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Pericyte mechanics and mechanobiology
Claire A. Dessalles*, Avin Babataheri and Abdul I. Barakat

ABSTRACT

Pericytes are mural cells of the microvasculature, recognized by their
thin processes and protruding cell body. Pericytes wrap around
endothelial cells and play a central role in regulating various
endothelial functions, including angiogenesis and inflammation.
They also serve as a vascular support and regulate blood flow by
contraction. Prior reviews have examined pericyte biological
functions and biochemical signaling pathways. In this Review, we
focus on the role of mechanics and mechanobiology in regulating
pericyte function. After an overview of the morphology and structure
of pericytes, we describe their interactions with both the basement
membrane and endothelial cells. We then turn our attention to
biophysical considerations, and describe contractile forces generated
by pericytes, mechanical forces exerted on pericytes, and pericyte
responses to these forces. Finally, we discuss 2D and 3D engineered
in vitro models for studying pericyte mechano-responsiveness and
underscore the need for more evolved models that provide improved
understanding of pericyte function and dysfunction.

KEY WORDS: Pericyte, Cytoskeleton, Contractility, Cell migration,
Cell mechanics, In vitro models

Introduction

Pericytes are mural cells of the microvasculature that are embedded
in the vessel basement membrane (BM), where they surround
endothelial cells (ECs). Pericytes are essential for both the
formation and maintenance of the vasculature (Bergers and Song,
2005). There is also mounting evidence that pericyte dysfunction
plays a critical role in many microvascular diseases (Cathery et al.,
2018), including tumor angiogenesis (Bergers and Song, 2005;
Hodges et al., 2018), diabetic pathologies (Ferland-McCollough
et al., 2017) and neurological disorders (Cheng et al., 2018;
Hirunpattarasilp et al., 2019), most notably Alzheimer’s disease
(Sagare et al., 2013; Schultz et al., 2018; Sweeney et al., 2016).
Pericytes were first discovered by Eberth and Rouget a few years
apart at the end of the 19th century. The term ‘pericyte’ — ‘peri’
meaning around and ‘cyte’ for cell — was coined by Zimmerman in
1923 when he published a detailed morphological study of these
cells across multiple mammalian species (Zimmermann, 1923).
Interestingly, definitive identification and categorization of
pericytes remains a major challenge due to the lack of specific
biological markers (Smyth et al., 2018). Consequently, the
consensual definition of a pericyte today is a cell that surrounds
microvascular ECs, is embedded in the vascular BM and has a
protruding cell body.
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Appreciation for the multi-functional character of pericytes is
rapidly evolving, generating significant interest across many fields of
research. Concurrently, there is indisputable evidence for the role
played by mechanics and mechanobiology in many other cell types.
These observations underscore the importance of understanding the
potential involvement of pericyte mechanics and mechanobiology in
health and disease (Eyckmans et al., 2011). While there are numerous
reviews on pericyte biology (Armulik et al., 2011; Diaz-Flores et al.,
2009; Gaceb et al., 2018; Rucker et al., 2000; Sweeney and Foldes,
2018; Sweeney et al., 2018), none focuses on the mechanical aspects.
Here, we review and synthesize the literature from a variety of fields to
extract important information about pericyte mechanics and
mechanobiology. We begin by focusing on pericyte morphology
and internal organization, as well as their physical interactions with
other cells. We then turn our attention to contractile forces generated
by pericytes, mechanical forces exerted on pericytes, and pericyte
responses to these forces. Finally, we describe in vitro models for
studying various aspects of pericyte function. Throughout the
Review, we highlight key open questions and make the case for
smarter engineered in vitro systems to address these questions.

Pericyte morphology and intracellular organization

The triad of pericyte morphology, activation and migration

While recent advances in ‘omic’ techniques promise to provide
more definitive pericyte identification (Chasseigneaux et al., 2018;
Vanlandewijck et al., 2018), the current approach is to use either a
pericyte-specific combination of biomarkers or the morphological
description of a protruding soma with slender processes (Armulik
etal., 2011; Smyth et al., 2018). Pericytes exist in one of two states —
quiescent or active — each with a characteristic cell shape and
structure (Diaz-Flores et al., 2009).

Quiescent pericytes are encased within the vascular BM and have
two distinct substructures — the soma, a protruding cell body within
which the nucleus is housed, and slender (0.02—0.5 pm diameter)
elongated processes (Bruns and Palade, 1968; Fujiwara and Uehara,
1984). Primary processes extend along the vessel axis, while
secondary processes wrap around the vessel circumference.
Quiescent pericytes are subdivided into three subtypes based on
their morphology and their localization within the vascular tree:
ensheathing pericytes (ePCs) on pre-capillaries, thin stranded
pericytes (tsPCs) on capillaries, and stellate pericytes (sPCs) on
post-capillaries (Fig. 1) (Attwell et al., 2016; Berthiaume et al.,
2018b; Grant et al., 2019) (see also Box 1). In ePCs, the primary
processes are short, while the secondary processes are wide and
fully encircle the vessel. In tsPCs, the primary processes can be
hundreds of micrometers long, whereas the secondary processes are
short and only partially enwrap the vessel (Hill et al., 2015). In
sPCs, this orthogonal organization of primary and secondary
processes is lost, and the processes are distributed in a fractal-like
branching pattern (Hill et al., 2015). In all subtypes, processes often
colocalize with EC junctions regardless of the extent of vessel
coverage, which is high for ePCs and sPCs, and low for tsPCs (Grant
et al., 2019; Sims and Westfall, 1983).
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Fig. 1. Morphology of pericyte subtypes. lllustration of the three quiescent pericyte subtypes based on their morphology and location, using different
techniques. Golgi-Kopf silver staining (top row; adapted from Zimmermann, 1923) and fluorescence imaging of pericytes (blue) in a transgenic mouse model
[middle row; reprinted from Hill et al. (2015) with permission from Elsevier]. Here, arrowheads point to protruding somas and arrows in the close-up indicate
short secondary processes. Numbers refer to vessel diameters in micrometers. The bottom row shows scanning electron microscopy image of the pericyte
subtypes. The left, second from left and right-hand panels on the bottom row are reprinted from Fujiwara and Uehara (1984) with permission from John Wiley and
Sons. The second from right panel on the bottom row is reprinted from Mazanet and Franzini-Armstrong (1982) with permission from Elsevier.

Pericyte activation is observed in developing and regenerating
tissue. The active state is characterized by pericytes breaking out of the
BM in what appears to be two distinct stages (Diaz-Flores et al., 2009;
Payne et al., 2019). In the initial stage, existing processes retract and
detach from the vessel wall, the soma assumes a triangular shape, a
new process emanates from the pericyte body and the nucleus
elongates orthogonally to the vessel axis. In the second stage, pericytes
migrate into the parenchymal tissue. An example of pericyte activation
is during angiogenesis, where pericyte detachment is necessary for EC
migration and proliferation (Dore-Dufty and Cleary, 2011; Gonul
et al., 2002; Hou et al., 2018; Payne et al., 2019; Pfister et al., 2008).
Interestingly, active pericytes have been observed to be closely
associated with ECs at the tips of angiogenic sprouts, sometimes with
an antenna-like process pointing towards the target vessel (Errede
et al., 2018; Payne et al., 2019; Stapor et al., 2014), suggesting that
pericytes might participate in directional EC migration.

Although essential for a variety of functions (Bergers and Song,
2005; Stapor et al., 2014), pericyte activation is poorly understood.

Box 1. Pericyte continuum

Pericyte categorization is more nuanced than a classification in three
subtypes and two states. Additional complexity stems from intermediate
subtypes, such as the mesh pericytes and pre-capillary sphincters. Mesh
pericytes have a high level of vessel coverage and encircling
circumferential processes similar to ePCs, but their lack of SMA and
their thinner processes resemble what is seen in tsPCs (Grant et al.,
2019). Pre-capillary sphincters, which share attributes of SMCs, are also
thought to belong to the pericyte family (Grubb et al., 2020).

Bridging pericytes, cells with processes reaching through the tissue
toward a neighboring vessel, were described in the original drawings of
Zimmermann (1923) and in later studies (Hartmann et al., 2021). A more
recent study has also identified inter-capillary bridging cells as pericytes
whose somas are not located in the vascular BM but in the parenchyma
(Alarcon-Martinez et al., 2020; Corliss et al., 2020; Mendes-Jorge et al.,
2012). These cells have the characteristics of the active state but are
found in quiescent tissue, challenging the binary distinction between the
two states. Dynamic observation of pericytes is therefore crucial to refine
our current understanding of pericyte structure and function.

Several biochemical pathways appear to be involved (Diaz-Flores
et al., 2009); however, data also point to a role for mechanics. For
instance, excessive contraction can trigger pericyte activation during
angiogenesis (Durham et al., 2014). Another example comes from
early development where mural cell recruitment to the vessel wall,
suggestive of return to quiescence, is concomitant with the onset of
flow and the ensuing surge in hemodynamic stresses (Shen and
McCloskey, 2017; Sweeney and Foldes, 2018).

An important distinction between quiescent and active pericytes
is in their mode of migration. Quiescent pericytes exhibit 2D
‘crawling’ along the vessel wall, whereas the migration of active
pericytes often takes the form of ‘escaping’, a 3D migration away
from the vessel into the tissue. It is unclear how these two modes
relate to the two well-characterized types of cellular migration,
ameboid and mesenchymal (Yamada and Sixt, 2019).

Crawling pericytes are mostly seen during embryogenesis when
mural cells colonize newly formed vessels. Crawling consists of two
steps — a slow (hours) extension of the processes, frequently along EC
junctions, followed by a swift (tens of minutes) translocation of the
cell body (Fig. 2Ai) (Ando et al., 2016). Fibronectin, the preferred
extracellular matrix (ECM) adhesion molecule of pericytes, is
confined to the perivascular space and may be involved in crawling
guidance (Grazioli et al., 2006). A similar two-step process is found
in migratory neurons (Cooper, 2013; Nakazawa and Kengaku, 2020).
Our more advanced understanding of neuronal migration promises to
guide the design of future studies of pericyte 2D migration. In the
adult vasculature, the first step of crawling appears to also maintain
pericyte coverage of vessels after injury. For instance, after laser
ablation of a tsPC, neighboring pericytes extend their processes to
cover the denuded endothelium (Fig. 2B) (Berthiaume et al., 2018a).
Interestingly, the soma is shown to stay immobile, contrary to what
occurs during the second step of crawling.

Pericyte escaping, which is a reaction to stress, occurs when cells
transition from the quiescent to the active state (Dore-Duffy et al.,
2000; Gonul et al., 2002; Hou et al., 2018; Pfister et al., 2008).
Pericytes retract their processes, digest the overlying BM, push their
soma outward, extend a protrusion away from the vessel and migrate
into the surrounding tissue (Fig. 2Aii). During certain scenarios,
such as angiogenesis, both migration modes appear to coexist, with
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Fig. 2. Pericyte migration and intracellular organization. (A) Pericyte migration modes. (i) Two-step crawling of a mural cell in the zebrafish embryo with slow
process (arrowheads) extension and swift soma (arrows) translocation. Adapted from Ando et al., 2016 with permission. Times in the images are given in
hour:min after image in top row. Scale bars: 25 pm. (ii) Escape of a pericyte (arrowhead in image) in a mouse model after acoustic trauma. Reprinted with
permission from Springer Nature, Journal of the Association for Research in Otolaryngology (Hou et al., 2018). (B) Targeted ablation of a pericyte results in dilation
of the vessel after loss of the primary process. This is recovered after extension of a process from a neighboring pericyte (images on the right), illustrating

the role of pericytes in mechanical strengthening of the vessel wall. Reprinted from Berthiaume et al. (2018a) with permission from Elsevier. (C) Schematic
illustration of the pericyte cytoskeleton with apical microtubules predominant near the soma and basal actin predominant in the processes. Note the longitudinal
and circumferential orientation, respectively, presumably to optimize the effectiveness of force transmission.

pericytes crawling around nascent tubes or escaping into the
parenchyma. The interplay between mechanical forces and cell
migration, which has been extensively studied in other cell types
(Kurniawan et al., 2016), remains poorly characterized in pericytes
and should attract significant attention in the coming years.

Pericyte intracellular organization and implications for force
generation and transmission

The pericyte soma contains the bulk of the cytoplasm and most
organelles, including the nucleus, whereas the processes consist
primarily of cytoskeletal elements. In quiescent pericytes, the
nucleus is discoid, close to the vessel wall and heterochromatic.
Conversely, in active pericytes, the nucleus is round, protruding and
euchromatic (Diaz-Flores et al., 2009). The nucleus in many cell
types acts as a mechanosensor (Cho et al., 2017); therefore, the
differences in nuclear shape and organization between quiescent
and active pericytes may reflect different nuclear mechanical
properties and might affect overall mechanosensing.

Pericytes have a bilayered cytoskeleton — microtubules and
intermediate filaments are present primarily on the apical side within
the cell body and the primary processes, whereas actin microfilaments
localize mostly in the primary and secondary processes, where they
form a dense continuous plaque on the basal surface (Fig. 2C) (Bruns
and Palade, 1968; Forbes et al., 1977). The fibers are oriented axially in
the primary processes and circumferentially in the secondary
processes. Because cytoskeletal organization is a key factor in force
sensing, generation and transmission (Gouget et al., 2016; Hwang and
Barakat, 2012; Lebeux and Willemot, 1978), and because fiber
orientation typically reflects the direction of the predominant forces,
the circumferential orientation of pericyte secondary processes makes
them compelling candidates for vessel constriction. Actin filaments in
pericyte processes are anchored at various points along their lengths to
ECs, forming adhesion plaques that are bound to the BM (Alliot et al.,

1999), suggesting an important role for these filaments in force
transmission. Whether microtubules and intermediate filaments play a
role in pericyte force generation and transmission remains unknown.

The canonical model for cellular force generation involves
molecular motors moving on tensile cytoskeletal cables. Both actin
filaments and non-muscle myosin II, which are the principal
constituents of force-generating actin stress fibers, are present in
pericytes (Hamilton, 2010; Lebeux and Willemot, 1978; Tojkander
et al., 2012; Vanlandewijck et al., 2018). The presence of o-smooth
muscle cell actin (a-SMA, encoded by ACTA2), an actin isoform
prominent in smooth muscle cells (SMCs) that amplifies stress fiber
formation and is part of the cellular contractile machinery (Wang
et al., 2006), varies among pericyte subtypes and is the subject of an
ongoing debate (Attwell et al., 2016; Nehls and Drenckhahn, 1991).
Most studies report the presence of o-SMA in ePCs and sPCs, with an
expression level between that of ECs and SMCs. The results are more
nuanced for tsPCs, where different reports paint divergent pictures
(Attwell et al., 2016; Nehls and Drenckhahn, 1991). The advent of
new imaging techniques, such as super-resolution microscopy and
serial block face electron microscopy, should improve our knowledge
of pericyte cytoskeletal organization in coming years (Cali et al.,
2019; Hoffman et al., 2020; Harris et al., 2020).

Pericyte physical interactions

Physical anchoring to the BM

Pericytes interact physically with both the BM and neighboring
ECs, as well as with other pericytes. The microvascular BM is
formed by two ECM networks, one comprising laminin and the
other collagen IV, bound together by perlecan (HSPG2) and
nidogen (NID1 and NID2) (Leclech et al., 2020; Thomsen et al.,
2017). In addition, fibronectin patches, in either circumferential
crescent shapes or dots, punctuate the BM and are found exclusively
between pericytes and ECs (Courtoy and Boyles, 1983). The higher
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fibronectin levels in developing tissues induce pericyte activation,
whereas the higher laminin levels in mature tissues promote pericyte
quiescence. These observations underscore the role of BM
composition in regulating pericyte state (Risau and Lemmon, 1988).

In order for force transmission to occur, a physical connection
between the pericyte cytoskeleton and the BM and/or ECs is
necessary. Fibronectin patches in the BM colocalize with pericyte
focal adhesions, thus linking to actin filaments in the processes.
Notably, actin cables can bind tangentially to consecutive adhesion
plaques shared with ECs (Courtoy and Boyles, 1983). These adhesion
plaques are hypothesized to be anchoring points for pericytes and part
of a physically continuous force transmission chain.

Pericyte—EC interactions
While most reviews have focused on the chemical pathways
regulating pericyte—EC communication (Diaz-Flores et al., 2009;
Gaceb et al., 2018; Kolinko et al., 2018; Sweeney and Foldes, 2018;
Sweeney et al., 2016), there is mounting evidence that direct
physical interactions are also centrally involved. To enable direct
contact, pericyte secondary processes protrude through the
endothelial BM to touch ECs, forming peg—socket invaginations,
gap junctions and adherens junctions (Fig. 3).

Peg-and-socket invaginations are micron-sized structures, whereby
a pericyte protrusion ‘pokes’ inside an EC (Fig. 3A) and potentially
act as a hook that pulls on the EC (Braverman and Sibley, 1990;
Caruso et al., 2009). Gap junctions are connexin assemblies that form
transmembrane channels, allowing rapid cytosolic exchange between
cells (Fig. 3B). Connexin 43 (also known as GJA1), which forms
mechanosensitive hemichannels in ECs and astrocytes (Chen et al.,
2018; Cherian et al., 2005; Islam and Steward, 2019), is also present
in pericytes (Hirschi et al., 2003; Kolinko et al., 2018; Ivanova et al.,
2019), but its role in force sensing has not been investigated. Pericyte—

EC adherens junctions are composed of transmembrane N-cadherins
that directly link the actin cytoskeleton in the two cell types (Fig. 3C)
(Kruse et al., 2019). These various structures are primary candidate
sites for force transmission between cells. Identifying the
mechanotransduction pathways associated with the physical
coupling of pericytes to ECs and the BM warrants further attention.

Pericyte—pericyte interactions

Pericytes do not appear to make stable physical contact with
neighboring pericytes despite their close proximity. Instead, they
form discontinuous layers with visible spaces between adjacent cells,
reminiscent of a possible contact-avoidance mechanism (Attwell et al.,
2016; Berthiaume et al., 2018b; Grant et al., 2019). Indeed, this pattern
is a morphological marker often used to differentiate pericytes from
SMCs. Pericytes are distributed regularly across the microvasculature
(Kovacs-Oller et al., 2020); this fine control of the relative positioning
of adjacent pericytes may enable transient physical contact in order to
detect neighbors. In line with this hypothesis, brain capillary pericytes
have been shown to constantly probe their surroundings by extending
their processes and then retracting them back after touching other
pericytes (Berthiaume et al., 2018a); this allows the pericyte network
to remodel after injury. For instance, after laser ablation of a single
pericyte, neighboring cells extend their primary processes to
reestablish vessel coverage, but only until they meet another process
(Berthiaume et al., 2018a; Hartmann et al., 2021). The nature and
dynamics of the contact between the tips of each cell process remain
unknown and certainly merit further study.

Forces by and on pericytes

Forces generated by pericytes — pericyte contractility

In his 1873 description of pericytes as a new type of mural cell,
Rouget speculated that one of their functions was mediating blood

Key

Pp Pericyte process
E EC

L BM

Fibronectin (Fb)
I Actin filaments
Lumen
s Connexin 43
’ N-cadherin

Integrin

Fig. 3. Pericyte—EC interactions. Schematic illustration of the physical interactions between pericytes and ECs that are necessary for force transmission from
pericyte to the vessel. (A) Peg and socket. Micron-scale invagination of the pericyte membrane into the EC. (B) Gap junctions. Direct apposition of both
membranes, often containing connexin 43 channels. (C) Adherens junctions. Cell—cell contacts mediated through transmembrane proteins such as N-cadherins,
which are linked to the cytoskeleton in each of the cells. (D) Adhesion plaques. Pericytes are linked to fibronectin patches in the BM through their integrins; this
also provides an indirect link to ECs. Panel B republished with permission from Rockefeller University Press from Bruns and Palade (1968); permission conveyed
through Copyright Clearance Center, Inc. Panels A, C and D are reprinted from Courtoy and Boyles (1983) with permission from Elsevier.
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flow control via their contraction. Since then, there has been an
ongoing debate as to whether or not pericytes are truly contractile
cells (Attwell et al., 2016; Fernandez-Klett et al., 2010; Hamilton,
2010; Hill et al., 2015). The controversy is in part attributable to
difficulties in definitively identifying the different pericyte subtypes
and the apparent differences in a-SMA levels among these subtypes,
as mentioned above. Additionally, it is our belief that the dissension
stems partly from a lack of consensus on the meaning of the term
‘contractility’. If one goes by the simple definition of contractility as a
‘reduction to smaller size’, then pericytes are clearly contractile cells.
We propose, however, that an additional consideration is the temporal
dimension of contractility, as described next.

When thinking about cellular contractility, a key issue is the
time scale under consideration (Hartmann et al., 2021). In the case of
pericytes, three distinct contractility dynamics can be distinguished —
quasi-static (time constant of days), slow (minutes), and fast
(milliseconds). At the slowest time scale, pericytes modulate tension
in the vessel wall (Berthiaume et al., 2018a,b). At the intermediate
time scale, pericytes contract slowly, minutes after external
stimulation, to regulate vessel diameter (Fernandez-Klett et al.,
2010; Hartmann et al., 2021; Tilton et al., 1979). At the fast time scale,
pericytes actively contract or dilate milliseconds after stimulation,
rapidly modulating blood flow (Cai et al., 2018; Hall et al., 2014;
Khennouf et al., 2018; Peppiatt et al., 2006; Rungta et al., 2018). A
precise definition of contractility is therefore crucial, in particular
for cerebral pericytes whose involvement in cerebral blood
flow control is the subject of a heated debate (Bell et al., 2010;
Brown et al, 2019; Grutzendler and Nedergaard, 2019;
Lendahl et al., 2019).

Controlling blood flow is an essential function of mural cells.
Half of the pericyte population is located at vascular branching
points, ideal positions for flow control and redirection (Fernandez-
Klett et al., 2010; Hartmann et al., 2015). Pericyte contraction and
relaxation can generate up to a 20% change in vessel diameter (Hall
et al., 2014; Cai et al., 2018). For fully developed steady flow in a
cylindrical channel, the flow rate scales with channel diameter to the
fourth power; therefore, even a small change in diameter has a
drastic impact on flow rate. In one study, for instance, in a 4-um
capillary, a diameter increase smaller than the pixel resolution limit
was sufficient to double red blood cell velocity (Rungta et al., 2018).
As another example, the death of constricted tsPCs is thought to be a
potential source of the no-reflow phenomenon following cerebral or
cardiac ischemia, a direct demonstration of the importance of
pericyte contractility in controlling blood flow (Cai et al., 2018; Hall
et al., 2014; O’farrell et al., 2017).
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How pericyte contraction enables blood flow regulation remains a
subject of debate. One hypothesis is that pericyte contraction
increases overall vessel wall stiffness, thereby limiting vessel
dilation in response to increased blood pressure and simultaneously
altering the EC mechanical environment (Berthiaume et al., 2018a;
Durham et al., 2014; Lee et al., 2010; Rhodin, 1968; Rungta et al.,
2018). The high concentration of pericytes in the vicinity of EC
junctions suggests a protective role, possibly preventing deleterious
junction opening due to stress concentrations generated by elevated
blood pressure (Fig. 4Ai) (Shepro and Morel, 1993; Harris et al.,
2020). A second hypothesis posits that dynamic pericyte
contraction deforms underlying ECs. Pericytes can reduce vessel
perimeter by pulling on ECs and can even occlude the lumen by
physically buckling the underlying EC membrane (Fig. 4Aii)
(Nahirney et al.,, 2016; Tilton et al, 1979). Processes that
completely encircle the vessels can exert forces normal to the
vessel surface, as suggested by visible indentation marks on ECs
just below pericyte processes (Harris et al., 2020), in order to
constrict the lumen (Fig. 4Aiii) (Murphy and Wagner, 1994).
Furthermore, when acting on EC fenestrations in organs where
higher rates of exchange between intra- and extra-vascular
compartments are required, such as skin or lung, pericyte-
mediated forces enlarge the openings to facilitate fluid exchange
(Fig. 4Aiv) (Imayama and Urabe, 1984).

Pericyte contractility appears to vary among subtypes. While it is
widely accepted that ePCs actively contract, this remains
controversial for tsPCs (Berthiaume et al., 2018a; Hall et al.,
2014; Hartmann et al., 2021; Rungta et al., 2018). The contractility
of sPCs remains unexplored, but their lack of orthogonal
organization casts doubt on their capacity for dynamic
contraction. An intriguing recent study reported that pericytes at
vascular junctions can exhibit compartmentalized contraction,
whereby they are able to selectively contract the processes around
only one of the downstream daughter vessels, and they thus might
act as flow switches (Gonzales et al., 2020). If validated, the notion
of compartmentalized contraction has the potential to transform our
understanding of pericyte contractility.

Forces exerted on pericytes

In vivo, pericytes are subjected to a complex and dynamic
mechanical environment. Pericytes experience solid contact
stresses due to their physical interactions with the BM and with
ECs, and they are also subjected to hydrodynamic pressure and
shear stresses from fluid flow. These forces arise from both
transmural and interstitial flows (Fig. 4B). The transmural pressure

Fig. 4. Forces by and on pericytes.

(A) Schematic illustration of the effects of
pericyte contraction. (i) Strengthening of
EC junctions to resist luminal pressure. (i)
Tangential pulling, inducing narrowing and
buckling of the underlying EC. (jii) Vessel
constriction through normal forces.

(iv) Opening of fenestrations through
tangential pulling. (B) Pericytes are
subjected to many mechanical cues in their
environment, including substrate—contact
forces and topographic cues (orange),
circumferential stretch (blue),

as well as hemodynamic pressure and
shear forces due to transmural (red) and
interstitial (green) flow.

Interstitial flow
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difference leads to fluid crossing the vascular wall through
endothelial cell-cell junctions and thus impinging on pericytes
and flowing around them, generating pressure and shear forces.
Although the resulting shear stresses are unknown, a useful point of
reference is the shear stress on the surface of SMCs due to
transmural flow in medium and large arteries, which has been
estimated to be ~0.01-0.1 Pa (Wang and Tarbell, 1995).
Interestingly, because of differences in their localization, the
different pericyte subtypes are expected to experience different
magnitudes of these hydrodynamic stresses as the transmural
pressure difference decreases from arterioles to venules. Interstitial
shear and pressure forces are generated by the movement of fluid
within the tissue surrounding the vessel (Chary and Jain, 1989).
Although the fluid velocity within tissue is relatively low, ~1 um/s,
the corresponding shear forces can be significant because of the
relatively low tissue porosity (Pedersen et al., 2010; Polacheck et al.,
2011). The interstitial pressure forces to which pericytes are
subjected are expected to be different for each subtype because of
the differences in localization, the pressure is estimated at
~50 mmHg for ePCs, ~30 mmHg for tsPCs and ~15 mmHg for
sPCs (Parazynski et al., 1993; Slaaf et al., 1987).

Pericytes are mostly found on tortuous microvessels with a
diameter smaller than 20 pm; thus, the cell-scale non-zero Gaussian
curvature is expected to lead to significant bending stresses. Pericytes
are also frequently located at branch points, where the available
surface area is relatively large and the curvature small, suggestive of a
mechanism of energy minimization. The transmural pressure
difference in a microvessel subjects pericytes to oscillatory
circumferential (hoop) stresses. Although the dominant view is that
blood pulsatility gets dampened before it reaches the
microvasculature (O’Rourke and Safar, 2005), recent measurements
have challenged this view. Indeed, significant pressure and velocity
oscillations have been reported in capillaries down to 4 um in
diameter (Gu et al., 2018; Gurov et al., 2018; Koutsiaris, 2016), and
40-um-diameter mouse brain arterioles have been shown to exhibit
10% strain at the heartbeat frequency, demonstrating that the pulse
penetrates deep into the microvasculature (Atry et al., 2018).

Forces on cells lead to deformations, but the extent of
deformation depends on the mechanical properties of the cells.
Atomic force microscopy (AFM) measurements on cells cultured on
2D rigid surfaces have reported a Young’s modulus of ~10 kPa for
pericytes, ~3 kPa for ECs and ~2 MPa for the vascular BM
(Candiello et al., 2007; Lee et al., 2010; Vargas-Pinto et al., 2013).
These values, combined with the thickness of each of the structures,
provide a measure of their relative stiffnesses and hence their load-
bearing capacity. This information is useful for assessing the
validity of certain hypotheses. For instance, a hypothesized function
of pericytes is to provide structural support for the microvascular
wall. In support of this notion, the loss of pericytes leads to a
weakened vascular wall and microaneurysms in mice, whereas the
presence of mural cells is correlated with narrower and, possibly,
less-compliant vessels (Lindahl et al., 1997; Stratman and Davis,
2012). In order for the structural support hypothesis to be plausible,
the contribution of pericytes to the overall vessel wall stiffness must
be at least comparable to that of ECs and the BM. Thus,
determination of pericyte mechanical properties is critical for
validating the pericyte structural support hypothesis.

All measurements of pericyte mechanical properties to date have
been performed on cells in vitro, and thus with non-physiological
morphology and internal structure. There is a need for establishing how
the stiffness of pericytes in vivo compares to that in vitro, and whether
different pericyte subtypes and states differ in their mechanical

properties. Intracellular organelles and cytoskeletal elements are
major contributors to cellular mechanics. The soma, with its large
cytosol and nucleus, is likely to be relatively soft and viscous, whereas
processes, with their predominant actin fibers, are expected to be stiffer.
Hence, different parts of a single pericyte are likely to have considerably
different mechanical properties, as has been shown in other cell types
(Deville and Cordes, 2019; Gabriele, 2014).

Pericyte mechanosensing and mechanotransduction

Although direct demonstrations remain sparse, there is mounting
evidence that pericytes, like virtually all other cell types, sense and
respond to the mechanical forces to which they are subjected. A
particular difficulty lies in establishing whether or not the
mechanical stimulus is causative of the observed biological
response. For instance, in muscle and skin, pericyte distribution is
higher in the lower portions of the body where hydrostatic pressure
is more elevated (Sims et al., 1994). The brain and kidney, whose
vasculature has a low hydrodynamic resistance, and is therefore
exposed to higher pressure pulsatility, exhibit greater numbers of
pericytes (O’Rourke and Safar, 2005). In the developing embryo,
the onset of hemodynamic forces is concomitant with mural cell
recruitment (Shen and McCloskey, 2017). Finally, inflammation-
induced increases in transmural flow (and thus endothelial leakage)
lead to pericyte reorganization and increased coverage of
endothelial junctions (Sims, 2000).

Unraveling the pericyte responses to each of the biophysical cues
described above is a challenge because most cues are coupled. For
instance, the lungs of hypertensive adults exhibit a two-fold increase
in the number of pericytes compared to what is seen in healthy
individuals (O’Rourke and Safar, 2009). However, hypertension
implies not only elevated pressure but also an elevated pulse
pressure amplitude, larger tissue strain and higher transmural flow,
all of which might trigger the increased pericyte density (Ricard
et al., 2014). Thus, in vitro models in which individual mechanical
parameters can be independently controlled and the overall
environment simplified to incorporate only the components of
interest are a promising way forward as discussed henceforth.

In vitro models

In vitro systems are highly simplified versions of the in vivo
environment in which individual parameters of interest can be
manipulated in a more controlled manner. Engineering a
physiologically relevant environment and validating cellular behavior
against known in vivo data whenever possible are essential for ensuring
the pertinence of in vitro results. Here, we review in vitro platforms
used for the study of various aspects of pericyte structure and function,
and discuss their current limitations and future opportunities.

Controlling pericyte structure

Pericytes in in vitro systems typically suffer from a loss of
phenotype, casting doubt on the true identity of the ‘pericytes’ used
in vitro. For example, pericytes cultured on stiff 2D substrates
exhibit a flat shape, large area, increased levels of a-SMA and
prominent actin stress fibers (Fig. 5A) (Boado and Pardridge, 1994;
Dore-Duffy and Cleary, 2011; Durham et al., 2014). These features
are absent in vivo, but it remains unclear whether these changes are
accompanied by functional anomalies (Rustenhoven et al., 2018).
Recent experimental systems and protocols have reported a more
physiological structure. For instance, pericytes obtained with new
differentiation protocols from induced pluripotent stem cells
(iPSCs) show lower levels of SMA (Stebbins et al., 2019), while
3D cultures of pericytes in soft gels allow them to adopt a more
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fibers

After 48 h

Fig. 5. In vitro systems for studying pericytes. (A) Culture on 2D stiff substrates. Here, pericytes assume a flat spread morphology, exhibiting prominent stress
fibers. Adapted with permission from Durham et al. (2014). (B) Tubulogenesis (spontaneous formation of vessels by cells suspended in a gel). Pericytes surround
thin EC tubes. Adapted with permission from Stratman and Davis (2012). (C) Angiogenesis (sprouting assay in gels). Pericytes migrate along EC tubes with an
elongated shape. Adapted from Kim et al. (2015), where it was published under a CC-BY 4.0 license. (D) Wound healing. Migration of pericytes after

scratch wounding of a confluent layer. Adapted from Rustenhoven et al. (2018), where it was published under a CC-BY 4.0 license.. (E) Transwell chambers.
Migration of pericytes through a synthetic porous membrane. (F) Contractility assays. Wrinkling of a flat soft thin membrane by pericytes. Reprinted from

Pellowe et al. (2019) with permission from John Wiley and Sons.

physiological morphology with a defined soma and short
protrusions (Alimperti et al., 2017; Kim et al., 2015).

Investigating BM interactions

The vascular BM is composed of several components whose
relative abundance changes during development, angiogenesis or
disease (Leclech et al., 2020). In vitro platforms allow investigation
of'the effect of individual BM components on pericyte structure and
function. Indeed, such studies have shown that pericytes adhere less
avidly to laminin-1 or heparan sulfate proteoglycan (HSPG) than to
collagen IV or fibronectin, all components of the native BM (Tigges
et al., 2013). Furthermore, fibronectin induces higher rates of
pericyte proliferation and migration (Tigges et al., 2013), an
observation that may explain the increased fibronectin levels
observed during angiogenesis and development, where pericyte
activation and migration are crucial. Interestingly, the mechano-
response to substrate composition and stiffness is defective in
pericytes isolated from end-stage ischemic hearts (Rolle et al.,
2020), illustrating the crucial yet poorly understood role of pericyte
mechanobiology in diseases.

A recent study that used an engineered substrate has further
underscored pericyte preference for fibronectin; here, cells formed
focal adhesions exclusively on fibronectin dots that had been
positioned amidst a laminin-coated surface, thereby reorganizing
their entire cytoskeleton (Iendaltseva et al., 2020). Fibronectin
distribution in vivo follows a similar dot pattern, being located at
adhesion plaques in the BM between pericytes and ECs. This study
highlights how common microfabrication techniques and state-of-
the-art in vitro systems can greatly enhance our understanding of
pericyte mechanobiology.

Mimicking cell-cell interactions

Despite the importance of pericyte—EC interactions for many pericyte
functions, replicating the correct cell—cell organization in vitro is an
ongoing challenge. Pericyte—EC co-culture experiments are usually

performed using either flat 2D surfaces or 3D designs aimed at
mimicking tubulogenesis (Fig. 5A,B) (Gokginar-Yagci et al., 2015).
In 2D co-cultures, ECs form discontinuous patches and pericytes
populate the spaces in between, exhibiting limited intercellular
contacts (Durham et al., 2014). 3D tubulogenesis models have been
used to assess the supporting role of pericytes in EC tube formation
by using a soft hydrogel, often Matrigel or collagen, allowing
increased intercellular contact (Fig. 5B) (Stratman and Davis, 2012;
Stratman et al., 2011; Zhao et al., 2018).

Other platforms have also been employed to investigate pericyte—
EC interactions. An example is the Transwell system, where each
cell type is cultured on one side of a synthetic membrane with a
known pore size and whose thickness is ~10 times that of the BM it
is intended to mimic. This system restricts the area of cell—cell
contact to discontinuous spots (Fig. 5E) (Alimperti et al., 2017).
Another example are 3D microvessels, often termed microvessels-
on-chip, which typically are large cylindrical channels fabricated
inside a soft hydrogel, most commonly collagen or fibrin. Here, ECs
line the lumen, while pericytes are embedded in the gel in close
proximity to the ECs, thereby leading to a more physiological
morphology (Fig. 5B,C) (Hu et al., 2017; Kim et al., 2015; Zheng
et al., 2012).

Quantifying contractility

Pericyte contractility can be studied in vitro by examining pericyte-
induced substrate deformations. The most common technique in
2D is the wrinkling assay, where cells plated on a thin layer of
poly-dimethyl-siloxane (PDMS) wrinkle the substrate when they
contract (Fig. 5F) (Kelley et al., 1987; Kotecki et al., 2010; Kutcher
etal., 2007; Lauridsen and Gonzalez, 2017). Using this technique, the
forces generated by individual pericytes have been estimated to be
~1.5 uN (Lee et al., 2010). As wrinkles can be visualized using
polarized light, this technique allows real-time monitoring of force,
thereby providing an opportunity to elucidate the contractility
dynamics of pericytes in real time, even though the technique has
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not yet been exploited for this purpose. In 3D, pericytes have been
seeded in soft gels, and pericyte contraction has been demonstrated
through the compaction of the gel (Kelley et al., 1987; Oishi et al.,
2007). A drawback of this approach, however, is that it does not allow
quantification of the force. Traction force microscopy, both in 2D and
3D, promises to generate quantitative, dynamic and robust force
measurements (Iendaltseva et al., 2020; Schwarz and Soiné, 2015).

Identifying how pericyte contractility restructures the
microvascular wall is a major open question and requires spatially
and dynamically resolved experiments of pericytes that exhibit an
in vivo-like morphology. To this end, a recent study has shown that
pericyte contraction in 2D culture increases intercellular gaps
between ECs and facilitates neutrophil transmigration (Pellowe
et al., 2019), underscoring the thus far mostly untapped potential of
in vitro platforms.

Investigating migration
In vitro platforms also provide controllable environments with high
spatial and temporal resolution, two essential attributes to unravel the
mechanisms underlying pericyte migration (Kurniawan et al., 2016).
The most common approach for studying pericyte migration is live-
cell tracking on hard flat surfaces, such as in wound-healing scratch
assays (Fig. 5D) (Grazioli et al., 2006; Zhao et al., 2018). Another
common technique is the Transwell system alluded to above
(Fig. 5E). A limitation of the Transwell system, however, is that
cells cannot be imaged during the migration (Casey et al., 2015).
3D gel cultures are more realistic systems that allow cells to adopt
a native-like morphology. An example of this is the first in vitro
observation of vascular guidance, where pericytes were shown to
migrate in tunnels carved by ECs, which mimics crawling and their
longitudinal migration in the perivascular space (Stratman et al.,
2016). Organ-on-chip setups with high-resolution time-lapse
imaging using live dyes have also been used to study pericyte
migration during angiogenesis, and have demonstrated that
pericytes migrate along the nascent sprouts (Kim et al., 2015).

Studying mechanics and mechanobiology

The field of pericyte mechanics and mechanobiology remains in its
infancy. For instance, quantitative characterization of pericyte
mechanical properties is lacking. AFM measurements in combination
with the 2D wrinkling assay have revealed regional variations in
elasticity within the same pericyte, as the Young’s modulus was
~15 kPa in parts of the cell above the wrinkled areas but only ~5 kPa
elsewhere (Lee et al., 2010). Extending such measurements of local
elasticity to pericytes that possess a more physiological pericyte
morphology would allow exploration of potential differences in
mechanical properties between the soma and the processes as well as
the impact of pericyte activation on these properties.

Although pericytes experience different mechanical stimuli in vivo
as already discussed, studies investigating the effect of mechanical
forces on pericytes are scarce. Thus far, only two studies have
investigated the effect of fluid mechanical shear stress on pericytes and
have shown that a ‘low’ shear stress of 0.4 Pa induces alignment in the
flow direction (Grazioli et al., 2006) whereas a ‘high’ shear stress of
3 Pa leads to alignment orthogonal to the flow (Schrimpf et al., 2017).
The mechanistic basis of these seemingly divergent results remains to
be established. Additionally, pericytes under shear flow and in contact
with ECs prevent EC-mediated matrix degradation, suggesting a
possible mechanobiological mechanism for maintaining vascular
stability. Uniaxial cyclic stretch (10% at 1 Hz) reduces pericyte
proliferation, increases apoptosis and induces the formation of thick
stress fibers perpendicular to the stretch direction (Beltramo et al.,

2006; Suzuma et al., 2007). Finally, substrate rigidity appears to
modulate pericyte a-SMA levels (Iendaltseva et al., 2020), suggesting
a mechanobiological link to contractility regulation. These intriguing
results constitute an appetizer in the extensive menu of pericyte
mechanobiological questions that can potentially be addressed using
state-of-the-art in vitro approaches.

Conclusions

Although pericytes participate in a wealth of biological processes,
often involving physical cues, little is known about pericyte
mechanics and mechanobiology. Recent years have witnessed a
tremendous rise in the interest of the scientific community in
pericytes as key players in neo-vascularization and the development
of various pathologies, most notably cancer and neurovascular
diseases. A better understanding of pericyte mechanics and
mechanobiology will provide ample opportunities in these
important biomedical areas. We believe that in vitro models are a
promising path forward to help establish the causative role of
mechanical factors in regulating pericyte function and dysfunction.
We hope that, in the future, biologists will consider the mechanical
world of pericytes, and biophysicists will focus upon this new field,
bringing answers to many elusive and fundamental questions.
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