo et al. (2021a, referred to as Paper II)
and Hyodo et al. (2021b), investigate pile-ups of both icy pebble and
silicate dust particles.
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of planets, and ultimately to accounting for the global ice-to-rock
ratio in the Solar System (see Kunitomo et al. 2018).

This pile-up process has been addressed in past literature
(Ida & Guillot 2016; Schoonenberg & Ormel 2017; Drążkowska
& Alibert 2017; Hyodo et al. 2019). However, they lead to dif-
ferent, seemingly contradictory, results. In order to examine the
problem from a new angle, we developed two tools. The first
one is a 2D (r-z) Monte Carlo code to simulate the pile-up of
small silicate particles injected from sublimating icy pebbles in
a turbulent protoplanetary disk. We then used the Lagrangian
advection-diffusion method by Ciesla (2010, 2011) with our new
addition of the back-reaction to the radial velocity and diffusion
of the silicate particles. The second one is a 1D diffusion-
advection grid simulation based on the work of Schoonenberg &
Ormel (2017), as updated by Hyodo et al. (2019), and including
input results obtained from our Monte Carlo code. These tools
enable us to study the fate of silicate dust particles and icy peb-
bles in a wide range of conditions, including the possibilities that
turbulent mixing may differ in the radial and vertical directions
(Zhu et al. 2015; Yang et al. 2018).

We first focused on the 2D Monte Carlo code and its results.
In a companion paper (Paper II), we apply the results to the
diffusion-advection simulation, allowing us to include the for-
mation of both silicate-rich and water-rich planetesimals. We
intend to consider the case of complex protoplanetary disk
models in a third paper.

The present article is organized as follows. In Sect. 2, we
summarize the results of Ida & Guillot (2016), Schoonenberg &
Ormel (2017), and Hyodo et al. (2019), focusing on the silicate
dust particle pile-up near the snow line. In Sect. 3, we describe
our Monte Carlo simulation code. In Sect. 4, after testing our
simulations, we present our results and derive semi-analytical
relations for the silicate dust scale height and the pile-up. We
conclude in Sect. 5.

2. Previous studies and an analytical solution

2.1. Setting

The outskirts of protoplanetary disks are a large reservoir of
condensed particles, initially in the form of submicron-sized
particles. Their progressive growth and drift due to gas drag
(Adachi et al. 1976; Weidenschilling 1977) can lead to a wave of
“pebbles”, that is, centimeter- to meter-sized particles that drift
rapidly inward from the outer to the inner regions of the disk (e.g.
Garaud 2007; Lambrechts et al. 2014). The mass flux of incom-
ing pebbles relative to the gas mass flux can be significantly
above the standard value of ∼1/100, which is realized for the
mass flux of micron-dust dust particles. For example, Appelgren
et al. (2020) find that a decrease in the drift rate of pebbles from
the outer to the inner region can lead to a ∼4 times increase in
the dust-to-gas ratio. Similarly, Mousis et al. (2019) obtain an
enrichment factor of the inner disk in volatiles that can reach ∼20
to 30. The values of Fp/g, the ratio of the mass flux of pebbles
Ṁp to that of the gas Ṁg, depend on the disk models and under-
lying assumptions on particle growth. Using 2D simulations of
the formation of a protoplanetary disk from the collapse of a
molecular cloud core, Elbakyan et al. (2020) obtained a highly
time-dependent Fp/g that is shaped by the perturbations of the
disk, as exemplified in Fig. 1. The high values, much beyond the
canonical value (∼1/100) are therefore possible during the time-
variation in each disk, either as a progressive increase during the
later evolution phases of the disk (Garaud 2007; Mousis et al.

1e ¡ 5 1e ¡ 4 0:001 0:01 0:1 1

Fp=g

0

10

20

30

40

50

N
u
m

b
er

o
f
ev

en
ts

model L
model M
model S

Fig. 1. Histogram of the time-dependent values of Fp/g ≡ Ṁp/Ṁg,
the ratio of the pebble to gas mass flux at the inner boundary of three
protoplanetary disks (models L, M and S, respectively) from Elbakyan
et al. (2020). For this setting, irregularities in the radial and azimuthal
structures of the disks yield a highly time-dependent Fp/g value.

2019; Appelgren et al. 2020), or as short pulses (Elbakyan et al.
2020), presumably due to the sudden release of pebbles.

Given the possible presence of such a pebble flux, Saito &
Sirono (2011) had pointed out that small silicate dust particles
released by incoming icy pebbles would pile up, potentially lead-
ing to the conditions for a direct gravitational collapse of the dust
sub-disk. However, they had assumed a stationary disk without
inward-gas accretion through the disk and radial and vertical dif-
fusion. Our goal is to understand, depending on the value of Fp/g,
whether planetesimals may indeed form from such a pile-up.

2.2. A comparison of previous studies

Several studies have thus far considered the problem in the
framework of an evolving accretion disk. Using an analytical
approach, Ida & Guillot (2016) found that even though the disk
gas accretion tends to smooth out the radial distribution of sili-
cate dust particles, a runaway pile-up may be achieved because
of the back reaction to inward drift of the particles, that is, the
slowing down of the radial drift of the silicate particles due to
the increasing inertia of the piled-up particles. They derived a
simple analytical criterion linking the critical pebble-to-gas mass
flux ratio for runaway pile-up to a ratio between the dust-to-gas
scale height and the fraction of dust contained by icy pebbles
(Sects. 2.3 and 4.1.2). Because Ida & Guillot (2016) assumed
that the scale heights of silicate particles are similar to those
of incoming icy pebbles (i.e., much smaller than the disk’s gas
scale height), and neglected radial and vertical turbulent diffu-
sion, their critical pebble accretion flux corresponds to the most
favorable limit to pile up silicate dust particles and form rock-rich
planetesimals by gravitational instability.

Schoonenberg & Ormel (2017) performed detailed 1D
diffusion-advection simulations of gas and icy pebbles with an
Eulerian grid code to study pile-ups of the icy pebbles in an
accretion disk, taking account of the back reaction to their drift
velocity, sublimation process, and both radial and vertical tur-
bulent diffusion. Near the snow line, re-condensation of water
vapor diffused from the region inside the snow line enhances
the ice surface density. For icy pebbles with Stokes numbers of
10−2−1, SI can occur for the solid-to-gas surface density ratio
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ZΣ
>∼ 0.02−0.03 (Johansen et al. 2009; Carrera et al. 2015; Yang

et al. 2017). They found that the ice surface density is enhanced
by a factor of several by the recycling process in the case of rela-
tively vigorous turbulence (α ∼ 10−3−10−2) and a relatively high
pebble-to-gas mass accretion rate (Fp/g ∼ 0.8).

Schoonenberg & Ormel (2017) also calculated the radial
distribution of silicate particles released from drifting pebbles
inside the snow line. However, because they were focusing on
the pebbles’ SI, they did not consider the back reaction to the
radial drift velocity of the silicate particles. They also assumed
immediate turbulent stirring such that the scale height of silicate
particles is the same as the disk’s gas scale height. As a result,
they did not find a runaway pile-up of the silicate particles (for
details, see Sects. 2.3 and 4.1.2).

Hyodo et al. (2019) updated Schoonenberg & Ormel (2017)’s
1D diffusion-advection grid simulations, adding the back reac-
tions to radial drift and diffusion of silicate particles. They also
considered the evolution of the scale height of silicate dust par-
ticles. When the silicate particles are released from icy pebbles
passing the snow line, their scale height is similar to that of icy
pebbles. It is gradually increased by the vertical turbulent dif-
fusion. Hyodo et al. (2019) analytically modeled the dust scale
height evolution and incorporated the model into the grid simu-
lation. They treated the diffusion α-parameter and the effective
α-parameter for the disk accretion independently. The turbu-
lent mixing and the angular momentum transfer can be different
mechanisms. For example, the angular momentum transfer of
the disk can be dominated by a process other than radial tur-
bulent diffusion such as disk winds (e.g., Suzuki et al. 2016; Bai
et al. 2016). Therefore, it is reasonable to distinguish between
the diffusion and the accretion α-parameters. They identified the
parameter regions of the runaway pile-up of the silicate par-
ticles on the plane of the pebble mass flux and the diffusion
α-parameter.

As Ida & Guillot (2016) suggested, the silicate particle pile-
up condition depends directly on their scale height. Hyodo et al.
(2019) estimated the scale height evolution only by account-
ing for vertical diffusion, and not taking radial diffusion into
account.

2.3. Analytical derivation

As we described in Sect. 1, we assume that icy pebbles con-
sist of a large number of small silicate particles covered by icy
mantles. When the pebbles drift inward and pass the snow line,
the icy mantles are sublimated, and consequently the small sil-
icate particles are released. We set the Stokes number of icy
pebbles to be τs,p = 0.1, which is relevant to the Epstein regime
(Okuzumi et al. 2012; Ida et al. 2016), and that of silicate par-
ticles is τs,d � 1, where the Stokes number is defined by the
stopping time due to gas drag tstop and Keplerian frequency ΩK
as τs = tstopΩK. The notations we use here are summarized in
Table 1.

We consider a steady accretion disk. We show that our for-
mulation and the results are scaled by the pebble-to-gas mass
flux ratio, and we do not need to specify the magnitude of the
disk’s gas accretion rate. Actually, the pebble mass flux through
the disk (Ṁp) is proportional to the disk’s gas accretion rate (Ṁg)
in the case of the steady accretion before the pebble formation
front reaches the disk’s outer edge (Ida et al. 2016). Kanagawa
et al. (2017) pointed out that the vertically averaged disk gas flow
can be outward, when Ṁp is so large that the advective angular
momentum carried by pebbles dominates over the viscous angu-
lar momentum transfer. In that case, the steady accretion disk

Table 1. Notations.

Notation Definition Eq. #

fd/p Silicate dust mass fraction in a pebble
beyond the snow line [= 0.5 (nominal)]

Fp/g Pebble-to-gas mass flux in the disk (4)
(= Ṁp/Ṁg)

ZΣ Vertically averaged dust-to-gas mass ratio (3)
(= Σd/Σg)

Z Local dust-to-gas mass ratio (5)
(= ρd/ρg = ZΣ/hd/g)

Λ Parameter for the solid particle inertia (10)
[= ρg/(ρd + ρg) = 1/(1 + Z)]

Cη Power index of pressure gradient (8)
[= −(1/2)(∂ ln P/∂ ln r); = 11/8(nominal)]

αacc α-parameter for disk gas accretion (9)
αDr α-parameter for radial mixing
αDz α-parameter for vertical stirring

(ρd/ρg)0 Maximum value of ρd/ρg in all the grids
(usually, at the grid of (x, z) ∼ (0, 0))

hd/g Dust-to-gas scale height ratio (= Hd/Hg) (12)
hd/g,0 hd/g at x with (ρd/ρg)0
hp/g Pebble-to-gas scale height ratio (= Hp/Hg) (19)

τs,p Stokes number of pebbles [= 0.1 (nominal)]
τs,d Stokes number of dust [= 10−5 (nominal)]

model breaks down. However, as we show in Appendix A, such
a situation is not realized in the parameter range we cover in this
paper.

Firstly, we derived the vertically averaged solid-to-gas mass
ratio (metallicity), inside the snow line. In this paper, the sub-
scripts, “g”,“p”, and “d” represent the disk’s H-He gas, icy
pebbles, and silicate dust particles, respectively. In the steady
state, the surface density of the silicate dust particles Σd and the
disk gas Σg are given by

Σd = fd/pṀp/2πr3r, (1)

Σg = Ṁg/2πrur, (2)

where 3r and ur are the drift velocity of the silicate particles and
the gas accretion velocity, and fd/p is the silicate dust mass frac-
tion in the icy pebbles. We adopted fd/p = 0.5 as a nominal value.
The vertically averaged metallicity is

ZΣ ≡ Σd

Σg
= fd/pFp/g

ur

3r
, (3)

where

Fp/g ≡
Ṁp

Ṁg
. (4)

We also used the local solid-to-gas ratio defined by

Z ≡ ρd

ρg
, (5)

where ρg and ρd are the local densities of gas and silicate dust
particles.
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The radial drift velocity of the particles and disk gas is given
by Ida & Guillot (2016) and Schoonenberg & Ormel (2017):

3r = −Λ2 2τs,d

1 + Λ2τ2
s,d

η3K − Λ
1

1 + Λ2τ2
s,d

uν, (6)

where 3K is Keplerian velocity, τs,d is the Stokes number of the
particles, and η is the degree of deviation of the gas rotation
angular velocity (Ω) from Keplerian one (ΩK), given by

η ≡ ΩK −Ω

ΩK
= Cη

(
Hg

r

)2

, (7)

Cη ≡ 1
2
∂ ln P
∂ ln r

, (8)

where Cη = 1.3−1.4, depending on the disk structure (Ida et al.
2016). We used Cη = 11/8 for Σg ∝ r−1 and T ∝ r−1/2 in this
paper. In the above equation, uν is an unperturbed disk gas
accretion (advection) velocity given by

uν ' 3νacc

2r
' 3αaccH2

gΩ

2r
' 3αacc

2

(
Hg

r

)2

3K, (9)

where νacc is the effective viscosity for the angular momentum
transfer of the disk gas, Hg is the disk gas scale height, and uν is
defined to be positive for inward flow. The effect of back reaction
from the piled-up particles is represented by Λ, which is defined
by

Λ ≡ ρg

ρg + ρd
=

1
1 + Z

. (10)

Because ρd ' Σd/
√

2πHd, where Hd is the scale hight of the sil-
icate dust particles, and ρg ' Σg/

√
2πHg, Eq. (10) for z < Hd is

approximated for the particle motion by

Λ−1 = 1 +
ρd

ρg
' 1 + ZΣ

Hg

Hd
' 1 + h−1

d/gZΣ. (11)

We define the scale height ratio:

hd/g ≡ Hd/Hg. (12)

In the case of silicate particle pile-up due to the sublimation
of icy pebbles, the pile-up is radially localized just inside of the
snow line. If we apply Eq. (A.2), the gas accretion velocity (ur)
is locally slowed down from uν by the back reaction to the gas
motion. If the steady accretion with constant αacc is assumed,
the gas surface density given by Eq. (2) is increased locally.
However, in reality, the assumption for vertically constant αacc
may be broken down in that case, or some local instability may
smooth out the local gas concentration. Therefore, we assumed
that ur ' uν also in the silicate dust pile-up region. Even if we
take account of the back reaction to the gas motion, the condi-
tion for the runaway pile-up of the silicate dust particles does not
change significantly, as shown below and in Appendix A.

Because τs,d � 1, silicate particle motions are strongly cou-
pled with disk gas, but the back reaction to the drift velocity of
the silicate particles must be be taken into account. Equation (6)
with τs,d � 1 implies 3r ' Λuν. Substituting ur ' uν, 3r ' Λuν,
and Eq. (11) into Eq. (3), we obtain

ZΣ '
fd/p
Λ

Fp/g ' fd/p(1 + h−1
d/gZΣ)Fp/g, (13)

which is solved as (Ida & Guillot 2016)

ZΣ =
fd/pFp/g

1 − h−1
d/g fd/pFp/g

. (14)

The midplane Z = ρd/ρg is given by

Z =
ZΣ

hd/g
=

fd/pFp/g

hd/g − fd/pFp/g
. (15)

If we consider the back reaction to gas motion, the divergence
condition is only slightly modified to (see Appendix A)

Z =
fd/pFp/g

hd/g − (1 − hp/g) fd/pFp/g
. (16)

The metallicity Z diverges, which would lead to rocky planetes-
imal formation, for

Fp/g >
hd/g

fd/p
[w/o the back reaction to gas], (17)

Fp/g >
hd/g

(1 − hp/g) fd/p
[w/ the back reaction to gas]. (18)

The former condition was derived by Ida & Guillot (2016). We
mostly refer to the former condition.

Schoonenberg & Ormel (2017) neglected the back reaction
to the silicate dust drift velocity and assumed Λ = 1 in Eq. (13).
In this case, Eq. (13) is reduced to ZΣ ' fd/pFp/g, which shows
no divergence. This demonstrates that the back reaction to the
silicate particle radial velocity plays an essential role in the
occurrence of the runaway pile-up.

In the runaway pile-up condition, Fp/g > f −1
d/p hd/g, the esti-

mation of Hd is very important. The scale height of pebbles (Hp)
is given with their Stokes number, τs,p, and the vertical mix-
ing parameter αDz as (Dubrulle et al. 1995; Youdin & Lithwick
2007)

hp/g =
Hp

Hg
=

(
1 +

τs,p

αDz

)−1/2

. (19)

We discuss the increase of Hp by Kelvin-Helmholtz instability
for the vertical shear due to pile-up of particles in Paper II.

The scale height of silicate dust particles (Hd) must be
the same as Hp just after the release from the icy pebbles.
Because τs,d � τs,p, Hd is increased by the vertical turbulent
stirring afterward. Ida & Guillot (2016) assumed that Hd ' Hp
(hd/g = hp/g) until the runaway pile-up develops. For hd/g ∼
0.1 (τs,peb/αDz ∼ 102) and fd/p ∼ 0.5, the optimistic estimate by
Eq. (15) predicts that the runaway pile-up occurs for Fp/g >
0.2, which would be available for relatively early phase of disk
evolution.

On the other hand, Schoonenberg & Ormel (2017) assumed
immediate vertical stirring by turbulence, that is, Hd ' Hg
(hd/g ' 1). Because they neglected the back reaction to 3r, they
never found the runway pile-up in their simulations. Even if we
apply Eq. (15), which was derived with the back reaction, for the
case of hd/g ' 1 and fd/p ∼ 0.5, the runaway pile-up condition
is Fp/g > 2. The high value of Fp/g may not be completely ruled
out, but it is not easily established (Ida & Guillot 2016, and see
Fig. 1 in this paper).

Hyodo et al. (2019) treated the effects of the vertical and
radial diffusion more carefully. They considered the vertical stir-
ring characterized by αDz to derive a model for hd/g as a function

A13, page 4 of 15



S. Ida et al.: Pile up of silicate dust particles from sublimating pebbles

of x = r − rsnow. They also introduced the back reaction to the
diffusion coefficients Dr and Dz by the pile-up of the particles,
such that

Dr = αDrH2
gΩΛK , (20)

Dz = αDzH2
gΩΛK . (21)

A simple argument that Dz,Dr ∝ H2
g ∝ c2

s ∝ P/(ρg + ρd) ∝ Λ
(Laibe & Price 2014; Lin & Youdin 2017) suggests K = 1.
Another argument is based on Kolmogorov theory (e.g., Cho
et al. 2003). In the eddy cascade, the energy transfer rate, (ρg +

ρd) 32`/teddy, is independent of `, where `, 3`, and teddy are the eddy
size, velocity, and turnover time ∼`/3`. Because Dz,Dr ∼ `03`0
where `0 and 3`0 are the eddy size and velocity controlling the
turbulence, Dz,Dr ∝ `0 [`0/(ρg + ρd)]1/3 ∝ Λ1/3. This argument
thus implies K = 1/3. This should be a lower limit because an
increase in the solid-to-gas is expected to suppress turbulence
itself. Given these uncertainties, Hyodo et al. (2019) performed
runs with K = 0, 1, and 2. They found that the runaway pile-up is
caused by inclusion of the back reaction to 3r, and that the condi-
tion for the runaway pile-up depends on the relations among αacc,
αDr, and αDz, while Ida & Guillot (2016) considered the limits
of αDr, αDz → 0 and their condition, Eq. (15), does not include
αacc. The condition derived by Hyodo et al. (2019) is more severe
than the prediction by Ida & Guillot (2016). The runaway pile-up
occurs for Fp/g > 0.2−0.3, and αDr = αDz ' 10−3 in the case of
K = 1 and 2 with αacc = 10−2, while it does not occur with K = 0
as long as it is in the parameter space of αDr = αDz = 10−3−10−2

and Fp/g < 0.6. In this paper, we show this back-reaction effect
on the diffusion coefficients more clearly.

2.4. Stokes number of silicate particles

The models discussed thus far and the model that we present
are based on the assumption that many silicate dust particles
released by the individual icy pebbles remain small compared
to pebbles (i.e., with a Stokes number that is much smaller than
unity). In this case, the radial drift is much faster for icy pebbles
than for silicate particles. Because the gas accretion velocity is
given by uν ∼ (3/2)αacc(Hg/r)23K (Eq. (9)) and the drift speed
relative to the gas is given by 3r ∼ τs,d(Hg/r)23K (Eq. (6)), the
total drift velocity is dominated by uν if τs,d <∼ αacc. Therefore,
the assumption here is expressed as τs,d <∼ αacc < τs,p.

In Sect. 2.3, we assume that τs,p ∼ 0.1, αacc ∼ 10−3−10−2,
and τs,d <∼ αacc. Saito & Sirono (2011) assumed that many µm-
sized silicate particles are embedded in pebbles. Morbidelli et al.
(2015) considered chondrule-sized (∼mm) particles. Because the
Stokes number is proportional to the particle size in the Epstein
regime and its square in the Stokes regime, it is reasonable to
assume that τs,d < αacc. This model corresponds to the “many-
seeds model” of Schoonenberg & Ormel (2017). In the Monte
Carlo simulations here, we adopt τs,d = 10−5.

In the silicate particle pile-up region, the particles may
quickly grow up to sizes determined by the threshold collision
velocity for fragmentation/rebound. The collision velocity
is set by the velocity dispersion induced by the turbulence,
∼(3(α2

Dr + α2
Dz)

1/2τs,d)1/2cs, or by the drift velocity differ-
ence between the particles ∼2τs,d η 3K (e.g., Sato et al. 2016).
The collision velocity between silicate particles is therefore
(τs,d/τs,p)−(0.5−1) times that between icy pebbles. If the threshold
collision velocity is ten times lower for the silicate particles than
for the icy particles (Blum & Wurm 2000; Zsom et al. 2010,
2011; Wada et al. 2011, 2013; Weidling et al. 2012) and τp,d ∼ 0.1

is close to the fragmentation/rebound barrier for ice, the silicate
particles can grow only up to τs,d ∼ (10−1–10−2)τs,p ∼ 10−3–
10−2 in size. Therefore, for αacc = 10−3–10−2, the drift velocity
of the silicate particles is comparable to uν and the pile-up
would not be significantly affected by the value of τs,d.

We note that this conventional view has been challenged
recently (Kimura et al. 2015; Gundlach et al. 2018; Musiolik
& Wurm 2019; Steinpilz et al. 2019). A higher fragmentation
threshold for silicates would open the possibility for dust to coag-
ulate and grow. We hence performed runs with larger values of
τs,d to find that the results are not affected for τs,d <∼ αacc and that
the runaway pile-up region is removed from lower Fp/g regions
as τs,d becomes larger.

Our model hence remains valid if the fragmentation velocity
for rock-rich dust remains smaller than for ice. We also note that
an exploration of the consequence of a different change of frag-
mentation velocity across ice lines was explored by Vericel &
Gonzalez (2019) (see also Gonzalez et al. 2017). In this case,
planetesimal formation may still be possible, but through a slow-
down of the drift rate due to the gas back reaction and to a
progressive growth of the particles.

3. The Monte Carlo approach
In order to model precisely the effects of drift due to gas drag, gas
advection, radial and vertical diffusion, we developed a Monte
Carlo simulation of silicate dust particles in a turbulent accretion
disk. The dust particles released from sublimating icy pebbles
are injected near the snow line. The back reactions to 3r and the
diffusion of the particles are included using the super-particle
approximation. We set radial and vertical coordinates, (x, z),
where x ≡ r − rsnow is the radial distance from the snow line at
rsnow and z is the distance from the midplane.

We considered a radially local region near the snow line and
neglected the r-dependence of the Keplerian frequency (Ω) and
the disk’s gas scale height (Hg). As discussed in Sect. 2.4, we
adopted the conventional view to set τs,p = 0.1 and τs,d = 10−5

in our simulations.

3.1. Injection of particles

To model the release from drifting icy pebbles due to sublima-
tion, at each time step δt, we randomly injected a new silicate
super-particle with mass m with a radially uniform distribution
near the snow line in the −0.5∆xsubl < x < 0.5∆xsubl range, and
a Gaussian distribution of z of the root mean square ∆zsubl as

x = 0.5 R ∆xsubl, (22)

z =
√

2 erf−1(|R|) R|R|∆zsubl, (23)

where R is a random number in the range of [−1, 1], ∆xsubl
is the characteristic sublimation radial length, and ∆zsubl corre-
sponds to the scale height of the incoming icy pebbles, Hp, given
by Eq. (19). We adopted ∆xsubl = 0.1Hg as a nominal case. In
Sect. 4.4.2, we also consider a more complicated function that
fits the numerical result of the grid code simulation obtained by
Paper II.

Here, we distinguish the effective viscosity parameters for
advection, radial mixing, and vertical mixing, denoted by αacc,
αDr, and αDz, respectively. According to different values of
αDz, we used the consistent value of the scale height of the
injected silicate particles given by Eq. (19). Although Hasegawa
et al. (2017) suggested αDr, αDz ∼ 0.1αacc, the relations among

A13, page 5 of 15



A&A 646, A13 (2021)

αDr, αDz and αacc are not clear (e.g., Armitage et al. 2013). There-
fore, we surveyed broad parameter ranges of αDr, αDz and αacc;
we mostly show the results with αacc ≥ αDr = αDz. In some cases,
the results with αDr , αDz (αacc ≥ αDr, αDz) are also shown.

3.2. Advection and diffusion

At each time step δt, we changed the r–z locations of the particles
that were injected before, following Ciesla (2010, 2011), by

δx = vadv,rδt + R (6Drδt)1/2, (24)

δz = vadv,zδt + R (6Dzδt)1/2, (25)

where the first and second terms on the right-hand side repre-
sent advection (drift) and diffusion, respectively. The root mean
square of R is 1/

√
3. In our simulations, we adopted δt = Ω−1.

Fromang & Papaloizou (2006) suggested a turbulent correlation
time in a protoplaneatry disk is ∼0.15TK ∼ Ω−1. Ciesla (2011)
adopted planar (x–y) random walks, in addition to a vertical
one (z), to take account of the global curvature effect. In our
case, because we only considered a local radial range, we simply
adopted r–z random walks.

We performed runs with K = 0 and K = 1 for the diffusion
coefficients (Eqs. (20) and (21)), with K = 1 being our nominal
case. We also performed runs with K = 1/3 (the lower limit) and
found that the overall features of the results do not depend on the
value of K (only the runaway pile-up timescale is different), as
long as the back reaction to diffusion is considered (i.e., K > 0).
Hereafter, we show the results with K = 1 as representative of
the cases including a back reaction to diffusion.

The radial drift (advection) velocity vadv,r is the same as 3r in
Eq. (6). The vertical advection velocity is (Ciesla 2010)

vadv,z = −(αDz + τs,d)Ω z. (26)

The first term (∝ αDz) comes from the effect of diffusion
smoothing the concentration (ρd/ρg) but not ρd itself.

3.3. Inclusion of back reaction effects

The advection and diffusion scheme was originally developed
by Ciesla (2010, 2011). Here, we also include the effects of back
reaction due to the silicate particle pile-up as well as a scheme
to model the injection of silicate particles from sublimating icy
pebbles.

We utilized the “super-particle” method, where one super-
particle represents the mass of a large number of particles while
it suffers the same specific drag force as the individual particles.
We injected one super-particle at every time step δt = Ω−1. For
given Ṁp, we can determine the individual mass of the super-
particles as

m = fd/pṀp δt = fd/pṀp Ω−1, (27)

where fd/p is a silicate fraction in migrating pebbles ( fd/p = 0.5
in the nominal case). To locally average the silicate dust mass
density, we used linear grids, ∆x and ∆z. In the nominal cases, we
adopted ∆x = 0.1 Hg. We used ∆z ∼ ∆zsubl near the midplane and
larger ∆z for upper regions to keep statistically enough number
of particles in the individual grids.

The silicate particle mass density at a grid of [x, x + ∆x] and
[|z|, |z| + ∆z] is

ρd =
m ∆Nx,z

2πr∆x × 2∆z
=

Hg

r
∆Nx,z fd/pṀp

4π (∆x/Hg) (∆z/Hg) H3
g Ω

, (28)

where ∆Nx,z is a total number of the particles in the grid.
We simply assumed the vertical isothermal hydrodynamical
equilibrium. Then, the gas density is given by

ρg =
Σg√
2πHg

exp
− z2

2H2
g


=

Ṁg√
2π 3παaccH3

g Ω
exp

− z2

2H2
g

 . (29)

The silicate dust-to-gas ratio at (x, z) is

Z =
ρd

ρg
=

3
√

2π
4

Hg

r
αacc

fd/pṀp

Ṁg

∆Nx,z

(∆x/Hg)(∆z/Hg)
exp

 z2

2H2
g


= 3.75 × 10−2

(
Hg/r
0.04

) (
αacc

10−2

) ( fd/p
0.5

)
Fp/g

×
(

∆x
0.1Hg

)−1 (
∆z

0.1Hg

)−1

∆Nx,z exp
 z2

2H2
g

 . (30)

We counted ∆Nx,z in the simulation bins of [x, x + ∆x] and
[|z|, |z|+ ∆z] to calculate Z according to Eq. (30). With calculated
Z, we updated dΛ = 1/(1 + Z) in Eqs. (24) and (25) through
Eqs. (6), (20), and (21) for the next step.

In the simulations, we normalized length by Hg, including
the range of particle injection, ∆xsubl and ∆zsubl, and the grid
sizes, ∆x and ∆z. The time was scaled by Ω−1, that is, each super-
particle was injected at every unit’s scaled time. Therefore, our
results can be applied for any location of rsnow, as long as Hg/r
is the same.

In the simulations here, we adopted fd/p = 0.5 and Hg/r =
0.04 at r = rsnow, as nominal values. We do not need to spec-
ify the values of Hg and Ṁg or the value of rsnow, because
only the scaled values, hd/g(= Hd/Hg), hp/g(= Hp/Hg),Hg/r and
Fp/g(= Ṁp/Ṁg), are used in the simulations. For the viscous α-
parameters, we show that only the ratios αDz/αacc and αDr/αacc
are important.

4. Results

4.1. Code check

We tested our code by comparing the simulated particle scale
heights with the existing analytical argument, as Ciesla (2010)
already did, and by reproducing the simple analytical result by
Ida & Guillot (2016) and the numerical result without the back
reaction to silicate particles by Schoonenberg & Ormel (2017).
We also offer a detailed comparison with the results obtained by
an updated code of Hyodo et al. (2019) in Paper II. While Hyodo
et al. (2019) included both nonzero αDr and αDz, they assumed
the evolution of Hd analytically estimated only from the vertical
stirring with αDz. In our simulation, the evolution of Hd was self-
consistently calculated, and we find that the radial mixing with
αDr is also important for Hd. On the other hand, the sublimation
width ∆xsubl is self-consistently calculated in Hyodo et al. (2019),
while it needs to be assumed in the simulation here.

4.1.1. Confirmation of the theoretically predicted particle scale
height

Figure 2 shows the distribution of particles and their scale
heights (the local root mean square of z of the particles) in
a steady state at t = 104Ω−1 (after 104 particles are injected),
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Fig. 2. Snapshots of particle distribution (red dots) on the x-z plane at
time t = 104Ω−1 , and the root mean square of z (blue solid curve) as
a function of the radial direction x (centered on the snow line location
and in units of the gas pressure scale height Hg). We plot | z |, while
z takes either positive or negative values. We set αacc = 10−2, αDr = 0
and τs = 10−3. The vertical mixing parameter in each panel is (a) αDz =
10−5, (b) αDz = 10−3, and (c) αDz = 10−1. The analytical estimates of the
equilibrium particle scale height for each αDz are shown by the dashed
green lines. The back reactions are not included for 3r (Λ = 1) and αDz
(K = 0). We injected the particles in the range of x = [−0.05, 0.05]Hg
and z = [−0.1, 0.1]Hg.

obtained by our Monte Carlo simulations for (a) αDz = 10−5, (b)
10−3, and (c) 10−1. For these runs, we neglected the back reac-
tions to 3r (Λ = 1) and αDz (K = 0). To highlight the effect of
vertical stirring, we set αDr = 0. The other parameters are the
particles’ Stokes numbers τs = 10−3 and αacc = 10−2. The equi-
librium scale height predicted from Eq. (19) with τs,p replaced
by τs = 10−3 are (a) 0.1Hg, (b) 0.71Hg, and (c) 1.0Hg, respec-
tively, which are shown via the green dashed lines in the plots.
As the particles drift inward, the local root mean square of z
(represented by the blue solid curves) asymptotically approaches
the theoretical values in each panel. Thus, we confirm that the
analytically derived Eq. (19) is reproduced by our Monte Carlo
simulations.

4.1.2. Reproduction of the results of Schoonenberg & Ormel
(2017) and Ida & Guillot (2016)

Ida & Guillot (2016) adopted the following setup: (1) the tur-
bulent diffusion is neglected for simplicity, and (2) the silicate
particle pile-up is fast enough that Hd is not increased from
∆zsubl(= Hp) by the vertical stirring. To mimic the setup of Ida &
Guillot (2016), we set the following in the Monte Carlo simu-
lations: (1) we adopted αDr = 0, K = 0, and ∆zsubl = 0.03Hg;

Fig. 3. Time evolution of the maximum ρd/ρg. The back reaction to
3r is included in the results in panel b, but not in panel a. The light
blue, magenta, blue, green, and red curves are the results with Fp/g =
0.025, 0.05, 0.1, 0.2, 0.4, and 0.8, respectively. The other parameters are
fixed as αacc = 10−2 and ∆xsubl = 0.1Hg and ∆zsubl = 0.03Hg. To mimic
the settings of Ida & Guillot (2016), we artificiallly set αDr = 0, αDz =
10−5 and τs,d = 10−2 (however, the relatively large τs,d for the silicate
dust is not reflected to the dust drift speed). The latter two parameters
maintain Hd = ∆zsubl. The circles in panel a represent the analytical
solution given by Eq. (31). That in panel b is the analytical solution for
non-divergent case (Fp/g = 0.025) given by Eq. (15).

(2) to keep Hd = ∆zsubl = 0.03Hg as an equilibrium, we adopted
αDz = 10−5 and τs,d = 10−2 (Eq. (19)); (3) the dust particle drift
speed is set to be 3r = −Λuν, where the artificially enlarged τs,d
is not reflected (Eq. (6)), and (4) for gas, ur = −uν is always
assumed. For comparison, 3r = −uν (without the back reaction
to 3r) is also examined.

In the rest of the paper, we always set τs,p = 10−1 and τs,d =

10−5, and we consistently calculated Hp(= ∆zsubl) by Eq. (19)
and the evolution of Hd from ∆zsubl by the vertical and radial
diffusion, with given αDz and αDr. The above artificial setting is
only used in the particular runs in Fig. 3.

Figure 3 shows the time evolution of the maximum value of
ρd/ρg (the value on the midplane near the snow line) for differ-
ent values of Fp/g, in the case of αacc = 10−2, ∆xsubl = 0.1Hg,
and ∆zsubl = 0.03Hg. In panel a, the back reaction to 3r is
not included (Λ = 1) in the Monte Carlo calculations, that is,
3r = ur = −uν, which corresponds to the result of Schoonenberg
& Ormel (2017), except that they assumed hd/g = 1. The maxi-
mum ρd/ρg quickly reaches the equilibrium values that are given
by Eq. (3), with 3r = ur = −uν and ZΣ = Z hd/g as

ρd

ρg
' fd/ph−1

d/gFp/g ' 16.7 Fp/g. (31)

The open circles in panel a represent this analytical solution for
each of Fp/g, which completely agree with the numerical results
here.

In Fig. 3b, the back reaction to 3r is included (Λ <), corre-
sponding to the setup of Ida & Guillot (2016). They predicted
that runaway pile-up occurs for Fp/g > hd/g f −1

d/p, which is Fp/g >

0.06 for the parameters adopted here. This panel shows a clear
runaway pile-up for Fp/g >∼ 0.1, which is consistent with the
prediction.

A comparison between Figs. 3a and b clearly shows that the
back reaction to 3r of the silicate particles plays an essential role
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Fig. 4. Snapshots of silicate particles at t = 104 Ω−1 (red dots), and the root mean square of z (blue solid curves) at each grid of x. The dashed blue
curves are given by Eq. (35) with ∆xsubl replaced by max(∆xsubl, |x|) (see the discussion at the end of Sect. 4.3.2). The magenta curve represents
log10(ρd/ρg) near the midplane. We set αacc = 10−2, τs,d = 10−5, and fd/p = 0.5, and Ṁg = 10−8 M� yr−1. The nine panels adopt different values of
Fp/g and αDz = αDr, as indicated in each panel.

in the occurrence of the runaway pile-up. The increase in the
pile-up slows down the drift velocity, and, accordingly, increases
the pile-up itself. Because it is certain that the back reaction to
3r exists, we include it in the results in the rest of the paper.

If the supply rate of silicate particles ( fd/pṀp) exceeds a
threshold value, the mode of the pile-up becomes runaway. The
threshold value must be regulated by the local value of ρd/ρg,
because the back reaction becomes effective once ρd/ρg exceeds
unity. While Ṁp, more exactly Fp/g, determines ZΣ = Σd/Σg, the
local value of Z = ρd/ρg is regulated by Hd and ZΣ (Z = ZΣ/hd/g)
near the snow line. The silicate dust particle scale height Hd is
regulated by the pebble scale height Hp (= ∆zsubl in our simula-
tion) and turbulent mixing parmeters, αDz and αDr, as shown in
Sect. 4.3.

4.2. Typical results

We first show typical results in our simulations for different Fp/g
and αDz (= αDr). As we show below, the radial diffusion also
contributes to Hd. The back reaction to 3r is included. In these
results, ∆xsubl = 0.1Hg is adopted, as well as αacc = 10−2.

Figure 4 shows the snapshots of silicate particles at 104 Ω−1

for the cases without the back reaction to diffusion coeffi-
cients (K = 0). In the right panels with αDz = αDr = 10−2

(αDz/τs,d = 103), the vertical mixing is fast enough to realize
the upper limit of Hd (Hd ' Hg) for all of Fp/g = 0.1, 0.3, and
1. Even for a high-mass flux of pebbles (Fp/g = 1.0), no pile-
up of the silicate particles is found for αDz = αDr = 10−2. In
the case of αDz = αDr = 10−6, on the other hand, the mixing
is so weak that Hd is not increased to the equilibrium value
[' (αDr/τs,d)1/2Hg ∼ 0.3Hg] in the range of x > −2 Hg. Never-
theless, Hd near the injection point (x ∼ 0) is much higher than
∆zsubl = Hp = 0.003Hg. This means that Hd is regulated by αDr
as well as by αDz, which is discussed in Sect. 4.3.

Figure 5 show the results with the back reaction to diffu-
sion coefficients (K = 1). In general, the runaway pile-up is more
pronounced for smaller αDz = αDr and larger Fp/g. The magenta
curves represent log10(ρd/ρg) near the midplane. The midplane
ρd/ρg usually takes the maximum value, at the injection (sub-
limation) region, x ∼ 0, which is denoted by (ρd/ρg)0. In the
panels with (ρd/ρg)0 <∼ 1 (the panels with αDz = 10−2 and those
with αDz = 10−4 and Fp/g = 0.3 and 0.1), the results are similar
to those in Fig. 4. If ρd/ρg >∼ several in Fig. 4, however, the pile-
up is much more pronounced in this case, because the radial and
vertical diffusions become much weaker as the pile-up proceeds.

Figure 6 shows the time evolution of (ρd/ρg)0 and Hd/Hp
at the maximum ρd/ρg locations (hd/g,0), for different Fp/g. In
panel a, the back reaction to diffusion is not included (K = 0). As
Figs. 4 and 5 suggest, the transient αDz (= αDr) values between
the runaway pile-up and non-pile-up cases are αDz ' 10−5 for
K = 0 and αDz ' 10−4 for K = 1, so we plot the results with
αDz = 10−5 in panel a and αDz = 10−4 in panel b. These figures
show that transition to the runaway pile-up is much clearer in the
case of K = 1.

This difference comes from the Hd evolution. The compar-
ison with the result of Ida & Guillot (2016) in Sect. 2 suggests
that Hd is directly related to a threshold value of Fp/g for the
runaway pile-up: a lower Hd leads to a lower threshold value of
Fp/g. However, Fig. 6 shows that Hd increases as ρd/ρg increases
in the case of K = 0, while it decreases for K = 1. Therefore, the
pile-up suffers negative feedback for K = 0, but it suffers posi-
tive feedback for K = 1, resulting in a much clearer transition to
the runaway pile-up.

In both cases, the back reaction to 3r is included. As the
pile-up proceeds, 3r decreases, which enhances the pile-up.
However, we also included the vertical stirring. As 3r decreases,
the silicate particles are stirred up for a longer period of time
before they leave the sublimation region, resulting in higher Hd
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Fig. 5. Same as Fig. 4, except for K = 1.

Fig. 6. Time evolution of (ρd/ρg)0 and the dust scale height at the maxi-
mum ρd/ρg locations scaled by the initial one (= Hp). The back reaction
to diffusion is included with K = 1 in panel b, but not (K = 0) in panel
a, while the back reaction to 3r is included in both panels a and b. The
light blue, magenta, blue, green, and red curves are the results with
Fp/g = 0.05, 0.1, 0.2, 0.4 and 0.8, respectively. The other parameters are
fixed as αacc = 10−2, ∆xsubl = 0.1, and ∆zsubl = 0.03. The diffusion
parameters are αDz = αDr = 10−5 in panel a and αDz = αDr = 10−4 in
panel b.

near that location. In panel a, Hd near the sublimation region
quickly asymptotes to an equilibrium value for Fp/g ≤ 0.2 (lower
(ρd/ρg)0 cases), and it increases with time for Fp/g = 0.8 (the

runaway pile-up cases). In panel b, in the runaway pile-up cases
(Fp/g = 0.4 and 0.8), Hd initially increases with time. How-
ever, after ρd/ρg exceeds ∼1, the diffusion coefficients become
so small that the settling of the particles overwhelms the verti-
cal stirring, and Hd decreases. Thus, the different responses to
the pile-up between K = 0 and K = 1 result in different Hd and
ρd/ρg evolution in the pile-up cases. As we discussed in Sect. 3.2,
K = 1 (with the diffusion back reaction) is more realistic.

4.3. Silicate particle scale height

4.3.1. Monte Carlo simulation results

Figure 7 shows (ρd/ρg)0 and hd/g,0 at t = 15 000 Ω−1 as a function
of αDz = αDr for different Fp/g. This figure more clearly shows
that the asymptotic equilibrium values of hd/g,0 are independent
of Fp/g in the non-runaway pile-up cases, which is suggested
by Fig. 6. The envelope curves in the plots for (a) K = 0 and
(b) K = 1 match the analytical formula derived in the next sub-
subsection (Eqs. (B.3) and (35) with Eq. (36)). The equilibrium
values are generally larger than the scale height of the injected
silicate particles, ∆zsubl, due to the effects of vertical and radial
diffusion. In panels a and b, the values of hd/g,0 that deviate from
the envelope curves correspond to the runaway pile-up; hd/g,0
deviates to higher values for K = 0 and lower values for K = 1.
If we calculate on longer timescales, the deviations increase.

4.3.2. Analytical formula for the silicate scale height

The red dashed curves in Fig. 7 are analytical formulas for the
non pile-up cases, which are derived as follows. The timescale
to drift by ∆xsubl is

tdrift ' ∆xsubl

3r

' ∆xsubl

(3/2)Λαacc(Hg/r)23K
' ∆xsubl/Hg

(3/2)Λαacc(Hg/r)Ω
. (32)
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Fig. 7. Maximum ρd/ρg and Hd/Hg at the maximum ρd/ρg locations at
t = 15000 Ω−1 as a function of αDz = αDr for different Fp/g. The back
reaction to diffusion is included with K = 1 in panel b, but not (K =
0) in panel a. The other parameters are fixed as αacc = 10−2, ∆xsubl =
0.1Hg, and ∆zsublHp given by Eq. (19). Upper and bottom panels: the red
dashed curves are the analytical formulas given by Eqs. (B.3) and (35)
with Eq. (36). Lower panels: the green dashed lines represent ∆zsubl/Hg.

As the pile-up proceeds (Λ = 1/(1 + Z) decreases), the particle
drift becomes slower, and, accordingly, tdrift becomes longer. The
vertical diffusion length during tdrift is

zdiff '
√

Dztdrift '
(

2
3
αD,zΛ

K H2
gΩ × ∆xsubl/Hg

Λαacc(Hg/r)Ω

)1/2

'
(

2
3

ΛK−1 ∆xsubl/Hg

Hg/r
αD,z

αacc

)1/2

Hg. (33)

This expression suggests that zdiff becomes higher as the pile-
up proceeds (Λ decreases) for the case of K = 0. Hereafter, we
derive the equilibrium value of Hd/Hg for the non-pile-up cases
with Λ ' 1 (the envelope curves in Fig. 7). If Z � 1 for the
equilibrium value of Hd/Hg, the runaway pile-up occurs, so Z
keeps increasing and the equilibrium value of Hd/Hg no longer
exists.

If only vertical diffusion is considered, the silicate particle
scale height scaled by Hg is predicted as

hd/g =
Hd

Hg
' max (∆zsubl, zdiff)

Hg
' (∆z2

subl + z2
diff)1/2

Hg

'
∆z2

subl

H2
g

+
2
3
αDz

αacc

∆xsubl/Hg

Hg/r

1/2

. (34)

Furthermore, during tdrift, the particles are radially mixed in
the range of xdiff '

√
Drtdrift ∼ (αDr/αDz)1/2zdiff . In general, the

dust scale height increases with distance from the snow line.
If xdiff � ∆xsubl, the radial diffusion brings the high-z parti-
cles back to the injection region and raises the value of hd/g
there. To take this effect into account, we found through com-
parison with the Monte Carlo simulation results that a good-fit

analytical formula is obtained by multiplying the above hd/g

by a factor of [1 + (xdiff/∆xsubl)2]. When αDr is comparable to
αacc, the silicate scale height is radially smoothed out, and the
effect of radial mixing for the scale height becomes weak. To
take this into account, we replaced αDr/αacc in (xdiff/∆xsubl)2

by (αDr/αacc)/[1 + (Cr,diff αDr/αacc)2] in the above equation.
Comparing the formula with the numerical results (Figs. 7 and
8), we empirically adopted Cr,diff = 10. With these modifications,

hd/g,∗ '
∆z2

subl

H2
g

+
2
3
αDz

αacc

∆xsubl/Hg

Hg/r

1/2

×
[
1 +

2
3

(αDr/αacc)
1 + (Cr,diff αDr/ αacc)2

1
(Hg/r)(∆xsubl/Hg)

]
.

(35)

Because hd/g cannot exceed the equilibrium value hd/g,eq ' (1 +

τs,d/αDz)−1/2, the final form is

hd/g ' (h−1
d/g,eq + h−1

d/g,∗)
−1. (36)

As the lower panels in Fig. 7 show, the analytical formula repro-
duces the envelope curves of Hd/Hp obtained by the numerical
simulations for the non-pile-up cases. We note that hd/g,0 and
(ρd/ρg)0 depend on the ratios of αDr/αacc and αDz/αacc, but not
on their absolute values.

Equation (35) is the analytical formula for hd/g at x ∼ 0.
This formula can be extrapolated to any x by replacing ∆xsubl
with max(∆xsubl, |x|, ε), where ε is added to avoid the divergence
in the case of extremely small ∆xsubl; we adopted ε = 0.01 Hg.
In Figs. 4 and 5, the scale height distribution obtained by the
Monte Carlo simulations are well reproduced by the analytical
formula (the blue dashed curves), except for the runaway pile-up
cases, where the back reaction modulates the scale height as we
discussed in this subsection.

4.4. Silicate particle pile-up

4.4.1. Analytical formula for the silicate pile-up

We can also derive an analytical formula for (ρd/ρg)0 (the mid-
plane particle-to-gas ratio at x ∼ 0) for the non-runaway pile-up
cases and for the phase before the runaway pile-up proceeds.
If the estimated (ρd/ρg)0 exceeds ∼1, the actual value of ρd/ρg
should deviate from the estimate and increase with time.

Basically, (ρd/ρg)0 is predicted by Eq. (15) with the scale
hight formula, Eqs. (36) and (35). A possible detailed correc-
tion is to include the effect of outward diffusion flux (Fd,D) of
silicate particles beyond the snow line that can be found in the
snapshots with αDr = αacc = 10−2 in Figs. 4 and 5. As shown in
Appendix B, calibrating with the results of Monte Carlo simu-
lations in Figs. 7 and 8, the effect can be achieved with fd/pFp/g
being replaced by Fd,net = fd/pFp/g − Fd,D, where

Fd,net = fd/pFp/g

1 − (
1 +

15
2

Hg

r
αacc

αDr

)−1 . (37)

Accordingly, Eq. (15) is reduced to(
ρd

ρg

)
0

=
Fd,net

hd/g − Fd,net
. (38)

This formula reproduces the numerical results in Figs. 7 and 8, as
long as ρd/ρg <∼ 1. We note, however, that if the effect of silicate

A13, page 10 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039705&pdf_id=0


S. Ida et al.: Pile up of silicate dust particles from sublimating pebbles

Fig. 8. Same as Fig. 7, except for αDz/αDr relations and the value of
∆xsubl. The maximum ρd/ρg and hd/g (= Hd/Hg) for different Fp/g are
given as functions of (a) αDr = αDz with ∆xsubl = 0.1 Hg, which is the
same as Fig. 7b, for comparison, (b) αDr = αDz with ∆xsubl = Hg, (c)
αDz with αDr = 10−4 and ∆xsubl = 0.1 Hg, and (d) αDr with αDz = 10−4

and ∆xsubl = 0.1 Hg. For all the cases, K = 1 is adopted. Upper and
bottom panels: the red dashed curves are the analytical formulas given
by Eqs. (35) and (B.3) with corresponding parameter values.

particles that diffuse beyond the snow line sticking to icy peb-
bles is considered, most of the silicate grains beyond the snow
line may eventually come back with the pebbles, so Fd,net would
become more similar to fd/pFp/g.

We derived the analytical formulas for the silicate parti-
cle scale height, Eqs. (35) and (36), and those for the pile-up,
Eqs. (37) and (38). The formulas make the intrinsic physics of
the pile-up of the silicate particles released from the drifting
icy pebble by their sublimation clear, which is a complicated
process. Here, we study the parameter dependences using the
analytical formulas and the simulations with K = 1.

The formulas imply that the results are scaled by αDz/αacc
and αDr/αacc for given ∆zsubl, ∆xsubl, and Hg/r. We also carried
out the Monte Carlo simulations with αacc = 10−3 and confirmed
that the plots in Fig. 7 do not change as long as we use αDr/αacc
(= αDz/αacc) as the horizontal coordinate.

The sublimation width, ∆xsubl, is an independent parameter.
The results with ∆xsubl = Hg (Fig. 8b), are compared to those
with ∆xsubl = 0.1Hg (Fig. 8a, which are identical to Fig. 7b).
In Fig. 8b, the injected particles are distributed in region ten-
times broader than in the case of Fig. 8a. As a result, the vertical
mixing is more effective (tdrift is longer) and the pile-up (the
maximum ρd/ρg) is lower.

So far, the results with αDr = αDz have been shown. In
Fig. 8c, αDr is fixed and αDz is independently changed. In
Fig. 8d, αDz is fixed. The envelope curves for Hd/Hg (= hd/g) are
also reproduced by the analytical formula in these cases, which

strongly suggests that the correction factors with the vertical and
radial diffusion are physically correct.

4.4.2. The condition for the silicate runaway pile-up

The analytical formulas reproduce the numerical results for a
broad range of multidimensional parameters. Figure 9a shows
the contour maps of the maximum ρd/ρg on the plane of
αDz/αacc(= αDr/αacc), and Fp/g at t = 1.5 × 104 Ω−1 for ∆xsubl =
0.1 Hg. In Fig. 9b, ∆xsubl is given by Eq. (41). In both cases,
αacc = 10−2 and K = 1. The left and right panels show the results
of Monte Carlo simulations and the analytical results, respec-
tively. The red regions represent the parameter ranges of runaway
pile-up of silicate particles. As expected, the analytical formulas
reproduce the numerical results.

For these simulations, αacc = 10−2 and αDz(= αDr) are in the
range of [10−6, 10−2]. The analytical formula to predict (ρd/ρg)0
is Eq. (37) with Eqs. (38), (35), and (36). They are functions
of αDr/αacc and αDz/αacc for given ∆xsubl, as long as the term
∆z2

subl in Eq. (35) is negligible, which is satisfied in the parameter
range we considered, as shown in Figs. 7 and 8. We also carried
out simulations with αacc = 10−3 and αDz(= αDr) in the range
of [10−7, 10−3] to find that the contour map is almost identical,
confirming that the results are scaled by αDz/αacc(= αDr/αacc).

Using the formulas, we derive the boundary of the run-
away pile-up on the plane of αDz/αacc (= αDr/αacc) and Fp/g.
Equation (38) shows that the boundary is given by Fd,net '
hd/g. As shown in Figs. 9a and b, the boundary is located at
αDz(= αDr) < 3 × 10−4 for Fp/g < 1. In this parameter range,
Fig. 7 shows hd/g ' hd/g,∗. Since αDr/Cr,diff αacc � 1 for αacc ∼
10−2, Fd,net ' fd/pFp/g. Therefore, the boundary is approximately
given by

Fp/g ' f −1
d/phd/g,∗

' f −1
d/p

(
2
3
αDz

αacc

∆xsubl/Hg

Hg/r

)1/2 [
1 +

2
3
αDr

αacc

1
(Hg/r)(∆xsubl/Hg)

]
.

(39)

Adopting Hg/r = 0.04 and fd/p = 1/2 as nominal values,

Fp/g ' 0.13
(

fd/p
1/2

)−1 (
αDz/αacc

10−2

)1/2 (
Hg/r
0.04

)1/2 (
∆xsubl

0.1 Hg

)1/2

×
1 +

5
3

(
αDr/αacc

10−2

) (
Hg/r
0.04

)−1 (
∆xsubl

0.1 Hg

)−1
∝


(
αDz

αacc

)1/2 (
αDr

αacc

)
∆x−1

subl [
αDz

αacc
> 0.6 × 10−2],(

αDz

αacc

)1/2

∆x1/2
subl [

αDz

αacc
< 0.6 × 10−2].

(40)

This equation explicitly shows that the pile-up condition is scaled
by αDr/αacc and αDz/αacc.

In Eq. (40), the sublimation width, ∆xsubl, is a free parameter.
We used ∆x = 0.1 Hg as a nominal parameter. The sublima-
tion width was determined by the sublimation and drift rates of
icy pebbles. The sublimation rate is given by the partial pres-
sure of water vapor and the disk temperature. The water vapor
partial pressure is affected by radial diffusion. In Paper II, we
numerically solve the sublimation width, taking account of the
icy pebble size evolution and the water vapor partial pressure
in a turbulent accretion disk. Fitting the numerical results, the
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Fig. 9. Contour maps of the maximum ρd/ρg
on the plane of αDz/αacc(= αDr/αacc) and Fp/g
with (a) ∆xsubl = 0.1 Hg, and (b) ∆xsubl given
by Eq. (41). In both cases, αacc = 10−2 and K =
1 are adopted. Left panels: results of Monte
Carlo simulations at t = 15 000 Ω−1, and right
ones: results after using analytical formulas
given by Eq. (B.3) with Eqs. (35), (36), (B.4),
and the corresponding ∆xsubl. The Monte Carlo
simulations were performed with a grid size
of ∆ log10(αDz/αacc) = ∆ log10 Fp/g = 0.2. We
used more refined grids to make the maps by
the analytical formulas. The color scales are
based on log10(ρd/ρg).

sublimation width for αDz = αDr and αacc = 10−2 is roughly
approximated as

log10

(
∆xsubl

Hg

)
' X+ − X−

2
erf

[
3 log10

(
αDr/αacc

0.08

)]
+

X+ + X−
2

,

X− = log10(∆xsubl/Hg)− = log10 2;
X+ = log10(∆xsubl/Hg)+ = log10 0.1, (41)

where (∆xsubl/Hg)− = 2 and (∆xsubl/Hg)+ = 0.1 are the lower
αDr/αacc limit at which advection dominates, and the higher one
at which radial diffusion dominates, respectively (Paper II). The
error function smoothly connects the two limits. Figures 9a and b
show that the threshold value of Fp/g is several times higher than
in Fig. 9a for αDz/αacc ∼ 10−4, while it is similar for αDz/αacc ∼
10−2. In the former case, Fp/g ∝ ∆x1/2

subl (Eq. (40)), so Fp/g must
be larger in Fig. 9b than in Fig. 9a by a factor of (2/0.1)1/2 ∼
4.5 (Eq. (41)), while the dependence on ∆xsubl must be slightly
weaker in the latter case (Eq. (41)). Thereby, the silicate particle
runaway pile-up condition with Eq. (41) is roughly given by

Fp/g >∼
(
αDz/αacc

3 × 10−2

)1/2

, (42)

which agrees with the results in Fig. 9.
Figure 9 shows the results with αDr = αDz. As mentioned

in Sect. 1, magneto-hydrodynamic simulations gave αDr < αDz
(Zhu et al. 2015; Yang et al. 2018). We also performed simula-
tions with αDr = 0.1αDz. As we can predict from Eq. (40), the
runaway pile-up region is extended to a value several times larger
of αDz/αacc at Fp/g ∼ 1 in the case of ∆xsubl = 0.1 Hg, while
the runaway pile-up region is almost the same for smaller val-
ues of Fp/g. Because αDz/αacc is very uncertain, we surveyed a
rather broad parameter space and leave the estimate of αDz/αacc
for future study.

4.4.3. Comparison with Hyodo et al. (2019)

Hyodo et al. (2019) performed 1D advection-diffusion grid
code simulations with αacc = 10−2 and αDr = αDz = 10−3, 3 ×

10−3, 10−2 to find that the silicate runaway pile-up occurs for
αDz = αDr ≈ 10−1αacc and Fp/g ≥ 0.3 in the case of K = 1.
However, Fig. 9b shows that the silicate runaway pile-up region
is restricted to a smaller parameter range, that is, to values of
αDz/αacc = αDr/αacc that are one order of magnitude smaller for
a given Fp/g value. As already mentioned, this is because Hyodo
et al. (2019) assumed that the silicate scale height is ∼∆zsubl at the
snow line and it is gradually increased by the vertical turbulent
stirring as the particles drift inward, whereas the Monte Carlo
simulations performed here show that the silicate scale height is
larger, due to the effect of a coupled radial and vertical diffusion
in a finite-sized sublimation width. As a result, smaller αDz and
αDr are required for a runway pile-up.

5. Conclusion and discussions

The runaway pile-up of silicate particles released from sublimat-
ing icy pebbles that pass through the snow line is a potential
mechanism to form rock-rich planetesimals. Ida & Guillot (2016)
showed that the back reaction (inertia) of silicate particles to
gas drag can lead to a runaway pile-up of dust particles. They
provided a simple criterion for this to occur, as a function of
both the pebble-to-gas mass-flux ratio and the silicate particle
scale-height. Schoonenberg & Ormel (2017) found instead that a
runaway pile-up of ice-rich pebbles would be possible, and that
of silicate particles does not occur. However they did not include
the back reaction of dust particles, and thus found no pile-up
of dust particles. Hyodo et al. (2019) performed 1D diffusion-
advection grid code simulations including turbulent diffusion
and the back reaction to radial drift and diffusion for both icy
pebble and silicate particles. They allowed the local turbulent
diffusion governing radial and vertical diffusion to differ from
the effective viscosity controlling the gas mass flux in the disk.
They found that a runaway pile-up of either dust or pebbles
could be achieved, depending on the values of turbulent diffusion
and of the pebble-to-gas mass-flux ratio. However, they had to
approximate the calculation of the silicate particle scale-height
based on simple arguments. In this work, we revisited this issue.
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We developed a new 2D (r-z) Monte Carlo code to simulate
the pile-up of small silicate particles released from sublimat-
ing pebbles in a turbulent protoplanetary disk, taking account
of the back reactions to the drift velocity and the diffusion of
silicate particles. From the simulation results, we derived semi-
analytical formulas for the maximum silicate-to-gas density ratio
near the injection region and the silicate scale height there as a
function of the pebble mass flux, αacc, αDr, and αDz. Using the
derived formulas, we determined the detailed condition for the
silicate runaway pile-up. We found that the silicate particle scale
height is larger than the estimate of Hyodo et al. (2019), due to
the coupled effect of radial and vertical diffusion, and that for
the silicate particle runaway pile-up to occur, αDz/αacc <∼ 10−2×
(pebble-to-gas mass flux)2 is required, which is more restric-
tive than the result of Hyodo et al. (2019) (αDz/αacc <∼ 10−1

and Fp/g >∼ 0.3). To clarify if the condition is actually satisfied,
detailed nonideal MHD simulations are needed to evaluate αDz,
αDr, and αacc.

Thus far, we have not included the pile-up of icy pebbles.
This would occur upstream, that is, beyond the snow line, and
could thus suppress the supply of pebbles and therefore dust
grains, affecting the pile-up of dust-rich planetesimals. It is also
important to understand when and where runaway pile-ups of
icy pebbles and silicate particles may occur in the course of disk
evolution. We investigate these issues in Paper II.

One would want to extend the arguments developed in this
work to other ice lines, such as for NH3 and CO2. The pile-up
process proposed here only occurs if the Stokes numbers of the
particles before and after the sublimation of a volatile component
(τs,0 and τs,1, respectively) satisfy τs,0 � αacc >∼ τs,1. It is unlikely
that this condition is satisfied at the ice lines of volatile elements
other than H2O. This pile-up process is therefore only expected
to be effective for the water snow line.
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Appendix A: The effects of back reaction to gas
motion

The silicate dust particle and gas radial velocities taking account
of the inertia of the particles (“back reaction”) at |z| < Hd are
given, respectively, by (Schoonenberg & Ormel 2017)

3r = −Λ2 2τs,d

1 + Λ2τ2
s,d

η3K + Λ
1

1 + Λ2τ2
s,d

uν, (A.1)

ur = ZΛ2 2τs,d

1 + Λ2τ2
s,d

η3K + Λ
1 + Λτ2

s,d

1 + Λ2τ2
s,d

uν, (A.2)

where τs,d is the Stokes number of the particles, Z = ρd/ρg, Λ =
ρg/(ρg + ρd) = 1/(1 + Z), uν is an unperturbed disk gas accretion
velocity given by

uν ' −3ν
2r
' −3αacc

2Cη
η3K, (A.3)

and Cη = η/(Hg/r)2. When we consider the icy pebbles, the
subscript “d” is replaced by “p.” Equations (A.1) and (A.2) are
rewritten as

3r ' − Λ

1 + Λ2τ2
s,d

(
2Λ τs,d +

3
2Cη

αacc

)
η3K, (A.4)

ur ' − Λ

1 + Λ2τ2
s,d

(
−2ZΛ τs,d +

3
2Cη

(1 + Λτ2
s,d)αacc

)
η3K. (A.5)

We adopted a two-layer model: a dust-rich midplane layer
with scale height Hd and a dust-poor upper layer. To evaluate gas
surface density, we used the vertically averaged ur, such that

ZΣ =
Σd

Σg
' ūr

3r

fd/pṀp

Ṁg
=

ūr

3r
fd/pFp/g, (A.6)

where

ūr '
ur |z=0 Hd + uν(Hg − Hd)

Hg
= hd/g ur |z=0 + (1 − hd/g)uν. (A.7)

Substituting Eq. (A.5) into this equation, we obtain

ūr ' Λ

1 + Λ2τ2
s,d

×
[(

2τs,d

1 + Z
+

3αacc

2Cη

)
Z hd/g − 3αacc

2Cη
(1 + Z + Λτ2

s,d)
]
η3K. (A.8)

We note that even the vertically averaged gas motion is
outward for

αacc

τs,d
<

4Cη

3
hd/g

Z
(1 + Z)[1 + Z(1 − hd/g)]

, (A.9)

where we assumed τ2
s,d � 1. For Z <∼ 1 and Cη = 11/8, this

condition is reduced to

αacc

τs,d

<∼
11
6

hd/g Z. (A.10)

In the case of silicate dust particles, since τs,d � αacc, this
condition is not satisfied and the gas flow is always inward.

For pebbles, the outward flow condition is the same as
Eq. (A.10) with “d” replaced by “p”. The condition is less restric-
tive than that for silicate particles; however, it is not satisfied
within the parameter range in this paper, as shown below. We
usually consider the cases of τs,p > αacc and hp/g ' (αDz/τs,p)1/2.
In this case, the modified Eq. (A.10) is Z >∼ (6/11)(αacc/αDz)hp/g.
If this equation is satisfied, the (vertically averaged) gas flow
is outward beyond the snow line. However, in our case, Z,
αacc, and αDz are not independent. Equation (A.16) is Z '
(1/2)(3/4Cη)(αDz/αacc)hp/gFp/g for Z < 1. Thus, the outward
flow condition in the icy pebble region is Fp/g >∼ 2(αacc/αDz)2.
It is out of the parameter range that we cover in this paper. In the
parameter regimes we cover, ūr is always negative (inward flow)
in the regions of both silicate particles and icy pebbles.

Substituting Eqs. (A.8) and (A.1) into Eq. (A.6),

Z hd/g ' ZΣ ' ūr

3r
fd/pFp/g

'
−2 Z

1+Z hd/gτs,d + 3
2Cη

αacc

[
1 + Z(1 − hd/g) +

τ2
s,d

1+Z

]
2Λ τs,d + 3

2Cη
αacc

fd/pFp/g.

(A.11)

Now we adopt the approximation only appropriate for the silicate
dust, τs,d � αacc � 1. With this approximation, Eq. (A.11) is
reduced to

Z hd/g '
[
1 + Z(1 − hd/g)

]
fd/pFp/g, (A.12)

which is solved in terms of Z as

Z ' fd/pFp/g

hd/g − (1 − hd/g) fd/pFp/g
. (A.13)

As we discuss in Sect. 2, the pile-up of silicate particles is radi-
ally local and the corresponding local surface density variation
of Σg could be smoothed out. In that case, it may be better to use
ur = uν than ūr here, and we obtain

Z ' fd/pFp/g

hd/g − fd/pFp/g
. (A.14)

Because hd/g � 1 for the pile-up case, the pileup condition
differs only slightly between Eqs. (A.13) and (A.14).

From Eqs. (A.13) and (A.14), the runaway pile-up conditions
of silicate particles are given by

Fp/g >
f −1
d/p

1 − hd/g
hd/g or > f −1

d/phd/g [silicate particles]. (A.15)

This equation implies that the particle scale height is the key
parameter for the runaway pile-up: the pile-up is favored for a
smaller scale height. In Sect. 4.3, we discuss the effect of radial
and vertical diffusion on the silicate particle scale height, hd/g,
because it is not in an equilibrium state.

On the other hand, for pebbles, αacc � τs,p � 1 is an appro-
priate approximation. From αacc � τs,p, we can also assume
hp/g � 1. With these approximations, Eq. (A.11) with “d”
replaced by “p” and fd/p by 1 is reduced to

Z hp/g ' 3
4Cη

αacc

τs,p
(1 + Z)2Fp/g. (A.16)
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This quadratic equation does not have a solution if(
1 − 2Cη

3
τs,p

αacc

hp/g

Fp/g

)2

− 1 < 0. (A.17)

Therefore, the runaway pile-up condition for pebbles is

Fp/g >
Cη

3
τs,p

αacc
hp/g. (A.18)

We discuss the pebble runaway pile-up condition with the effect
of the vertical stirring by Kelvin-Hermholtz Instability in more
details in Paper II.

Appendix B: Consequences of outward diffusion
over the snow line

In Eq. (15), the radial diffusion effect of silicate particles is not
included. The (scaled) radial diffusion flux of silicate particles is

Fd,D ∼ 2πr αDrH2
gΩ

dΣd

dr
Ṁ−1

g ∼ 2πCF r αDrH2
gΩ

Σd

Hg
Ṁ−1

g , (B.1)

where CF is an unknown numerical factor. We calibrated CF by
the results of Monte Carlo simulations in Figs. 7 and 8 as fol-
lows. The (scaled) net silicate dust mass flux, Fd,net ∼ fd/pFp/g −

Fd,D, in a steady state, should satisfy Fd,net ∼ 3πΣdαaccH2
gΩṀ−1

g .
Substituting Eq. (B.1) into this equation, we obtain

Fd,D ∼ fd/pFp/g ×
[
1 +

3
2 CF

Hg

r
αacc

αDr

]−1

. (B.2)

Accordingly, the midplane particle-to-gas ratio at x ∼ 0,
(ρd/ρg)0, is given by Eq. (15) with fd/pFp/g replaced by Fd,net =
fd/pFp/g − Fd,D, as(
ρd

ρg

)
0

=
Fd,net

hd/g − Fd,net
, (B.3)

where

Fd,net = fd/pFp/g

1 −
[
1 +

3
2 CF

Hg

r
αacc

αDr

]−1
 . (B.4)

We plotted the analytical estimate of (ρd/ρg)0 given by Eq. (B.3)
with CF = 0.2 in Figs. 7 and 8. They fit the numerical results
as long as (ρd/ρg)0 <∼ 1. If the effect of sticking to icy pebbles
by silicate particles that diffuse beyond the snow line is con-
sidered, most of the silicate grains beyond the snow line may
eventually come back with the pebbles, so Fd,net would become
more similar to fd/pFp/g.
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